
Dear Kerstin, 

We thank the editor and three referees for their assessment of our manuscript. Please find our 

detailed responses below. We believe we have addressed all points raised by the reviewers carefully 

and modified the manuscript accordingly.  

Kind regards, 

Gregor Laaha 

 

Response to the comment of C. Luce (Referee) 

 

We would like to thank the reviewer for his frank assessment of the manuscript. Below is our 
response to the issues raised in the review. The original comment is printed in plain font, our 
response is printed in italics.  

 

This was a challenging paper to review. It leaps firmly into the midst of a swirling field of 
debate about how to use trends, projections, and sensitivities to inform estimates of potential 
futures, a valuable and necessary discussion for the community. It seems to do so, though, 
with little sensitivity to some of the tensions in that field of work, perhaps intentionally (?). 
Given the potential value in engendering further discussion on this debate and more openly 
explaining and exploring the logic embedded in alternative methods, I will bite on the offered 
bait. Readers find in this manuscript, on the one hand, a very interesting, even engaging, 
introduction written by some of the luminaries in hydrology about one of the principle 
challenges in the field. On the other hand, part way through the manuscript, the narrative 
becomes enmeshed in speculation. While some of the speculative leanings were hinted at in 
the introduction, they were overt in the synthesis and following sections. Specifically, the 
authors postulate that concordance and discordance among the three approaches can 
directly inform decisions on which are correct or incorrect. They do so without support of 
evidence from this analysis or citation of previous evidence that conclusions about 
projections derived from concordance are correct. Although these issues make the current 
manuscript difficult to follow, a reframing of the argument may be able to use much of the 
same information in a more constructive context. That context would be asking whether they 
can do what they did. There is greater value in discussing myriad reasons why there might 
be disagreement among these methods rather than attempting to resolve those 
disagreements through, as yet, unvetted assumptions. 

The reviewer states that “the authors postulate that concordance and discordance among the 
three approaches can directly inform decisions on which are correct or incorrect.” We would 
state this slightly differently in saying that we postulate that concordance and discordance 
among the three approaches are indicators of the confidence one can have in the projection.  

 

The Good: 

There was much to appreciate about this paper. It offers a discussion of the challenges 
facing us in estimating effects and consequences of climate change and the importance of 
correct estimates for water resources management. They open with a general discussion of 
how trend information has been applied in contrast to more strictly mechanistic reasoning. I 
appreciate the opportunity in that for learning about other work in this area, as well. There 
are also some good lessons and warnings about different reasoning approaches, for 
example a concise description of concerns about the “upward” approach based on uncertain 
precipitation. I particularly appreciated several examples wherein logic, deductive, and 
inductive reasoning were noted as useful tools for interpretation, and then summarized in the 
first paragraph at the top of page 13072.  

 



The paper also works with a large dataset condensed to a few representative examples. This 
assisted in taking in the information from a humanly-comprehensible set of time series while 
providing a sense of both the spatial diversity (and spatial correlation) and temporal diversity 
to ensure that patterns are not emergent from a few preselected sites or times. In short, it 
was rich in both spatial and temporal diversity without overwhelming. In this it was aided by 
well-constructed graphics. A few questions remain, but on the net, substantial information 
was made readily available to the readers to evaluate claims. 

 

 

 

The Concerns: 

Ultimately, the paper raises many questions about alternative methods for projecting the 
future, which is of great value. In this case they do so by applying those alternative methods 
and comparing results. In doing so they ride roughshod over a number of potential objections 
related to each method (though enumerating a few as they did). If the intended purpose were 
to explore where the various objections or errors in logic lead each method potentially astray, 
so as to offer a reference or catalog on how we can, and do, go wrong in our projections, I 
could see much value. Instead, the authors venture in the introduction that the three different 
methods can be reconciled by expert judgment, and reveal in the synthesis section that they 
evaluate differences primarily (or maybe just initially) on agreement between alternative 
methods, stating, “The confidence one has in the projection will depend on how strongly the 
pillars agree, and on their individual uncertainties,” and “The confidence bounds of the 
individual projections are a starting point for assessing the credibility of each pillar,” and (in 
the conclusion) “In all cases, the confidence in the combined projection will depend on how 
closely the pillars agree, and on the individual uncertainties.” I am aware of no studies (and 
they cite none) demonstrating the truth of these statements, and they do not test them in this 
manuscript.  

The main concern of the reviewer seems to be the premise of the paper that agreement 
between results of alternative methods is an indicator of the credibility while variation 
between the results is an indicator of the uncertainty of the projections. We apologise for not 
explicitly providing supporting evidence for this statement which we are doing now. The IPPC 
Good Practice Guidance Paper on Assessing and Combining Multi Model Climate 
Projections (Knutti et al., 2010, p. 2), for example, has: “Ensemble: A group of comparable 
model simulations. The ensemble can be used to gain a more accurate estimate of a model 
property through the provision of a larger sample size, e.g., of a climatological mean of the 
frequency of some rare event. Variation of the results across the ensemble members gives 
an estimate of uncertainty.” This is exactly what we are doing in this paper. The premise 
underlying this paper is exactly the one underlying all IPCC (and most other) ensemble 
projections. The Good Practice Guidance paper further has “Ensembles made with the same 
model but different initial conditions only characterise the uncertainty associated with internal 
climate variability, whereas multi-model ensembles including simulations by several models 
also include the impact of model differences. Nevertheless, the multi-model ensemble is not 
designed to sample uncertainties in a systematic way and can be considered an ensemble of 
opportunity.” We are doing multi-model ensembles which are not a systematic sampling but 
do provide insight into uncertainty and credibility, at least according to the IPCC point of 
view. We agree that this premise involves assumptions but it certainly is good practice. In the 
revised manuscript we make the basis of the premise more explicit and give full justification.  

Knutti, R., G. Abramowitz, M. Collins, V. Eyring, P.J. Gleckler, B. Hewitson, and L. Mearns, 
2010: Good Practice Guidance Paper on Assessing and Combining Multi Model Climate 
Projections. In: Meeting Report of the Intergovernmental Panel on Climate Change Expert 
Meeting on Assessing and Combining Multi Model Climate Projections [Stocker, T.F., D. Qin, 
G.-K. Plattner, M. Tignor, and P.M. Midgley (eds.)]. IPCC Working Group I Technical Support 
Unit, University of Bern, Bern, Switzerland. 

 



I acknowledge their sentence saying, “here, the analysis aims at understanding the reasons 
for the disagreement, by checking the credibility of each projections based on the data used 
and the assumptions made.” This is a wonderful sentiment. I also acknowledge examples of 
physical reasoning provided in the following section (7.2). However, the examples provided 
were brief and simplified in their analysis and subject to alternative physical reasoning to that 
offered by the authors. There were also no systematic rules or principles beyond 
“consistency” offered for evaluating the alternatives, no generalization beyond each case 
study analyzed by the experts. Rather than highlight the complexity and potentially the 
equivocal nature of the comparisons, they indicate that the correct answer is most likely 
where there is consensus among multiple potentially untenable lines of logic. 

 

Probably at the heart of my questions is that the first and third approaches use trend 
extrapolation in a fairly direct way, either of the phenomenon of interest directly (low flow) or 
the precipitation and temperature driving that behavior. These are offered as nominally 
equivalent replacements for climate projections from GCMs without reasonable (or any) 
consideration of the various low-frequency climate contributions to those trends. I’ve certainly 
heard the name Hurst brought up any time I even present an historical trend, and I know this 
group has previously published on the subject. I don’t know of any circumstance where 
historically derived trends are accepted unquestioningly as an expectation for an ongoing 
rate of change. It would seem that I would need to accept raw extrapolation of a 30-year 
trend as a reasonable estimate in order to accept the reasoning of this paper. In essence, 
there are multiple layers of assumption – linearity in trend and process, causality by time or 
temperature alone as a basis for extrapolation – necessary to allow us to hold all pillars in 
equal stead, itself a seeming assumption for the proposed reconciliation process. 

Again, we were probably not clear on the role of the trend extrapolation methods. We fully 
agree that historically derived trends should not be accepted unquestioningly as an 
expectation for an ongoing rate of change and already say so a number of times in the 
paper. More importantly, we intend to paint on a broader canvas. The trend extrapolation 
methods are examples of projection approaches that differ from the usual GCM based 
scenarios. The aim of the paper is not to promote the extrapolation of trends but to illustrate 
the value of using different methods based on different data. Another model type that could 
be equally well used within the same framework would be “trading space for time” (see, e.g. 
Perdigão and Blöschl, 2014). Yes, there are multiple layers of assumptions but the paper 
does not hinge on them. Rather the paper hinges (as pointed out by the reviewer) on the 
premise that consistency/inconsistency between different methods is an indicator of 
certainty/uncertainty. In the revised manuscript we highlight the broader perspective and 
explicitly state that the trend extrapolation is an example rather than a recommended 
method.  

Perdigão, R. A. P., and G. Blöschl (2014) Spatiotemporal flood sensitivity to annual 
precipitation: Evidence for landscape-climate coevolution, Water Resour. Res., 50, 
5492-5509, doi:10.1002/ 2014WR015365. 

 

We can shorthand the “three pillars” in concise terms as: 1. Direct extrapolation of a trend in 
flow 2. Calculation of flow from GCM-projected climates using a model 3. Calculation of flow 
from trend-extrapolated climates using the same model (P.S. A table – perhaps not quite this 
perfunctory – might be a useful way to summarize and contrast the pillars.) “Flow” need not 
be the variable of interest, and we can conceptually generalize to other hydrologic outcomes, 
some of which have nonlinear relationships with climate forcings at varying time scales. On 
the basis of this alone, why might we expect the 1st and 3rd “pillars” to match in all but the 
trivial 0-trend case? We know that the mean of a non-linear process is not the same as the 
non-linear process operating on the means of the inputs. The presentation of the third 
alternative also seems to offer eerily stationary variance in projections (perhaps I misinterpret 
the red-lines in the plots?) that contradicts some well recognized expectations (e.g. Field et 
al, 2012). These points are entirely aside from the fact that the trends in climate for the third 
is based on 1948-2010, while that for the first is 1976-2008. If the first and third pillars are not 



really rigorously framed, they come across as “strawmen” proposals in contrast to the more 
conventional GCM-based approach. At the same time, generous criticism is offered for GCM 
precipitation projections in the introduction (probably well deserved), which lends a certain 
frailty to that pillar as well. Are the authors trying to warn us that the three pillars of hydrologic 
projection are made of straw; that we should be watching for the big bad wolf? It does not 
seem to be their intent, but it is a difficult feeling to escape.  

As noted above, the aim of the paper is not to promote the extrapolation of trends but to 
illustrate the value of using different methods based on different data. We are now making 
this clearer in the revised paper.  

 

Perhaps the disconnect for me in reading this paper is related to my own slow work about 
reconciling GCM projections against trends (See Luce and Holden, 2009 and Luce et al., 
2013 for instance). It seems that there should be utility in contrasting trends in climate and 
flow with GCM and hydrologic model retrospectives. It is important to question and hone our 
precipitation expectations, which seem so deeply uncertain from GCMs. But challenging the 
GCM projections with raw extrapolations of flow or climate seems like a weak challenge, 
particularly given that we know there are other periodical trends potentially superimposed. I 
fear that without demonstrated rigor in the trend analysis, the kind of effort the authors offer 
will be dismissed by our partners in the climate and atmospheric sciences community. 

The reviewer seems to imply here that the trend analysis in the paper lacks rigor, while the 
methods used in Luce and Holden (2009) and Luce et al. (2013) do provide the necessary 
rigor. May be we are missing the point here, but it seems to us that Luce and Holden (2009) 
and the present manuscript are very similar with respect to the trend estimation and its 
interpretation. Luce and Holden (2009) estimate trends in the distribution of annual runoff at 
43 gages and interpret the detected trends in the context of snow melt and climate indices, 
not unlike the interpretations of this paper. They also make the implicit assumption that the 
trend will continue into the future when they make management recommendations (which is 
obviously about the future), e.g. “Water allocation will become increasingly difficult with 
increasingly low annual streamflows” (p. 4). We therefore cannot see why the Luce and 
Holden (2009) approach would have advantages over the one used in this paper. Luce et al. 
(2013) provide more process detail on the comparison between GCM results and trend 
analyses. We do take the point that more quantitative process detail would strengthen the 
paper. We have therefore added, where appropriate, quantitative support of the process 
interpretations in the spirit of Luce et al. (2013).  

On a more technical level, their method did not assume a Gaussian distribution of residuals 
around the trend line while the method used in this paper does. To adopt more rigor, we 
therefore compared the trend estimates with those using a nonparametric approach based 
on bootstrapping to estimate distribution-free confidence intervals. The results are given in 
supplement A of this response. The bootstrap distributions of predicted values turn out to be 
very close to Gaussian so the results change very little. The expected changes never differ 
by more than 4% from those of the method used in this paper, and their 95% confidence 
bounds never differ by more than 21% (period 2021-2050) and 33% (period 2051-2080) from 
those of this paper. However, we do see the value of the nonparametric approach and have 
adopted it therefore in this paper, replacing the Gaussian approach in the original 
manuscript.  

 

I perceive the scientific community already taking on permutations of these three “pillars” 
through a range of scientific methods examining the sensitivity and consistency aspects 
through careful dissecting of trends of different time scales and variability from a range of 
climate processes. I acknowledge that these examinations are commonly of limited spatial 
scope and perhaps tediously meticulous, but do we have to abandon our sense of caution to 
effectively make a challenge? Have the various local efforts at incremental progress become 
too diffuse in their effect? Do we need to consider alternatives that have a touch of the 
outrageous? Perhaps so, and I’m open to the manuscript doing so; it just seems like a 



position that requires some justification given the other excellent ongoing work in the 
community, only a small portion of which is cited. 

As mentioned above we now give more detailed justification of the approach adopted.  

 

A Suggestion: 

It seems the paper would most benefit from a more questioning stance; asking whether they 
can do what they would like to do – unless they are able to cite someone else who has  it 
successfully. It would be wonderful and useful if they (or presumably in the future, “we”) 
could apply their approach of comparing among the three pillars. If section 7.1 were framed 
more in the context of developing a hypothesis about how the three approaches (perhaps 
with slight refinements for 1 and 3 to acknowledge the potential need for anthropogenic 
attribution) could frame a genuinely systematic approach to reconciliation, the manuscript 
would come across more constructively. Then section 7.2 would presumably demonstrate 
that, in fact, the projections in agreement are more likely to occur. At the very least I would 
expect it would generate an excellent discussion on potential futuring practices that is 
informed by some thorough analysis of a large data set.  

We take the reviewer’s point of adopting a more questioning stance. We have condensed the 
manuscript by 30% and changed the perspective throughout the paper to better highlight the 
causes of the differences between the methods.  

 

A Perspective? 

This final question is not intended to require modification of the manuscript or response by 
the authors. It is just here as a point of consideration or perspective relative to the overall 
framing offered by the current manuscript, which may or may not be helpful to briefly ponder. 
An underlying conceptualization of all three pillars is in determining the rate of change. One 
lesson from the various climate modeling exercises is a monotonic trend in temperature. If 
we do not societally change our fossil energy consumption practices, it is not a question of 
“if” we will reach 3, 4, or 6 C increases, just “when”. If we resolve our temperature uncertainty 
to instead be a temporal uncertainty, we can recast our questions to be about the sensitivity 
to temperature and a plausible range of precipitation. Is the timing question so important that 
we should prioritize that as our fundamental question in hydrology over assuring that we can 
adequately describe the hydrological system response to a generalized “warming” of 2 to 6 
C? Should our three pillars have a heavy weight on timing, or by accepting the eventuality, 
focus on hydrologic process or sensitivity? 

 

Sincerely, Charles Luce 
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Response to the comment of L. Samaniego (Referee) 

 

We would like to thank the reviewer for his positive and insightful comments on the 
manuscript. Below is our response to the issues raised in the review. The original comment 
is printed in plain font, our response is printed in italics.  

 

This manuscript is based on the presumption that the combination of statistical analysis, 
process-based modeling using climate and stochastic projections as well as expert 
judgement is the best way to assess climate impacts on low flows. Without any further 
analysis, one could dare say that this premise should be true considering that this approach 
has much more information than any single analysis and thus should have less chance of not 
finding an answer that is closer to the true one. The authors strive to demonstrate the 
advantages of the proposed approach and the validity of this premise with a regional study 
conducted in four Austrian river basins. The manuscript is well written although it is a bit too 
long in my opinion. The topic of the study is relevant for HESS but the manuscript requires a 
substantial revision before publication. Below, I provide a number of issues to be clarified 
before publication. 

We would rephrase the above statements in saying that the three pillar approach is a 
plausible way to assess climate impacts (not necessarily the best as we do not compare it 
with other approaches) and that we strive to demonstrate the usefulness of the premise 
rather than its validity, as validity can never be demonstrated for the future. We have now 
removed Figure 1 which may have been suggestive of the claim of a “best method”.  

 

    • My first remark refers to the terminology chosen for this manuscript. My impression after 
reading the abstract and the introduction is that the names given to the various methods and 
the proposed “three-pillar” approach can be considerably simplified without diminishing the 
message that the authors try to convey. On the contrary, it will help the reader. I wonder, for 
example, what a data-based method has to do with a downward approach (downward refers 
to “toward a lower place, point, or level” )... and conversely a mechanistic one with an 
upward approach ... I know that these terms have been used in current literature, but in my 
opinion, these buzzwords can be replaced by method A and B without changing the meaning 
of the sentences. I suggest either to justify the meaning of “downward” and “upward” in the 
present context or even better, to simplify the text. In my opinion, the so-called “downward 
approach” is a classical statistic method, so I wonder why not calling it simply like that. 

The terminology of upward and downward approaches (Sivapalan et al., 2003) reflects the 
alternative avenues towards obtaining understanding of how a system operates which is 
unrelated to whether the methods are statistical or deterministic. The upward or mechanistic 
approach is based on a preconceived model structure that puts conceptual components such 
as runoff generation together (hence upward), while the downward approach infers the 
catchment functioning from an interpretation of the observed response at the catchment 
scale (fingering down to smaller scales, hence downward). We realise there are subtleties 
involved and the terminology is not essential for the paper, so we have removed it.  

 

    • In this study, old IPCC nomenclature for emission scenarios (A1B, B1, A2 etc) are still 
used instead of the newer RCPs proposed by the IPCC. Newer climate projections (e.g., 
CMIP5) are readily available for quite some time. Please explain why. 

Jacob et al. (2015) showed that the most recent regional climate simulations over Europe, 
accomplished by the EURO-CORDEX initiative (RCPs, Moss et al., 2010), are rather similar 
to the older ENSEMBLES simulations with respect to the climate change signal and the 
spatial patterns of change. For consistency with related studies in Austria (e.g. Parajka et al., 
2016) we have therefore chosen the older emission scenarios. We are now noting this in the 
manuscript.  



Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., 
Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, 
N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: 
The next generation of scenarios for climate change research and assessment, Nature, 463, 
747–756, 2010. 

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L., Braun, A., 
Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., 
Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., 
Kriegsmann, A., Martin, E., Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., 
Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., 
Soussana, J.- F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-
CORDEX: new high-resolution climate change projections for European impact research, 
Reg. Environ. Change, 14, 563–578, doi:10.1007/s10113-013-0499-2, 2014. 

 

    • Authors do not formulate in the introduction a research hypothesis to be tested. I guess, 
the authors intend to test that the “Three-pillar approach” is superior than any of the single 
ones, but failed both to explicitly mention this hypothesis and to present statistic evidence 
that corroborates this assertion. 

Actually, we are not intending to test a hypothesis in this paper. The aim of the paper is to 
present an approach to assess climate impacts on low flows from different sources of 
information. The objective is twofold, to present the concept and to illustrate the viability of 
the approach. A hypothesis that the three pillar approach is superior to any of the single 
methods would be testable in a synthetic world (where the future is generated and assumed 
to be perfectly known) but this would probably be a rather trivial exercise. The real world is 
more complex, so we confine ourselves to illustrating the feasibility of the approach very 
much in the spirit of ensemble predictions. We are now making the underpinning philosophy 
of ensemble predictions more explicit in the paper.   

 

    • L19, P9. If a hydrologic model is used in this study, I do not understand why a runoff 
index is not used instead of a meteorological drought index like SPEI. Streamflow, and thus 
low flow characteristics, are the outcome of the whole hydrologic system that is represented 
by a hydrological model. Moreover, it is well documented in the literature that atmospheric 
drought indices are quite transient whereas those related to soil moisture, groundwater, and 
runoff are not (Samaniego et al JHM 2013 and sources therein). Thus, the stochastic 
dependence of SPI or SPEI with any low-flow index is, in general, not significative (Kumar et 
al. 2016 HESSD). It should also explained why a Gaussian transformation (perhaps due to a 
long tradition... ) should be applied a variable than is definitely non-Gaussian (i.e., P �EP ). 
L14 P9. A more reliable approach to “check the realism” of the ensemble climate simulations 
would be to estimate a runoff index over a historial period in which reanalysis (or hindcasts) 
and historial meteorological forcings are available. This is probably the best way to know 
whether a RCM or a Numeric Weather Prediction Model output can explain observed low-
flow spells or other kinds of drought events as proposed by Thober et al. 2015. 

We agree that a number of methods can be used for testing the realism of ensemble climate 
simulations (and we find the methods suggested by the reviewer useful), but the jury is 
probably still out on what is the most suitable method in a particular hydro-climatological 
setting. Kumar et al. analyse groundwater anomalies rather than low flows, so their results 
are not fully applicable to the present case, while Haslinger et al.. (2014) did find significant 
links between SPEI and low flows in the study area. The SPEI has been adopted here for its 
simplicity and because it can be calculated from the HISTALP data (Auer et al., 2007) back 
to the year 1800. Given this is a side issue in the paper, in our opinion, comparing different 
methods would go beyond the scope of this paper. The hydrological modelling later in the 
paper allows a more detailed comparison in the spirit of the references suggested by the 
reviewer. We now give an explicit justification of the use of SPEI.  

 



    • L18 P.5 It is not clear to me why the “first and second pillars” do not use local information 
used in the third pillar. After all, trends are based on local meteorological observations and 
any rainfall-runoff model, to my knowledge, uses local observations of rainfall, temperature, 
and discharge. Please elaborate why they have to be different (L22)? 

We appreciate the comment as the wording has indeed been lacking clarity. The first two 
pillars do not use observed changes in the stochastic rainfall characteristics while the third 
pillar (stochastic extrapolation) does. We have reworded the sentence for clarity.  

 

    • L17 ff, P5. I guess authors demand too much from downscaled GCM-RCM forcings. 
GCM and RCM are climate models describing the evolution of physical processes in the 
atmosphere, ocean, cryosphere and land surface at large temporal and spatial scales (about 
2.5_). They are not intended to describe transient states, consequently one can not say that 
they are reliable or not. They do not have all the process necessary to describe rainfall 
generation at smaller scales like high resolution numerical weather models have if they are 
run at 1 km to 2 km spatial resolution. RCMs at 1/4_ resolution and larger would be hardly 
able to estimate convective precipitation over mountainous areas like Austria. For GCMs, this 
is almost an imposible job. If this is known, I wonder why the hydrology comuntiny insist on 
getting “reliable” daily precipitation (say from RCMs inreanalysis mode) from these models so 
that low-flow statistics can be estimated ... Dynamic and stochastic downscaling may help a 
bit but many studies have shown, for example, that very few RCMs from the ENSEMBLES 
project are even able to get extreme statistics of the observed rainfall fields at monthly time 
scales (see e.g., Soares et al. 2012 JGR in Portugal, and Thober & Samaniego JGR, 2014 in 
Germany). As a consequence, low-flow statistics and its variability (e.g., Q95) obtained from 
reanalysis (e.g., WATCH) should be evaluated as expectations over reasonable periods 
(e.g., over decades). Likely yearly statistics are too short a period. See for example Schewe, 
J. et al. as an alternative. 

We fully agree with the remark that RCM outputs should be assessed at time scales longer 
than a year and we did not intend to convey the impression that individual years should be 
taken at face value. In the discussion we are now making it clearer that the focus is on 
decadal rather than yearly scales and this is how the figures should be interpreted.  

 

    • L13 p8. The area of the river basins and the sampling size used in this study are 
probably too small to derive conclusive results. Authors should consider that the area of a 
GCM grid cell like ECHAM5 is at least 9 _ 104 km2 and that of a RCMs used in Reclip:century 
is approximately 1 _ 102 km2 (based on the project report). As a rule of thumb, due to the 
Courant–Friedrichs–Lewy condition, it is not recomendable to use prognostic values of state 
variables or fluxes obtained by numeric integration for areas less than four times the area of 
a typical grid cell. This implies that the minimun area to be consider in this case is a basin 
with at least 4 _ 102 km2. Three of the study areas do not fulfill this condition. As a result, the 
uncertainty of the numerical model plus that of the downscaling techniques would increase 
dramatically which, in turn, would negatively affect the impact analysis. I recommend to test 
this approach in large basins that fulfill this condition and to enlarge the sample size 
considerably. 

Yes, the spatial scales of applicability of RCM simulations is on the order of hundreds of km². 
This is exactly the reason why we put the smaller catchments into a regional context (Figure 
3, now Figure 2). This was acknowledged by reviewer #1: "the paper also works with a large 
dataset condensed to a few representative examples ... that ensure that patterns are not 
emergent from a few preselected sites or times." As suggested by the reviewer we are now 
making the scale considerations of the climate simulations more explicit in the manuscript 
with respect to Figure 3, now Figure 2.  

 

    • L15 P11, I suggest to use a non-parametric test to estimate confidence bounds 
considering that the underlaying variable is certainly non-Gaussian. In this case, parametric 
t-Student estimations for confidence bounds do not apply. 



This is a good point. We therefore reanalysed the data by a nonparametric approach based 
on bootstrapping to estimate distribution-free confidence intervals. The results are given in 
supplement A of this response. The bootstrap distributions of predicted values turn out to be 
very close to Gaussian so the results change very little. The expected changes never differ 
by more than 4% from those of the method used in this paper, and their 95% confidence 
bounds never differ by more than 21% (period 2021-2050) and 33% (period 2051-2080) from 
those of this paper. However, we do see the value of the nonparametric approach and have 
adopted it therefore in this paper, replacing the Gaussian approach in the original 
manuscript.   

 

    • The structure of the manuscript is cumbersome in some sections. I suggest that methods 
and results from every approach is presented separately to easereading. The number of 
sections is quite large for a research paper in my opinion. This manuscript is a bit long too. 

In response to this comment we have reorganised the paper, merging the methods sections 
into one chapter and condensing the entire manuscript by about 30%.  

 

    • L31, p19. Authors do not attempt to estimate “how strongly the pillars agree”. It will be 
very enlightening to see a statistical analysis in this respect. 

We appreciate the idea and have added a figure (now Fig. 11) showing the probability 
density functions (pdfs) of the low flow projections from the three methods for the period 
2021-2051. We have tested the consistency of the pdfs by a two-sample Kolmogorov-
Smirnov test which, however, gives lack of significant agreement for most cases which does 
not provide a lot of insight. We have therefore chosen to limit the quantitative comparison to 
the new figure.  

 

    • L2 ff p 26 As I said earlier, I have no doubt of this statement. In general, more information 
should lead to more reliable results. I do not see novelty on this statement. This can be 
inferred, for example, from simple parametric statistical tests by gradually changing the 
sampling size and estimating the effect on the confidence bounds for a given statistic. L29 ff 
is a consequence of this. Authors should present results and make statistical tests that 
demonstrate with large degree of certainty that adding information gradually leads to better 
results in this case. I have, however, reservations, on how soft data (e.g. historical reports), 
or subjective impressions can be used in a formal statistical analysis to “correct” confidence 
bound. 

We agree that, to some degree, more information leading to more reliable results is an 
obvious statement. On the other hand, this is exactly the basis of multi-model ensemble 
projections. We have now changed the tone of the presentation in order not to imply that the 
use of more information is novel, rather the particular implementation in the context of low 
flow projections. Of course this can be formalised, for example by Bayesian methods that 
can handle subjective information (eg. Viglione et al., 2013) but this would go beyond the 
scope of this paper.  

 

    • Fig 11 is quite dense. It is supposed to be a synthesis, but I hardy can understand it. 
Sorry. In my opinion, this manuscript could become a nice contribution to the field if these 
issues are addressed before publication.  

While reviewer Luce did note that the graphics of the paper are well constructed we can see 
the point here. To assist in the interpretation we have added a new figure (now Fig. 11) 
which is simpler and more clearly demonstrates the similarities and differences of the pillar 
projections.  

 

 

Luis Samaniego  
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Response to the comment of Referee #3 

 

We would like to thank the reviewer for her/his positive and insightful comments on the 
manuscript. Below is our response to the issues raised in the review. The original comment 
is printed in plain font, our response is printed in italics.  

 

This is a paper that is worthy of publication in HESS. The authors do an excellent job 
synthesizing existing literature on modeling low streamflow hydrology, and provide an 
interesting approach to assessing the impact of climate change on low streamflow prediction. 
Low streamflow prediction is inherently a challenging problem, and combining and assessing 
multiple approaches to forecasting low flows given potential climate change helps develop 
more holistic approach to low streamflow prediction. As such, I strongly recommend this 
paper be published in HESS, as it provides information useful to a wide variety of readers. 
Regardless, I do have a number of comments and suggestions that the authors might 
consider when revising this manuscript.  

1) The three-pillar approach presented in this paper is not necessarily restricted to low 
streamflow estimation (i.e. it could just as easily be applied to flood flows or other hydrologic 
statistics). This should be made clear to the reader.  

We agree that the overall approach is useful for a wider range of applications. We are now 
making this clearer in the discussion section of the paper.  

 

2) One reason that low streamflow estimation is challenging is that they are typically driven 
by groundwater discharge processes (both recharge and discharge). These processes are 
difficult to understand and model due to their heterogeneous nature, and often these 
processes are overly simplified in rainfall runoff models (whose focus is typically flood or 
average streamflow prediction). Some discussion of this is warranted, as well as how these 
processes and their drivers are impacted by changes in climate.  

We fully agree, groundwater processes controlling streamflow are often of a local nature 
modulated by the local hydrogeology, and the runoff model used is indeed a very simple 
representation of these processes. We are now acknowledging this in the discussion section 
of the paper and discuss potential effects of the simplification.    

 

3) [NOTE: The following comment was written prior to this reviewer reading the entire 
manuscript. I am aware that this is discussed at the end of the paper (page 13096 line 13), 
but perhaps is should be discussed earlier since I continued to question this assumption 
throughout the paper.] An assumption of a linear trend in Q95 is made (equation (1)). Some 
discussion of the merit of this assumption is warranted. The authors could refer to Figure 5 in 
this discussion. While the Hoalp catchment’s Q95 trend appears to be linear, in the Buwe 
catchment the trend seems to be driven by a regime shift in the last 10 years of the record 
(most likely creating a trend in the residuals). The implication of this assumption should be 
discussed. For instance, are the error bounds associated with these projections impacted by 
this assumption? Is there is a regime shift and not a linear trend, might you under-predict 
future low flows at this catchment?  

We have added a note regarding the assumption earlier in the paper (where the linear trend 
model first appears), and we now address this point in the discussion section (referring to 
Figure 5), in particular the different shapes of the low flow changes in Hoalp and Buwe (trend 
vs regime shift). Regime shift is indeed a possibility and has now been given more 
prominence in the paper.     

 

4) I believe the significance codes in Table 1 are incorrect. I think the symbols should either 
be switched in the table or in the table footnote.  

Many thanks for pointing this out. The formatting error has been corrected.   



 

5) A brief explanation of how groundwater discharge is modeled in the TUVmodel is 
warranted, as well as what parameters are calibrated in the SCE-UA routine.  

A brief explanation has been added.    

 

6) The results in Table 3 seem deceptive to me, since they are for model prediction across 
the entire streamflow regime. While the weights are changed to assess the impact of higher 
and lower streamflow prediction on Zq, it’s difficult to understand how these are important to 
this analysis. In addition, even though Table 3 says that this model does poorly at Buwe, the 
Q95 predictions in Figure 5 seem quite good. You might consider explaining this.  

An explanation has been added.       

 

7) There are a number of small typographic errors: 

a) Page 13084 line 25. “(“ before “Ceola” should be removed. 

b) Page 13086 line 1. The “Q” in “ZQ” should be a subscript. 

c) Page 13094 line 1. “on” should be “one”. 

d) Page 13097 line 7. “cam” should be “can”. 

e) Page 13099 line 16. “for Hundecha and Merz (2012).” should be “for (Hundecha and 

Merz, 2012).” 

All these typos have been corrected.  

 

 



SUPPLEMENT A 
 
## Original CI 
Table #2 Trend projections FOR MID OF PROJECTION PERIOD 2035 for (2021-2050) and 
2065 for (2051-2080) 
 Hoalp Muhlv Gurk Buwe 
Predicted 
discharge 
2050 (m³/s) 

0.28 m³/s  
(0.19, 0.38) m³/s 

0.67 m³/s  
(0.36, 0.97) m³/s 

1.17 m³/s  
(0.48, 1.87) m³/s 

0.02 m³/s  
(-0.10, 0.14) m³/s 

Change 
2050 (%) 

+42% (-5, +88) -10% (-51, +32) -36% (-74, +1) -89% (-156, -21) 

     
Predicted 
discharge 
2080 (m³/s) 

0.35 m³/s  
(0.20, 0.51) m³/s 

0.58 m³/s  
(0.07, 1.09) m³/s 

0.74 m³/s  
(-0.42, 1.90) m³/s 

-0.08 m³/s  
(-0.29, 0.12) m³/s 

Change 
2080 (%) 

+78% (1, 156) -21% (-91, +48) -60% (-123, +3) -145% (-258, -33) 

 

 

 

 
 
## BOOTSTRAPED CI (5000 replications) 
Table A.2 Trend projections FOR MID OF PROJECTION PERIOD 2035 for (2021-2050) 
and 2065 for (2051-2080) 

Table 2 
 Hoalp Muhlv Gurk Buwe 
Predicted 
discharge 
2050 (m³/s) 

0.28 m³/s  
(0.19, 0.37) m³/s 

0.68 m³/s  
(0.45, 1.02) m³/s 

1.19 m³/s  
(0.58, 2.00) m³/s 

0.02 m³/s  
(-0.14, 0.14) m³/s 

Change 
2050 (%) 

+39% (-7, +71) -8% (-41, +34) -36% (-72, -1) -90% (-177, -22) 

     
Predicted 
discharge 
2080 (m³/s) 

0.35 m³/s  
(0.22, 0.45) m³/s 

0.60 m³/s  
(0.15, 1.14) m³/s 

0.74 m³/s  
(-0.23, 2.01) m³/s 

-0.08 m³/s  
(-0.33, 0.12) m³/s 

Change 
2080 (%) 

+74% (0, 123) -21% (-79, +51) -59% (-113, +9) -148% (-282, -36) 

 
 



Figure A.1. Bootstrap distribution of trend projection for Hoalp, period 2065 for (2051-2080) 

 
 
Figure A.2. Bootstrap distribution of trend projection for Muhlv, period 2065 for (2051-2080) 
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Figure A.1. Bootstrap distribution of trend projection for Gurk, period 2065 for (2051-2080) 

 
 
Figure A.2. Bootstrap distribution of trend projection for Buwe, period 2065 for (2051-2080) 
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 14 

Abstract 15 

The objective of this paper is to present a new strategyframework for assessing climate 16 
impacts on future low flows and droughts. The strategy is termed a three-pillar approach as 17 
itthat combines different sources of information. The first pillar, trend extrapolation, exploits, 18 
termed pillars. To illustrate the temporal patternsframework three pillars are chosen: (a) 19 
Extrapolation of observed low flows and extends themflow trends into the future. The second 20 
pillar, rainfall; (b) Rainfall-runoff projections uses precipitation and temperature based on 21 
climate scenarios from climate models as an input to rainfall-runoff models to project future 22 
low flows. The third pillar,; (c) Extrapolation of changing stochastic projections, exploits the 23 
temporal patterns of observed precipitation and air temperature and extends themrainfall 24 
characteristics into the future to drive rainfall-runoff projections. These pieces of 25 
informationcombined with rainfall-runoff modelling. Alternative pillars could be included in 26 
the overall framework. The three pillars are combined by expert judgement based on a 27 
synoptic view of data and, model outputs, taking and process reasoning. The 28 
consistency/inconsistency between the respective uncertaintiespillars is considered an 29 
indicator of the methods into account.certainty/uncertainty of the projections. The viability of 30 
the approachframework is demonstratedillustrated for four example catchments from Austria 31 
that represent typical climate conditions in Central Europe. The projections differ in terms of 32 
their signs and magnitudes. The degree to which the methods agree depends on the regional 33 
climate and the dominant low flow seasonality. In the Alpine region where winter low flows 34 
dominate, trend projections and climate scenarios yield consistent projections ofconsistently 35 
increasing low flows, although of different magnitudes. In the region north of the Alps, 36 
consistently small changes are projected by all methods. In the regions in the South and 37 
Southeast, more pronounced and mostly decreasing trends are projected but there is 38 
disagreement in the magnitudes of the projected changes. These results suggest that 39 
conclusions drawn from only one pillar of information would be highly uncertain. TheThe 40 
process reasons for the consistencies/inconsistencies are discussed. It is argued that the three-41 
pillar approach offers a systematic framework of combining different sources of information 42 
aiming at more robust projections than obtained from each pillar alone.  43 
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 1 

1 Introduction 2 

Streamflow regimes are changing around the world due to human intervention. Low flows are 3 

often particularly affected. Direct human impacts such as abstractions or storage effects are 4 

not quite easy to quantify. Forecasts of the impacts of a changing climate are even more 5 

difficult (Blöschl and Montanari, 2010). Yet, the quantification of future water resources is a 6 

key requirement for water management. An increasing number of studies has therefore been 7 

conducted in recent years to assess climate change impacts on low flows and streamflow 8 

droughts. From a modelling perspective, and also from a systemic one, these studies fall into 9 

two groups of approaches (Sivapalan et al., 2003). 10 

The first group of studies assesses climate impacts from observed streamflow records. This is 11 

sometimes termed a data-driven or downward approach. As discussed in (Sivapalan et al., 12 

2003) the defining feature of the downward approach to hydrologic modelling is the attempt 13 

of predicting catchment functioning based on an interpretation of the observed response of the 14 

catchment. The approach provides a systematic framework of learning from data, including 15 

the testing of hypotheses at every step of analysis. In the context of hydrological change and 16 

low flows, the downward approach usually involves statistical trend analyses of observed low 17 

flow characteristics such as the annual minima. There has been a considerable number of low 18 

flow trend studies across Europe and around the world, including (Giuntoli et al., 2013) for 19 

France, (Hannaford and Buys, 2012) for UK, (Wilson et al., 2010) in Nordic Countries, 20 

(Lorenzo-Lacruz et al., 2012) for the Iberian peninsula, and (Lins and Slack, 1999) and 21 

(Douglas et al., 2000) for the US. Trend testing is usually performed on a station-by-station 22 

basis. Often, the studies are therefore not fully conclusive at the larger scale of climate 23 

processes. Only a few studies tested trends in a regional context, using field significance 24 

statistics or block-bootstrapping procedures (e.g. Renard et al., 2008; Wilson et al., 2010), 25 

while other studies interpret trend patterns rather than significance levels which avoids 26 

assumptions of spatial correlations but makes the results less comparable with other studies 27 

(e.g. Stahl et al., 2010). An important step in the downward approach is the interpretation of 28 

detected trends in order to gain an understanding of the processes giving rise to observed 29 

changes. At least some interpretation of low flow trends in the context of climate variables is 30 

usually performed, either relative to observed changes or to projected changes. Most studies, 31 

however, perform trend interpretations in the sense of a plausibility control rather than in a 32 

deductive way, therefore not exploiting the full potential of the downward approach. 33 
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The second group of studies simulates future changes from climate scenarios. From a 1 

systemic perspective, this may be termed a mechanistic or upward approach, as physically-2 

based models are used to generate climate projections. When the focus is on river flows, 3 

model cascades of atmospheric-land surface-catchment models are usually employed. General 4 

Circulation Models (GCMs) simulate the climate system’s future response to emission 5 

scenarios and other human activities that affect the climate system. The GCM outputs are then 6 

downscaled to the scale of the catchment of interest, and the resulting projections of climate 7 

variables such as precipitation and air temperature are used as inputs of a hydrological model 8 

to project streamflow. Applications of the upward approach to streamflow projections are 9 

numerous, but relatively few of these studies focus on low flows. These few examples include 10 

large river basin studies such as (De Wit et al., 2007) for the Meuse, (Hurkmans et al., 2010) 11 

for the Rhine, and (Majone et al., 2012) for the Gállego river in Spain. All of these studies 12 

used distributed or gridded hydrological models to simulate the projected response of the 13 

entire basin. Similar to the downward approach, regional studies are rare. Large national 14 

studies include (Wong et al., 2011) for Norway, (Prudhomme et al., 2012) for Britain, 15 

(Chauveau et al., 2013) for France, and (Blöschl et al., 2011) for Austria. These studies make 16 

use of readily available regionalised rainfall-runoff models developed in prior studies to 17 

assess regional patterns of low flow indices. Often, these models are not specifically 18 

parameterised for low flows, and therefore associated with higher uncertainty. An alternative 19 

approach consists of using global hydrological models instead of regionalised rainfall-runoff 20 

models at the end of the model cascade (Prudhomme et al., 2013). Global models make it 21 

easier to understand large-scale changes but the projections are coarser with respect to both 22 

spatial scale and the degree of process realism. 23 

Both approaches have their strengths and weaknesses (see Hall et al., 2014) for a comparison 24 

of the two methods in the context of floods). The downward approach is the method with a 25 

minimum number of assumptions, since it is directly based on observations. If the data are 26 

reliable, recent changes of the low flow regime can be related to a changing climate. Recent 27 

changes in air temperature have been quite consistent over time in many parts of the world. In 28 

the European Alps, for example, the increase in air temperature since 1980 has been about 29 

0.5°C/decade with little variation between the decades (Böhm et al., 2001; Auer et al., 2007). 30 

If one assumes that air temperature is the main driver of low flows and air temperature 31 

changes will persist into the near future in the same way as in the past, one can also assume 32 

that observed low flow changes can be extrapolated into the near future. Of course, such an 33 
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extrapolation hinges on the realism of the assumptions and is likely to be applicable only to a 1 

limited time horizon. Also, reliable runoff data over the past five decades are needed. In its 2 

own right, such low flow extrapolations may therefore not be very conclusive in terms of 3 

future low flow changes. 4 

The alternative, upward approach exploits information from global and regional climate 5 

models to project future low flows as a consequence of climate change. An advantage of 6 

GCMs is their process basis and their ability to perform multiple simulation experiments for 7 

different greenhouse gas emissions scenarios or shared socio-economic pathways. These 8 

simulations can be useful for gaining an understanding of the major controls of climate 9 

variables and the range of possible projections. However, their spatial resolution is rather 10 

coarse (e.g., 10 km for the dynamically downscaled reclip:century simulations used in this 11 

study), so small-scale climate features, such as cloud formation and rainfall generation, 12 

cannot be resolved. Also one cannot test such projections as they extend into the future. The 13 

consequence is that air temperature projections from climate models tend to be robust, while 14 

precipitation projections tend to exhibit considerable uncertainties. If precipitation is the main 15 

driver of low flow changes, these uncertainties translate into large uncertainties in projected 16 

low flows. The uncertainties may be particularly large in complex terrain, such as Alpine 17 

landscapes and adjacent transition zones, where climate models are least reliable (Field and 18 

Intergovernmental Panel on Climate Change, 2012; Haslinger et al., 2013). Low flow 19 

projections may, therefore, vary wildly between scenarios and models for the same region so, 20 

again, may not be very conclusive of climate change impacts when taken by itself. 21 

 22 

Streamflow regimes are changing around the world due to multiple factors and low flows are 23 
often particularly affected. Direct human impacts, such as abstractions, and climate impacts 24 
are difficult to isolate (Blöschl and Montanari, 2010), yet understanding the causes of changes 25 
is essential for many water management tasks. Research into assessing low flow and drought 26 
changes falls into two groups (Sivapalan et al., 2003). 27 

The first group infers catchment functioning from an interpretation of the observed 28 
streamflow response at the catchment scale. It includes statistical trend analyses of observed 29 
low flow characteristics, such as the annual minima, supported by analyses and interpretations 30 
of the process causes (e.g. Giuntoli et al. (2013) in France, Hannaford and Buys (2012) in the 31 
UK, Wilson et al., (2010) in the Nordic Countries, Lorenzo-Lacruz et al. (2012) on the Iberian 32 
peninsula, and Lins and Slack, (1999) and Douglas et al., (2000) in the US). Most trend 33 
analyses are performed locally on a station-by-station basis and are therefore not fully 34 
conclusive at the larger scale of climate processes. Regional trend analyses are based on field 35 
significance statistics or block-bootstrapping procedures (e.g. Renard et al., 2008; Wilson et 36 
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al., 2010) or, alternatively, a regional interpretation of trend patterns (e.g. Stahl et al., 2010). 1 
Most studies perform trend interpretations in a heuristic way without cross checking against 2 
alternative sources of information. 3 

The second group involves a model cascade, where General Circulation Model (GCMs) 4 
outputs are fed into Regional Climate models (RCM), the outputs of which (usually 5 
precipitation and air temperature) are fed into hydrological models to project future 6 
streamflows. Low flow examples include De Wit et al. (2007) for the Meuse, Hurkmans et al. 7 
(2010) for the Rhine and Majone et al. (2012) for the Gállego river in Spain. National studies 8 
include Wong et al., (2011) in Norway, Prudhomme et al. (2012) in the UK, Chauveau et al. 9 
(2013) in France and (Blöschl et al., 2011) in Austria. The hydrological models used in these 10 
studies are often not specifically parameterised for low flows which results in considerable 11 
uncertainties. 12 

The two approaches have relative strengths and weaknesses (see Hall et al., 2014 for the flood 13 
case). The first approach makes fewer assumptions and is more directly based on observations 14 
but any extrapolation into the future is more speculative. Recent changes in air temperature 15 
have been quite consistent over time in many parts of the world. In the European Alps, for 16 
example, the increase in air temperature since 1980 has been about 0.5°C/decade with little 17 
variation between the decades (Böhm et al., 2001; Auer et al., 2007), and the expected trends 18 
are similar. If one assumes that air temperature is the main driver of low flow changes, 19 
persistence of low flow changes into the near future is therefore a reasonable assumption. Of 20 
course, such an extrapolation hinges on the realism of the assumptions and is likely only 21 
applicable to a limited time horizon. The second approach on the other hand is more process 22 
based, so has more potential for projections into the future, but the spatial resolution of the 23 
atmospheric models is rather coarse (e.g., 10 km for dynamically downscaled reclip:century 24 
simulations), so small-scale climate features, such as cloud formation and rainfall generation, 25 
cannot be resolved. As a consequence, air temperature projections tend to be more robust than 26 
precipitation projections, in particular in Alpine landscapes (Field and Intergovernmental 27 
Panel on Climate Change, 2012; Haslinger et al., 2013). There is value therefore in 28 
confronting such projections with results from other approaches.  29 

 30 

2 Three- pillar approach 31 

The upward and downward approaches have complementary strengths and weaknesses. 32 

Importantly they use different sources of information. If a single approach is used, not the 33 

entire spectrum of information that may be available is exploited. Current trend studies focus 34 

on trend tests, on spatial patterns, or on temporal aspects of trends, but do not combine these 35 

aspects with information from climate scenarios. In a similar way, rainfall-runoff projections 36 

typically use climate scenarios, but we are not aware of any studies that also exploit the 37 

information of the observed low flow time series. Consequently, there may be substantial 38 

value in combining the upward and downward approaches in order to build on their respective 39 

strengths. The value of combining different pieces of information has been demonstrated by 40 

(Gutknecht et al., 2006), (Merz and Blöschl, 2008) and (Viglione et al., 2013) in the context 41 

of flood estimation. 42 
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In this paper we propose combining the most relevant pieces of information contained in low 1 

flow observation, climate observations and climate projections using a three-pillar approach 2 

(Fig. 1). The first pillar is the assessment of trends in the low flow observations. If observed 3 

trends are related to climate, continuing trends may be a realistic scenario for the near future. 4 

The second pillar is rainfall-runoff projections based on climate scenarios. If the downscaled 5 

GCM signal is reliable, the coupled model will give projections of future catchments 6 

response. As these pillars do not fully exploit the information of locally observed climate, we 7 

add a third pillar of stochastic rainfall-runoff projections based on local climate observations. 8 

This pillar is anticipated to facilitate interpretation of past trends and trend-based 9 

extrapolations into the future and assist in linking the other two pillars with each other.  10 

The three-pillar approach allows us to assess climate impacts from independent sources of 11 

information each of which may have different error structures. The combination of the 12 

individual assessments therefore opens up a number of opportunities. The first opportunity is 13 

to obtain a judgement about the credibility of the individual approaches. This is achieved by 14 

comparing observed and simulated low flow time series. Low flow observations will 15 

generally be most reliable as they provide direct measurements of the variable of interest. 16 

Hence, they can be used to assess the performance of stochastic projections and climate 17 

models for the observation period, i.e. without assumptions about the future development. 18 

This provides insight into the predictive performance of the rainfall-runoff model during the 19 

calibration period and its skill of tracing changes of the climate signal down to low flows 20 

(dynamic performance). On the other hand, the comparison may yield insight into the GCM 21 

performance, as reanalysis runs contain all necessary information to get an appreciation of the 22 

realism of (downscaled) GCM signals, when being compared to observed climate and runoff 23 

signals. However, also low flow observations may be inaccurate and trends may be artefacts 24 

from instrumentation changes or the limited observation window. The mutual comparison of 25 

observed low flows with the rainfall-runoff reanalysis offers the opportunity of verifying 26 

trends in both climate and runoff signals, as a solid basis for future projections. 27 

The second opportunity offered by the three-pillar approach is to better understand the 28 

response of low flow regimes to climate change. This is achieved by comparing climate 29 

signals and runoff signals. Such an analysis may first focus on the observation period in order 30 

to understand observed changes of the low flow regime. In a second step, the analysis may be 31 

extended to the future, in order to put projected changes into the context of the past. Low 32 
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flows are a result of the complex interactions of climate drivers with catchment processes, so 1 

a direct comparison of climate and low flows may be difficult. A stochastic rainfall-runoff 2 

projection method may assist in such a comparison as it can trace low flow trends back to 3 

trends in the meteorological variables. A stochastic rainfall and temperature model typically 4 

decomposes meteorological signals into components such as linear trends and cyclical 5 

fluctuations. The joint analysis of these components with the low flow signal may yield 6 

insight into the co-behaviour of low flows and climate variables in cases where low flow 7 

signals are contaminated by noise. From the analysis we can expect a better understanding of 8 

climate change dynamics, and of the resilience and sensitivity of low flow generation 9 

processes to changes in the climate conditions.  10 

Thirdly, the three-pillar approach offers a more complete way of assessing the uncertainty of 11 

projections than each of the pillars alone. This is because one can safely assume that the 12 

errors are, at least partly, disjoint because of the different data sources. Given the substantial 13 

uncertainty associated with climate impact studies, more detailed information on the 14 

uncertainty is certainly attractive, even though a full assessment is likely not possible given 15 

the partial information available in such studies. For rainfall-runoff projections the sources of 16 

uncertainty include their sensitivity to climate scenarios, climate model and downscaling 17 

errors, and the prediction uncertainty of the rainfall-runoff models themselves which arise 18 

from the model structure and parameters. The latter are related to the choice of the objective 19 

function and the calibration period. For trend studies, uncertainty can be assessed by 20 

statistical significance tests, subject to the assumptions made, and by confidence bounds of 21 

trends.  22 

All of the opportunities combine the information of the three pillars in some way. Of course, 23 

the idea of combining different sources information has already often been used and tested in 24 

hydrology. Examples include the combination of local and regional hydrological information 25 

(e.g. Kuczera, 1982; Stedinger and Tasker, 1985), short and long low flow records (e.g. Laaha 26 

and Blöschl, 2007), hard and soft hydrological information (e.g. Winsemius et al., 2009), and 27 

uncertainty estimates in ungauged basins based on the downward and upward approaches 28 

(Gupta et al., 2013). The combination can be based on formal methods (e.g. Viglione et al., 29 

2013) which typically assume that the different pieces of information are all random samples 30 

from the same distribution, and they differ only due to their sampling variability. The 31 

distribution of the entire population is then estimated by Bayesian or other methods. As an 32 



 

 8

Formatiert: Kopfzeile

alternative, expert judgement can be used to combine the different sources of information 1 

(e.g. Merz and Blöschl, 2008). The disadvantage is that it is less objective but the advantage is 2 

its flexibility as it is based on a reasoning on the strengths and weaknesses of the individual 3 

pillars. In this paper, we use expert judgement to combine the findings from the three pillars.  4 

In Sections 4-6 we present the methods and assessments for each pillar separately. The 5 
strategy and application of the synthesis method are presented in Section 7, followed by 6 
discussion and conclusions. The three-pillar approach offers a systematic way of obtaining an 7 
overall assessment of future climate impacts, including an appreciation of the reliability of 8 
each method gleaned from the consistence of the pillars. We illustrateIn this paper we propose 9 
a framework that combines complementary pieces of information on low flows in order to 10 
enhance the reliability of the projections. The overall philosophy has been inspired by the 11 
concept of multi model climate projections where the projections from a group of models 12 
together are considered to be more robust than the individual projections, and the difference 13 
between the individual models represents an indicator of the uncertainty associated with the 14 
projections. Knutti et al. (2010, p. 2), for example, states: “Ensemble: A group of comparable 15 
model simulations. The ensemble can be used to gain a more accurate estimate of a model 16 
property through the provision of a larger sample size, e.g., of a climatological mean of the 17 
frequency of some rare event. Variation of the results across the ensemble members gives an 18 
estimate of uncertainty.” The concept of combining different sources of information has, of 19 
course, a long tradition in other fields of hydrology such as flood estimation (Stedinger and 20 
Tasker, 1985, Gutknecht et al., 2006, Merz and Blöschl, 2008), low flow estimation, (Laaha 21 
and Blöschl, 2007) and, more generally, uncertainty estimation in ungauged basins (Gupta et 22 
al., 2013).  23 

The combination can be based on formal methods such as Bayesian statistics (Viglione et al., 24 
2013) or on a heuristic process reasoning based on expert judgement (Merz and Blöschl, 25 
2008). The latter is able to account for a broader class of information sources but it is more 26 
subjective. In this paper, we chose a heuristic approach because of its flexibility but, as 27 
demonstrated by Viglione et al. (2013), this could be formalised. 28 

We illustrate the framework by choosing three pillars or sources of information to assist in 29 
projecting low flows into the future. The first pillar consists of extrapolating observed low 30 
flow trends into the future. The second pillar consists of rainfall-runoff projections driven by 31 
GCM based climate scenarios. The third pillar extrapolates observed trends in stochastic 32 
rainfall and temperature characteristics into the future, combined with rainfall-runoff 33 
modelling. Alternative or additional pillars could be used, e.g., the “trading space for time” 34 
approach (Perdigão and Blöschl, 2014) where spatial gradients are transposed into temporal 35 
changes.  36 

The data and assumptions of the three pillars differ, so one would also expect the error 37 
structures to be different which will have a number of benefits for the projections. 38 
Comparisons of observed and simulated low flow time series at the decadal time scale provide 39 
insight into the performance of the runoff models as well as the climate hindcasts which gives 40 
an indication of their performance for the future. The analysis and projection of the stochastic 41 
climate and low flow behaviour shed light on their co-behaviour, the sensitivity of low flows 42 
to changing climate variables and the role of noise over decadal time scales. Finally, the 43 
consistency of the projections by the different methods sheds light on the robustness of the 44 
overall projections.  45 
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We demonstrate the viability of the approach for four example regions in Austria and discuss 1 
the findings in the context of hydrological climate impact studies. 2 

 3 

3 Example data set 4 

3.13 StudyCase study regions and hydrologic data  5 

The four example regions used here to illustrate the three-pillar approach are representative of 6 

the main climatological units in Austria. In each of them a typical catchment was selected 7 

which are a subset of a classification (“low flow hot-spots”) used in previous low flow and 8 

drought studies (Haslinger et al., 2014; Van Loon and Laaha, 2015). Although Austria is 9 

highly diverse with respect to climate and physiography, each of the regions is rather 10 

homogeneous in terms of climate and the hydrological regime.  11 

The first regionThe four example regions are representative of the main climatological units 12 
in Austria. Although Austria is quite diverse, each of these regions is rather homogeneous in 13 
terms of climate and hydrological regime. Within each region, a typical catchment was 14 
selected guided by previous low flow and drought studies (Haslinger et al., 2014; Van Loon 15 
and Laaha, 2015). 16 

The Hoalp region (for Hochalpen) is located in the Alps and exhibits a clear winter low flow 17 

regime. Freezing is the driving factor of low flows in this region where freeze and snow 18 

processes are important, so long-term trends may beare expected to be related to changing air 19 

temperatures. The region, termed Hoalp in the following (for Hochalpen), is represented by 20 

the catchment of the Matreier Tauernhaus stream gaugecatchment at the Tauernbach (area is 21 

60 km², altitude is² area, 1502 m.a.s.l., observation period is 1951-2010). 22 

. altitude). The secondMuhlv region (for Mühlviertel) is located north of the Alps withand 23 

exhibits a dominant summer low flow regime. The region exhibits a quite humid climate as it 24 

receives substantial  as a result of summer precipitation from northern and western air masses. 25 

Seasonal and evaporation, so precipitation deficits are the driving forces of low flows so long-26 

term trends are likely related to changes in precipitation and and air temperature. will be 27 

important low flow controls. The region, termed Muhlv in the following (for Mühlviertel), is 28 

represented by the catchment of the Hartmannsdorf stream gaugecatchment at the Steinerne 29 

Mühl (area is 138 km²,² area, 500 m altitude is 500 m.a.s.l., observation period is 1956-2010). 30 

). The thirdGurk region (for Gurktal) is located south of the Alps, and also exhibits a 31 

dominant summer low flow regime. Precipitation enters the area from the Northwest through 32 

Atlantic cyclones, although screened to some extent by the Alps, as well as from the South 33 

through Mediterranean cyclones, which is particularly the case in autumn. Again, seasonal 34 
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precipitation deficits are the driving forces of low flows so long-term trends tend to be related 1 

to changes in precipitation. Precipitation and air temperature. are important for low flows. The 2 

region, termed Gurk in the following (for Gurktal), is represented by the Zollfeld catchment 3 

of the Zollfeld streamgauge at the Glan (area is 432 km²,² area, 453 m altitude is 453 m.a.s.l., 4 

observation period is 1965-2010). 5 

). The fourthBuwe region (for Bucklige Welt) is located in the Southeast of Austria. This 6 
region is situated in the lee of the Alps, at the transition to a Pannonic climate. The 7 
precipitation is lowest in this region, and low. Low flows exhibit a dominant mainly occur in 8 
summer low flow regime. Seasonalwith precipitation deficits are the driving forces of low 9 
flows and so the long-term trends should be related to changes in precipitation andand air 10 
temperature. as important controls. The region, termed Buwe in the following (for Bucklige 11 
Welt), is represented by the catchment of the Altschlaining stream gaugecatchment at the 12 
Tauchenbach (area is 89 km²,² area, 316 m altitude is 316 m.a.s.l., observation ). Streamflow 13 
records in the four catchments over the period is 1966 -2010).1976-2008 were used for all 14 
three pillars.  15 

Climate records were used for two out of the three pillars, i.e., the rainfall-runoff-projections 16 

and the stochastic simulations. They serve for two purposes.  17 

Firstly, climate records are required for calibrating the hydrological model. the second and 18 

third pillars. Gridded data sets of daily precipitation, air temperature, and potential 19 

evaporation and snow depthover the period 1976-2008 were used.  for calibrating the 20 

hydrological model. These data sets are based on measurements of measured daily 21 

precipitation and snow depths at 1091 stations and daily air temperature at 212 climatic 22 

stations. Potential evapotranspiration evaporation was estimated by a modified Blaney–23 

Criddle method based on daily air temperature and potential sunshine duration. (Parajka et al., 24 

2007). For details about the estimation and interpolation methods see (Parajka et al., 2007).  25 

Secondly, climate records provide the main input to the stochastic simulations, which are used 26 

to decompose the signal of climate drivers in the past as the basis for extrapolations into the 27 

future. For this purpose, one climate station was selected for each example catchment in their 28 

proximity and at similar altitudes. Precipitation , precipitation and temperature records at one 29 

representative station over the period 1948-2010 were used for the selected stations. 30 

3.2 Climate simulations 31 

For the rainfall-runoff projections we used four regional climate model (RCM) runs which 32 
were selected from the reclip:century 1 project (Loibl et al., 2011). The variability of climate 33 
projections is represented by COSMO-CLM RCM runs forced by ECHAM5 and HADCM3 34 
global circulation models and three different IPCC emission scenarios (A1B, B1 and A2). A 35 
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simple but effective way to check the realism of the ensemble of climate simulations with 1 
respect to low flows is to use an index that combines temperature and precipitation signals in 2 
analysed as a way that represents the climate forcing in low flow generation. One index 3 
commonly used in atmospheric drought studies is the Standardized Precipitation Evaporation 4 
Index, SPEI (Vicente-Serrano et al., 2010), which represents the total effect of precipitation 5 
and temperature changes on the climatic water balance. The SPEI is defined as the Gaussian-6 
transformed standardized monthly difference of precipitation and evapotranspiration based on 7 
an accumulation period of one to several months. Values below/above zero indicate 8 
deficits/surpluses in the climatic water balance, and values below -1.0 indicate drought 9 
conditions. (Haslinger et al., 2014) demonstrated that the SPEI is well correlated with summer 10 
low flows, and indeed more relevant for low flow generation than precipitation alone. basis of 11 
the stochastic simulations (third pillar). 12 

Figure 2 shows the evolution of SPEI of the four regions stratified by summer and winter 13 

months. Each value corresponds to the seasonal (three-month) average of SPEI(1), i.e. the 14 

Standardized Precipitation Evaporation Index based on an aggregation period of one month. 15 

For the winter months (Fig. 2, lower panels), SPEI remains stable which is equivalent to a 16 

stationary precipitation signal. This is because the projected temperature increase is not 17 

reflected by the SPEI due to the low evaporation rates in winter. However, the timing of 18 

snowmelt is likely to change. For Hoalp and Muhlv, the climate simulations for the winter 19 

month fit well to the observations (light red and red lines). For Gurk and Buwe, the climate 20 

simulations seem to be somewhat less realistic. 21 

For the summer season, the SPEI simulations suggest much dryer atmospheric conditions in 22 

the future, which will decrease the low flows. Overall, the climate simulations do not fit so 23 

well to the observations as for the winter, and the plausibility of the projections varies 24 

between regions. For the Muhlv region, the SPEI signal fits relatively well to the 25 

observations, for Gurk the simulated signal drops somewhat more steeply than expected, and 26 

for Buwe the signal is much steeper than the observed signal, which does not show a falling 27 

trend over the last 50 years. Interestingly, all summer SPEI graphs are relatively stable until 28 

2050, and drop in the second half of the 21th century. This is mainly due to the characteristics 29 

of the ECHAM5 simulations which show only minor precipitation changes until the middle of 30 

the century, and after 2050 an enhanced decrease in rainfall. Such an effect is not observed in 31 

the other models or ECHAM5 runs, and contributes to the overall uncertainty of the scenario 32 

approach. The extremely negative trends in the summer SPEI should also be treated with 33 

caution because the potential evapotranspiration calculations within the SPEI algorithm is 34 

known to overestimate climate change signals expressed by surface temperature trends 35 

(Sheffield et al., 2012). Overall, the SPEI values of climate simulations do suggest decreasing 36 
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low flows in summer and perhaps stable low flows in winter, although SPEI is less well suited 1 

for predicting winter conditions. From the fit to observations, climate simulations seem more 2 

realistic for Hoalp and Muhlv, somewhat less realistic for Gurk, and least realistic for Buwe. 3 

 4 

4 Observed trends - extrapolation  5 

 6 

4.14 Methods used for the pillars 7 

As a starting point, we are interested in evidence for climate change from the low flow 8 

observations. Similar to other studies, we performed trend analyses of annual low flow series, 9 

using the Sen’s slope estimator (e.g. Stahl et al., 2010). Instead of fitting a regression line to 10 

all data points simultaneously, the trend is estimated as the median of all slopes between pairs 11 

of sample points. This makes the trend estimates insensitive to outliers and more suitable for 12 

heteroscedastic data.  13 

For each station, analyses were performed for annual series of the Q95 low flow quantile (i.e. 14 

the flow that is exceeded 95% of the time of the respective year). A common observation 15 

period (1976-2008) was used to make the trend estimates comparable across gauges. Based on 16 

autocorrelation analysis, we decided not to prewhiten the data (remove first order 17 

autocorrelation effects from the time series) as proposed in some studies, because the serial 18 

correlations in the annual low flow series were mostly insignificant. Significance testing of 19 

trends was performed using a standard Mann-Kendall test. The results were finally compared 20 

with significance statistics of prewhitened series obtained by the Yue Pilon method for trend-21 

free prewhitening (Yue et al., 2002) but there was almost no difference.  22 

Under the assumption that observed changes are linear and persistent, the trends may be 23 

extrapolated as a simple, observation-based scenario for future low flows. It is realised that 24 

this is quite a strong assumption, which will be more realistic for the near future than for a 25 

longer time horizon. Both the estimation of trends and their extrapolation into the future are 26 

clearly subject to considerable uncertainty that needs to be considered in the final 27 

combination of the three pillars. We therefore estimate expected low flows together with their 28 

confidence bounds. We use a simple linear regression estimator of the expected value in a 29 

specific year ��: 30 
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4.1 Extrapolation of observed low flow trends 1 

The stream flow records of the four stream gauges were analysed to estimate Q95 low flow 2 
quantiles (i.e. the flow that is exceeded 95% of the time) for each year. The serial correlations 3 
of these annual low flow series were mostly insignificant, so they were not prewhitened (Yue 4 
et al., 2002). Trends were tested for significance by a standard Mann-Kendall test. The trends 5 
were estimated as the medians of all slopes between pairs of sample points (Sen’s slope, Sen, 6 
1968) with regression parameters �� and ��:  7 

���	
��� = �� + ����         (1) 8 

The uncertainty of the trends was assessed by a nonparametric bootstrapping approach, which 9 
provides accurate confidence bounds in the case of non-Gaussian regression residuals (Efron 10 
and Tibshirani, 1993). The approach simulates the uncertainty distribution of trend estimate at 11 
time �� by resampling 5000 replications from the annual Q95 series and calculating the 12 
regression parameters �� and �� for each of them. Equation (1) applied to these parameter 13 
distributions yields the uncertainty distribution of trend estimate at time ��, and its 0.025 and 14 
0.975 empirical quantiles constitute the bounds of a two-sided 95% confidence interval. 15 

For the purpose of this paper we assumed that the trends are linear and persistent, and so 16 
extrapolated them into the future. This is of course a strong assumption less likely to be valid 17 
with increasing time horizon.  18 

4.2 Climate projections and runoff modelling 19 

Four regional climate model (COSMO-CLM) runs were selected from the reclip:century 1 20 
project (Loibl et al., 2011) forced by ECHAM5 and HADCM3 GCMs for three IPCC 21 
emission scenarios (A1B, B1 and A2). These scenarios were selected for consistency with 22 
other ongoing studies in Austria (e.g. Parajka et al., 2016). In order to check their realism with 23 
respect to droughts and low flows, the Standardized Precipitation Evaporation Index, SPEI 24 
(Vicente-Serrano et al., 2010) was evaluated, which is the Gaussian-transformed standardized 25 
monthly difference of precipitation and evaporation. Values below zero indicate deficits in the 26 
climatic water balance, and values below -1 indicate drought conditions. The SPEI has been 27 
adopted here for its simplicity and because it can be calculated from the HISTALP data (Auer 28 
et al., 2007) back to the year 1800. Haslinger et al. (2014) demonstrated that the SPEI is 29 
correlated well with summer low flows in the study region. In the winter (Fig. 1, bottom 30 
panels), the simulations (light red lines) for Hoalp and Muhlv seem to be more consistent with 31 
decadal observed fluctuations from the HISTALP data set (red lines) than for Gurk and Buwe. 32 
Note that the comparison should focus on the long term (decadal) dynamics rather than 33 
individual years due to the nature of the climate simulations. Overall, SPEI remains rather 34 
stable which is due to little change in winter precipitation. In the summer (Fig. 1, top panels), 35 
the simulations are somewhat less consistent with the observations than for the winter, in 36 
particular for Buwe where the simulations show a decreasing trend in the overlapping period 37 
(1961-2003) while the observations show little change. Overall, the summer SPEI projections 38 
show a decreasing trend indicating a dryer future and the trend tends to steepen beyond 2050. 39 
This is mainly due to the precipitation characteristics of the ECHAM5 simulations used and 40 
not reflected in the other models or ECHAM5 runs. The extremely negative trends in the 41 
summer SPEI should therefore be treated with caution.  42 

Runoff is simulated by the delta change approach (e.g. Hay et al., 2000; Diaz-Nieto and 43 
Wilby, 2005). A conceptual rainfall runoff model (TUWmodel) is used here which simulates 44 
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the daily water balance components from precipitation, air temperature and potential 1 
evaporation inputs (Viglione and Parajka, 2014; Parajka et al., 2007; Ceola et al., 2015). The 2 
routing component of the model, which is most relevant for low flows, consists of a number 3 
of reservoirs with different storage coefficients. The model was calibrated against observed 4 
streamflow by the SCE-UA procedure (Duan et al., 1992). The objective function (ZQ) was 5 
chosen on the basis of prior analyses in the study region (see e.g. Parajka and Blöschl, 2008) 6 
as 7 

 �� = �� ⋅ �� + �1 − ��� ⋅ ��
���

 (2) 8 

where wQ and (1- wQ) are the weights on high and low flows, respectively, and ME and ��
��� 9 

are estimated as  10 

 �� = 1 − � �����, !�� ", �#
$
 %&

� �����, !����'''''''	�#$
 %&

 (3) 11 

 ����� = 1 − � �)*+�����, �!)*+
,-./,.��#
$
 %&

� �)*+	
����, �!)*+	
������#
$
 %&

 (4) 12 

��01,2 Note that in our robust regression framework, �� and �� are the Sen-slope estimates of 13 

the regression parameters. The uncertainty of the trend estimate is given by the confidence 14 

bound of the regression line: 15 

��	 ∈ 4�� + ���� ± 67!8;:!;/8	=>:
7 + 
?@!?̅�#


7!:�1B#C	     (2) 16 

Again, ��, �� are the Sen-slope estimates of the regression parameters, 67!8;:!;/8 is the 17 

quantile of the Student distribution (67DEE=2.04 for a two-sided 95% confidence interval), F 18 

is the sample size (number of observed years), �̅ and =?8	the mean and the variance of �. 19 

Making use of the robustness of the Sen-slope estimator, a robust estimate of the error 20 

variance =8 may be obtained from �� by:    21 

=8 = 
7!:�

7!8� 	�=�8 − ��8=?8�	        (3) 22 

where =�8 is the variance of the annual Q95 values. As can be seen from the squared term 23 


�� − �̅�8 in Eq. 2, the uncertainty is lowest at the mid-point of the observation period and 24 

increases as one moves away from it. The confidence bounds therefore reflect the increasing 25 

uncertainty of extrapolations of the observed trends into the future. 26 
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is the observed discharge on day i, ��01''''''	is its average over the calibration (or verification) 1 
period of n days, and �12G,2 is the simulated discharge. 2 

In order to assess the uncertainty of low flow projections from a hydrological modelling 3 
perspective, different calibration variants were evaluated by varying the weights of Eq. (2), 4 
following the methodology of (Parajka et al., 2016). In order to assess the impact of time 5 
stability of the model parameters, the model was calibrated separately for three different 6 
periods (1976-1986, 1987-1997, 1998-2008), following the methodology of (Merz et al., 7 
2011). 8 

Air temperatures and precipitation of the four regional climate model runs were then 9 
evaluated for a reference period (1976-2008) and compared with two future periods (2021-10 
2050 and 2051-2080) for each month separately. The differences (delta) were added to the 11 
observed daily air temperatures and precipitation values for the four catchments from which 12 
future stream flow was simulated using the rainfall-runoff model.  13 

4.3 Extrapolation of stochastic rainfall characteristics and runoff modelling 14 

A stochastic model is used to investigate what would happen if the trend of observed 15 
precipitation and air temperature characteristics in the period 1948-2010 would persist into 16 
the future. The results of the stochastic model are used to drive a lumped version of the 17 
TUWmodel which is similar to the one used in the delta-change approach. 18 

The precipitation model is the point model of Sivapalan et al. (2005) which simulates discrete 19 
rainfall events whose storm durations, interstorm periods and average event rainfall intensities 20 
are all random, governed by specified distributions whose parameters vary seasonally. The 21 
model was run on a daily time step without considering within-storm rainfall patterns as the 22 
interest was in low flows. A storm-separation algorithm was applied to the precipitation data 23 
of the four stations, based on a minimum duration of dry periods, in order to isolate 24 
precipitation events. From the event time series the temporal trends of three model parameters 25 
(mean annual storm duration, mean annual inter-storm period and mean annual storm 26 
intensity) were estimated by the Theil-Sen algorithm, to serve as the trend components of the 27 
precipitation model. The trends in these precipitation model components were subsequently 28 
extrapolated into the future. Similar to the low flow extrapolation, this is a strong assumption 29 
less likely to be valid with increasing time horizon. The remaining rainfall model parameters 30 
were calibrated to the precipitation data as described in Viglione et al. (2012) and were kept 31 
constant for the entire simulation period. The stochastic rainfall model was finally used to 32 
simulate an ensemble of 100 possible time series of precipitation affected by trends in the 33 
three model parameters for the period 1948-2080. 34 

For air temperature, instead, 100 possible time series were obtained by randomising the 35 
observations in the following way. The time series of daily temperatures were detrended 36 
according to the observed trend of mean annual temperatures, the years were randomly mixed 37 
(with repetition), and the trend was added to the reshuffled series. The trend in the 38 
temperatures was reflected by an analogous trend in potential evaporation.  39 

 40 
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4.25 Results 1 

5.1 Extrapolation of observed low flow trends  2 

Table 1 summarizes the results of the trend analyses. For two catchments, the trends are 3 
significant but with different signs. of Q95 low flows. The Hoalp catchment exhibits a strongly 4 
positivesignificantly increasing trend indicating that the catchment has become wetter over 5 
the observation period. A negative trend is observed for while the Buwe catchment, which 6 
became dryer. Negative (drying) trends are also observed for the indicates a significantly 7 
decreasing trend. Muhlv and Gurk catchments but these areshow decreasing trends which are, 8 
however, not significant at the 0.05 level. 9 

While our focus is on the four example catchments, it is important to put the local analyses in 10 
a regional context to avoid the detection of local effects on the flow regime, such as 11 
anthropogenic impacts. Equally important, the regional context assists in a more meaningful 12 
interpretation of regional climate scenarios that are valid for footprints of a few hundreds of 13 
square kilometres or more. Figure 32 shows the trends of the four example gauges used in this 14 
study,catchments together with trends atof 408 stream gauges in Austria and neighbouring 15 
regions. The map indicates characteristictrend patterns for the study area, which correspond 16 
well toare in line with the main hydro-climatic units represented by the four catchments. 17 
Significant positive trends (Significantly increasing dischargestrends (large blue points) such 18 
as in the Hoalp catchment are generally found forin the Alpine region. Some 19 
negativeDecreasing trends (decreasing discharges) are found in the southeast of Austria and in 20 
Upper Austria in the large red points) occur north of the Alps but, here, the number of stations 21 
with significant trends is low compared to the total number of stationsand, more frequently, in 22 
the Southeast of Austria. Additional regional analyses (not shown here), including field 23 
significance testing, confirm the finding that the decreasing trends in the Southeast are more 24 
significant than in the North. The Buwe region appears to be notablyparticularly affected by 25 
climate change as low flows show a strong decrease at the end of the observation period. 26 
Trends in the Muhlv region north of the Alps are less severe, as they relate to single 27 
catchments and do not show a consistent regional behaviour. Alpine catchments in the Hoalp 28 
region, however, seem to have benefited from atmospheric wetting and this trend seems to 29 
persist into the future. 30 

Table 2 givespresents the projections obtained from trend extrapolation for the four 31 
catchments extrapolations together with their confidence bounds. The projections for the 32 
period 2021-50 indicate anExtrapolating observed trends to 2021-2050 would give a 39% 33 
increase of low flows in theQ95 for Hoalp catchment of 42% if the present trend persists until 34 
2050. The , but the uncertainty of this projection is, however, quite large, as indicated by thea 35 
range of the confidence interval (-5from -7 to 88%). For71%. Trend extrapolations for the 36 
remainingother catchments, a decreasing trend is projected result in decreases which is 37 
lowestare smallest in Muhlv (-108%), moderate in Gurk (-36%),%) and very stronglargest in 38 
Buwe (-89%). Again, there is substantial 90%). The uncertainty when extrapolating the trends 39 
to the 2050 time horizon. For instance, the confidence interval of range is large, e.g. -40 
41Muhlv ranges from -51% to +32%,34% for Muhlv, which is a range eightalmost ten times 41 
the expected value of the projected changes. Hence, from the available dataset, trend 42 
extrapolation can only provide a very approximate estimate of future low flows. .The mean 43 
change. Clearly, trend extrapolations involve a lot of uncertainty, and this uncertainty 44 
increases when predicting changes for a as one moves to the more distant time horizon of 45 
2051-2080 (Table 2). The extrapolations result in ), including negative valuesdischarges for 46 
the discharge of the Buwe basin,and Gurk indicating that the stream may fall dry during the  47 
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low flow periodephemeral behaviour. Obviously, one would have very low confidence in the 1 
absolute figures of such trend scenarios for the more distant future.  2 

 3 

5 Rainfall-Climate projections and runoff projections based on climate 4 

scenarios 5 

5.1 Methods 6 

5.2 A common method for projecting river discharge regime into the future is 7 
the delta change approach (e.g. Hay et al., 2000; Diaz-Nieto and Wilby, 8 
2005). The idea of this concept is to remove biases of regional climate 9 
model (RCM) simulations when using them as inputs to hydrologic 10 
models. First, a hydrologic model is calibrated for the reference period by 11 
using observed climate variables, typically precipitation and air 12 
temperature. In the next step, the differences between RCM simulations of 13 
the reference (control) and future periods are estimated on a monthly 14 
basis. These differences (delta changes) are then added to the observed 15 
model inputs and used in the hydrological modelling for simulating the 16 
future. The differences between the discharge simulations in the 17 
reference and future periods are used to assess potential impacts of a 18 
changing climate on future river flows. 19 

A conceptual rainfall runoff model (TUWmodel, Viglione and Parajka, 2014) is used here. 20 

The model simulates the water balance components with a daily time step based on 21 

precipitation, air temperature and potential evaporation data as inputs. Details on the model 22 

structure and applications are given in (Parajka et al., 2007) and (Ceola et al., 2015). 23 

TUWmodel is calibrated by the SCE-UA automatic calibration procedure (Duan et al., 1992). 24 

The objective function (ZQ) of the calibration is selected on the basis of prior analyses 25 

performed in different calibration studies in the study region (see e.g. Parajka and Blöschl, 26 

2008). It consists of two variants of Nash–Sutcliffe Model efficiency, ME (Eq. 5) and ��
��� 27 

(Eq. 6) that emphasize high and low flows, respectively. ZQ is defined as 28 

�� = �� ⋅ �� + �1 − ��� ⋅ �����
 (4) 29 

where wQ represents the weight on high flows and (1- wQ) the weight on low flows. ME and 30 

��
��� are estimated as 31 

�� = 1 − � �����, !�� ", �#
$
 %&

� �����, !����'''''''	�#$
 %&

 (5) 32 
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����� = 1 − � �)*+�����, �!)*+
,-./,.��#
$
 %&

� �)*+	
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������#
$
 %&

 (6) 1 

Where �12G,2 is the simulated discharge on day i, ��01,2 is the observed discharge, ��01''''''	is the 2 

average of the observed discharge over the calibration (or verification) period of n days. 3 

In order to assess the uncertainty of low flow projections from a modelling perspective, 4 

different variants of model calibration were evaluated by varying the weights of Eq. 4, 5 

following the methodology of (Parajka et al., submitted to HESSD). In order to assess the 6 

impact of time stability of model parameters, TUWmodel was calibrated separately for three 7 

different decades (1976-86, 1987-97, 1998-08), following the methodology of (Merz et al., 8 

2011).  9 

5.2 Results 10 

Table 3 summarizes the runoff model efficiencies ZQ. The results indicate that the differences 11 
in runoff for different weights in the objective function. wQ = 0 emphasises low flows, while 12 
wQ = 1 emphasises high flows in the calibration. With the exception of Gurk, there is a clear 13 
trend of increasing (calibration) model performance from high flows to low flows. The model 14 
performance between the calibration decades are rather small.varies little. Overall, Hoalp 15 
gives the largest efficiency which is a reflection of the strong seasonality associated with 16 
snow storage and melt while Buwe gives the lowest efficiency is obtained for the Hoalp basin, 17 
which is characterised by a very consistent hydrological regime throughout the years (Fig. 4). 18 
Snow accumulation and melt have a dominant effect on the hydrologic regime, as they affect 19 
the timing of low flow periods in winter and flood events in summer. In contrast, the lowest 20 
model efficiency is found for Buwe. The shape of most hydrographs is very due to the flashy 21 
and thus verynature of runoff that is difficult to model on a daily time step. (Fig. 3). The 22 
flashy runoff response of Buwe is related to shallow soils, efficient drainage and frequent 23 
convective storms (see Gaál et al., 2012). Additionally, there are only two climate stations in 24 
the catchments, which makes it difficult to captureBuwe catchment, so local precipitation 25 
events such as summer storms. The fast runoff response is caused by shallow soils and 26 
efficient drainage (see Gaál et al., 2012). Both low flow periods and floods mainly occur in 27 
summer. may not always be captured well. The event variability is large between and within 28 
the years (Fig. 4). 3). Both low flows and floods mainly occur in summer. As compared to 29 
other catchments in Austria (Parajka et al., submitted to HESSD2016), the Hoalp and Buwe 30 
catchments represent typical conditions withof high and low model 31 
performanceperformances, respectively. 32 

Figure 54 left shows the results of the model simulations in terms of simulated annual Q95 low 33 

flow quantiles Q95 in flows for the reference period 1976-2008. The hydrologic model is 34 

calibrated for a selected decade, but the model simulations are performed, based on 35 

calibrations for the entire reference period. The left panels of Fig. 5 showtwo subperiods 36 

(yellow and blue), in each case indicating the variability of Q95 estimated fromdue to 11 37 
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variants of objective functions. The range of Q95 for the 11 calibration variants is plotted in 1 

yellow and blue for the calibration periods 1976-86 and 1998-08, respectively, and their 2 

overlap is plotted in green.  3 

The calibration variants with different weights wQ in the objective function (Table 3). The 4 
right panels show the simulations for two sets of weights (light orange and red), in each case 5 
indicating the variability of Q95 due to model parameters obtained from different decades for 6 
two weightings: wQ=0.5 (light orange) and wQ=0.0 (red).. Although the model has not 7 
specifically been calibrated directly to Q95 quantiles, it simulates Q95 rather well in the 8 
example basins and the. The differences between the two weighting variants (Fig. 4 right) are 9 
small or moderate in absolute terms. The effect of temporal instability of the model 10 
parameters is clearly visible in the Buwe and Gurk basins, where(Fig. 4 left), as the model 11 
calibrated to the 1976-1986 period tends to overestimate Q95 in the period 1998-2008. The 12 
decade 1976–1986 represents a colder period with less evapotranspirationevaporation and 13 
relatively higher runoff generation rates which is reflected by lower values of the soil 14 
moisture storage parameter (FC) and lower values of the parameter controlling runoff 15 
generation (BETA). The model therefore overestimates runoff when applied to the drier and 16 
warmer period 1998–2008. Even though Table 3 indicates that Buwe has the lowest model 17 
performance, this is not reflected in the Q95 low flow simulations in Fig. 4. This is because the 18 
model does not simulate the fast runoff fluctuations well, however, it does much better with 19 
prolonged drought spells.  20 

Figure 5 further4 also shows that the uncertainty of Q95 estimates is the largest in the Alpine 21 
basin with dominant winter low flow regime. Alpine river regimes are characterised by a 22 
greaterHoalp. The seasonal runoff variability of dischargesAlpine rivers is larger than that of 23 
low-land regimes (Fig. 4). Because of this, rivers which makes the model calibration is more 24 
sensitive to the weights assigned to high and low flows. The Alpine basinHoalp is also more 25 
sensitive to the choice of the calibration period. The strong seasonality of the Alpine regime 26 
which is a reflection of athe high sensitivity of discharge generationlow flows to seasonal 27 
climate. Decadal climate variation will therefore have a similarly strong effect on discharges 28 
and, through discharges, on model calibration. The strong sensitivity to weighting and the 29 
calibration period are a result of the highly seasonal regime and make projections in Alpine 30 
catchments more uncertain than in lowland catchments. In contrast, the uncertainty is smallest 31 
in the Gurk and Buwe basinscatchments where, interestingly, the effect of time variability of 32 
the model parameters is of similar magnitude as the effect of the weightingweights in the 33 
objective function. 34 

Scenarios of air temperature and precipitation from the four RCM climate model runs are 35 
presented in Fig. 65. The largest warming in the four basins is obtained by simulations driven 36 
by HADCM3. An with an increase of more than 2oC is projected forin January and the 37 
summer months. The largest difference between the ECHAM5 scenarios occurs inIn January. 38 
While the ECHAM5-A2 run simulates a decrease in mean monthly air temperature, the A1B2 39 
emission scenario projects andwhile the other runs simulate an increase in monthly air 40 
temperature of almost 2oC in all selected basins. The ECHAM5 scenarios are consistent for 41 
the summer months with an increase in air temperature of about 1oC. The precipitation 42 
projections are regionally less consistent and vary mostly around ± 15%. Exceptions are the 43 
HADCM3 run which simulates a decrease of almost 30% in the Gurk and Buwe 44 
basinscatchments in August, and the ECHAM5-A1B2A1B run which simulates an increase of 45 
about 30% in the Hoalp and Muhlv basinscatchments in December. 46 
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The delta change projections of low flow quantiles Q95 are finally presented in Figure 7. The 1 
projections for the period 2021-2050 relative to simulated runoff in the reference period are 2 
shown in Fig. 6. They indicate an increase of annual Q95 low flows (Q95) in the Alpine Hoalp 3 
basin, on averagecatchment which is in the range of 15 to 30% and 20 to 45% for the different 4 
climate projections and calibration weightingsweights, respectively. In the Muhlv basin, no 5 
significant change in Q95 is expected. The median ofcatchment, changes is in the range of 6 
±5%. Larger are small, while for Gurk and Buwe decreases are projected for Gurk (which are 7 
around 7-13%)% and Buwe (15-20%). A comparison of uncertainty and range of future 8 
projections indicates that the estimation of Q95 is%, respectively. Q95 is not only sensitive not 9 
only to the selection of the climate scenarios, but also to the selection of the objective 10 
function and the calibration period. The uncertainty is largest in the Hoalp basincatchment, 11 
where the selection of the objective function is more important than choice of the selection of 12 
climate scenarios. The mean winter mean air temperature in the Hoalp basin is about -6.0oC 13 
and thewhich is projected increases range fromto increase by 2 to 2.5oC, depending on the 14 
scenario. These differences are of little relevance for snow storage and snowmelt runoff 15 
during the winter low flow period. A large uncertainty and sensitivity to the choice of 16 
objective function and calibration period is also obtained for the Muhlv and Buwe basins. 17 
Only in the Gurk basin the sensitivity to the choice of objective function is smaller than the 18 
time stability of model parameters. This is a result of the relatively high sensitivity to the 19 
calibration period (Fig. 5) in combination with relatively small differences between climate 20 
water balances resulting from different scenarios (as reflected by the small spread of SPEI 21 
projections in Fig. 2). The projections based on the period 1976-1986 tend to simulate a larger 22 
variability of Q95 than those calibrated to the period 1998-2008, however the variability is 23 
similar to Buwe and Muhl basins.Muhlv and Buwe are also sensitive to the choice of 24 
objective function and calibration period, while for the Gurk the choice of climate scenario is 25 
more important.  26 

 27 

6 Stochastic projections based on rainfall model extrapolation 28 

6.1 Methods 29 

While in Section 4 observed trends of Q95 were extrapolated, and in Section 5 RCM scenarios 30 

were used to anticipate future low-flows, this section adopts a different approach which, 31 

conceptually, is between the two. We use a stochastic model to investigate what would 32 

happen if the trend of observed precipitation and temperature in the period 1948-2010 would 33 

persist into the future. The stochastic model allows us to simulate future time series of climate 34 

drivers based on extrapolating components of precipitation and temperature models. These 35 

simulations are then employed to drive the rainfall-runoff model of Section 5. 36 

The precipitation model used here is the point stochastic model of (Sivapalan et al., 2005). 37 

The model consists of discrete rainfall events whose arrival times (or interstorm periods), 38 

duration and average rainfall intensity are all random, governed by specified distributions 39 

whose parameters are seasonally dependent. In this paper, the model was run on a daily time 40 
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scale. No fractal temporal-downscaling of within-storm rainfall intensities was performed, 1 

since the interest was in low flows which are not expected to depend much on within-storm 2 

time patterns. 3 

For air temperature, instead, the 100 possible time series were obtained by randomising the 4 

observations in the following way. The time series of daily temperatures were detrended 5 

according to the observed trend of mean annual temperatures, the years were randomly mixed 6 

(with repetition), and the trend was added to the reshuffled series. The trend in the 7 

temperatures was reflected by an analogous trend in potential evapotranspiration.  8 

A storm-separation algorithm was applied to the precipitation data of the four stations, based 9 

on a minimum duration of dry periods, in order to isolate precipitation events. The temporal 10 

trends of three rainfall model parameters (mean annual storm duration, mean annual inter-11 

storm period and mean annual storm intensity) were then estimated from the event time series 12 

with the Theil-Sen algorithm, to serve as trend components in the stochastic precipitation 13 

model. 14 

5.3 Extrapolation of stochastic rainfall characteristics and runoff modelling 15 

Figure 87 shows that the estimated trend components fit well to the precipitation statistics. 16 
Annual mean storm duration decreases quite strongly for the Alpine Hoalp catchment (by 17 
about -0.8 days / 100 yrs). There is also a slight decrease for the Gurk (-0.4 days / 100 yrs) 18 
and Buwe catchments (-0.3 days / 100 yrs).  Interstorm period and storm intensity (Fig. 87, 19 
centre and right panels) show no significant changes for most regions, apart from the Gurk 20 
catchment where the annual mean interstorm period increases by about 1 day / 100 yrs, and 21 
annual mean storm intensity increases by 2 days /mm/day per 100 yrs (which is a 30% 22 
increase per 100 yrs. ). The trends in these precipitation model components were subsequently 23 
extrapolated into the future. The remaining rainfall model parameters were calibrated to the 24 
precipitation data as described in (Viglione et al., 2012) and were kept constant for the entire 25 
simulation period. The stochastic rainfall model was finally used to simulate an ensemble of 26 
100 possible time series of precipitation affected by trends in the three model parameters for 27 
the period 1948-2080. 28 

6.2 Results 29 

 Figure 9 shows theThe stochastic simulations of(Fig. 8) indicate no trends in mean annual 30 
daily precipitation and mean annual temperature for the four example catchments, together 31 
with the observed signals. No trends of precipitation (left panels) are visible for Muhlv in the 32 
North and Gurk in the South. A  of Austria, a drying trend is visible for Buwe in the Southeast 33 
and for the Alpine Hoalp catchmentin the Alps, but in the latter case the observations exhibit 34 
a rather complex signal which seemsis not well represented by the linear model. Temperature 35 
simulationsThe simulated temperatures (Fig. 98, right panels) correspond much better toare 36 
more consistent with the observations. They consistently show with a persistently increasing 37 
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trends for the whole study areatrend in all catchments. The trend is most pronounced in the 1 
Alps (+ 4.4 °C / 100 yrs), somewhat less pronounced in the South and Southeast (+2.8 and 2 
+2.6 °C / 100 yrs), and there is only a weak trend in the North (+1.7 °C / 100 yrs).) of Austria. 3 

Figure 109 shows the stochastic projections of annual runoff and Q95 low flows (red lines) 4 
together with the observations (black line) for part of the period.lines). For the Hoalp region 5 
(Fig. 10, (top row) Q95 decreases only slightly  despite the simulated large decrease of annual 6 
runoff and precipitation. This is because winter low flows are more controlled by air 7 
temperaturetemperatures which would be expected to increase the low flows, and the two 8 
effects essentially cancel. For the Muhlv region (second row in Fig. 109), the model 9 
extrapolates a slight reduction of Q95 in the future, even though there is hardly any change in 10 
the annual precipitation (second row in Fig. 98), which is due to increases in the 11 
evapotranspiration.evaporation. For the Gurk region (third row in Fig. 109), the model also 12 
extrapolates a slight decrease in Q95. This change echoes both  which is a result of the 13 
increasing trends in evapotranspirationboth evaporation and in the interstorm period (Fig. 97 14 
and 8). For the Buwe region (bottom row in Fig. 10) the extrapolated reduction9), the 15 
extrapolations yield a moderately decreasing trend of Q95 is quite important. In this case, the 16 
annualwhich results from the combined effect of slightly decreasing precipitation slight 17 
decreases (Fig. 9), which adds to the effect of theand increasing 18 
evapotranspirationevaporation. 19 

The underlying assumption of observed trends in precipitation and temperature to persist into 20 
the future is quite strong. In contrast to Section 4the other pillars, here we do not consider the 21 
uncertainty associated with the estimation (and extrapolation) of the trends. The confidence 22 
bounds in Figures 10Fig. 9 and 11 are associated with10 represent the modelled variability of 23 
the low-flow producing processes, as represented by the stochastic precipitation and 24 
temperature models, which are assumed to be known both in the present and in the future. 25 
Despite the strong assumptionassumptions made, it should be noted that the results of this 26 
approach are non-trivial and very interesting in their own right. For instance,, as the way the 27 
trends in precipitation and temperature translate into trends in low-flows differs between the 28 
catchments because of the nonlinear hydrological processesprocess interactions between 29 
precipitation and temperature. . 30 

 31 

76 Three-pillar synthesis 32 

7.16.1 Combination of information 33 

The concept of multi-model ensembles starts from the premise that (a) a group of model 34 

projections will give more reliable results than the individual analyses project low flow 35 

changes from different sources of information. The first pillar, trend extrapolation, exploits 36 

the temporal patterns of observed low flowsmodels alone and extrapolates them into the 37 

future. The second pillar, rainfall-runoff projections is based on climate scenarios(b) the 38 

consistency/inconsistency of precipitation and temperature to drive a rainfall-runoff model. 39 

The third pillar, stochastic the model results is an indicator of the robustness or reliability of 40 

the projections, exploits the temporal patterns of observed precipitation and temperature and 41 

extrapolates them into the future in a stochastic way to drive a rainfall-runoff model. From the 42 
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assessments it is clear that the individual projections are rather uncertain because of limited 1 

data and uncertain models or assumptions.  2 

The (Knutti et al., 2010). In the context of the three-pillar approach proposed here, the 3 
methods and information used in each pillar are largely independent from each other, so one 4 
would also expect the errors to be close to independent. A, and a combination of the 5 
projections should thereforeindeed increase the overall reliability of the projection. The 6 
combination isWe will evaluate heuristically to what degree this premise can be achieved here 7 
bybased on hydrological reasoning based on aand visual comparisoncomparisons of synoptic 8 
plots of the individual estimates and their respective confidence bounds. The reasoning 9 
accounts for the differences in the nature of the uncertainties of the projections and gives 10 
more weight to the more reliable pieces of information.  11 

When combiningcomparing the projections two cases exist. In the first case, projections are 12 

consistent within their confidence bounds. This will lend credence to all projections as they 13 

support each other. The confidence one has in the projection will depend on how strongly the 14 

pillars agree, and on their individual uncertainties. The overall uncertainty will be expressed 15 

here as three levels of confidence (high, medium, low), which is in accordance with the 16 

uncertainty concept of the IPCC report (Field and Intergovernmental Panel on Climate 17 

Change, 2012).  18 

, in particular if the changes of the driving hydrological processes (precipitation, snow storage 19 
and melt, evaporation) are consistent. The overall uncertainty will be expressed here as three 20 
levels of confidence (high, medium, low) (Field and Intergovernmental Panel on Climate 21 
Change, 2012). In the second case, the individual projections are not consistent within their 22 
uncertainty bounds which will suggest lower confidence in the overall projections. Rather 23 
than simply averaging the individual projections, here, the analysis aims at understandingwe 24 
explore the reasons for the disagreement, by checking the credibility of each 25 
projectionsprojection based on the data used and the assumptions made. The confidence 26 
bounds of the individual projections are a starting point for assessing the credibility of each 27 
pillar. Additionally, the plausibility of the precipitation and temperature scenarios simulated 28 
by the climate model can be checked by comparing them with the observations. The 29 
plausibility of the trend extrapolations can be checked, at least for the immediate future, by 30 
examining the consistency of the trend within the observations.  31 

7.26.2 Application to the study area 32 

The synthesis plots for the four regions in Austria are presented in Fig. 11. Each panel 33 

provides a synoptic view of the three pillar projections. Observed annual low flows as plotted 34 

as black lines. Trend estimates and confidence bounds are plotted as blue lines. As can be 35 

seen, the uncertainties increase drastically with the extrapolation length.  36 

The climate scenario based rainfall-runoff projections are given as box plots representing the 37 

averages of each of the two time horizons, 2021-2050 and 2051-2080. The ranges of the box 38 
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plots indicate different parameters of the hydrological model, and colours indicate climate 1 

scenarios. Model simulations for the observation period are shown as grey lines. They allow 2 

conclusions about the performance of the rainfall-runoff modelling.  3 

Finally, the red lines represent the stochastic simulation runs for the past and the future from 4 

which confidence bounds (dashed and dotted lines) were calculated. 5 

Figure 10 compiles the Q95 projections from the three pillars, and Fig. 11 shows their 6 
probability density functions for the period 2021-2050.  7 

For the Hoalp region in the Alps (Fig. 1110, top left), both the extrapolation of observed low 8 
flow trends and the climate scenario based rainfall-runoff projectionsscenarios suggest 9 
increases in low flows. In this region, low flows occur in winter due to snow storage 10 
processes which are mainly driven by seasonal temperature. This process should be captured 11 
well by the climate scenarios, which tend to simulate temperatures more accurately than 12 
precipitation. In fact, (Schöner et al., 2012) (Fig. 3). Schöner et al. (2012) showed that the 13 
temperature scenarios correspond well with regional climate models are able to simulate the 14 
observed increase of winter temperaturetemperatures in the Alpine region since the 1970s. 15 
The plot does show well, which suggests that the rainfall-runoff projections from 16 
differentwinter low flow changes are captured well by the climate scenarios. However, a lot 17 
of uncertainty is introduced by the parameterisations vary strongly.of the rainfall-runoff 18 
model as indicated by the wide boxes in Fig. 10. This uncertainty is mainly due to the lower 19 
low flow performance of rainfall-runoff models in sensitivity of the simulations to the model 20 
parameters in an Alpine landscapes.environment (Fig. 4 and 6). From a regional perspective, 21 
(Fig. 2), the observed low flow trends are significant, i.e. the percentage of stations with a 22 
significant trend is significantlymuch greater than expected by chance (Blöschl et al., 2011; 23 
Laaha at al., in preparation). This finding adds credence to the low flow trend extrapolation, 24 
as on can assume). This means that the observed air temperature trends will persist 25 
intoclimate scenarios and the future.trend extrapolations can be reconciled, at least in terms of 26 
the sign of the changes. The stochastic projectionsextrapolations, in contrast, predict a project 27 
no or even slightly decreasing low flow trend which is inconsistent with the other two 28 
pillars.trends. A closer inspection of the stochastic model componentsobserved air 29 
temperatures suggests that the temperature trends in the Alps are not captured well by the 30 
model. This is because the model is based on annual temperature parameters, but the winter 31 
temperature changes do differ from those of the annual means.winter temperatures (+0.65 32 
°C/10 yrs) have changed more by half than the annual average (+0.46 °C/10yrs in the period 33 
1976-2010). However, the stochastic model assumes a constant change throughout the year 34 
which results in underestimates of future Q95. Of course, the model could be straightforwardly 35 
extended to include seasonal variations in the changes but, as it is now, it nicely illustrates the 36 
case of an inconsistency that is well understood. Because of this, little weight is given to the 37 
stochastic projections in the overall assessment. From the combined information of observed 38 
low flow trends and climate projections of low flows , and one would expect an increase in 39 
low flows by at least 20-40% for the 2020-2050 period (with medium to high confidence) and 40 
an increase by at least 30-50% for the 2050-2080 period (medium confidence). . 41 

For the Muhlv region north of the Alps, the extrapolation of observed low flow trends 42 
corresponds well with the stochastic projections (Fig. 1110 top right). Both methods project a 43 
slightly decreasing trend, corresponding to a slight reduction of about 5-10% for the 2020-44 
2050 2021-2050. Seasonal air temperature trends are similar to the annual trends (0.43 45 
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°C/10yrs in the period. 1976-2010), so the structure of the stochastic model is appropriate 1 
here. The rainfall-runoff simulations capture the observed trend well for the observation 2 
period so also the future simulations will likely be reliable in terms of the hydrological 3 
processes. From the climate . The climate scenarios predict a slight increase in Q95 for the 4 
near future would be projected. This is somewhat contradictory to the trend extrapolation and 5 
stochastic projections but still lies in the confidence bounds of these methods. Low flows in 6 
this region occur in summer and are therefore more precipitation-driven than temperature-7 
driven, so the climate scenario based rainfall-runoff projections are likely less reliable.2021-8 
2050 but there is a lot of variability between the scenarios (also see Fig. 5). On a regional 9 
level, Blöschl et al. (2011) and Laaha et al. (in preparation) reported littleno field significance 10 
of the observed low flow trends in this region which fits well into the findings of, together 11 
with the three-pillar projections. Overall there is perhaps pillars here suggests a slight 12 
tendency for decreasing dischargeslow flows in the 2020-2050 period but this trend is not 13 
strong. This conclusion is relatively certain (with medium confidence) because of the good 14 
agreement of all individual assessments. For the 2050-2080 period further in the future, the 15 
low flow trend extrapolation will be less reliable, as reflected by the wide confidence bounds, 16 
but it is consistent with the decreasing trend of the stochastic projections. The climate 17 
scenario based rainfall-runoff projections suggest a stronger drying trend, corresponding to a 18 
reduction of about 50-60%. The range of different rainfall-runoff projections is outside the 19 
confidence bounds of the stochastic projections. Low flows are precipitation-driven in this 20 
area and so the confidence in the rainfall-runoff projections should be low. Overall, this 21 
suggests a slight drying trend for the 2050-2080 periodall methods become more uncertain, 22 
but all point towards a drying trend (low to medium confidence). 23 

The Gurk region south of the Alps (Fig. 1110 bottom left) shows a somewhat similar 24 
behaviour to that of Muhlv, although the observed low flow pattern is rather nonlinear. There 25 
is with a decreasedrop at the beginning of the observation period followed by observations 26 
and a flattening out after 1990. The Extrapolating a linear trend model does not fit very well 27 
to the observed low flows which reduces the confidence one should have in this pillar. 28 
However, the observations are reproduced quite well by the stochastic projections. The 29 
slightly decrease by around 10 to 20% until 2080. The climate scenario based rainfall runoff 30 
projections increase for the 2020-2050 period and decrease for the 2050-2080 period, the 31 
latter by about 50 to 60%. However, the performance of the model is low as can be seen by a 32 
comparison of the simulated low flows (grey in low flows may therefore not be reliable. The 33 
stochastic projections are more in line) with the observed low flows (thin black line). 34 
Asobservations, and indicate a consequence,slight decrease until 2080. Winter SPEI in the 35 
rainfall-runoff projections seem to be less reliable. Nevertheless,period 1961-2003 is not 36 
simulated well (Fig. 1) which suggests issues with the rangeseasonal water balance of 37 
different rainfall-runoff projections is still within the confidence bounds ofGCM based 38 
simulations. However, the climate scenario projections are in line with extrapolated trends 39 
and stochastic projections. Combining all pieces of evidences, one would expect no 40 
significant change All pillars point to a slight to moderate drying trend in low flows for the 41 
2020-2050 period (medium confidence) and towards a somewhat stronger drying trend of 42 
about 20-30% for the 2050-2080 period (low to medium confidence).  43 

The Buwe region in the South-east gives biggerlarger changes (Fig. 1110, bottom right). The 44 
observed low flow trends are strongly influenced by the recent dry years between 2000 and 45 
2005. This which is consistent with the regional behaviour corresponds with the nonlinear, 46 
increasingly drying trend detected by (Fig. 2 and Blöschl et al. (2011) and Laaha et al. (in 47 
preparation). However, a )). A linear trend extrapolation of the magnitude as estimated is, 48 
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however, does not seem very plausible given that, in particular because the most recent year 1 
in the data set (2008) was less dry. In fact, more recent data for 2009-2014 (not included in 2 
the analysis) show that low flows have partly recovered (annual Q95 values ranging from 0.1 3 
to 0.3 m3s-1) illustrating the limitations of trend extrapolation. The stochastic projection yields 4 
a moderately decreasing trend, which is more plausible. The change is about 15% and 25% 5 
for the two projection periods. An examination of the model components suggests that the 6 
predicted changes are due to an, and related to both increasing trend in temperature (Fig. 9 - 7 
right column, high confidence) and a slightlytemperatures and decreasing precipitation (Fig. 8 
8). The climate scenarios give slightly stronger decreasing trends for the two periods, but it 9 
should be noted that, in contrast to the other catchments, the summer SPEI trend in the period 10 
1961-2003 is not captured well and likely overestimated by the climate simulations (Fig. 1, 11 
top right). Fig. 2 shows consistently decreasing trend in precipitation (Fig. 9 - left column, 12 
medium to low confidence). The simulated signals correspond well with observed climate 13 
signals in thistrends of observed streamflow in the region. By comparison, climate projections 14 
seem to overestimate low flows for the nearer future relative to the stochastic simulations, but 15 
correspond well with the projections for 2050-2080. A regional trend analysis (Fig. 3) shows 16 
consistent behaviour in the Buwe region. Overall, there is moderate confidence in a slight 17 
Overall, the pillars therefore point towards a slight to moderate drying trend for 2020-2050, 18 
and a stronger drying trend for the 2020-2050 period, and a stronger drying trend of about 20-19 
30% for the 2050-2080 period2050-2080 with medium confidence. 20 

 21 

87 Discussion 22 

8.1 Realism of trend scenarios 23 

7.1 Extrapolation of observed low flow trends 24 

The trend scenarios are based on the assumption that changes are linear over time. This is a 25 
simplifying view of non-stationarity which, however, is parsimonious. Although the . The 26 
Earth system is clearly non-linear, theso often regime shifts are observed rather than trends. 27 
These can be detected in a similar way as trends (see, e.g., Rodionov, 2006) but it is more 28 
difficult to make assumptions of persistence of change than for the case of linear trends. In the 29 
European Alps, annual air temperatures in the European Alps have increased linearly since 30 
the mid-1970s, so a continuing trend is an obviousa plausible assumption. Similar to spatial 31 
low flow models (Laaha and Blöschl, 2006), seasonality plays an important role in for the 32 
near future. Trends in air temperatures translate into changes in low flows in a non-linear way 33 
and this depends on the time trends of low flows. In the Alps,year low flows occur in winter 34 
as (Laaha and Blöschl, 2006). Winter low flows are a consequence of frost and snow storage 35 
and these processes are closely related to air temperature. A trend in air temperature would 36 
therefore be expected to directly translate into , which is reflected by a remarkable co-37 
behaviour of observed low flows (Blöschl and Montanari, 2010). This is borne outwith 38 
temperature for the Alpine Hoalp catchment (Fig. 1110 top left) which exhibits a remarkable 39 
co-behaviour with temperature. ). 40 

For the other catchments that exhibit a summer low flow regime, the past changes of low 41 

flows are more subtle. Here the flow records seem too short to conclude about low flow 42 

trends, so we need additional, external information. (Haslinger et al., 2014) found that the 43 
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SPEI representing the net precipitation input to the catchment is a good proxy of summer low 1 

flows and this is supported by a comparison of the trends in SPEI for the summer (Fig. 2, 2 

upper panels) with the low flows in the summer dominated regions (Fig. 11, Muhlv, Gurk, 3 

Buwe). Interestingly, projected SPEI signals (Fig. 2) do not flatten out at the end as it is the 4 

case for the SPEI based on observations, and a similar effect cam be observed for low flow 5 

trends and observations. SPEI of climate scenarios are in line with low flow trends, and both 6 

point to a decrease of low flows that extends to the future. These trends are rather weak for 7 

Muhlv in the North but pronounced in The flow records are rather short, so discerning trends 8 

from long range fluctuations is difficult (Montanari et al., 1997). Gurk in the South. For the 9 

Buwe catchment SPEI values suggest a similar decrease as Gurk basin but here the temporal 10 

pattern of low flows is different and not easy to interpret.  11 

In all cases, the uncertainty of the trend scenarios is large, as indicated by the wide confidence 12 
bounds. It should be noted that the confidence bounds are conditional on the assumption that 13 
the linear trend model applies. If one relaxed this assumption, the bounds would be even 14 
wider. Part of the uncertainty comes from the relatively short record length (33 years). For 15 
example, (Hannaford et al., 2013) have shownHannaford et al. (2013) showed that low flow 16 
trends in European regimes are subject to pronounced decadal-scale variability so that even 17 
post-1960 trends (50 years) are often not consistent with the long-term picture. Laaha et al. (in 18 
preparation) concluded from the magnitude of decadal trend variability in Austria that more 19 
than three decades are needed for recognizing the nature of trends as a basis for obtaining 20 
robust estimates. Overall, the trend scenarios of catchments with summer low flow regime are 21 
less reliable than those for winter low flow regimes, but they do constitute a scenario of a 22 
possiblepattern. Long climate records may assist in trend detection. Haslinger et al. (2014) 23 
found that the Standardized Precipitation Evaporation Index (SPEI) is a good proxy of 24 
summer low flows in the study area where the HISTALP data set (Auer et al., 2007) allows 25 
analysing climate fluctuations back to the year 1800 (Fig. 1). The decreasing trends of 26 
summer SPEI from the climate projections (Fig. 1) are in line with the low flow trends in 27 
Muhlv and Gurk, and both point to a decrease of low flows that extends into the future. 28 

8.27.2 Uncertainty of rainfall-runoff Climate projections and runoff modelling 29 

The realism of predicted impacts is also a key question for the rainfall-runoff Similar to the 30 

ensemble projections based on climate scenarios. We performed an assessment of uncertainty 31 

of low flow projections, using a similar ensemble based framework as in the studies of (Wong 32 

et al., 2011) for Norway, (Majone et al., 2012) for the Gállego river basin in Spain, and (De 33 

Wit et al., 2007) for Meuse river in France. Weof Wong et al. (2011), Majone et al. (2012) 34 

and De Wit et al. (2007) we assessed the uncertainty arising from the choice of the climate 35 

model and the emission scenario by an ensemble of three equally possible emission scenarios 36 

and two different climate models (ECHAM5 and HADCM3). Unlike (De Wit et al., 2007) we 37 

. We did not assess possible downscaling errors, as De Wit et al. (2007) did, as we believe 38 
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that RCMs tend tothey usually play a minor role when using a delta change approach which 1 

accounts for local effects.  2 

that applies a change factor to locally observed signals. Uncertainty ofarising from the 3 

hydrological part of the model cascadestructure may also be assessed by a model ensemble 4 

(e.g. Habets et al., 2013). WeHabets et al., 2013) but we have chosen to focus on the 5 

parameters instead. We show, for the case study,The results suggest that the Q95 projections 6 

are not only sensitive not only to the selection of climate scenarios, but also to the 7 

selectionchoice of climate scenarios, but also to the objective function and the calibration 8 

period. The calibration uncertainty is associated with the objective function is largest in the 9 

Alpine Hoalp basincatchment, where the winter low flow regime is less sensitive tostrong 10 

streamflow seasonality makes the projected increase of air temperature. When comparing 11 

results from different weighting between high and low flows particularly important. The 12 

uncertainty associated with the calibration periods, the effect of temporal parameter instability 13 

is clearly visibleperiod is largest in the Buwe and Gurk basins where parameters from a colder 14 

period with less evapotranspirationevaporation tend to overestimate runoff in warmer periods. 15 

A similar effect is expected for a future, warmer climate, so the projected low flows may 16 

decrease more strongly than the projected average. This finding is in contrast with (Hay et al., 17 

2000) who identifiedThis finding may depend both on model type and the climate region. Hay 18 

et al. (2000), for example, found a minor role of the hydrological model. The difference may 19 

be related to Hay et al. (2000) only assessing hydrological model performance of best-fit 20 

models and not accounting for uncertainty arising from calibration variants and  for three river 21 

basins in the US, although they did not specifically examine the time stability of model 22 

parameters. On the other hand, the finding in this paper is in line with (Bosshard et al., 2013). 23 

The similarity may be due to the proximity of study areas with similar climate and catchment 24 

controls, and the similar sources of uncertainty Bosshard et al. (2013), on the other hand, 25 

suggested that the hydrological model accounted for.  26 

Even though the analysis in this paper provides a proxy of uncertainty rather than a direct 27 

statistical measure they are considered very useful in the context of the three-pillar framework 28 

as they may assist in the process reasoning. For example, because of the more important role 29 

of air temperature  5–40% of the total streamflow ensemble uncertainty in the Alpine 30 

catchments one can have higher confidence in the scenarios than in the lowlands.  31 
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8.3 Potential of stochastic simulations 1 

As opposed to low flow trends and rainfall-runoff projections, which are widely used in 2 
climate impact studies of low flows, stochastic simulations are relatively rare. The main 3 
strength of the stochastic model is that it accounts for the local trends of precipitation and air 4 
temperature and captures the stochastic variability of climate. It therefore provides 5 
information complementary to Rhine. Similarly, Samaniego et al. (2013) found that of the 6 
climate scenarios. accounting for hydrological model parameter uncertainty is essential for 7 
identifying drought events, and multi-parameter ensembles were efficiently able to identify 8 
the magnitude of that uncertainty. 9 

ExtrapolatingLow flow projections are challenging because low flows are typically driven by 10 
groundwater discharge processes (both recharge and discharge). These processes are difficult 11 
to understand and model due to their local nature. Fleckenstein et al. (2006), for example, 12 
found that the percentage of river channel responsible for 50% of total river seepage during 13 
low flow conditions in the Cosumnes River, California ranged from 10 to 26% depending on 14 
the spatial configuration of hydrogeologic heterogeneity. This heterogeneity has not been 15 
resolved in the present study and is rarely resolved in catchment scale climate assessment 16 
studies. It is therefore important to note that, while the climate drought processes tend to be 17 
rather large scale, the catchment response during low flow periods can have specific local 18 
effects which differ from those of the larger scale pattern.  19 

7.3 Extrapolation of stochastic rainfall characteristics and runoff modelling 20 

Stochastic models of rainfall characteristics can be conditioned to future climates in a number 21 
of ways (see, e.g. Hall et al., 2014). A common method is to first calibrate the model 22 
parameters to the current climate and then adjust the parameters to precipitation from climate 23 
scenarios at daily, seasonal and annual time scales (e.g. Hundecha and Merz, 2012; Blöschl et 24 
al., 2011). To illustrate the three-pillar approach we have adopted here the very simple 25 
assumption of extrapolating the trends in the rainfall model parameters and air temperature 26 
trends involves a similar temperatures linearly into the future. The reasoning as the , and the 27 
limitations, are similar to the direct trend extrapolation of low flow trends discussed above 28 
and buildsflows, building on the inertia of the climate system. Consequently, the extrapolation 29 
of temperature maywill be more appropriate than thosethat of precipitation and the 30 
extrapolation into the near future maywill be more appropriate than thosethat into the more 31 
distant future. 32 

The model we use (Viglione et al., 2012) makes some simplifying assumptions which could 33 

be easily relaxed. First, the long range dependence of streamflow (Szolgayová et al., 2014) 34 

could be considered by extending the stochastic precipitation model (e.g. Thyer and Kuczera, 35 

2003). Second, the correlations between precipitation and air temperature could be accounted 36 

for (Hundecha and Merz, 2012). Third, changes in seasonal temperatures could be 37 

incorporated in the model as they do seem to play a role in some of the catchments.  38 

As the main point of the stochastic model was to illustrate the three-pillar approach, we 39 

believe that it provides an attractive method that complements the traditional climate impact 40 

studies on hydrology. 41 
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8.4 Benefits of the synthesis 1 

The rationale of the three-pillar approach is that different data and methods of the three pillars 2 
will result in errors that are, at least partly, independent. Combining the pillars therefore 3 
involvesAlternative stochastic models could be used within the same three-pillar framework. 4 
The model could be adjusted to climate scenarios in a similar ways as the model of Hundecha 5 
and Merz (2012), and correlations between precipitation and air temperature could be 6 
accounted for. Also, the long range dependence of streamflow (Szolgayová et al., 2014) could 7 
be considered by extending the stochastic precipitation model (e.g. Thyer and Kuczera, 2003). 8 
This will result in more complex patterns of future simulated low flows.  9 

7.4 Assessing the value of synthesis 10 

Climate impact and assessment studies in hydrology have traditionally been dominated by the 11 

paradigm of modelling cascades (Blöschl and Montanari, 2010), so a fresh look at the 12 

problem for the particular case of low flows opens up a number of benefits.  13 

First, the synthesis framework may assist in obtaining a judgement about the credibility of the 14 

individual approaches and increases the reliability of the overall assessment.opportunities. 15 

The three pillar approach allows for a diverse set of methods based on different assumptions 16 

and data to be compared and combined in a coherent way. For the case study catchment 17 

Muhlv in the region north of the Alps, for example, consistently small low flow changes are 18 

predictedprojected by all methods. The fact that all methods yield similar results  which adds 19 

credence to allthe projections as they support each other. 20 

Second, the synthesis. The synthesis framework proposed here puts a lot of emphasis on 21 
heuristic process reasoning. This may contribute to a better understanding of thelow flow 22 
response of low flow regimes to a future changed climate. For the case study catchment Buwe 23 
in the Southeast, for example, the observed low flow signal shows a non-linear drying trend. 24 
Anto a future climate than a mere examination of the model components of the stochastic 25 
scenario results. For an alpine region such as Austria the key to understanding low flows is 26 
whether they are controlled by freezing and snow melt processes, or by the summer moisture 27 
deficit associated with evaporation. Understanding of the key processes helps putting the 28 
projections suggests that the predicted changes are due to anfrom the diverse methods into 29 
perspective. For example, for the Alpine Hoalp catchment this reasoning points towards 30 
increasing trend in temperaturelow flows which is also consistent with all three pillars 31 
adopted here. In a similar way, Luce and Holden (2009) and a slightlyLuce et al. (2013) 32 
explained decreasing trend inlow flow trends in the Pacific Northwest of the US by declines 33 
in mountain precipitation. GCM scenarios correspond well with these trends, and this in turn 34 
lends a relatively high credence to the rainfall-runoff projections of climate 35 
scenariossuggested that this trend will persist into the future.  36 

Third, it is believed that theThe three pillar approach allowsalso provides opportunities for a 37 
more complete wayassessment of assessing the uncertainty of the projections. For the case 38 
study catchment Hoalp in the Alpine region, trend projections and climate scenarios yield 39 
consistent projections of increasing low flows, although of different magnitudes. The inter-40 
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comparison of allmulti-model ensemble premise of variations between ensemble members 1 
being an indicator of projection uncertainty is consistent with the case study findings of this 2 
paper. For example, the comparisons of the methods including process reasoning in every 3 
analysis step enables us to better assess their individual uncertainties. This information is vital 4 
for weighting the projections when performing a synthesis, to gain a more informed estimate 5 
of expected changes and their uncertainties. Forfor the Hoalp catchment highlighted issues 6 
with the assumption of a uniform seasonal temperature change of the stochastic model, so less 7 
credibility was given to this pillar in this particular case. For the Buwe catchment, non-linear 8 
changes of observed low flows shed doubts on the linear-trend assumption, so less credibility 9 
was given to the low flow extrapolation pillar. On the other hand, for predicting near-future 10 
low flows in the Hoalp catchment, the trend model extrapolation appears most reliable and 11 
receives most weight.. From trend predictionsextrapolations alone one would conclude 12 
aninfer a 39% increase by +42 %in low flows until 2021-2050 (Table 2) but with a very wide 13 
range of the uncertainty (about ±100% of the expected value), so one would have low 14 
confidence in the absolute figures of projected changeis of equal magnitude. Additional 15 
information from rainfall runoff projections (that suggest an increase of about 15up to 30%) 16 
has been useful to% constrain the projected increase to about 20 to 40%. The more complete 17 
information reduces the uncertainty of projected changes and this increases our confidence in 18 
low flow projections. 19 

In the context of water resources management, all three benefits are considered to be relevant. 20 
Decisiondecision makers are usually reluctant to use the output from black box models as the 21 
sole basis of their decisions. Just as important as the expected changes in the water system are 22 
the uncertainties associated with the changes as well as a process reasoning in terms of cause 23 
and effect. This is particular the case if robust drought management strategies, such as the 24 
vulnerability approach, are to be adopted. The vulnerability approach differs from the 25 
predictive climate scenario approach in that it aims at reducing vulnerability and enhancing 26 
resilience of the water system (Wilby and Dessai, 2010) ; (Blöschl et al., 2013). Typically, 27 
the strategies are not optimal from an economical perspective but they are robust, i.e. they 28 
(Wilby and Dessai, 2010; Blöschl et al., 2013). Typically, these strategies are designed to 29 
perform well over a wide range of assumptions about the future and potentially extremely 30 
negative effects. Central to the approach is an understanding of the cause-effect relationships 31 
within the water system under a variety of conditions, as well as an appreciation of the 32 
possible uncertainties. For example, (Watts et al., 2012) tested the resilience of drought plans 33 
in England to droughts that are outside recent experience using nineteenth century drought 34 
records. Methods often involve exploratory modelling approaches which fit well with the 35 
three pillar approach proposed here.Methods often involve exploratory modelling approaches 36 
(Watts et al., 2012) which fit well with the three pillar approach proposed here. We therefore 37 
believe that the approach put forward in this paper can play an important role in assisting risk 38 
managers in developing drought management strategies for the practice.  39 

 40 

91 Conclusions 41 

In It should be emphasised that the extrapolation pillars have been adopted here to illustrate 42 
the framework and could be replaced by other methods such as the “trading space for time” 43 
approach (Perdigão and Blöschl, 2014) where spatial gradients are transposed into temporal 44 
changes. Also, heuristic process reasoning has been adopted to compare the pillars based on 45 
expert judgement because of its flexibility. The combination could be based on formal 46 
methods (e.g. Bayesian methods, Viglione et al., 2013) that allow accounting for subjective 47 
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information on low flows and their process causes. Finally, the three-pillar approach 1 
presented in this paper is not necessarily restricted to low flows and could be adapted to other 2 
hydrologic characteristics. 3 

 4 

8 Conclusions 5 

, weWe propose a framework that combines low flow projections from different sources of 6 
information. These pillars of information are , termed pillars. To illustrate the framework 7 
three pillars have been chosen: (a) direct extrapolation of low flow trends in observed(b) 8 
estimation of low flows, rainfall- from GCM-projected climates using a runoff model, and (c) 9 
stochastic simulations from trend-extrapolated climates using a similar runoff model.  10 

The methods and information used in each pillar are largely independent from each other, so 11 
one would expect the errors to be close to independent, and a combination of the projections 12 
based on climate scenarios, and stochastic projections based on local hydro-meteorological 13 
data. The pillars are either observation-based or process-based and therefore combine 14 
elements of upward and downward approaches in hydrology. should increase the overall 15 
reliability of the projection. We evaluate heuristically to what degree this premise can be 16 
achieved for four example regions in Austria, based on hydrological reasoning and visual 17 
comparisons of synoptic plots of the individual estimates and their respective confidence 18 
bounds. 19 

The methodology is demonstrated for four example catchments in Austria that represent 20 
typical climate conditions in Central Europe. The results of the individual projections 21 
sometimes differ in terms of their signs and magnitudes, mainly depending on the dominant 22 
low flow seasonality. For the Alpine region where winter low flows dominate, trend 23 
projections and climate scenarios yield consistent projections of a wetting trend but of 24 
different magnitudes. For the region north of the Alps, all methods project rather small 25 
changes. For the regions in the South and Southeast more pronounced and mostly decreasing 26 
trends are projected but there is disagreement in the magnitude of the projected 27 
changeschanges. The synthesis of the case study projections suggests that the framework (i) 28 
tends to enhance the robustness of the overall assessment, (ii) adds to the understanding of the 29 
cause-effect relationships of low flows, and (iii) sheds light on the uncertainties involved 30 
based on the consistency/inconsistency of the pillars.  31 

The systematic combination of different sources of information in the framework of the three-32 

pillar approach offers a number of opportunities for drought projections: (i) checking the 33 

plausibility of individual projections and improving the reliability of the overall assessment, 34 

(ii) understanding the cause- effect relationships involved, and (iii) enhancing the 35 

understanding of the uncertainties of the assessment based on the consistency of the 36 

individual pillars.  37 

Application to the case study catchments suggest that the approach is viable. As the methods 38 

and information used in each pillar are largely independent from each other, the combined 39 

assessment is likely more accurate than each of the individual projections. The synthesis or 40 

combination of information may be performed by expert judgement as shown in this paper. 41 
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Alternatively, more formal methods exist which could also be used. In all cases, the 1 

confidence in the combined projection will depend on how closely the pillars agree, and on 2 

the individual uncertainties. 3 

Future work may be directed towards adding pillars, or replacing some of the pillars used 4 
here. One possibility is historic information as an additional pillar. Historic information may 5 
come from archival data, from archives and tree ring analysis and other sources. They 6 
analyses which would allow assessment of a still wider spectrum of drought conditions than 7 
those analysed in this paper and may contribute additional benefits to water management 8 
decisions.. Other possibilities are the “trading space for time” approach as well as more 9 
formal multi-model ensembles.  10 
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 1 

Table 1. Trend estimates of observed Q95 low flows in the period 1976-2008 (Mann-Kendall 2 
test). Relative trends refer to the trend over the observation period relative to its mean. 3 

 Hoalp Muhlv Gurk Buwe 

trendTrend  
(m³/s per 100 yrs) 

+0.24 ** -0.28 -1.45 -0.34 * 

relativeRelative 
trend  
(% per year) 

+1.21 ** -0.38 -0.78  -1.88 * 

p-value 0.009 0.377 0.053 0.045 

Significance codes: ** p<0.01  ;  * p< 0.05  4 
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Table 2. Trend extrapolations of average Q95 low flows (m³/s) for the periods 2021-2050 and 1 
2051-2080 based on observed trends. Changes (%) refer to the Q95 in the future period 2 
relative to the average Q95 in the reference period (1976-2008). Values in parentheses indicate 3 
95% confidence intervals. 4 

  Hoalp Muhlv Gurk Buwe 

2021-2050 Q95 (m³/s) 0.28 (0.19, 0.37) 0.68 (0.45, 1.02) 1.19 (0.58, 2.00) 0.02 (-0.14, 0.14) 

2021-2050 Change (%) +39 (-7, +71) -8 (-41, +34) -36 (-72, -1) -90 (-177, -22) 

p-value 
prewhitene
d2051-
2080 

Q95 (m³/s) 0.00335 (0.22, 
0.45) 

0.25060 (0.15, 
1.14) 

0.17874 (-0.23, 
2.01) 

-0.05808(-0.33, 
0.12) 

significanc
e 2051-
2080 

**Change 
(%) 

+74 (0, 123) -21 (-79, +51) *-59 (-113, +9) -148 (-282, -36) 

Significance codes: ** <0.01  ;  * < 0.05  5 
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Table 2. Trend predictions of average Q95 low flows (m³/s) for the periods 2021-2050 and 1 

2051-2080 based on extending observed trends. Predicted changes (%) relative to average low 2 

flow discharge Q95 of the reference period (1976-2008). Values in parenthesis refer to the 3 

95% confidence interval. 4 

 Hoalp Muhlv Gurk Buwe 

2021-2050 

Q95 0.28 (0.19, 0.38) 0.67 (0.36, 0.97) 1.17 (0.48, 1.87) 0.02 (-0.10, 0.14) 

change  +42 (-5, +88) -10 (-51, +32) -36 (-74, +1) -89 (-156, -21) 

2051-2080     

Q95 0.35 (0.20, 0.51) 0.58 (0.07, 1.09) 0.74 (-0.42, 1.90) -0.08 (-0.29, 0.12) 

change  +78 (+1, +156) -21 (-91, +48) -60 (-123, +3) -145 (-258, -33) 
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Table 3. Runoff model efficiency ZQ (Eq. 42) obtained for different weights wQ (Eq. 4) in the 1 
four selected basinscatchments for three different calibration periods. wQ = 0 and wQ =1 2 
emphasise low flows and high flow, respectively, in the calibration. ZQ are listed in the 3 
sequence of the calibration periods: 1976-1986/1987-1997/1998-2008.  4 

wQ Hoalp Muhlv Gurk Buwe 

0.0 0.96/0.95/0.90 0.82/0.84/0.86 0.79/0.73/0.79 0.46/0.52/0.59 

0.1 0.95/0.93/0.90 0.81/0.83/0.86 0.79/0.73/0.79 0.37/0.52/0.58 

0.2 0.94/0.92/0.90 0.80/0.82/0.86 0.78/0.74/0.79 0.35/0.53/0.58 

0.3 0.93/0.90/0.90 0.79/0.81/0.86 0.78/0.74/0.79 0.34/0.54/0.58 

0.4 0.92/0.89/0.89 0.79/0.80/0.86 0.78/0.74/0.79 0.40/0.54/0.57 

0.5 0.91/0.88/0.89 0.77/0.79/0.86 0.78/0.75/0.78 0.36/0.55/0.56 

0.6 0.90/0.86/0.89 0.77/0.78/0.86 0.78/0.75/0.78 0.30/0.56/0.55 

0.7 0.89/0.85/0.89 0.76/0.78/0.86 0.78/0.75/0.78 0.30/0.57/0.55 

0.8 0.88/0.83/0.75 0.76/0.77/0.81 0.78/0.76/0.80 0.30/0.58/0.49 

0.9 0.88/0.82/0.73 0.75/0.76/0.81 0.78/0.76/0.80 0.28/0.59/0.49 

1.0 0.87/0.82/0.72 0.75/0.75/0.81 0.78/0.77/0.81 0.29/0.60/0.49 

 5 
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 1 

Figure 1. Three-pillar approach of low flow projection: The first pillar, streamflow trend 2 

extrapolation, exploits information of the observed low flow signal. The second pillar, 3 

rainfall-runoff projections, exploits information of climate scenarios. The third pillar, 4 

stochastic projections, extrapolates trends of observed climate signals. Intercomparisons 5 

(indicated by arrows) allow interpretation of trends, validation of rainfall-runoff projections, 6 

and alternative scenarios. The combination of the three pieces of information yields estimates 7 

consistent with all the information, together with an appreciation of their uncertainty. 8 

 9 

 10 
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Figure 2. Observed (HISTALP, black) and projected (reclip:century ensemble spread, grey) 1 
evolution of the standardizedStandardized precipitation evaporation index (SPEI) in summer 2 
(upper paneltop) and winter (lower panelbottom) (three month averages of monthly values) 3 
for the four example catchments in Austria; the red. Observed (HISTALP, Auer et al., 2007, 4 
black) and projected (reclip:century ensemble spread, grey). Red and light red lines represent 5 
the Gaussian low-pass filterfiltered values of the observed and projected SPEI time series, 6 
respectively. 7 
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 2 

Figure 32. Observed trends of annual Q95 low flows in Austria in the period 1976-2008. 3 
Colours correspond to the sign and the magnitude of the trends (blue = increasing, red = 4 
decreasing). Size indicates significance of trends. Units of the trends are standard deviations 5 
per year. Squares indicate example catchments; West: Tauernbach at Matreier Tauernhaus 6 
(.Hoalp); North: Steinerne Mühl at Harmannsdorf (Muhlv): South: Glan at Zollfeld (Gurk); 7 
East: Tauchenbach at Altschlaining (Buwe). From (Laaha et al., in preparation).  8 
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 1 

Figure 43: Observed daily discharge for the periods 1976-1986 (blue linelines) and 1998-2008 2 
(red linelines) in the Buwe (upper paneltop) and Hoalp (bottom panel) basins) catchments. 3 
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 1 

Figure 54. Annual Q95 low flow quantiles Q95 estimatedflows from observed data (black 2 
linelines) and from hydrologic model simulations (coloured bands).) for the four catchments. 3 
Band widths in the left panels show the variability due to different weights wQ in the objective 4 
function (Table 3) for two calibration periods (1976-1986 and 1998-2008). Band widths in the 5 
right panels show the variability due to different decades used for model calibration for two 6 
sets of weights (wQ=0.5 and wQ=0.0). 7 
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Figure 65. Projections of air temperatures and precipitation for the four basins in 2 
Austriacatchments simulated by regional climate models. Shown are long-term monthly 3 
changes of the future period (2021-2050) relative to the reference period (1976-2008). Shaded 4 
area indicatesareas indicate the range of climate scenarios/models. 5 
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Figure 76. Projections of annual Q95 low flows for the four basins in Austriacatchments in 2 
terms of the changes of the future period (2021-2050) relative to simulated runoff in the 3 
reference period (1976-2008). Band widths in the left panels show the variability due to 11 4 
calibration variants fordifferent weights wQ in the objective function (Table 3) using 5 
HADCM3. Band widths in the right panels show the variability due to the choice of climate 6 
projections for calibration variant wQ=0.5. Yellow and blue colours relate to two calibration 7 
periods for the hydrological model. 8 
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Figure 7. 1 

 2 

 3 

Figure 8. Observed trendtrends in the precipitation statistics for the climate stations: St. Jakob 4 
Def (Hoalp), Pabneukirchen (Muhlv), Klagenfurt (Gurk),) and Woerterberg (Buwe). The 5 
trend lines (dashed) have been fitted with the Theil-Sen method. 6 
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Figure 8. Figure 9. Stochastic simulations of mean annual daily precipitation and mean annual 2 
temperature (red lines) for St. Jakob Def (Hoalp), Pabneukirchen (Muhlv), Klagenfurt 3 
(Gurk),) and Woerterberg (Buwe). 100 simulated time series for each station. For comparison, 4 
observations are shown (black lines). 5 
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Figure 10.1 

 2 

Figure 9. Stochastic simulations of mean annual runoff and annual Q95 (red lines) assuming 3 
linear extrapolation of the rainfall model parameters for Tauernbach at Matreier Tauernhaus 4 
(the Hoalp), Steinerne Mühl at Harmannsdorf (, Muhlv), Glan at Zollfeld (, Gurk), and 5 
Tauchenbach at Altschlaining (Buwe). catchments. 100 simulated time series for each 6 
catchment. For comparison, observations are shown (black lines). Density 7 
distributionsProbability density functions of Q95 for three periods are shown on the right.  8 
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Figure 1110. Three-pillar projections of annual Q95 low flows Q95 for the four example 3 
catchments: a) Steinerne Mühl at Harmannsdorf (Hoalp, Muhlv), b) Glan at Zollfeld (, Gurk), 4 
c) Tauchenbach at Altschlaining (Buwe), and d) Tauernbach at Matreier Tauernhaus 5 
(Hoalp).Buwe catchments. Black lines refer to observed annual Q95. Pillar 1: trend 6 
lineextrapolation of observed low flow trends (blue) and 0.95 level confidence bounds (blue 7 
curved lines); bold/thin parts refer to observation/extrapolation period. Pillar 2: simulated Q95 8 
forsimulations in the observation period (gray line)), and climate scenario based average 9 
Q95projections and runoff modelling for 2021-2050 and 2051-2080 (box plots, coloursshades 10 
of green indicate different climate scenarios, range of box plots indicates different parameters 11 
of the hydrological model)). Pillar 3: Stochastic simulations of Q95 extrapolation of stochastic 12 
rainfall characteristics and runoff modelling (100 realisations, red lines) assuming linear 13 
extrapolation of rainfall model parameters with 0.50 level confidence bounds (black dashed 14 
lines) and 0.90 level confidence bounds (black dotted lines) confidence bounds. 15 
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Figure 11. Probability density functions (pdf) of annual Q95 low flows 2021-2050 of the three-3 
pillar projections for the Hoalp, Muhlv, Gurk and Buwe catchments as in Figure 10. Pillar 1: 4 
extrapolation of observed low flows (blue). Pillar 2: climate projections and runoff modelling 5 
(different shades of green) Pillar 3: Extrapolation of stochastic rainfall characteristics and 6 
runoff modelling (red). The pdfs represent both variability within the period and uncertainty 7 
(pillars 1 and 2) and variability alone (pillar 3). For comparison, observed Q95 in the reference 8 
period (1976-2008) is shown (dashed grey line). 9 
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