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Abstract 15 

The objective of this paper is to present a framework for assessing climate impacts on future 16 
low flows that combines different sources of information, termed pillars. To illustrate the 17 
framework three pillars are chosen: (a) Extrapolation of observed low flow trends into the 18 
future; (b) Rainfall-runoff projections based on climate scenarios; (c) Extrapolation of changing 19 
stochastic rainfall characteristics into the future combined with rainfall-runoff modelling. 20 
Alternative pillars could be included in the overall framework. The three pillars are combined 21 
by expert judgement based on a synoptic view of data, model outputs and process reasoning. 22 
The consistency/inconsistency between the pillars is considered an indicator of the 23 
certainty/uncertainty of the projections. The viability of the framework is illustrated for four 24 
example catchments from Austria that represent typical climate conditions in Central Europe. 25 
In the Alpine region where winter low flows dominate, trend projections and climate scenarios 26 
yield consistently increasing low flows, although of different magnitudes. In the region north 27 
of the Alps, consistently small changes are projected by all methods. In the regions in the South 28 
and Southeast, more pronounced and mostly decreasing trends are projected but there is 29 
disagreement in the magnitudes of the projected changes. The process reasons for the 30 
consistencies/inconsistencies are discussed. It is argued that the three-pillar approach offers a 31 
systematic framework of combining different sources of information aiming at more robust 32 
projections than obtained from each pillar alone.  33 

 34 

1 Introduction 35 

Streamflow regimes are changing around the world due to multiple factors and low flows are 36 
often particularly affected. Direct human impacts, such as abstractions, and climate impacts are 37 
difficult to isolate (Blöschl and Montanari, 2010), yet understanding the causes of changes is 38 
essential for many water management tasks. Research into assessing low flow and drought 39 
changes falls into two groups (Sivapalan et al., 2003). 40 

The first group infers catchment functioning from an interpretation of the observed streamflow 41 
response at the catchment scale. It includes statistical trend analyses of observed low flow 42 
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characteristics, such as the annual minima, supported by analyses and interpretations of the 1 
process causes (e.g. Giuntoli et al. (2013) in France, Hannaford and Buys (2012) in the UK, 2 
Wilson et al., (2010) in the Nordic Countries, Lorenzo-Lacruz et al. (2012) on the Iberian 3 
peninsula, and Lins and Slack, (1999) and Douglas et al., (2000) in the US). Most trend analyses 4 
are performed locally on a station-by-station basis and are therefore not fully conclusive at the 5 
larger scale of climate processes. Regional trend analyses are based on field significance 6 
statistics or block-bootstrapping procedures (e.g. Renard et al., 2008; Wilson et al., 2010) or, 7 
alternatively, a regional interpretation of trend patterns (e.g. Stahl et al., 2010). Most studies 8 
perform trend interpretations in a heuristic way without cross checking against alternative 9 
sources of information. 10 

The second group involves a model cascade, where General Circulation Model (GCMs) outputs 11 
are fed into Regional Climate models (RCM), the outputs of which (usually precipitation and 12 
air temperature) are fed into hydrological models to project future streamflows. Low flow 13 
examples include De Wit et al. (2007) for the Meuse, Hurkmans et al. (2010) for the Rhine and 14 
Majone et al. (2012) for the Gállego river in Spain. National studies include Wong et al., (2011) 15 
in Norway, Prudhomme et al. (2012) in the UK, Chauveau et al. (2013) in France and (Blöschl 16 
et al., 2011) in Austria. The hydrological models used in these studies are often not specifically 17 
parameterised for low flows which results in considerable uncertainties. 18 

The two approaches have relative strengths and weaknesses (see Hall et al., 2014 for the flood 19 
case). The first approach makes fewer assumptions and is more directly based on observations 20 
but any extrapolation into the future is more speculative. Recent changes in air temperature 21 
have been quite consistent over time in many parts of the world. In the European Alps, for 22 
example, the increase in air temperature since 1980 has been about 0.5°C/decade with little 23 
variation between the decades (Böhm et al., 2001; Auer et al., 2007), and the expected trends 24 
are similar. If one assumes that air temperature is the main driver of low flow changes, 25 
persistence of low flow changes into the near future is therefore a reasonable assumption. Of 26 
course, such an extrapolation hinges on the realism of the assumptions and is likely only 27 
applicable to a limited time horizon. The second approach on the other hand is more process 28 
based, so has more potential for projections into the future, but the spatial resolution of the 29 
atmospheric models is rather coarse (e.g., 10 km for dynamically downscaled reclip:century 30 
simulations), so small-scale climate features, such as cloud formation and rainfall generation, 31 
cannot be resolved. As a consequence, air temperature projections tend to be more robust than 32 
precipitation projections, in particular in Alpine landscapes (Field and Intergovernmental Panel 33 
on Climate Change, 2012; Haslinger et al., 2013). There is value therefore in confronting such 34 
projections with results from other approaches.  35 

 36 

2 Three pillar approach 37 

In this paper we propose a framework that combines complementary pieces of information on 38 
low flows in order to enhance the reliability of the projections. The overall philosophy has been 39 
inspired by the concept of multi model climate projections where the projections from a group 40 
of models together are considered to be more robust than the individual projections, and the 41 
difference between the individual models represents an indicator of the uncertainty associated 42 
with the projections. Knutti et al. (2010, p. 2), for example, states: “Ensemble: A group of 43 
comparable model simulations. The ensemble can be used to gain a more accurate estimate of 44 
a model property through the provision of a larger sample size, e.g., of a climatological mean 45 
of the frequency of some rare event. Variation of the results across the ensemble members gives 46 
an estimate of uncertainty.” The concept of combining different sources of information has, of 47 
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course, a long tradition in other fields of hydrology such as flood estimation (Stedinger and 1 
Tasker, 1985, Gutknecht et al., 2006, Merz and Blöschl, 2008), low flow estimation, (Laaha 2 
and Blöschl, 2007) and, more generally, uncertainty estimation in ungauged basins (Gupta et 3 
al., 2013).  4 

The combination can be based on formal methods such as Bayesian statistics (Viglione et al., 5 
2013) or on a heuristic process reasoning based on expert judgement (Merz and Blöschl, 2008). 6 
The latter is able to account for a broader class of information sources but it is more subjective. 7 
In this paper, we chose a heuristic approach because of its flexibility but, as demonstrated by 8 
Viglione et al. (2013), this could be formalised. 9 

We illustrate the framework by choosing three pillars or sources of information to assist in 10 
projecting low flows into the future. The first pillar consists of extrapolating observed low flow 11 
trends into the future. The second pillar consists of rainfall-runoff projections driven by GCM 12 
based climate scenarios. The third pillar extrapolates observed trends in stochastic rainfall and 13 
temperature characteristics into the future, combined with rainfall-runoff modelling. 14 
Alternative or additional pillars could be used, e.g., the “trading space for time” approach 15 
(Perdigão and Blöschl, 2014) where spatial gradients are transposed into temporal changes.  16 

The data and assumptions of the three pillars differ, so one would also expect the error structures 17 
to be different which will have a number of benefits for the projections. Comparisons of 18 
observed and simulated low flow time series at the decadal time scale provide insight into the 19 
performance of the runoff models as well as the climate hindcasts which gives an indication of 20 
their performance for the future. The analysis and projection of the stochastic climate and low 21 
flow behaviour shed light on their co-behaviour, the sensitivity of low flows to changing climate 22 
variables and the role of noise over decadal time scales. Finally, the consistency of the 23 
projections by the different methods sheds light on the robustness of the overall projections.  24 

We demonstrate the viability of the approach for four example regions in Austria and discuss 25 
the findings in the context of hydrological climate impact studies. 26 

 27 

3 Case study regions and data  28 

The four example regions are representative of the main climatological units in Austria. 29 
Although Austria is quite diverse, each of these regions is rather homogeneous in terms of 30 
climate and hydrological regime. Within each region, a typical catchment was selected guided 31 
by previous low flow and drought studies (Haslinger et al., 2014; Van Loon and Laaha, 2015). 32 

The Hoalp region (for Hochalpen) is located in the Alps and exhibits a clear winter low flow 33 
regime where freeze and snow processes are important, so long-term trends are expected to be 34 
related to changing air temperatures. The region is represented by the Matreier Tauernhaus 35 
catchment at the Tauernbach (60 km² area, 1502 m.a.s.l. altitude). The Muhlv region (for 36 
Mühlviertel) is located north of the Alps and exhibits a dominant summer low flow regime as 37 
a result of summer precipitation and evaporation, so precipitation and air temperature will be 38 
important low flow controls. The region is represented by the Hartmannsdorf catchment at the 39 
Steinerne Mühl (138 km² area, 500 m altitude). The Gurk region (for Gurktal) is located south 40 
of the Alps and also exhibits a dominant summer low flow regime. Precipitation enters the area 41 
from the Northwest through Atlantic cyclones, although screened to some extent by the Alps, 42 
as well as from the South through Mediterranean cyclones. Precipitation and air temperature 43 
are important for low flows. The region is represented by the Zollfeld catchment at the Glan 44 
(432 km² area, 453 m altitude). The Buwe region (for Bucklige Welt) is located in the Southeast 45 
of Austria in the lee of the Alps, at the transition to a Pannonic climate. The precipitation is 46 
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lowest in this region. Low flows mainly occur in summer with precipitation and air temperature 1 
as important controls. The region is represented by the Altschlaining catchment at the 2 
Tauchenbach (89 km² area, 316 m altitude). Streamflow records in the four catchments over the 3 
period 1976-2008 were used for all three pillars.  4 

Climate records were used for the second and third pillars. Gridded data sets of daily 5 
precipitation, air temperature and potential evaporation over the period 1976-2008 were used 6 
for calibrating the hydrological model. These data are based on measured daily precipitation at 7 
1091 stations and daily air temperature at 212 stations. Potential evaporation was estimated by 8 
a modified Blaney–Criddle method based on daily air temperature and potential sunshine 9 
duration (Parajka et al., 2007). For each catchment, precipitation and temperature records at 10 
one representative station over the period 1948-2010 were analysed as a basis of the stochastic 11 
simulations (third pillar). 12 

 13 

4 Methods used for the pillars 14 

4.1 Extrapolation of observed low flow trends 15 

The stream flow records of the four stream gauges were analysed to estimate Q95 low flow 16 
quantiles (i.e. the flow that is exceeded 95% of the time) for each year. The serial correlations 17 
of these annual low flow series were mostly insignificant, so they were not prewhitened (Yue 18 
et al., 2002). Trends were tested for significance by a standard Mann-Kendall test. The trends 19 
were estimated as the medians of all slopes between pairs of sample points (Sen’s slope, Sen, 20 
1968) with regression parameters �� and ��:  21 

�����	
� = �� + ��	
         (1) 22 

The uncertainty of the trends was assessed by a nonparametric bootstrapping approach, which 23 
provides accurate confidence bounds in the case of non-Gaussian regression residuals (Efron 24 
and Tibshirani, 1993). The approach simulates the uncertainty distribution of trend estimate at 25 
time 	
 by resampling 5000 replications from the annual Q95 series and calculating the 26 
regression parameters �� and �� for each of them. Equation (1) applied to these parameter 27 
distributions yields the uncertainty distribution of trend estimate at time 	
, and its 0.025 and 28 
0.975 empirical quantiles constitute the bounds of a two-sided 95% confidence interval. 29 

For the purpose of this paper we assumed that the trends are linear and persistent, and so 30 
extrapolated them into the future. This is of course a strong assumption less likely to be valid 31 
with increasing time horizon.  32 

4.2 Climate projections and runoff modelling 33 

Four regional climate model (COSMO-CLM) runs were selected from the reclip:century 1 34 
project (Loibl et al., 2011) forced by ECHAM5 and HADCM3 GCMs for three IPCC emission 35 
scenarios (A1B, B1 and A2). These scenarios were selected for consistency with other ongoing 36 
studies in Austria (e.g. Parajka et al., 2016). In order to check their realism with respect to 37 
droughts and low flows, the Standardized Precipitation Evaporation Index, SPEI (Vicente-38 
Serrano et al., 2010) was evaluated, which is the Gaussian-transformed standardized monthly 39 
difference of precipitation and evaporation. Values below zero indicate deficits in the climatic 40 
water balance, and values below -1 indicate drought conditions. The SPEI has been adopted 41 
here for its simplicity and because it can be calculated from the HISTALP data (Auer et al., 42 
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2007) back to the year 1800. Haslinger et al. (2014) demonstrated that the SPEI is correlated 1 
well with summer low flows in the study region. In the winter (Fig. 1, bottom panels), the 2 
simulations (light red lines) for Hoalp and Muhlv seem to be more consistent with decadal 3 
observed fluctuations from the HISTALP data set (red lines) than for Gurk and Buwe. Note that 4 
the comparison should focus on the long term (decadal) dynamics rather than individual years 5 
due to the nature of the climate simulations. Overall, SPEI remains rather stable which is due 6 
to little change in winter precipitation. In the summer (Fig. 1, top panels), the simulations are 7 
somewhat less consistent with the observations than for the winter, in particular for Buwe where 8 
the simulations show a decreasing trend in the overlapping period (1961-2003) while the 9 
observations show little change. Overall, the summer SPEI projections show a decreasing trend 10 
indicating a dryer future and the trend tends to steepen beyond 2050. This is mainly due to the 11 
precipitation characteristics of the ECHAM5 simulations used and not reflected in the other 12 
models or ECHAM5 runs. The extremely negative trends in the summer SPEI should therefore 13 
be treated with caution.  14 

Runoff is simulated by the delta change approach (e.g. Hay et al., 2000; Diaz-Nieto and Wilby, 15 
2005). A conceptual rainfall runoff model (TUWmodel) is used here which simulates the daily 16 
water balance components from precipitation, air temperature and potential evaporation inputs 17 
(Viglione and Parajka, 2014; Parajka et al., 2007; Ceola et al., 2015). The routing component 18 
of the model, which is most relevant for low flows, consists of a number of reservoirs with 19 
different storage coefficients. The model was calibrated against observed streamflow by the 20 
SCE-UA procedure (Duan et al., 1992). The objective function (ZQ) was chosen on the basis of 21 
prior analyses in the study region (see e.g. Parajka and Blöschl, 2008) as 22 

 �� = �� ⋅ �� + �1 − ��� ⋅ ��
���

 (2) 23 

where wQ and (1- wQ) are the weights on high and low flows, respectively, and ME and ��
��� 24 

are estimated as  25 

 �� = 1 −
� �����, !�� ", �#

$
 %&

� �����, !����'''''''	�#
$
 %&

 (3) 26 

 ��
��� = 1 −

� �)*+�����, �!)*+�,-./,.��#
$
 %&

� �)*+	�����, �!)*+	�������
#$

 %&

 (4) 27 

��01,2 is the observed discharge on day i, ��01''''''	is its average over the calibration (or verification) 28 
period of n days, and �123,2 is the simulated discharge. 29 

In order to assess the uncertainty of low flow projections from a hydrological modelling 30 
perspective, different calibration variants were evaluated by varying the weights of Eq. (2), 31 
following the methodology of (Parajka et al., 2016). In order to assess the impact of time 32 
stability of the model parameters, the model was calibrated separately for three different periods 33 
(1976-1986, 1987-1997, 1998-2008), following the methodology of (Merz et al., 2011). 34 

Air temperatures and precipitation of the four regional climate model runs were then evaluated 35 
for a reference period (1976-2008) and compared with two future periods (2021-2050 and 2051-36 
2080) for each month separately. The differences (delta) were added to the observed daily air 37 
temperatures and precipitation values for the four catchments from which future stream flow 38 
was simulated using the rainfall-runoff model.  39 
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4.3 Extrapolation of stochastic rainfall characteristics and runoff modelling 1 

A stochastic model is used to investigate what would happen if the trend of observed 2 
precipitation and air temperature characteristics in the period 1948-2010 would persist into the 3 
future. The results of the stochastic model are used to drive a lumped version of the TUWmodel 4 
which is similar to the one used in the delta-change approach. 5 

The precipitation model is the point model of Sivapalan et al. (2005) which simulates discrete 6 
rainfall events whose storm durations, interstorm periods and average event rainfall intensities 7 
are all random, governed by specified distributions whose parameters vary seasonally. The 8 
model was run on a daily time step without considering within-storm rainfall patterns as the 9 
interest was in low flows. A storm-separation algorithm was applied to the precipitation data of 10 
the four stations, based on a minimum duration of dry periods, in order to isolate precipitation 11 
events. From the event time series the temporal trends of three model parameters (mean annual 12 
storm duration, mean annual inter-storm period and mean annual storm intensity) were 13 
estimated by the Theil-Sen algorithm, to serve as the trend components of the precipitation 14 
model. The trends in these precipitation model components were subsequently extrapolated into 15 
the future. Similar to the low flow extrapolation, this is a strong assumption less likely to be 16 
valid with increasing time horizon. The remaining rainfall model parameters were calibrated to 17 
the precipitation data as described in Viglione et al. (2012) and were kept constant for the entire 18 
simulation period. The stochastic rainfall model was finally used to simulate an ensemble of 19 
100 possible time series of precipitation affected by trends in the three model parameters for 20 
the period 1948-2080. 21 

For air temperature, instead, 100 possible time series were obtained by randomising the 22 
observations in the following way. The time series of daily temperatures were detrended 23 
according to the observed trend of mean annual temperatures, the years were randomly mixed 24 
(with repetition), and the trend was added to the reshuffled series. The trend in the temperatures 25 
was reflected by an analogous trend in potential evaporation.  26 

 27 

5 Results 28 

5.1 Extrapolation of observed low flow trends  29 

Table 1 summarizes the results of the trend analyses of Q95 low flows. The Hoalp catchment 30 
exhibits a significantly increasing trend indicating that the catchment has become wetter over 31 
the observation period while the Buwe catchment indicates a significantly decreasing trend. 32 
Muhlv and Gurk show decreasing trends which are, however, not significant at the 0.05 level. 33 

While our focus is on the four example catchments, it is important to put the local analyses in 34 
a regional context to avoid the detection of local effects on the flow regime, such as 35 
anthropogenic impacts. Equally important, the regional context assists in a more meaningful 36 
interpretation of regional climate scenarios that are valid for footprints of a few hundreds of 37 
square kilometres or more. Figure 2 shows the trends of the four example catchments together 38 
with trends of 408 stream gauges in Austria and neighbouring regions. The trend patterns are 39 
in line with the main hydro-climatic units represented by the four catchments. Significantly 40 
increasing trends (large blue points) such as in the Hoalp catchment are generally found in the 41 
Alpine region. Decreasing trends (large red points) occur north of the Alps and, more 42 
frequently, in the Southeast of Austria. Additional regional analyses (not shown here), including 43 
field significance testing, confirm the finding that the decreasing trends in the Southeast are 44 
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more significant than in the North. The Buwe region appears to be particularly affected by 1 
climate change as low flows show a strong decrease at the end of the observation period. 2 

Table 2 presents the trend extrapolations together with their confidence bounds. Extrapolating 3 
observed trends to 2021-2050 would give a 39% increase in Q95 for Hoalp, but the uncertainty 4 
is large, as indicated by a range of the confidence interval from -7 to 71%. Trend extrapolations 5 
for the other catchments result in decreases which are smallest in Muhlv (-8%), moderate in 6 
Gurk (-36%) and largest in Buwe (-90%). The uncertainty range is large, e.g. -41% to +34% 7 
for Muhlv, which is almost ten times the mean change. Clearly, trend extrapolations involve a 8 
lot of uncertainty, and this uncertainty increases as one moves to the more distant time horizon 9 
of 2051-2080 (Table 2), including negative discharges for Buwe and Gurk indicating ephemeral 10 
behaviour. Obviously, one would have very low confidence in the absolute figures of such trend 11 
scenarios for the more distant future. 12 

5.2 Climate projections and runoff modelling 13 

Table 3 summarizes the runoff model efficiencies ZQ for different weights in the objective 14 
function. wQ = 0 emphasises low flows, while wQ = 1 emphasises high flows in the calibration. 15 
With the exception of Gurk, there is a clear trend of increasing (calibration) model performance 16 
from high flows to low flows. The model performance between the calibration decades varies 17 
little. Overall, Hoalp gives the largest efficiency which is a reflection of the strong seasonality 18 
associated with snow storage and melt while Buwe gives the lowest efficiency due to the flashy 19 
nature of runoff that is difficult to model on a daily time step (Fig. 3). The flashy runoff response 20 
of Buwe is related to shallow soils, efficient drainage and frequent convective storms (see Gaál 21 
et al., 2012). Additionally, there are only two climate stations in the Buwe catchment, so local 22 
precipitation events may not always be captured well. The event variability is large between 23 
and within the years (Fig. 3). Both low flows and floods mainly occur in summer. As compared 24 
to other catchments in Austria (Parajka et al., 2016), the Hoalp and Buwe catchments represent 25 
typical conditions of high and low model performances, respectively. 26 

Figure 4 left shows the simulated annual Q95 low flows for the reference period 1976-2008, 27 
based on calibrations for two subperiods (yellow and blue), in each case indicating the 28 
variability of Q95 due to 11 calibration variants with different weights wQ in the objective 29 
function (Table 3). The right panels show the simulations for two sets of weights (light orange 30 
and red), in each case indicating the variability of Q95 due to model parameters obtained from 31 
different decades. Although the model has not specifically been calibrated to Q95, it simulates 32 
Q95 rather well. The differences between the two weighting variants (Fig. 4 right) are small in 33 
absolute terms. The effect of temporal instability of the model parameters is clearly visible in 34 
Buwe and Gurk (Fig. 4 left), as the model calibrated to the 1976-1986 period tends to 35 
overestimate Q95 in the period 1998-2008. The decade 1976–1986 represents a colder period 36 
with less evaporation and relatively higher runoff generation rates which is reflected by lower 37 
values of the soil moisture storage parameter (FC) and lower values of the parameter controlling 38 
runoff generation (BETA). The model therefore overestimates runoff when applied to the drier 39 
and warmer period 1998–2008. Even though Table 3 indicates that Buwe has the lowest model 40 
performance, this is not reflected in the Q95 low flow simulations in Fig. 4. This is because the 41 
model does not simulate the fast runoff fluctuations well, however, it does much better with 42 
prolonged drought spells.  43 

Figure 4 also shows that the uncertainty of Q95 estimates is largest in the Hoalp. The seasonal 44 
runoff variability of Alpine rivers is larger than that of low-land rivers which makes the model 45 
calibration more sensitive to the weights assigned to high and low flows. Hoalp is also more 46 
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sensitive to the choice of the calibration period which is a reflection of the high sensitivity of 1 
low flows to seasonal climate. In contrast, the uncertainty is smallest in the Gurk and Buwe 2 
catchments where the effect of time variability of the model parameters is of similar magnitude 3 
as the effect of the weights in the objective function. 4 

Scenarios of air temperature and precipitation from the four climate model runs are presented 5 
in Fig. 5. The largest warming is obtained by HADCM3 with an increase of more than 2oC in 6 
January and the summer months. In January the ECHAM5-A2 run simulates a decrease in air 7 
temperature, while the other runs simulate an increase. The ECHAM5 scenarios are consistent 8 
for the summer months with an increase in air temperature of about 1oC. The precipitation 9 
projections are regionally less consistent and vary mostly around ± 15%. Exceptions are the 10 
HADCM3 run which simulates a decrease of almost 30% in the Gurk and Buwe catchments in 11 
August, and the ECHAM5-A1B run which simulates an increase of about 30% in the Hoalp 12 
and Muhlv catchments in December. 13 

The delta change projections for the period 2021-2050 relative to simulated runoff in the 14 
reference period are shown in Fig. 6. They indicate an increase of annual Q95 low flows in the 15 
Alpine Hoalp catchment which is in the range of 15 to 30% and 20 to 45% for the different 16 
climate projections and calibration weights, respectively. In the Muhlv catchment, changes are 17 
small, while for Gurk and Buwe decreases are projected which are around 7-13% and 15-20%, 18 
respectively. Q95 is not only sensitive to the selection of the climate scenarios, but also to the 19 
selection of the objective function and the calibration period. The uncertainty is largest in the 20 
Hoalp catchment, where the objective function is more important than choice of the climate 21 
scenarios. The mean winter air temperature in Hoalp is about -6.0oC which is projected to 22 
increase by 2 to 2.5oC, depending on the scenario. These differences are of little relevance for 23 
snow storage and snowmelt runoff during the winter low flow period. Muhlv and Buwe are also 24 
sensitive to the choice of objective function and calibration period, while for the Gurk the choice 25 
of climate scenario is more important.  26 

5.3 Extrapolation of stochastic rainfall characteristics and runoff modelling 27 

Figure 7 shows that the estimated trend components fit well to the precipitation statistics. 28 
Annual mean storm duration decreases quite strongly for the Hoalp (by about -0.8 days / 100 29 
yrs). There is also a slight decrease for Gurk (-0.4 days / 100 yrs) and Buwe (-0.3 days / 100 30 
yrs). Interstorm period and storm intensity (Fig. 7, centre and right panels) show no significant 31 
changes, apart from the Gurk where the annual mean interstorm period increases by about 1 32 
day / 100 yrs, and annual mean storm intensity increases by 2 mm/day per 100 yrs (which is a 33 
30% increase per 100 yrs). 34 

The stochastic simulations (Fig. 8) indicate no trends in mean annual precipitation for Muhlv 35 
in the North and Gurk in the South of Austria, a drying trend for Buwe in the Southeast and 36 
Hoalp in the Alps, but in the latter case the observations exhibit a rather complex signal which 37 
is not well represented by the linear model. The simulated temperatures (Fig. 8, right panels) 38 
are more consistent with the observations with a persistently increasing trend in all catchments. 39 
The trend is most pronounced in the Alps (+ 4.4 °C / 100 yrs), somewhat less pronounced in 40 
the South and Southeast (+2.8 and +2.6 °C / 100 yrs), and there is only a weak trend in the 41 
North (+1.7 °C / 100 yrs) of Austria. 42 

Figure 9 shows the stochastic projections of annual runoff and Q95 low flows (red lines) together 43 
with the observations (black lines). For Hoalp (top row) Q95 decreases only slightly despite the 44 
simulated large decrease of annual runoff and precipitation. This is because winter low flows 45 
are more controlled by air temperatures which increase the low flows, and the two effects 46 
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essentially cancel. For Muhlv (second row in Fig. 9), the model extrapolates a slight reduction 1 
of Q95 in the future, even though there is hardly any change in the annual precipitation (second 2 
row in Fig. 8), which is due to increases in the evaporation. For Gurk (third row in Fig. 9), the 3 
model also extrapolates a slight decrease in Q95 which is a result of the increasing trends in both 4 
evaporation and the interstorm period (Fig. 7 and 8). For Buwe (bottom row in Fig. 9), the 5 
extrapolations yield a moderately decreasing trend of Q95 which results from the combined 6 
effect of slightly decreasing precipitation and increasing evaporation. 7 

The underlying assumption of observed trends in precipitation and temperature to persist into 8 
the future is quite strong. In contrast to the other pillars, here we do not consider the uncertainty 9 
associated with the estimation (and extrapolation) of the trends. The confidence bounds in Fig. 10 
9 and 10 represent the modelled variability of the low-flow producing processes, which are 11 
assumed to be known both in the present and in the future. Despite the strong assumptions made 12 
it should be noted that the results of this approach are non-trivial, as the way the trends in 13 
precipitation and temperature translate into trends in low-flows differs between the catchments 14 
because of nonlinear process interactions. 15 

 16 

6 Three-pillar synthesis 17 

6.1 Combination of information 18 

The concept of multi-model ensembles starts from the premise that (a) a group of model 19 
projections will give more reliable results than the individual models alone and (b) the 20 
consistency/inconsistency of the model results is an indicator of the robustness or reliability of 21 
the projections (Knutti et al., 2010). In the context of the three-pillar approach proposed here, 22 
the methods and information used in each pillar are largely independent from each other, so one 23 
would expect the errors to be close to independent, and a combination of the projections should 24 
indeed increase the overall reliability of the projection. We will evaluate heuristically to what 25 
degree this premise can be achieved based on hydrological reasoning and visual comparisons 26 
of synoptic plots of the individual estimates and their respective confidence bounds. The 27 
reasoning accounts for the differences in the nature of the uncertainties of the projections and 28 
gives more weight to the more reliable pieces of information.  29 

When comparing the projections two cases exist. In the first case, projections are consistent 30 
within their confidence bounds. This will lend credence to all projections as they support each 31 
other, in particular if the changes of the driving hydrological processes (precipitation, snow 32 
storage and melt, evaporation) are consistent. The overall uncertainty will be expressed here as 33 
three levels of confidence (high, medium, low) (Field and Intergovernmental Panel on Climate 34 
Change, 2012). In the second case, the individual projections are not consistent within their 35 
uncertainty bounds which will suggest lower confidence in the overall projections. Rather than 36 
simply averaging the individual projections, here, we explore the reasons for the disagreement, 37 
by checking the credibility of each projection based on the data used and the assumptions made.  38 

6.2 Application to the study area 39 

Figure 10 compiles the Q95 projections from the three pillars, and Fig. 11 shows their probability 40 
density functions for the period 2021-2050.  41 

For the Hoalp region in the Alps (Fig. 10, top left), both the extrapolation of observed low flow 42 
trends and the climate scenarios suggest increases in low flows. In this region, low flows occur 43 
in winter due to snow storage processes which are mainly driven by seasonal temperature (Fig. 44 
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3). Schöner et al. (2012) showed that regional climate models are able to simulate the observed 1 
increase of winter temperatures in the Alpine region since the 1970s well, which suggests that 2 
the winter low flow changes are captured well by the climate scenarios. However, a lot of 3 
uncertainty is introduced by the parameterisations of the rainfall-runoff model as indicated by 4 
the wide boxes in Fig. 10. This uncertainty is due to the sensitivity of the simulations to the 5 
model parameters in an Alpine environment (Fig. 4 and 6). From a regional perspective (Fig. 6 
2), the observed low flow trends are significant, i.e. the percentage of stations with a significant 7 
trend is much greater than expected by chance (Blöschl et al., 2011). This means that the climate 8 
scenarios and the trend extrapolations can be reconciled, at least in terms of the sign of the 9 
changes. The stochastic extrapolations, in contrast, project no or even slightly decreasing low 10 
flow trends. A closer inspection of observed air temperatures suggests that winter temperatures 11 
(+0.65 °C/10 yrs) have changed more by half than the annual average (+0.46 °C/10yrs in the 12 
period 1976-2010). However, the stochastic model assumes a constant change throughout the 13 
year which results in underestimates of future Q95. Of course, the model could be 14 
straightforwardly extended to include seasonal variations in the changes but, as it is now, it 15 
nicely illustrates the case of an inconsistency that is well understood. Because of this, little 16 
weight is given to the stochastic projections in the overall assessment, and one would expect an 17 
increase in low flows by at least 20-40% for the 2020-2050 period with medium to high 18 
confidence. 19 

For the Muhlv region north of the Alps, the extrapolation of observed low flow trends 20 
corresponds well with the stochastic projections (Fig. 10 top right). Both methods project a 21 
slight reduction of about 5-10% for 2021-2050. Seasonal air temperature trends are similar to 22 
the annual trends (0.43 °C/10yrs in the period 1976-2010), so the structure of the stochastic 23 
model is appropriate here. The rainfall-runoff simulations capture the observed trend well for 24 
the observation period. The climate scenarios predict a slight increase in Q95 for 2021-2050 but 25 
there is a lot of variability between the scenarios (also see Fig. 5). On a regional level, Blöschl 26 
et al. (2011) reported no field significance of the observed low flow trends in this region which, 27 
together with the three pillars here suggests a slight tendency for decreasing low flows in 2020-28 
2050 with medium confidence. For the 2050-2080 period all methods become more uncertain, 29 
but all point towards a drying trend (low to medium confidence). 30 

The Gurk region south of the Alps (Fig. 10 bottom left) shows a somewhat similar behaviour 31 
to Muhlv, although the observed low flow pattern is rather nonlinear with a drop at the 32 
beginning of the observations and a flattening out after 1990. Extrapolating a linear trend in 33 
low flows may therefore not be reliable. The stochastic projections are more in line with the 34 
observations, and indicate a slight decrease until 2080. Winter SPEI in the period 1961-2003 is 35 
not simulated well (Fig. 1) which suggests issues with the seasonal water balance of the GCM 36 
based simulations. However, the climate scenario projections are in line with extrapolated 37 
trends and stochastic projections. All pillars point to a slight to moderate drying trend in low 38 
flows for the 2020-2050 period (medium confidence) and towards a somewhat stronger drying 39 
trend for 2050-2080 (low to medium confidence).  40 

The Buwe region in the South-east gives larger changes (Fig. 10, bottom right). The observed 41 
low flow trends are strongly influenced by the recent dry years between 2000 and 2005 which 42 
is consistent with the regional behaviour (Fig. 2 and Blöschl et al. (2011)). A linear trend 43 
extrapolation, however, does not seem very plausible, in particular because the most recent year 44 
in the data set (2008) was less dry. In fact, more recent data for 2009-2014 (not included in the 45 
analysis) show that low flows have partly recovered (annual Q95 values ranging from 0.1 to 46 
0.3 m3s-1) illustrating the limitations of trend extrapolation. The stochastic projection yields a 47 
moderately decreasing trend, which is more plausible, and related to both increasing 48 
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temperatures and decreasing precipitation (Fig. 8). The climate scenarios give slightly stronger 1 
decreasing trends for the two periods, but it should be noted that, in contrast to the other 2 
catchments, the summer SPEI trend in the period 1961-2003 is not captured well and likely 3 
overestimated by the climate simulations (Fig. 1, top right). Fig. 2 shows consistently 4 
decreasing trends of observed streamflow in the region. Overall, the pillars therefore point 5 
towards a slight to moderate drying trend for 2020-2050, and a stronger drying trend for 2050-6 
2080 with medium confidence. 7 

 8 

7 Discussion 9 

7.1 Extrapolation of observed low flow trends 10 

The trend scenarios are based on the assumption that changes are linear over time. This is a 11 
simplifying view of non-stationarity. The Earth system is clearly non-linear, so often regime 12 
shifts are observed rather than trends. These can be detected in a similar way as trends (see, 13 
e.g., Rodionov, 2006) but it is more difficult to make assumptions of persistence of change than 14 
for the case of linear trends. In the European Alps, annual air temperatures have increased 15 
linearly since the mid-1970s, so a continuing trend is a plausible assumption for the near future. 16 
Trends in air temperatures translate into changes in low flows in a non-linear way and this 17 
depends on the time of the year low flows occur (Laaha and Blöschl, 2006). Winter low flows 18 
are a consequence of frost and snow storage, which is reflected by a remarkable co-behaviour 19 
of observed low flows with temperature for the Alpine Hoalp catchment (Fig. 10 top left). 20 

For the other catchments that exhibit a summer low flow regime, the past changes of low flows 21 
are more subtle. The flow records are rather short, so discerning trends from long range 22 
fluctuations is difficult (Montanari et al., 1997). In all cases, the uncertainty of the trend 23 
scenarios is large, as indicated by the wide confidence bounds. It should be noted that the 24 
confidence bounds are conditional on the assumption that the linear trend model applies. If one 25 
relaxed this assumption, the bounds would be even wider. Part of the uncertainty comes from 26 
the relatively short record length (33 years). Hannaford et al. (2013) showed that low flow 27 
trends in European regimes are subject to pronounced decadal-scale variability so that even 28 
post-1960 trends (50 years) are often not consistent with the long-term pattern. Long climate 29 
records may assist in trend detection. Haslinger et al. (2014) found that the Standardized 30 
Precipitation Evaporation Index (SPEI) is a good proxy of summer low flows in the study area 31 
where the HISTALP data set (Auer et al., 2007) allows analysing climate fluctuations back to 32 
the year 1800 (Fig. 1). The decreasing trends of summer SPEI from the climate projections (Fig. 33 
1) are in line with the low flow trends in Muhlv and Gurk, and both point to a decrease of low 34 
flows that extends into the future. 35 

7.2 Climate projections and runoff modelling 36 

Similar to the ensemble projections of Wong et al. (2011), Majone et al. (2012) and De Wit et 37 
al. (2007) we assessed the uncertainty arising from the choice of the climate model and emission 38 
scenario. We did not assess downscaling errors, as De Wit et al. (2007) did, as they usually play 39 
a minor role when using a delta change approach that applies a change factor to locally observed 40 
signals. Uncertainty arising from the hydrological model structure may also be assessed by a 41 
model ensemble (e.g. Habets et al., 2013) but we have chosen to focus on the parameters 42 
instead. The results suggest that the Q95 projections are not only sensitive to the choice of 43 
climate scenarios, but also to the objective function and the calibration period. The uncertainty 44 
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associated with the objective function is largest in the Alpine Hoalp catchment, where the strong 1 
streamflow seasonality makes the weighting between high and low flows particularly 2 
important. The uncertainty associated with the calibration period is largest in Buwe and Gurk 3 
where parameters from a colder period with less evaporation tend to overestimate runoff in 4 
warmer periods. A similar effect is expected for a future, warmer climate, so the projected low 5 
flows may decrease more strongly than the projected average. This finding may depend both 6 
on model type and the climate region. Hay et al. (2000), for example, found a minor role of the 7 
hydrological model for three river basins in the US, although they did not specifically examine 8 
the time stability of model parameters. Bosshard et al. (2013), on the other hand, suggested that 9 
the hydrological model accounted for 5–40% of the total streamflow ensemble uncertainty in 10 
the Alpine Rhine. Similarly, Samaniego et al. (2013) found that accounting for hydrological 11 
model parameter uncertainty is essential for identifying drought events, and multi-parameter 12 
ensembles were efficiently able to identify the magnitude of that uncertainty. 13 

Low flow projections are challenging because low flows are typically driven by groundwater 14 
discharge processes (both recharge and discharge). These processes are difficult to understand 15 
and model due to their local nature. Fleckenstein et al. (2006), for example, found that the 16 
percentage of river channel responsible for 50% of total river seepage during low flow 17 
conditions in the Cosumnes River, California ranged from 10 to 26% depending on the spatial 18 
configuration of hydrogeologic heterogeneity. This heterogeneity has not been resolved in the 19 
present study and is rarely resolved in catchment scale climate assessment studies. It is therefore 20 
important to note that, while the climate drought processes tend to be rather large scale, the 21 
catchment response during low flow periods can have specific local effects which differ from 22 
those of the larger scale pattern.  23 

7.3 Extrapolation of stochastic rainfall characteristics and runoff modelling 24 

Stochastic models of rainfall characteristics can be conditioned to future climates in a number 25 
of ways (see, e.g. Hall et al., 2014). A common method is to first calibrate the model parameters 26 
to the current climate and then adjust the parameters to precipitation from climate scenarios at 27 
daily, seasonal and annual time scales (e.g. Hundecha and Merz, 2012; Blöschl et al., 2011). To 28 
illustrate the three-pillar approach we have adopted here the very simple assumption of 29 
extrapolating the trends in the rainfall model parameters and air temperatures linearly into the 30 
future. The reasoning, and the limitations, are similar to the direct trend extrapolation of low 31 
flows, building on the inertia of the climate system. Consequently, the extrapolation of 32 
temperature will be more appropriate than that of precipitation and the extrapolation into the 33 
near future will be more appropriate than that into the more distant future. 34 

Alternative stochastic models could be used within the same three-pillar framework. The model 35 
could be adjusted to climate scenarios in a similar ways as the model of Hundecha and Merz 36 
(2012), and correlations between precipitation and air temperature could be accounted for. Also, 37 
the long range dependence of streamflow (Szolgayová et al., 2014) could be considered by 38 
extending the stochastic precipitation model (e.g. Thyer and Kuczera, 2003). This will result in 39 
more complex patterns of future simulated low flows.  40 

7.4 Assessing the value of synthesis 41 

Climate impact and assessment studies in hydrology have traditionally been dominated by the 42 
paradigm of modelling cascades (Blöschl and Montanari, 2010), so a fresh look at the problem 43 
for the particular case of low flows opens up a number of opportunities. The three pillar 44 
approach allows for a diverse set of methods based on different assumptions and data to be 45 
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compared and combined in a coherent way. For the case study catchment Muhlv in the region 1 
north of the Alps, for example, consistently small low flow changes are projected by all methods 2 
which adds credence to the projections. The synthesis framework proposed here puts a lot of 3 
emphasis on heuristic process reasoning. This may contribute to a better understanding of low 4 
flow response to a future climate than a mere examination of scenario results. For an alpine 5 
region such as Austria the key to understanding low flows is whether they are controlled by 6 
freezing and snow melt processes, or by the summer moisture deficit associated with 7 
evaporation. Understanding of the key processes helps putting the projections from the diverse 8 
methods into perspective. For example, for the Alpine Hoalp catchment this reasoning points 9 
towards increasing low flows which is also consistent with all three pillars adopted here. In a 10 
similar way, Luce and Holden (2009) and Luce et al. (2013) explained decreasing low flow 11 
trends in the Pacific Northwest of the US by declines in mountain precipitation and suggested 12 
that this trend will persist into the future.  13 

The three pillar approach also provides opportunities for a more complete assessment of the 14 
uncertainty of the projections. The multi-model ensemble premise of variations between 15 
ensemble members being an indicator of projection uncertainty is consistent with the case study 16 
findings of this paper. For example, the comparisons of the methods for the Hoalp catchment 17 
highlighted issues with the assumption of a uniform seasonal temperature change of the 18 
stochastic model, so less credibility was given to this pillar in this particular case. For the Buwe 19 
catchment, non-linear changes of observed low flows shed doubts on the linear-trend 20 
assumption, so less credibility was given to the low flow extrapolation pillar. On the other hand, 21 
for predicting near-future low flows in the Hoalp catchment, the trend extrapolation appears 22 
most reliable. From trend extrapolations alone one would infer a 39% increase in low flows 23 
until 2021-2050 (Table 2) but the uncertainty is of equal magnitude. Additional information 24 
from rainfall runoff projections that suggest an increase of up to 30% constrain the projected 25 
increase to about 20 to 40%.  26 

In the context of water resources management, decision makers are usually reluctant to use the 27 
output from black box models as the sole basis of their decisions. Just as important as the 28 
expected changes in the water system are the uncertainties associated with the changes as well 29 
as a process reasoning in terms of cause and effect. This is particular the case if robust drought 30 
management strategies, such as the vulnerability approach, are to be adopted (Wilby and Dessai, 31 
2010; Blöschl et al., 2013). Typically, these strategies are designed to perform well over a wide 32 
range of assumptions about the future and potentially extremely negative effects. Central to the 33 
approach is an understanding of the cause-effect relationships within the water system under a 34 
variety of conditions, as well as an appreciation of the possible uncertainties. Methods often 35 
involve exploratory modelling approaches (Watts et al., 2012) which fit well with the three 36 
pillar approach proposed here. We therefore believe that the approach put forward in this paper 37 
can play an important role in assisting risk managers in developing drought management 38 
strategies for the practice.  39 

It should be emphasised that the extrapolation pillars have been adopted here to illustrate the 40 
framework and could be replaced by other methods such as the “trading space for time” 41 
approach (Perdigão and Blöschl, 2014) where spatial gradients are transposed into temporal 42 
changes. Also, heuristic process reasoning has been adopted to compare the pillars based on 43 
expert judgement because of its flexibility. The combination could be based on formal methods 44 
(e.g. Bayesian methods, Viglione et al., 2013) that allow accounting for subjective information 45 
on low flows and their process causes. Finally, the three-pillar approach presented in this paper 46 
is not necessarily restricted to low flows and could be adapted to other hydrologic 47 
characteristics. 48 
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 1 

8 Conclusions 2 

We propose a framework that combines low flow projections from different sources of 3 
information, termed pillars. To illustrate the framework three pillars have been chosen: (a) 4 
direct extrapolation of low flow trends (b) estimation of low flows from GCM-projected 5 
climates using a runoff model, and (c) stochastic simulations from trend-extrapolated climates 6 
using a similar runoff model.  7 

The methods and information used in each pillar are largely independent from each other, so 8 
one would expect the errors to be close to independent, and a combination of the projections 9 
should increase the overall reliability of the projection. We evaluate heuristically to what degree 10 
this premise can be achieved for four example regions in Austria, based on hydrological 11 
reasoning and visual comparisons of synoptic plots of the individual estimates and their 12 
respective confidence bounds. 13 

For the Alpine region where winter low flows dominate, trend projections and climate scenarios 14 
yield consistent projections of a wetting trend but of different magnitudes. For the region north 15 
of the Alps, all methods project rather small changes. For the regions in the South and Southeast 16 
more pronounced and mostly decreasing trends are projected but there is disagreement in the 17 
magnitude of the changes. The synthesis of the case study projections suggests that the 18 
framework (i) tends to enhance the robustness of the overall assessment, (ii) adds to the 19 
understanding of the cause-effect relationships of low flows, and (iii) sheds light on the 20 
uncertainties involved based on the consistency/inconsistency of the pillars.  21 

Future work may be directed towards adding pillars, or replacing some of the pillars used here. 22 
One possibility is historic information from archives and tree ring analyses which would allow 23 
assessment of a wider spectrum of drought conditions. Other possibilities are the “trading space 24 
for time” approach as well as more formal multi-model ensembles.  25 
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 1 

Table 1. Trend estimates of observed Q95 low flows in the period 1976-2008 (Mann-Kendall 2 
test). Relative trends refer to the trend over the observation period relative to its mean. 3 

 Hoalp Muhlv Gurk Buwe 

Trend  
(m³/s per 100 yrs) 

+0.24 ** -0.28 -1.45 -0.34 * 

Relative trend  
(% per year) 

+1.21 ** -0.38 -0.78  -1.88 * 

p-value 0.009 0.377 0.053 0.045 

Significance codes: ** p<0.01  ;  * p< 0.05  4 

 5 
6 
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Table 2. Trend extrapolations of average Q95 low flows (m³/s) for the periods 2021-2050 and 1 
2051-2080 based on observed trends. Changes (%) refer to the Q95 in the future period relative 2 
to the average Q95 in the reference period (1976-2008). Values in parentheses indicate 95% 3 
confidence intervals. 4 

  Hoalp Muhlv Gurk Buwe 

2021-2050 Q95 (m³/s) 0.28 (0.19, 0.37) 0.68 (0.45, 1.02) 1.19 (0.58, 2.00) 0.02 (-0.14, 0.14) 

2021-2050 Change (%) +39 (-7, +71) -8 (-41, +34) -36 (-72, -1) -90 (-177, -22) 

2051-2080 Q95 (m³/s) 0.35 (0.22, 0.45) 0.60 (0.15, 1.14) 0.74 (-0.23, 2.01) -0.08(-0.33, 0.12) 

2051-2080 Change (%) +74 (0, 123) -21 (-79, +51) -59 (-113, +9) -148 (-282, -36) 

 5 

 6 
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Table 3. Runoff model efficiency ZQ (Eq. 2) obtained for different weights wQ in the four 1 
catchments for three calibration periods. wQ = 0 and wQ =1 emphasise low flows and high flow, 2 
respectively, in the calibration. ZQ are listed in the sequence of the calibration periods: 1976-3 
1986/1987-1997/1998-2008.  4 

wQ Hoalp Muhlv Gurk Buwe 

0.0 0.96/0.95/0.90 0.82/0.84/0.86 0.79/0.73/0.79 0.46/0.52/0.59 

0.1 0.95/0.93/0.90 0.81/0.83/0.86 0.79/0.73/0.79 0.37/0.52/0.58 

0.2 0.94/0.92/0.90 0.80/0.82/0.86 0.78/0.74/0.79 0.35/0.53/0.58 

0.3 0.93/0.90/0.90 0.79/0.81/0.86 0.78/0.74/0.79 0.34/0.54/0.58 

0.4 0.92/0.89/0.89 0.79/0.80/0.86 0.78/0.74/0.79 0.40/0.54/0.57 

0.5 0.91/0.88/0.89 0.77/0.79/0.86 0.78/0.75/0.78 0.36/0.55/0.56 

0.6 0.90/0.86/0.89 0.77/0.78/0.86 0.78/0.75/0.78 0.30/0.56/0.55 

0.7 0.89/0.85/0.89 0.76/0.78/0.86 0.78/0.75/0.78 0.30/0.57/0.55 

0.8 0.88/0.83/0.75 0.76/0.77/0.81 0.78/0.76/0.80 0.30/0.58/0.49 

0.9 0.88/0.82/0.73 0.75/0.76/0.81 0.78/0.76/0.80 0.28/0.59/0.49 

1.0 0.87/0.82/0.72 0.75/0.75/0.81 0.78/0.77/0.81 0.29/0.60/0.49 

 5 
  6 
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 1 

Figure 1. Standardized precipitation evaporation index (SPEI) in summer (top) and winter 2 
(bottom) (three month averages of monthly values) for the four example catchments. Observed 3 
(HISTALP, Auer et al., 2007, black) and projected (reclip:century ensemble spread, grey). Red 4 
and light red lines represent the Gaussian low-pass filtered values of the observed and projected 5 
SPEI, respectively. 6 
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 1 

 2 

Figure 2. Observed trends of annual Q95 low flows in Austria in the period 1976-2008. Colours 3 
correspond to the sign and the magnitude of the trends (blue = increasing, red = decreasing). 4 
Size indicates significance of trends. Units of the trends are standard deviations per year. 5 
Squares indicate example catchments.  6 
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 1 

Figure 3: Observed daily discharge for the periods 1976-1986 (blue lines) and 1998-2008 (red 2 
lines) in the Buwe (top) and Hoalp (bottom) catchments. 3 
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 1 

Figure 4. Annual Q95 low flows from observed data (black lines) and from hydrologic model 2 
simulations (coloured bands) for the four catchments. Band widths in the left panels show the 3 
variability due to different weights wQ in the objective function (Table 3) for two calibration 4 
periods (1976-1986 and 1998-2008). Band widths in the right panels show the variability due 5 
to different decades used for model calibration for two sets of weights (wQ=0.5 and wQ=0.0). 6 
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 1 

Figure 5. Projections of air temperatures and precipitation for the four catchments simulated by 2 
regional climate models. Shown are long-term monthly changes of the future period (2021-3 
2050) relative to the reference period (1976-2008). Shaded areas indicate the range of climate 4 
scenarios/models. 5 
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 1 

Figure 6. Projections of annual Q95 low flows for the four catchments in terms of changes of 2 
the future period (2021-2050) relative to simulated runoff in the reference period (1976-2008). 3 
Band widths in the left panels show the variability due to different weights wQ in the objective 4 
function (Table 3) using HADCM3. Band widths in the right panels show the variability due to 5 
the choice of climate projections for calibration variant wQ=0.5. Yellow and blue colours relate 6 
to two calibration periods for the hydrological model. 7 
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 1 

Figure 7. Observed trends in the precipitation statistics for the climate stations St. Jakob Def 2 
(Hoalp), Pabneukirchen (Muhlv), Klagenfurt (Gurk) and Woerterberg (Buwe). The trend lines 3 
(dashed) have been fitted with the Theil-Sen method. 4 
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 1 

Figure 8. Stochastic simulations of mean annual precipitation and mean annual temperature 2 
(red lines) for St. Jakob Def (Hoalp), Pabneukirchen (Muhlv), Klagenfurt (Gurk) and 3 
Woerterberg (Buwe). 100 simulated time series for each station. For comparison, observations 4 
are shown (black lines). 5 
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 1 

Figure 9. Stochastic simulations of mean annual runoff and annual Q95 (red lines) assuming 2 
linear extrapolation of the rainfall model parameters for the Hoalp, Muhlv, Gurk and Buwe 3 
catchments. 100 simulated time series for each catchment. For comparison, observations are 4 
shown (black lines). Probability density functions of Q95 for three periods are shown on the 5 
right.  6 
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Figure 10. Three-pillar projections of annual Q95 low flows for the Hoalp, Muhlv, Gurk and 2 
Buwe catchments. Black lines refer to observed annual Q95. Pillar 1: extrapolation of observed 3 
low flow trends (blue) and 0.95 level confidence bounds (blue curved lines); bold/thin parts 4 
refer to observation/extrapolation period. Pillar 2: simulations in the observation period (gray 5 
line), and climate projections and runoff modelling for 2021-2050 and 2051-2080 (box plots, 6 
shades of green indicate different climate scenarios, range of box plots indicates different 7 
parameters of the hydrological model). Pillar 3: extrapolation of stochastic rainfall 8 
characteristics and runoff modelling (100 realisations, red lines) with 0.50 level (black dashed 9 
lines) and 0.90 level (black dotted lines) confidence bounds. 10 



 33

 1 

Figure 11. Probability density functions (pdf) of annual Q95 low flows 2021-2050 of the three-2 
pillar projections for the Hoalp, Muhlv, Gurk and Buwe catchments as in Figure 10. Pillar 1: 3 
extrapolation of observed low flows (blue). Pillar 2: climate projections and runoff modelling 4 
(different shades of green) Pillar 3: Extrapolation of stochastic rainfall characteristics and runoff 5 
modelling (red). The pdfs represent both variability within the period and uncertainty (pillars 1 6 
and 2) and variability alone (pillar 3). For comparison, observed Q95 in the reference period 7 
(1976-2008) is shown (dashed grey line). 8 


