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Abstract

L-Band radiometry is considered to be one of thatrsaitable techniques to estimate Surface
Soil Moisture (SSM) by means of remote sensinggliriess temperatures are key in this
process, as they are the main input in the retriggarithm which yields SSM estimates. The
work exposed compares brightness temperatures megaby the SMOS mission to two
different sets of modelled ones, over the Iberi@mifsula from 2010 to 2012. The two
modelled sets were estimated using a radiativesfearmodel and state variables from two
land surface models: i) ORCHIDEE and ii) H-TESSEhe radiative transfer model used is
the CMEM.

Measured and modelled brightness temperatures shgaod agreement in their temporal
evolution, but their spatial structures are notsistent. An Empirical Orthogonal Function
analysis of the brightness temperature's error tiftees a dominant structure over the
southwest of the Iberian Peninsula which evolvainduhe year and is maximum in fall and

winter. Hypotheses concerning forcing induced lsam®sd assumptions made in the radiative
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transfer model are analyzed to explain this iniescy, but no candidate is found to be
responsible for the weak spatial correlations atrtftoment. Further hypotheses are proposed
and will be explored in a forthcoming paper. Thalgsis of spatial inconsistencies between
modelled and measured TBs is important, as theseaffact the estimation of geophysical
variables, TB assimilation in operational models,vweell as result in misleading validation

studies.
1 Introduction

The United Nations (UN), the Food and Agricultureg@nization (FAO), and the World
Health Organization (WHO), have reported that watéspurces are not being managed in an
optimum way at present. As a result, scarcity, éygi and pollution issues related to
improper water policies are detected. In addititve, world's population is expected to grow
by 2 to 3 billion people over the next 40 yearsoadimg to the UN's World Water
Development Report from 2012 (WWAP, 2012). Thisluehd to a significant increase in

freshwater demand which will likely be affectedthg effect of a changing climate.

To achieve a better management of water resouitess, necessary to improve our
understanding of hydrological processes. In ordata this, the study of Soil Moisture (SM)
is essential. It is defined as the water contentha soil and has a key role on the soil-
atmosphere interface. SM determines whether evaporaver land surfaces occurs at a
potential rate (controlled by atmospheric condgiomr if it is limited by the available
moisture (Milly, 1992). In addition, it influenceseveral processes, like infiltration and
surface temperature, which have an important etiegblant growth and the general state of
the continental surfaces. However, SM is a complarable to model as the interactions
between soils and water are not simple to repre#tisndefinition requires knowledge of soll
hydraulic properties, which are not often availaddedirect measurements. These are used to
access the saturated and residual soil water dprasnwell as for SM dynamics. Pedo-
transfer functions (Marthews et al., 2014), allenestimate hydrodynamic characteristics of
the soil from available soil texture and structumMfermation. However, the suitability of these
functions is under debate (Baroni et al., 2008)thesr performance depends on several
factors like the climate, geology, and the measergntechniques used. Furthermore,
different hydrological schemes are found in Landf&e Models (LSM), leading to various

ways of understanding and formulating soil moisture
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Remotely sensed soil moisture products have broapout new ways to perform data
retrieval, adding new observations to data assiimilachains. The optimal combination of
these products with modelled ones is expected dwige better estimates of the true soil
moisture state. Remote sensing allows to estimstdymeans of retrieval algorithms, like
inversion algorithms (Kerr et al., 2012) or neuratworks (Kolassa et al., 2013). Their main
input depends on the type of sensor used. Thibaeskscattering for an active sensor and
Brightness Temperature (TB) for a passive senddrcdrresponds to the radiance emitted by
the Earth at a given wavelength and is the magaitndasured by a radiometer. It is defined

as the physical temperature times the emissivithefurface.

L-Band radiometry is one of the best methods tanegé soil moisture, due to the relation
between SM and the soil dielectric consta@) (n this wavelength. The latter differs
significantly between a dry soil and water (4 \8, &spectively) and this difference is key to
estimate the soil water content. It should be ndked the retrieved SM corresponds to the
water contained in the first centimetres of thel. sbhe penetration depth in averaged
conditions is about 5 cm (Kerr et al., 2010). Hfiere, we will refer to Surface Soil Moisture
(SSM) instead of soil moisture. Some studies, likscorihuela et al. (2010) lower the

penetration depth to 1-2 cm.

In the last decade, three space missions have lbeanohed with L-Band radiometers on-
board: the Soil Moisture and Ocean Salinity (SMQ#fission (Kerr et al., 2010), the
Aquarius/SAC-D mission (Le Vine et al., 2010), ahé Soil Moisture Active and Passive
(SMAP) mission (Entekhabi et al., 2010).

A large number of validation studies of remotelpssl SSM products have been carried out
(Albergel et al., 2011; Sanchez et al., 2012; Bircht al., 2013). These studies are usually
performed using airborne and or ground-observed daer a well equipped site. Other
studies, like the one described in Gonzalez-Zanatral. (2015), validate SMOS SSM
products using in situ soil moisture measuremetwarks, which allow to extend the study
period to annual and inter-annual scales. Sevéuglies have been performed to validate
brightness temperatures too (Rudiger et al., 204dntzka et al. 2013). In Bircher et al.
(2013) TBs are also validated with network and ainle data over a SMOS pixel in the
Skjern river Catchment (Denmark). LSMs coupled smlidtive Transfer Models (RTMs) can
contribute to the analysis and validation of pasdWicrowave (MW) data. Models permit

extending the validation to a longer period of tiewed perform an extensive analysis of
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observed and retrieved data, as shown in Schleat €2012). In this study, they compare
TBs and vegetation optical depth from SMOS with eiledl ones obtained from a LSM
coupled to a radiative transfer model, over a geabseven months in 2011 in the Vils test
site (Germany). Comparing modelled with satelliteasured brightness temperatures can
help to better understand inconsistencies betwegreved and modelled data. It provides
information regarding the origin of their differes; and whether they are due to the retrieval
algorithm or to issues related to the modellingcpss.

Polcher et al. (2015) present the first comparisiaihe spatial patterns of Level 2 (L2) SMOS
product corresponding to retrieved SSM, with SSMilelled by the ORganising Carbon and
Hydrology In Dynamic EcosystEms (ORCHIDEE) LSM (&w®snay and Polcher, 1998;
Krinner et al., 2005) over the Iberian PeninsulR) (from 2010 to 2012. They identify
inconsistencies between the spatial structuresetifeved and modelled SSM. The main
objective of the work presented herein is to extémel analysis of this inconsistency by
comparing brightness temperatures measured by SM@%el 1C, L1C, product) with
modelled ones obtained from the coupling of ORCHIE3EState variables and a RTM. In
addition, a second set of modelled TBs using statéables from the Hydrology — Tiled
ECMWF Scheme for Surface Exchanges over Land (HSHS, is included in the
comparison. The RTM used is the Community Microw&raission Model (CMEM) [de
Rosnay et al., 2009], developed by the Europeantr€eior Medium-Range Weather
Forecasts (ECMWF). The comparison is performed dversame period and region as the
study carried out by Polcher et al. (2015). ThéslBn excellent test case for remote sensing
of SSM, as its two characteristic climate regimeseénic and Mediterranean) result in a
strong contrast in soil water content. Furtherm&®$M is a critical variable regarding water

resources especially in the IP, which makes thidyseven more necessary.

The data from SMOS and the LSMs used in this pajlebe presented in the next section. A
methodology section follows describing the datiefihg and sampling processes carried out,
together with the analysis performed to compare. F8terwards, results will be presented.
First, modelled and measured TBs will be compa®econd, their difference will be
characterised spatially and temporally and ceiftgjpotheses to explain the differences found
in the TB comparison will be analyzed. Third, welwiudy the amplitude of the annual cycle
of the TB signals. The paper will end with discossand conclusion sections.
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2 Data

2.1 SMOS retrievals of TB

The SMOS mission is the second Earth Explorer Gppdy mission from the European
Spatial Agency (ESA). The SMOS satellite was lawacon November 2nd, 2009. One of its
main objectives is to provide surface soil moistaver land with a target accuracy of 0.04
m*m’3,

TBs are the main input of SMOS’s soil moisture iestal algorithm. L-band brightness
temperatures are measured by the SMOS radiomethifexent incidence angles (from 0 to
65°) and polarizations (H, V, HV). The retrievagalithm also models TBs using the state-of-
the-art L-band Microwave Emission of the Biosph@réVM EB) forward model (Wigneron et
al., 2007) with some modifications. These brighsnesmperatures are then used to retrieve
SSM using an inversion algorithm based on an iterapproach. Its objective is to minimize
the sum of the squared weighted differences betweeasured and modelled TBs for all
available incidence angles. Details about the eedti algorithm are provided in Kerr et al.
(2012).

The L1C product containing horizontally and veticgolarized brightness temperatures,
was provided by the SMOS Barcelona Expert CentesmFnow on, this product will be

referred to as T&a.

The SMOS L1C v5.05 product over the 10W : 5W to 4586N region was selected and
SMOS TBs at the antenna reference plane were deriBs were first screened out for
Radio-Frequency Interferences (RFIs) (strong, psanirce and tails), and also for Sun (glint
area, aliases and tails), and Moon (aliases) caongion, using the corresponding flags.
lonospheric effects (geometric and Faraday rotajiarere later corrected to obtain TB at the
Top Of the Atmosphere (TOA). TB maps at a constanidence angle of 42.5+5° were
obtained through chi squared linear fit of all \eduncluded in the interval 42.5+5°, which is
the methodology used to generate the SMOS L1C lmgwsduct (McMullan et al., 2008).
Finally, these maps were resampled from the Icatah&nyder Equal Area (ISEA) 4H9 grid

to a 0.25° regular latitude-longitude grid, to faiate its manipulation.
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2.2 Modelled TB: CMEM

The Community Microwave Emission Modelling (CMEMgHorm (de Rosnay et al., 2009),
developed at ECMWEF, is a forward operator for lowqgliency passive MW brightness
temperatures of the surface. Its physics is basdtiat of the L-MEB forward model and the
Land Surface Microwave Emission Model (LSMEM) [Debset al., 2001]. CMEM s
characterized by its modular structure, which afloitne user to choose among different
physical configurations to compute TB's key pararsetPolarized brightness temperatures
provided at TOA result from the contribution of @ékrdielectric layers: atmosphere, soil and

vegetation. Snow, also considered, is characteagasingle additional homogeneous layer.

The two sets of modelled TBs used in this studyewestimated by means of the CMEM
provided with state variables from i) ORCHIDEE, anH-TESSEL simulations. From now
on we will refer to these sets as gBand TByr, respectively. TBr was computed
specifically for this study, while T was provided by the ECMWF to widen the comparison
between measured and modelled data. The CMEM agafign used to compute each set of
TB is listed in Table 1. The table is divided irtoree configuration categories: physical,
observing, and soil and atmospheric levels. Eveough both sets have similar

configurations, there are some differences whieheaplained below.

First, the “Physical configuration” of Tdk was selected to be as similar as possible tg;.TB
However, they differ in the parameterization used¢ampute the smooth surface emissivity
(es). For TByt the reflectivity of the flat soil surface was coumtgd following the Fresnel law
(Ulaby et al., 1986), so it is expressed as a fancbf the soil dielectric constant and the
observation incidence angle. This formulation cdess the emission at the soil interface. As
it is simple and affordable in computing time itae@mmonly used for microwave emission
modelling and soil moisture retrieval, as well asdperational applications (e.g. Wigneron et
al., 2007, de Rosnay et al., 2009). It assumes@iod soil moisture sampling depth, which
in this study corresponds to the first soil laydrtiee land surface model (7cm for H-
TESSEL). For TBg, the multilayered soil hydrology of ORCHIDEE allswo take into
account the soil moisture profile and the resultimjume scattering effects on the saill
emission. Therefore the reflectivity of the flatilssurface was computed using the
parameterization proposed by Wilheit (1978). Th&edent parameterizations chosen to
calculatees lead to another variation between the CMEM comfigons. Ifes is computed

using Wilheit (1978), the soil temperature profie used to compute the Effective
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Temperature (d). On the contrary, if the Fresnel law is used, tiser can choose among

different parameterizations to computg.TFor TByr, Wigneron et al. (2001) was selected.

Second, the “Observing configuration” considerdedént incidence angles for each set.
Although the available T were modelled considering an angle of 40°, 42.88 wsed to

model TByr, because measured TBs were provided at this angle.

Third, a different number of soil layers was definr the “Soil and atmospheric level
configuration” 11 (TBgr) and 3 (TBi). ORCHIDEE's soil discretization is finer. For
instance, its first layer's depth is of the ordérnaullimetres, while H-TESSEL's is of

centimetres. In order to evaluate the role of tl#erences in the vertical discretization and

the LSMs, we performed a sensitivity analysis dsitél in the next paragraph.

In addition to the CMEM simulations performed to deb TBor and TByr using the
configurations indicated in Table 1, the followisgnulations were carried out to test if

parameterization assumptions could affect the tiegul Bs:
* Simulation 1: TBrvc), where the subscript “VC” stands for “Vegetatioover”.

Vegetation cover is a key input. Since this paramistdirectly related to land-surface
emissivity, the effects of a different vegetatiaover were tested on TB. For this
matter, a new set of TBs was modelled using H-THSSEtate variables with the
same configuration as detailed in Table 1, exceptife vegetation cover input, where
H-TESSEL's prescribed vegetation (Boussetta eR@l3) was considered. One of the
differences between this input and the ECOCLIMARabase (used in the original
configuration), is that the former consists of 2€getation types, while the latter

considers 7.
» Simulation 2: TBrspy Where the subscript “SD” stands for “Soil Disaation”,

The impact of a coarser soil discretization on nllede TBs was tested by
recomputing TBr using ORCHIDEE's state variables averaged to [3as@rs: upper
(9 cm), medium (66 cm), and lower (125 cm).

« Simulation 3: TBrEw), Where the subscript “FW” stands for “Fresnel WWagpm”.

We tested the combined effect of using the Frelswelto computes, rather than the
parameterization proposed by Wilheit (1978), andcuating Te using the
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methodology proposed by Wigneron (2001) insteaiti@foil temperature profile. For
this, TBs were simulated using ORCHIDEE's stateabées.

The input variables required by the CMEM to modBisTare summarized in Table 2. They
are classified into dynamic and constant fields emakist of meteorological data, vegetation

characteristics and soil conditions.

2.2.1 The ORCHIDEE and H-TESSEL Land Surface Models
ORCHIDEE

The ORCHIDEE LSM (de Rosnay and Polcher, 1998; ieiret al., 2005) was developed by
the Institut Pierre — Simon Laplace (IPSL). It ¢enrun coupled with the general circulation
model LMDZ, which was developed by the LaboratoieeMétéorologie Dynamique (LMD),

or in stand-alone mode. Uncoupled simulations wareed out for this study.

The hydrological scheme used by ORCHIDEE approablgdsology through the resolution
of a diffusive equation with a multilayer schemer Ehis, the Fokker-Planck equation is
solved over a soil 2 m deep with an 11 layer distagon. The layers' depths are informed in
Table 1. The lower boundary condition is free dage, under the hypothesis that the water
content gradient between the last modelled laydrtha next one (not modelled) is zero. The
upper boundary condition sets the bare soil evaiporas the maximum upward hydrological
flux which is permitted by diffusion if it is lowehan potential evaporation.

The multilayer scheme considers a sub-grid vaitgof soil moisture, which together with
the fine soil discretization improves the repreagon of infiltration processes. The soil
infiltration follows the Green-Ampt equation (Greemd Ampt, 1911) to represent the
evolution in time of the wetting front through tkeil layers. It should be noted that partial re-
infiltration occurs from surface runoff if the ldcslope of the grid-cell i50.5% (D’Orgeval

et al., 2008). Each grid box has a unique soilulexand structure (Post and Zobler, 2000),
but three different soil columns are considered;heane with its own soil moisture
discretization and root profile. These are clasdifas: bare soil, low and high vegetation
regrouping the 13 Plant Functional Types (PFT) rafi in ORCHIDEE. These PFTs
contribute to the soil layers of each grouping at density to compute extraction and soll
moisture stress to the plants. The water balans®lised for each soil column resulting in

three different soil moisture profiles in each doik.
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ORCHIDEE's soil temperature profile is calculatemlvilg the heat diffusion equation.
Contrary to the hydrological scheme, it considers layer discretization, where the layers'
thicknesses follow a geometric series of ratio r] a total soil depth of 5.5 m (Hourdin,
1992; Wang et al.,, 2016). For this study, the f2stn of the temperature profile were
calculated following the same soil discretizatiathe one considered in the soil moisture
calculation. The energy balance takes into accthnskin temperature as presented in Schulz
et al. (2001) to derive the Land Surface Tempeea(lwST). The soil and vegetation are

considered as a single medium assigned with acitéanperature (Santaren et al., 2007).
H-TESSEL

The H-TESSEL LSM (Balsamo et al., 2009), develofsdthe ECMWF, revises and
improves certain aspects regarding the soil hydnsolof the TESSEL model. Its hydrology
scheme solves a diffusive equation over a multilssgheme with a 4 layer discretization.
Layer depths follow an approximate geometric reta{iTable 1). In addition, the soil can be
covered by a single snow layer. H-TESSEL consitleessame lower boundary condition as
ORCHIDEE. However, it differs in the upper one thatounts also for infiltration. It defines
a maximum infiltration rate given by the maximumwehovard diffusion from the saturated
surface. Once this rate is exceeded by the waterédt the surface, the excess of water is

derived to surface runoff.

The model considers six types of tiles over lararebsoil, low and high vegetation, water
intercepted by leaves, as well as shaded and exmos®v. Each one of these has its own
energy and water balance. However, only one soiktm@ reservoir is considered. Recent
improvements have replaced a globally uniform sgie (loamy) by a spatially varying one

(coarse, medium, medium-fine, fine, very fine, oiga Surface runoff, based on variable

infiltration capacity, was also a recent improvemen

H-TESSEL's soil temperature profile is computedhgshe same soil discretization as the one
defined in its hydrological scheme. The soil heatiget follows a Fourier diffusion law,
which has been modified to consider also thermfaces caused by changes in the soil water
phases (Holmes et al., 2012). To simulate the [&53kin layer is defined representing i) the
layer of vegetation, ii) the top layer of bare sot iii) the top layer of the snow pack. The

surface energy balance equation is then lineafaeehch tile (Viterbo and Beljaars, 1995).

Both LSMs are forced with the ERA-Interim forcinQde et al. 2011), which is suitable for

this study because it ranges from 1979 to 2012racent data were needed to perform the
9
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comparison with SMOS's. We are aware that bias#sisrkind of forcings have an effect on
the LSMs simulations (Ngo-Duc et al., 2005). ORCHBbwas configured to output hourly
TB values. However, TR is only available at 6 hourly time steps (at 06, 02, and 18
hours). Due to this difference, each set of modellBs was sampled in a different way to
approximate TBy measurement times. The sampling processes wiixptined in Section
3.

The above paragraphs show that the hydrology,psodesses and land surface temperatures
are approached very differently by both models.rétoee, the impact of these differences

needs to be considered when comparing simulated TBs

2.3 Precipitation and Land Surface Temperature

One important common feature of the presented msidellations is the forcing data. Since
biases in the imposed atmospheric conditions céettamodelled TBs, it was decided to
validate two important variables for which independobservations exist. Focus was put on
Precipitation (P) and the Land Surface Temperaiusd), as they are key variables for the

water and radiative balances.

P is the main driver of SSM, and this directly ésvthe L-Band emissivity. According to
Zollina et al. (2004), P generated by a reanalflgie ERA-Interim which is used here) is
highly model dependent and it should be notedrii@dels do not represent accurately all the
physical processes of the atmospheric water cytierefore, the verification of this forcing
variable of the LSMs with independent data is esaken

As for the radiative balance, the available enextgthe surface is one of the major drivers of
LST. We chose to verify this variable in this stuidy two reasons. First, it provides a good
summary of the surface energy balance. Seconsl aitkey parameter in CMEM's estimation
of TB. Therefore, its analysis will indicate whetlitbe LSM thermodynamics shows biases

with spatio-temporal characteristics similar tosadrom TBs.
The independent datasets used for validation are:
« P from the E-OBS dataset (Haylock et al., 2008),
e LST provided by the LandSAF product (http:// larfds@teo.pt).

It should be noted that these products have emtish must be taken into account when

used. For example, E-OBS data can be over-smoatbpdnding on the station network

10
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density (Hofstra et al., 2009) and sensor noises®wity uncertainties, etc. are error sources
which can propagate in the LandSAf LST algorithme{fas et el., 2007). However, these
products are accepted by the community to be reptasve of large spatial scales and we

have selected them as the reference to benchmamkl PST.

3 Methods

3.1 Data sampling and filtering processes

To compare modelled and measured brightness tetapesaTBr and TByr were sampled
with TBsy and remapped to the nearest neighbour of the S§HASThis allows to keep the
spatial structures of the coarse model resolufdext, the three TB signals were filtered to
exclude certain situations, such as frozen soilkbrs, which are known to make SSM

estimates unreliable.

3.1.1 Sampling

The objective of sampling the data is to use onbdelled TBs corresponding to available
measured values. BB were sampled at an hourly scale. HoweveryT&nsists of 6 hourly
values, thus potentially resulting in a large numbg neglected data because jFBand
SMOS time steps did not always correspond. ThesefbByt were sampled considering a 3
hour window around the observation in order to kadgrger number of modelled data for the
comparison. To test the impact of this approxinmgtiwe also applied it to the BB and
compared it to the original hourly data. Differesdsetween them were under 0.1% for the

diagnostics used here, and thus, it was consideried negligible.

3.1.2 Filtering

Data was filtered to discard unreasonable TB vafue® the comparison study. Filtering
rules were devised following the ECMWEF criteria dige screen TBr (Table 3). Common

filters were also applied to measured and moddigsl

The filters applied in TBr corresponding to the water content in snow cosapy water
equivalent) and the criterion on ERA-Interim's 2ain temperature aim to discard frozen
soils, which might affect the SM retrieval (Denteak, 2012). The same result was achieved

by filtering TBor with the 2 m temperature from the forcing (ashe previous case) as well

11
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as with ORCHIDEE's average surface temperature.fifdtecommon criterion excludes TBs
higher than 300 K to avoid effects of RFIs, whicdmcesult in overestimated brightness
temperatures (can be higher than 1000 K). The secommon criterion aims at removing
points which might be influenced by coastal or gnaphic effects, as does H-TESSEL's
orography (slope) criterion too. The mask was husing the L2 SMOS product. Any pixel
with no surface soil moisture data retrieved wasluded from the comparison. The
surrounding 24 pixels were also excluded to avdfdces of abrupt changes in land/sea

transitions.

3.2 Comparison analyses

3.2.1 Spatio-temporal correlation

The first diagnostic performed to compare measaretdmodelled TBs consisted in temporal
and spatial correlation analyses. Our aim was wdysthe similarity between the spatio-
temporal patterns. We used the Pearson product-mtocoerelation coefficient. Only values

statistically significant at the 95% level were smiered. An averaging window of 5 days was

applied for the spatial correlation analysis toueaghe highest coverage possible.

Even though the correlation coefficient is a widebed statistical tool, it may not be suitable
when analysing certain fields. For instance, Palcee al. (2015) show that temporal
correlation measured between remotely sensediunaid modelled SSM, is mainly driven
by the high frequency behaviour of SSM. Thereftihés diagnostic is not very sensitive to
the slower variations of the field studied. Perforgnthe correlation analyses allowed us to

study if this conclusion also applies to TBs.

3.2.2 Empirical Orthogonal Function

The Empirical Orthogonal Function (EOF) analysistrasts the dominant spatial and
temporal modes of variability of a field (F). Itlages the spatial patterns of each variation

mode with a time series and its explained variance.
To do so, the covariance matrix (R) of F is com@ubdext, the eigenvalue problem is solved:

RC =CA (1)

12
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WhereA is a diagonal matrix that contains R’s eigenval{f&sand C is a matrix where its

column vectors (ci) are R’s eigenvectors, whichregpond tci.

Each eigenvalue corresponds to a variability mode provides a measure of the total
variance in R explained by the mode. Thereforepibgest eigenvalue will correspond to the
dominant variability mode. The eigenvector ci i® thpatial pattern (Pi) of the mode of
variation i. The temporal evolution of a mode ofigton is obtained by projecting the field F
on the corresponding spatial pattern:

aj = Fcj 2
We will refer to these temporal series as the EgjpanCoefficients (ECs). Positive values of

ECs imply that there is no sign change in the apgtatterns. The EOF methodology is

detailed in Bjérnsson and Venegas, (1997).

We applied the EOF analysis to the error betweerasomed and modelled TBs, to

characterize it spatially and temporally. Identityithe main modes of variability of an error

field allows proposing and testing hypotheses alisutauses. We followed this approach to
analyse the impact of forcing biases on modelled.TBther studies have also applied this
methodology to error analysis. For example, Kansumét al. (2010) analyze the impact of a
regional model error on the inter-annual variapitif a set of analysis fields.

4 Results

The temporal evolution and spatial structures odsneed and modelled TBs are analyzed in
this section. This study follows the comparisonwasin modelled and retrieved SSM
(Polcher et al., 2015) and attempts to elucidatkafdifference found can be attributed either
to the retrieval algorithm, which converts TBs inestimated SSM, or its modelled

counterpart.

4.1 Comparison of modelled and measured TBs

The mean temporal and spatial correlations betwasgsured and modelled TBs, over the IP
from 2010 to 2012, are shown in Table 4. Valuesnfithe SSM comparison performed by
Polcher et al. (2015) are also included. The difiees between spatial and temporal

correlation are already apparent and warrant separalyses as a first step.
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4.1.1 Temporal correlation

Fig. 1 shows the temporal correlation between nredsand modelled daily TBs for the
horizontal and vertical polarizations. Both polatisns show a good agreement between
models and observations in their temporal evolytwith values above 0.7 over a large part
of the IP. This can be explained by the strong ahraycle imposed by the surface
temperature, but more important are the quick nesp® of temperature and emissivity to
precipitation events, which drive TB's fast vaoas and correspond to the synoptic
variability of the signal. The high correlationglicate that it is well captured by both models.
Most of the areas with lower correlations corregsptm mountain ranges. Relief effects on
MW radiometry over land (Méatzler and Standley, 20@0e a difficult remote sensing
problem and thus, discrepancies are expected.cln tiae lowest correlations (0.3 to 0.6)
appear over some areas of the Pyrenees. Other same the Iberian System and the
Cantabrian Mountains, located over the northeastrd the northern regions of the

peninsula, respectively.

There are no large differences between the temporatlation maps of Ték and TByr with

TBsm (Fig. 1). Since the same forcing was used, the bBMs share the same synoptic
variability from the ERA-Interim reanalysis. HoweyeFig. 1 shows that the synoptic
variability of H-TESSEL leads to slightly higher rcelation values than ORCHIDEE's,

especially over the northern part of the IP.

4.1.2 Spatial correlation

For clarity, the 5 daily spatial correlations areet@ged per season and the distribution of
values obtained is represented in a boxplot forrRig 2. In general, the correlation is poor
throughout the year. Although maxima are around thé annual mean ranges between 0.2
and 0.3 (Table 4). This implies that the spatialicttires from both modelled TBs are not
consistent with those observed by SMOS. We wolid 10 point out the seasonality in the
correlation. The lowest correlations occur duringter, where even negative values are
obtained. These improve during spring and summmal, \@eaken again in fall. Moreover,
winter and fall generally show larger ranges ofiaaility and thus, a wider dispersion of the
data than spring and summer. Fig. 2 also shows theat vertical polarization has
systematically higher mean correlations than thezbotal one, except for the winter season.
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Finally, there is no significant difference in tberrelation of TBy with either modelled TB

as has already been noted for the temporal caoelat

4.2 Spatial and temporal characterization of the TB error

The spatio-temporal variability of the error betwarodelled and measured TBs is studied to
better understand the poor consistency of theitiapstructures. We want to analyse if this

difference can be related to some physical proagssh might be incorrectly represented in

both models. For this, an EOF analysis of the Trer(TBor - TBsy and TByr - TBgy) IS

carried out.

4.2.1 TB error
Soatial patterns

Fig. 3 shows the spatial patterns of the first B@F variation modes correspondent to the TB
error of ORCHIDEE (TBr — TBswm), for the horizontal and the vertical polarizasohe
variance explained by each mode is also providea @ercentage in brackets. The total
variance explained by the patterns of the firstiatebmn mode is above 30% in both
polarizations: 36% (horizontal) and 31% (verticalhese two patterns show a similar
structure characterised by high values over théhsast and a smaller area further north of
the IP, which weaken as they extend through the okshe peninsula. This similarity is
confirmed by their high spatial correlation, whish0.99 (Table 5). The second variation
mode exhibits a structure that is also maximum a¥er southwest of the IP in both
polarizations. However, the total variance expldihas decreased to 6% and 7% (horizontal

and vertical polarization, respectively).

Fig. 4 is equivalent to Fig. 3 but presents the ef®r of H-TESSEL (TRBr — TBsw). The
variance fractions explained by the first EOF made 30% and 18% for the horizontal and
vertical polarization, which are lower than thosgained for the TB error of ORCHIDEE. As
in Fig. 3, the first variation modes show similgasal structures, which are highly spatially
correlated (0.86, Table 5). It is interesting tdenthat this structure coincides with the one
identified for the TB error of ORCHIDEE (Fig. 3 adxc). This is confirmed by the high
correlation obtained between the patterns of the éwors: 0.92 and 0.73 for the horizontal
and vertical polarization, respectively (Table Bhe second variation mode of H-TESSEL's

TB error explains 8% (horizontal polarization) a6 (vertical polarization). The horizontal
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polarization pattern shows that the error is maxmuaver the southwestern region of the IP,
while the vertical polarization pattern does nobvwsha clear structure. Contrary to the first
variation mode, patterns from the second one shaget differences with the patterns
depicted by the TB error of ORCHIDEE.

Expansion coefficients

Fig. 5 shows the ECs of the first EOF variation mad both TB errors. In other words, the
projection of the error time series on the EOFgrattsummarizing how much the error field

varies according to the pattern.

The four series show a strong annual variation wigeaks in fall. High values are also
observed in December 2012 and during the winte0202011. It should be noted that the
behaviour of the ECs coincides with the marked @ealty shown in Fig. 2 and thus,

reinforces our observation that modelled TB pa#idrave their strongest disagreement with
SMOS measurements in fall and winter. The ECs efsétcond EOF variation mode of each
TB error have not been included in Fig. 5, becatsespatial patterns of each error differ
between them. Nevertheless, it is important to rtbeg they show variations at higher

frequency than those from the first mode.
Two conclusions can be drawn from these results:

First, the largest spatially coherent error idesdifin Fig. 3 and 4 (a and c) is dominated by
the slow varying component of the TB signals, whhiriven by the annual cycle. At first
sight, this might seem to contradict the tempo@taiation analysis (Fig. 1). However, it
evidences that the slow (annual cycle) and fastq(gtjc variability) components of TBs show
different behaviours. In addition, it confirms duypothesis that the temporal correlation of
TB is driven by its synoptic variability, as demtmased in the SSM comparison performed by
Polcher et al. (2015).

Second, modelled TBs are warmer than measuredavsgssouthwestern IP during fall and
winter, revealed by the first EOF patterns andrtlosicillations (Fig. 3 to 5). To further
analyze this result, we looked at ECMWF's meart fitgess departure from the months of
November 2010 to 2012. This diagnostic consisttheftime averaged geographical mean of
the difference between SMOS measured TBs and neadelhes using the CMEM and H-
TESSEL's surface state variables (Fig. 6). Fothabe years we see a contrast between the
error over the northwestern region of the IP (inoaange colour) and over the southwestern
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region and a smaller area further north (in a olleur). According to this, measured TBs are
warmer than modelled ones over the northwest oflRhduring these three periods, while
modelled TBs are warmer than SMOS's over the saghwf the IP. This is in good
agreement with the behaviour described by the BGF variation mode of both TB errors
(Fig. 3 and 4, a and c). It should be noted thatntiean first guess departure shows a global
bias between the spatial patterns of measured amtlled TBs. However, only the IP is
represented in this figure to show clearly theigpatructures.

To summarize, the EOF analyses of the two TB eridestified a common dominant
structure, which is maximum in the fall and winseasons, over the southwest of the IP and a
smaller area further north. It represents betwed and 36% of the error depending on the
modelled TB set considered and its polarization.rédger, it corresponds well with the
ECMWEF mean first guess departure for the 2010-20d2ember months.

4.2.2 LST and Precipitation errors

Precipitation and LST data are used to exploreiplessauses for the difference between
measured and modelled TBs. Errors are calculatéd respect to independent datasets. The
dominant error pattern of each variable is compuiad=EOF analysis and compared with the
dominant pattern of the two TB errors. If similee# can be identified, then possible causal
links between these variables and the TB erromheaexplored.

The precipitation error is calculated as the ddfere between the P provided by the ERA-
Interim forcing and the E-OBS independent datasbe LST errors are computed as the
difference between modelled LST (from ORCHIDEE oiTBSSEL) and the EUMETSAT
LandSAF product (http://landsaf.meteo.pt).

Soatial patterns

The first EOF patterns of P and LST errors areesgmted in Fig. 7, together with their
explained variance. The precipitation error is canno both models as it originates in the
selected forcing. The dominant spatial structuréhef error, which represents only 15% of
the total variance, has its maximum in the southefthe IP and is different from the one
found for TB. The error patterns from LST diffenrarkably between the two models and do
not seem related to the TB error. On the one handprth-South gradient is observed in

ORCHIDEE's LST error (Fig. 7 a), which is most likexplained by forcing induced biases
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due to available energy affecting the LSM simulatiOn the other hand, H-TESSEL's LST
error pattern (Fig. 7 ¢) shows a gradient from EadVest.

Expansion coefficients

The ECs correspondent to each of these patterngrasented in Fig. 8. Those for the
precipitation error show a higher frequency vaoiatthan those of the LST and TB errors.
ORCHIDEE's LST error behaves as expected from famthce physics, with a maximum in
summer when the largest amount of energy is abddrpdehe surface and thus, small errors
in the energy balance translate into large temperatifferences. This is not the case for H-
TESSEL's LST error, whose ECs show higher frequarariation with maxima in the fall
season and at the end of the winter in 2011 and.201

The dominant modes of variability of P and LST esrshow different spatial and temporal
characteristics than the TB error dominant pattNeither the spatial structures coincide, nor
their temporal evolution over the 2010 to 2012 @eriThe TB errors show a strong annual
variation which peaks in fall and winter. The ECs @RCHIDEE's LST error show a

maximum in summer, while those for H-TESSEL's LSW & errors are characterized by

higher frequency variations.

The difference between the EOF analyses’ resuli, &fST, and TB errors suggest that their
error sources differ. Therefore, even though thedpects taken as reference (E-OBS and
LandSAF) are affected by errors, these do not deeloe responsible for the dominant mode
of the TB discrepancy. The EOF analysis excludeshifpothesis that biases in precipitation
driving the models or errors in their surface terapge are the direct cause of the
inconsistency in TB's spatial structures. The gfremilarity of the TB errors in two quite
different LSMs further strengthens the rejectiontho$ hypothesis.

4.2.3 Analysis of CMEM assumptions

The CMEM is another candidate to explain the TBresince it is also a common element
from both sets of modelled TBs. In fact, modelld8sThave been shown to be more sensitive
to the configuration of the microwave model thath® LSM used (de Rosnay et al., 2009).

As explained in section 2, we performed a sensjti@nalysis to test if certain CMEM
parameterizations could explain the differencesvbeh measured and modelled TBs. As a

result, three new sets of modelled TBs were eséichal By(vc), TBorspy and TBrEw) to
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evaluate the role of vegetation, vertical discadtan, and the emissivity parameterization

respectively.

In the first place, TBrwc) shows similar mean spatial correlations withsjiBis the ones for
TBur and TBwm (Table 4). In addition, an EOF analysis of thdet#nce between this new
estimate and observed TBs (figure not includedWshsimilar spatial patterns as the ones

identified in Fig. 4 (a and c), as well as a gogckament between their ECs.

In the second place, no significant differencesenabserved between §Rsp) and TEr
when compared to Td#. For instance, mean spatial correlations computgdg TBor(sp)
and TBsy are 0.22 and 0.33 for the horizontal and verjodarization, which are similar to
the values obtained for B8 and TByy (Table 4).

In the third place, an EOF analysis of the TB ecamnputed using the TdgEw) and the TBwy
sets (figure not included), shows a similar domingtructure both in space and time to the
one observed in Fig. 3 (a and c). In addition, simspatial correlations between dig-w)
and the TBy to those from TBr and TBsyy are also found (Table 4).

As synthesized in Table 4, in the current stat€MIEM the vegetation cover, the number of
soil layers, and thes and T parameterizations can be discarded as the domfaaturs

responsible for the poor spatial correlation betwe®delled and SMOS TBs.

4.3 Annual cycle of TBs

The slow varying component of the TB signals islyred pixel by pixel, because it has been
identified as the driver of the largest spatialbherent error structure between measured and
modelled TBs (Fig. 5). For this matter, the meamuah cycle of each TB signal was
computed for each pixel and then smoothed usingliaesfilter to remove sub-monthly
fluctuations. The period of study is too short ts@e that a simple annual mean cycle filters
out high frequency variations. In Fig. 9 the norized amplitudes of the annual TB cycle are

displayed.

The spatial structures shown in SMOS's maps (Fig.&hd f) exhibit strong resemblances to
those observed in the first EOF patterns of theefiBr (Fig. 3 and 4, a and c). However, this
structure is not found in the maps correspondingdBer and TByr, where there is less

contrast in the spatial distribution of the relatamplitude of the annual cycle. This indicates
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that the LSMs combined with CMEM do not reproduice annual cycle amplitude of TBs
observed by SMOS.

To further analyse this result, two study areasdafened (Fig.10). The first one is over the
southwestern IP (7.5W : 4W, 40N : 38N) and corresisao part of the area where the largest
differences in TB’s normalized amplitudes are idfi@ad. The second one is the northwestern
region (8.25W : 6W, 43N : 41.75N) of the IP ancti®sen because it shows similar annual
cycle amplitudes of TB in the two models and SM@®Saddition, the EOF analysis of the TB

error showed opposite behaviours in these areas.

Fig. 10 shows the smoothed annual cycle of thezbotal and vertical polarizations of the TB
signals from both regions. The LST from the LandS$Aéduct as well as those modelled by
ORCHIDEE and H-TESSEL are also displayed becaudeef direct relation to TBs. The

plots show that the TB's annual cycle behaviouedifbetween the two regions. Therefore,

the processes responsible for the TB error aregiigldifferent in each one of them.

The following results can be extracted from thet glarresponding to the southwestern area
(Fig. 10 a):

In winter, the difference between models is smathpared to their relative warm bias when
compared to SMOS. In summer, the agreement isiveliatgood with observations laying
within the spread of the models. This explains té®ult presented above, namely that the
amplitude of the simulated annual cycle is smatlean for the remotely sensed TB.
Examining the LST one can note that the biasesralaively small and ORCHIDEE
generally matches better the LandSAF product, btfBSSEL shows a larger and more
correct amplitude of the annual cycle. This migkplain why this model has the largest
amplitude of TB in both polarisations, indicatingat a large fraction of the error on the
annual cycle of TB is caused by the emissivity $atad by CMEM given the surface states
of both LSMs.

Over the northwestern IP, SMOS observations ardlynasthin the uncertainty spanned by
the two models. One notable exception is the sunpaaod for the horizontal polarization
where both models are cooler. Also in this regtmmamplitude of TB in both polarizations is
larger in H-TESSEL than ORCHIDEE and closer to thaasured by SMOS. Again, this can
be related to LST. Although ORCHIDEE has smallasbs, the H-TESSEL amplitude of the
annual cycle is larger and closer to the observed o
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The strong difference in behaviour between the $ei@cted regions in winter explains the
resemblance of the dominant EOF mode in TB errérboth models with the regions of

maximum amplitude of the annual cycle of observBgd.TFor both regions, the LST biases of
the LSMs do not show a clear relation to the sitedlarBs. H-TESSEL has the warmest
surface temperatures but the lowest TBs, indicatiag its state variables produce a lower
emissivity than ORCHIDEE when processed by CMEM.tknother hand, the differences in

annual amplitudes of LST could contribute to thesen for the TB. This is also supported by
the fact that the dominant variation modes of L&Drs are not related to those of TBs. This
would indicate that the major contribution to thB €rrors found for the models does not
originate in their forcing or their ability to sifate the land surface energy balance and
temperature, but rather in the way CMEM simulatebabhd emissivity based on their

description of the surface state.
5 Discussion

This work complements with an analysis of TBs thelg by Polcher et al. (2015), which
compared the SSM product of SMOS with ORCHIDEE’'sdeited SSM. Both studies
present a spatio-temporal correlation analysisabtdin similar results: a good agreement in
temporal evolutions and a large mismatch betweensgratial structures of measured and
modelled SSM and TB.

The temporal correlation between gBand TBsyy is very similar to that between retrieved
(SMOS) and modelled (ORCHIDEE) SSM (Table 4). laliadn, both variables show lower
correlations over mountain ranges. As noted for S8 temporal correlation is mainly
driven by its fast varying component and is notyvansitive to the annual cycle (Polcher et
al., 2015).

Spatial correlations are low for both variablesligating an inconsistency between the spatial
structures of measured and modelled data. Polchat. €2015) showed that the spatial
correlation between retrieved and modelled SSM @se for the SSM’'s slow varying
component than for its fast varying component. Tdaa be due to the fact that the largest
spatially coherent error between measured and teod@Bs is dominated by their slow

varying component, as shown in this paper.

The EOF analysis presented here identified a damhisucture over the southwestern IP
using both sets of modelled TBs, which explainsaéd fraction of the TB error. This
structure differs from the error characterizatidntbee SSM comparison, which showed the
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largest discrepancies between modelled and retti®&&M over the northwestern IP. In fact,
only weak differences were found for SSM over toatswestern region (Polcher et al.,
2015). These results indicate that the transfections used by SMOS to derive SSM from
observed TBs or CMEM, which estimates TBs from nledeSSM (together with other state
variables), play an important role and have to btteb understood in order to explain the

differences between the SMOS observations andnidated surface states.

None of the hypotheses tested to identify a metlogilmal weakness in the forcing of both
LSMs or the configuration of CMEM, which would egpi this common error, was
conclusive. The differences in TB between the LSWsl SMOS are noteworthy and we
believe that understanding them should be a pyidoit the community to achieve a better
usage of these observations. As the LSMs useddnereery different in their conception, it is
unlikely that they produce the same systematic S$&4 which would explain the large
discrepancy in the southwest of the IP during win@n the other hand, processes which are
not represented with enough detail in both schecoedd explain the error and need to be
analyzed as to their potential to explain the @gancies.

« In the first place, it is interesting to study tbheaf Area Index (LAIl), because it is
linked to the seasonal cycle of vegetation. It malyerefore, reveal some
underestimated effects of vegetation dynamics omletted TBs, which could be
related, to a certain extent, to the seasonalégtified in the dominant structure of the
TB error. In addition, the LAI is a key componentthe CMEM parameterization of
Teg HOwever, the areas of the IP where the TB egdhe largest are those of least
vegetation. Therefore, in our opinion, modelled li&\hot likely to be the main cause

of the differences in TB’s spatial structures.

* In second place, assumptions made in the modeadlinginfall interception may also
explain some differences between modelled and mea@siBs. In particular, those
shown in Fig. 10 (b) over the northwestern regidntlee IP. This region is
characterized by an oceanic climate and thus, viateve and mild summers, with a
high precipitation, and often rainfall occurring dszzle. Contrary to the southern
region, there is more vegetation and thus, rainfaérception plays a key role over
this area and may be of interest to revise howghisess is modelled. However, the
IP region with strong interception is not the onighwthe largest TB error. The error
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over the southwestern region is larger than ovemttrthwestern region, as shown by

the EOF analysis.

* In third place, the attenuation effect of litter thre soil and its interception of water
could also explain differences obtained betweeneted and measured TBs, since it
is not taken into account by models, but is paaitllite observations. However, we
believe that probably it would not cause an imaaictured as the one observed over
the southwestern area of the IP without affectititeoregions. Indeed this process
would be strongest in regions with dense vegetation

e Finally, issues related to the fundamental simgatfion of subgrid processes in LSMs
may also contribute to the inconsistency betweensipatial structures of modelled
and measured TBs. For instance, LSMs do not represeall scale features as open
water in lakes and rivers, swamps, irrigated aceagher water ponded on the surface
and could contribute strongly to L-band emissiafythe surface. Assumptions made
by LSMs could neglect key issues from the smallesednich could be carried over to
the large scale of TBs. For the moment, we do metwshy these simplifications of

LSMs would have the strongest impact in the sousthwethe IP.

Instrumental issues from SMOS could also explaindifferences in TB spatial structures, in
case these are not of climatological or geophysieaire. For example, one of the most
important causes of noise in SMOS surface soil msis Radio-Frequency Interferences
(RFIs). Daganzo-Eusebio et al. (2013) describe #féect on SMOS data. Some of them are
difficult to detect and thus, RFIs may not be prbpéltered out. For instance, Dente et al.
(2012) identified an irregular angular patternhe fTBs affecting data from the L1C product
used to retrieve soil moisture. In their opinidmstwas caused by weak RFIs which were not
correctly filtered. Another explanation could beteamma pattern errors, as SMOS TBs
seasonal and latitudinal drifts detailed in Olivaak (2013). However, RFIs are not likely to
be the main cause of the differences between medsurd modelled TBs, because the main
spatial structure identified in both TB errors muhd to be dominated by the brightness

temperature's annual cycle. This suggests thaniims a geophysical signal.

In our opinion, further analyses should be carmed regarding the CMEM assumptions
concerning emissivity. According to Jones et abDO@), the soil moisture and vegetation
water content have a significant effect on the isieitg of TB at the top of the atmosphere.

However, they impact microwave emission in différeays. On the one hand, an increase in
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soil moisture results in a higher solil dielectrimstant €) and thus, on lower emissivities. On
the other hand, an increase in the vegetation wat&ent rises the scatter and the absorption,
increasing the emission. Tlgeis key in the computation of emissivity, while thegetation
optical depth {9 is closely related to the vegetation water cont®oth variables are
modelled in CMEM and the same parameterizationbegn used to estimate the two sets of
modelled TBs: Wang and Schmugge (1980) ¢brand Wigneron et al. (2007) fageq
Furthermore, the same parameterization has beehtasaodel the rough surface emissivity
(er) in both cases: Wigneron et al.,, 2001. Considetimgt similar spatial patterns were
obtained for the TB error using two different LSMecus should be put on the above
mentioned variables( 1. ande;) in CMEM. We suggest to prioritize the analysistioé
relation between the vegetation water content aBdb&cause of the role the vegetation
opacity model plays in CMEM'’s configuration, as simoin de Rosnay et al. (2009). In
addition, no significant differences were obsertsetiveen modelled and retrieved SSM over
southwestern IP (Polcher et al. 2015), where th&irman TB error was identified. This
reassures our suggestion of prioritizing, with respect t&, since the latter is directly related
to SSM.

The hypotheses analyzed to identify the cause ¢ €Bor dominant mode, as well as those
proposed to study it, are listed in Table 6. Thectasion obtained for each analysis is also
included.

6 Conclusions

TBs of SMOS Level 1C product were compared to tets 8f modelled TBs. The latter were
obtained using simulated state variables (fromQRCHIDEE and H-TESSEL LSMs) and a
radiative transfer model, CMEM. The study was ealrout over the Iberian Peninsula (IP)
for the period 2010 to 2012.

On the one hand, a temporal correlation analydisden measured and modelled data shows
that there is a good agreement in their temporalugon. However, this diagnostic is mainly
driven by the TB's signal synoptic variability, @ascurs with SSM (Polcher et al., 2015). On
the other hand, a spatial correlation analysisatetea large mismatch between the TB spatial

structures provided by models and observations.

An EOF analysis of the error between modelled areshsured TBs suggests that the
inconsistency is not limited to a particular LSM.id dominated by the TB slow varying
component, peaking in fall and winter. In additionpdelled TBs are larger than SMOS
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measurements during these seasons over the donemanstructure detected. This structure
explains between 18% and 36% of the TB error vagardepending on the LSM and

polarization. Therefore, there is a high percentaigihe error (between 82% and 64%) that
shows structures which have to be analyzed andciggul. Since these are not present in both

LSMs, they are of lower priority and have not bapproached in this study.

Forcing induced biases are discarded as the maisecaf the spatial inconsistency in TBs
after computing the dominant error structures efcjpitation and Land Surface Temperature
(LST). Nevertheless, the degree of accuracy ofdh@ng cannot be fully established because
of scale issues and the lack of sufficient indepenhaneasurements. The difference in TBs'
spatial structures could also be thought of a coatlbn of non linear relations between
errors in precipitation and LST, but this is beydhe scope of this paper.

Assumptions made in certain CMEM parameterizatemesalso discarded as the main source
of the spatial inconsistency between measured akied TBs: the vegetation cover input;
the number of soil layers defined; and some paramzetions to compute the smooth surface
emissivity (Fresnel law and Wilheit (1978)) and #iféective temperature (Wigneron et al.

(2001) and the temperature profile).

Previous studies found differences between theapstuctures of modelled and retrieved
SSM (Parrens et al., 2012; Polcher et al., 201bis paper shows that these structures are not
consistent also when comparing modelled and obdemis. In addition, this issue is
amplified for the TBs compared to SSM, because ltieer are bounded by zero and
saturation. This could explain the generally bedfmatial correlation for SSM in winter, when

it reaches saturation in large parts of the IP.hdugh this study is limited to the IP,
differences in spatial structures occur at a glduale. We would like to draw the reader's
attention to the fact that TBs are not only the miaput of SMOS soil moisture retrieval
algorithm, but that they are used to retrieve otlarables, like vegetation optical depth or
salinity. We believe that analysing the spatiabmsistencies between modelled and measured
TBs is important, as these can affect the estimaidfogeophysical variables, TB assimilation
in operational models, as well as result in misiegdalidation studies. Therefore, obtaining
the spatial contrast of measured TBs in modelscisallenge which, in our opinion, deserves

a higher priority in the community.
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Table 1. CMEM configuration for the two sets of retdd TBs.

Configuration

Parameterization
ORCHIDEE H-TESSEL

Physical
configuration

Soil dielectric constant

Wang and Schmugge (1980)

Effective temperature

Soil temperature Wigneron et al.
profile (2001)

Smooth surface emissivity

Wilheit (1978) Fresnal la

Rough surface emissivity

Wigneron et al. (2001)

Vegetation optical depth

Wigneron et al. (2007)

Atmospheric optical depth

Pellarin et al. (2003)

Temperature of vegetation

Surface soil temperature

Vegetation cover input data Ecoclimap
Observing Microwave frequency 1.4Ghz
configuration Incidence angle 42.5° 40°
Soil and Number of soil layers* 11 3
atmospheric level
configuration (number of layersinthetop 5 cm) (5) Q)

*Layer depths of ORCHIDEE's hydrological schemeJici9.099, 0.391, 0.978, 2.151, 4.497,
9.189, 18.570, 37.340, 74.880, 150, and 200

*Layer depths of H-TESSEL's hydrological scheme]fc, 21, 72, and 189
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Table 2: Input variables for the CMEM to computesTd TOA.

Soil conditions Constant fields Solil texture fracti[%]
Orography [km]
Vegetation Constant fields High and low vegetatigres

High and low vegetation fractions

Water fraction

Dynamic fields Low vegetation LAI

Meteorology Dynamic fields Soil moisture profile imi’]

Soil temperature profile [K]

Skin temperature [K]

Snow depth [m]

Snow density [kgri]

2 m temperature [K]
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Table 3: TB filtering criteria to keep data, apdli® the TB signals.

* The slope is at the model T225 spectral horiziomsolution (~80km).

TBor TBuT All TB signals

ORCHIDEE's daily average Snow water equivalent < 0.01 m Daily TB < 300 K

surface temperature > 275 K

ERA-Interim's daily average ERA-Interim's daily average Mask
2 m air temperature > 273 K 2 m air temperature > 273.5K (from SMOS's L2
product)

Orography (slope)* < 0.04
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Table 4: Mean temporal and spatial correlationsS8M (Polcher et al., accepted) and the

horizontal and vertical polarization of TBs ovee tilberian Peninsula from 2010 to 2012.

Temporal Spatial
Horizontal Vertical Horizontal Vertical

TBor VS. TBsm 0.75 0.76 0.20 0.30
TBur vs. TBsy 0.82 0.82 0.24 0.29
TBhrvc) VS. TBsm - - 0.17 0.36
TBor(sp VS. TBsm - - 0.22 0.33
TBorEw) VS. TBsm - - 0.20 0.30
SSMor VS. SSMy 0.81 0.28
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Table 5: Spatial correlation for the first and seto/ariation modes of the EOF analyses
performed for the difference between modelled aedsured TBs. TBH and TBV correspond
to the horizontal and vertical polarizations, respely.

Mode 1 Mode 2
TBor — TBsu (TBH) vs. TBog — TBsy (TBV) 0.99 0.97
TByr — TBsu (TBH) vs. TByr — TBsy (TBV) 0.86 0.75
TBor — TBsw (TBH) vs. TByr — TBsy (TBH) 0.92 0.69
TBog — TBsw (TBV) vs. TByr — TBgy (TBV) 0.73 0.48
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Table 6: Possible explanations studied and proptsexhalyze the dominant mode of the

error between measured and modelled TBs. The mapection where these are analyzed has

been included.

* EOF analysis> Incompatible spatio-temporal variability of errors

Outcome )
Hypotheses Section
(test)
Biases in Discarded
precipitation _ 4.2.2
forcing (EOF analysis*)
Discarded
Errors in LST (EOF analysis* & | 422 g
modelling annual cycle over | 4 3
southern and
northern IP)
) Discarded
Vegetation _
cover (EOF analysis* &
spatial correlation)
Soil Discarded
d|Scret|Zat|0n (EOF ana'ysis*) 4.2.3
CMEM Combined effect of | piscarded
configuration the Fresnel law and -
Wigneron et al. (2001) (EOF analysis* &
. to estimate. and T | SPatial correlation)
parametrization | ¢ estimation Proposed to study
Tvec €Stimation Proposed to study
g estimation Proposed to study
Modelled LAI Discarded
Ramfall . Discarded
interception
Attenuation 5
effect of litter in Discarded
measured TB
LSMs’ subgrid
processes Discarded
simplifications
Instrumental Discarded

issues (RFIs)
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Figure 1: Temporal correlation between modelled amehsured TBs from 2010 to 2012.

TBH and TBV correspond to the horizontal and vettmolarizations, respectively.
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Figure 3: Spatial patterns associated with the tw® EOF variation modes (P1 and P2) of
the difference between modelled TB (ORCHIDEE) aneasured TB (SMOS). TBH and
TBV correspond to the horizontal and vertical pations, respectively. The percentage of

variance explained by each mode is included inkatsc
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Figure 4: Spatial patterns associated with the twe® EOF variation modes (P1 and P2) of
the difference between modelled TB (H-TESSEL) amédsured TB (SMOS). TBH and TBV
correspond to the horizontal and vertical polarizet, respectively. The percentage of

variance explained by each mode is included inkatsc
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Figure 5. Temporal evolution of the expansion dogfhts correspondent to the first EOF
variation mode of the TB errors (ORCHIDEE versus@®land H-TESSEL versus SMOS)
over the Iberian Peninsula. Values have been n@ethlusing the standardization method.
TBH and TBV correspond to the horizontal and veitmolarizations, respectively.
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Figure 9: Normalized amplitude of the smoothed ahraycle of modelled and measured
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Figure 10: Smoothed annual cycle of sk TBor, and TByr, as well as of the LST signals
from ORCHIDEE, H-TESSEL, and LandSAF over a soutitee (a) and northwestern (b)
region of the Iberian Peninsula, from 2010 to 20IRe TBH and TBV correspond to the
horizontal and vertical polarizations, respectivéliie regions' location is shown in figure c:

southwest (red) and northwest (blue).
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