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Abstract 15 

L-Band radiometry is considered to be one of the most suitable techniques to estimate Surface 16 

Soil Moisture (SSM) by means of remote sensing. Brightness temperatures are key in this 17 

process, as they are the main input in the retrieval algorithm which yields SSM estimates. The 18 

work exposed compares brightness temperatures measured by the SMOS mission to two 19 

different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were 20 

estimated using a radiative transfer model and state variables from two land surface models: i) 21 

ORCHIDEE and ii) H-TESSEL. The radiative transfer model used is the CMEM. 22 

Measured and modelled brightness temperatures show a good agreement in their temporal 23 

evolution, but their spatial structures are not consistent. An Empirical Orthogonal Function 24 

analysis of the brightness temperature's error identifies a dominant structure over the South-25 

West of the Iberian Peninsula which evolves during the year and is maximum in fall and 26 

winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative 27 

transfer model are analysed to explain this inconsistency, but no candidate is found to be 28 
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responsible for the weak spatial correlations at the moment. Further hypotheses are proposed 1 

and will be explored in a forthcoming paper. 2 

1 Introduction 3 

The United Nations (UN), the Food and Agriculture Organization (FAO), and the World 4 

Health Organization (WHO), have reported that water resources are not being managed in an 5 

optimum way at present. As a result, scarcity, hygiene and pollution issues related to 6 

improper water policies are detected. In addition, the world's population is expected to grow 7 

by 2 to 3 billion people over the next 40 years according to the UN's World Water 8 

Development Report from 2012 (WWAP, 2012). This will lead to a significant increase in 9 

freshwater demand which will likely be affected by the effect of a changing climate. 10 

To achieve a better management of water resources, it is necessary to improve our 11 

understanding of hydrological processes. In order to do this, the study of Soil Moisture (SM) 12 

is essential. It is defined as the water content in the soil and has a key role on the soil-13 

atmosphere interface. SM determines whether evaporation over land surfaces occurs at a 14 

potential rate (controlled by atmospheric conditions) or if it is limited by the available 15 

moisture (Milly, 1992). In addition, it influences several processes, like infiltration and 16 

surface temperature, which have an important effect on plant growth and the general state of 17 

the continental surfaces. However, SM is a complex variable to model as the interactions 18 

between soils and water are not simple to represent. Its definition requires knowledge of soil 19 

hydraulic properties, which are not often available as direct measurements. Pedo-transfer 20 

functions (Marthews et al., 2014), allow to estimate hydrodynamic characteristics of the soil 21 

from available soil texture and structure information. However, the suitability of these 22 

functions is under debate (Baroni et al., 2008), as their performance depends on several 23 

factors like the climate, geology, and the measurement techniques used. Furthermore, 24 

different hydrological schemes are found in Land Surface Models (LSM), leading to various 25 

ways of understanding and formulating soil moisture. 26 

Remotely sensed soil moisture products have brought about new ways to perform data 27 

retrieval, adding new observations to data assimilation chains. The optimal combination of 28 

these products with modelled ones is expected to provide better estimates of the true soil 29 

moisture state. Remote sensing allows to estimate SM by means of retrieval algorithms, like 30 

inversion algorithms (Kerr et al., 2012) or neural networks (Kolassa et al., 2013). Their main 31 

input depends on the type of sensor used. This is, backscattering for an active sensor and 32 
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Brightness Temperature (TB) for a passive sensor. TB corresponds to the radiance emitted by 1 

the Earth at a given wavelength and is the magnitude measured by a radiometer. It is defined 2 

as the physical temperature times the emissivity of the surface. 3 

L-Band radiometry is one of the best methods to estimate soil moisture, due to the relation 4 

between SM and the soil dielectric constant (Є) in this wavelength. The latter differs 5 

significantly between a dry soil and water (4 vs. 80, respectively) and this difference is key to 6 

estimate the soil water content. It should be noted that the retrieved SM corresponds to the 7 

water contained in the first centimetres of the soil. The penetration depth in averaged 8 

conditions is about 5 cm (Kerr et al., 2010).  Therefore, we will refer to Surface Soil Moisture 9 

(SSM) instead of soil moisture. Some studies, like Escorihuela et al. (2010) lower the 10 

penetration depth to 1–2 cm. 11 

In the last decade, three space missions have been launched with L-Band radiometers on-12 

board: the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2010), the 13 

Aquarius/SAC-D mission (Le Vine et al., 2010), and the Soil Moisture Active and Passive 14 

(SMAP) mission (Entekhabi et al., 2010). 15 

A large number of validation studies of remotely sensed SSM products have been carried out 16 

(Albergel et al., 2011; Sánchez et al., 2012; Bircher et al., 2013). These studies are usually 17 

performed using airborne and or ground-observed data over a well equipped site. Other 18 

studies, like the one described in González-Zamora et al. (2015), validate SMOS SSM 19 

products using in situ soil moisture measurement networks, which allow to extend the study 20 

period to annual and inter-annual scales. Several studies have been performed to validate 21 

brightness temperatures too (Rüdiger et al., 2011; Montzka et al. 2013). In Bircher et al. 22 

(2013) TBs are also validated with network and airborne data over a SMOS pixel in the 23 

Skjern river Catchment (Denmark). LSMs coupled to Radiative Transfer Models (RTMs) can 24 

contribute to the analysis and validation of passive Microwave (MW) data. Models permit 25 

extending the validation to a longer period of time and perform an extensive analysis of 26 

observed and retrieved data, as shown in Schlenz el al. (2012). In this study, they compare 27 

TBs and vegetation optical depth from SMOS with modelled ones obtained from a LSM 28 

coupled to a radiative transfer model, over a period of seven months in 2011 in the Vils test 29 

site (Germany). Comparing modelled with satellite-measured brightness temperatures can 30 

help to better understand inconsistencies between retrieved and modelled data. It provides 31 
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information regarding the origin of their differences, and whether they are due to the retrieval 1 

algorithm or to issues related to the modelling process. 2 

Polcher et al. (2015) present the first comparison of the spatial patterns of Level 2 (L2) SMOS 3 

product corresponding to retrieved SSM, with SSM modelled by the ORganising Carbon and 4 

Hydrology In Dynamic EcosystEms (ORCHIDEE) LSM (de Rosnay and Polcher, 1998; 5 

Krinner et al., 2005) over the Iberian Peninsula (IP) from 2010 to 2012. They have identified 6 

inconsistencies between the spatial structures of retrieved and modelled SSM. The main 7 

objective of the work presented herein is to extend the analysis of this inconsistency by 8 

comparing brightness temperatures measured by SMOS (Level 1C, L1C, product) with 9 

modelled ones obtained from the coupling of ORCHIDEE's state variables and a RTM. In 10 

addition, a second set of modelled TBs using state variables from the Hydrology – Tiled 11 

ECMWF Scheme for Surface Exchanges over Land (H-TESSEL), is included in the 12 

comparison. The RTM used is the Community Microwave Emission Model (CMEM) [de 13 

Rosnay et al., 2009], developed by the European Centre for Medium-Range Weather 14 

Forecasts (ECMWF). The comparison is performed over the same period and region as the 15 

study carried out by Polcher et al. (2015). The IP is an excellent test case for remote sensing 16 

of SSM, as its two characteristic climate regimes (oceanic and Mediterranean) result in a 17 

strong contrast in soil water content. Furthermore, SSM is a critical variable regarding water 18 

resources especially in the IP, which makes this study even more necessary. 19 

The data from SMOS and the LSMs used in this paper will be presented in the next section. 20 

Next, a methodology section will follow, describing the data filtering and sampling processes 21 

carried out, together with the analysis performed to compare TBs. Afterwards, results will be 22 

presented. First, modelled and measured TBs will be compared. Secondly, their error will be 23 

characterised spatially and temporally and certain hypotheses to explain the differences found 24 

in the TB comparison will be analysed. Finally, we will study the amplitude of the annual 25 

cycle of the TB signals. The paper will end with discussion and conclusion sections. 26 

2 Data 27 

2.1 SMOS retrievals of TB 28 

The SMOS mission is the second Earth Explorer Opportunity mission from the European 29 

Spatial Agency (ESA). The SMOS satellite was launched on November 2nd, 2009. One of its 30 
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main objectives is to provide surface soil moisture over land with a target accuracy of 0.04 1 

m3m-3. 2 

As previously said, TBs are the main input of SMOS’s soil moisture retrieval algorithm. L-3 

band brightness temperatures are measured by the SMOS radiometer at different incidence 4 

angles (from 0 to 65º) and polarizations (H, V, HV). The retrieval algorithm also models TBs 5 

using the state-of-the-art L-band Microwave Emission of the Biosphere (L-MEB) forward 6 

model (Wigneron et al., 2007) with some modifications. These brightness temperatures are 7 

then used to retrieve SSM using an inversion algorithm based on an iterative approach. Its 8 

objective is to minimize the sum of the squared weighted differences between measured and 9 

modelled TBs for all available incidence angles. Details about the retrieval algorithm are 10 

provided in Kerr et al. (2012). 11 

The SMOS L1C v5.05 product over the 10W : 5W to 45N : 35N region was selected and 12 

SMOS TBs at the antenna reference plane were derived: TBs are first screened out for Radio-13 

Frequency Interferences (RFIs) (strong, point source and tails), and also for Sun (glint area, 14 

aliases and tails), and Moon (aliases) contamination, using the corresponding flags. 15 

Ionospheric effects (geometric and Faraday rotations) are later corrected to obtain TB at the 16 

Top Of the Atmosphere (TOA). TB maps at a constant incidence angle of 42.5±5° are 17 

obtained through chi squared linear fit of all values included in the interval 42.5±5°, which is 18 

the methodology used to generate the SMOS L1C browse product (McMullan et al., 2008). 19 

Finally, these maps are resampled from the Icosahedral Snyder Equal Area (ISEA) 4H9 grid 20 

to a 0.25° regular latitude-longitude grid, to facilitate its manipulation. 21 

The L1C product containing horizontally and vertically polarized brightness temperatures, 22 

was provided by the SMOS Barcelona Expert Center. From now on, this product will be 23 

referred to as TBSM. 24 

2.2 Modelled TB: CMEM 25 

The Community Microwave Emission Modelling (CMEM) Platform,  26 

(https://software.ecmwf.int/wiki/display/LDAS/CMEM) developed at ECMWF, is a forward 27 

operator for low frequency passive MW brightness temperatures of the surface. Its physics is 28 

based on that of the L-MEB forward model and the Land Surface Microwave Emission Model 29 

(LSMEM) [Drusch et al., 2001]. CMEM is characterized by its modular structure, which 30 

allows the user to choose among different physical configurations to compute TB's key 31 
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parameters. Polarized brightness temperatures provided at TOA result from the contribution 1 

of three dielectric layers: atmosphere, soil and vegetation. Snow, also considered, is 2 

characterized as a single additional homogeneous layer. 3 

The two sets of modelled TBs used in this study were estimated by means of the CMEM 4 

provided with state variables from i) ORCHIDEE, and ii) H-TESSEL simulations. From now 5 

on we will refer to these sets as TBOR and TBHT, respectively. TBOR was computed 6 

specifically for this study, while TBHT was provided by the ECMWF to widen the comparison 7 

between measured and modelled data. The CMEM configuration used to compute each set of 8 

TB is listed in Table 1. The table is divided into three configuration categories: physical, 9 

observing, and soil and atmospheric levels. Even though both sets have similar 10 

configurations, there are some differences which are explained below. 11 

First, the “Physical configuration” of TBOR was selected to be as similar as possible to TBHT. 12 

However, they differ in the parameterization used to compute the smooth surface emissivity 13 

(ɛs). For TBHT the reflectivity of the flat soil surface was computed following the Fresnel law 14 

(Ulaby et al., 1986), so it is expressed as a function of the soil dielectric constant and the 15 

observation incidence angle. This formulation considers the emission at the soil interface. As 16 

it is simple and affordable in computing time it is commonly used for microwave emission 17 

modelling and soil moisture retrieval, as well as for operational applications (e.g. Wigneron et 18 

al., 2007, de Rosnay et al., 2009). It assumes an a priori soil moisture sampling depth, which 19 

in this study corresponds to the first soil layer of the land surface model (7cm for H-20 

TESSEL). For TBOR, the multilayered soil hydrology of ORCHIDEE allows to take into 21 

account the soil moisture profile and the resulting volume scattering effects on the soil 22 

emission. Therefore the reflectivity of the flat soil surface was computed using the 23 

parameterization proposed by Wilheit (1978). The different parameterizations chosen to 24 

calculate ɛs lead to another variation between the CMEM configurations. If ɛs is computed 25 

using Wilheit (1978), the soil temperature profile is used to compute the Effective 26 

Temperature (Teff). On the contrary, if the Fresnel law is used, the user can choose among 27 

different parameterizations to compute Teff. For TBHT, Wigneron et al. (2001) was selected. 28 

Second, the “Observing configuration” considers different incidence angles for each set. 29 

Although the available TBHT were modelled considering an angle of 40°, 42.5° was used to 30 

model TBOR, because measured TBs were provided at this angle. 31 
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Third, a different number of soil layers was defined for the “Soil and atmospheric level 1 

configuration”: 11 (TBOR) and 3 (TBHT). ORCHIDEE's soil discretization is finer. For 2 

instance, its first layer's depth is of the order of millimetres, while H-TESSEL's is of 3 

centimetres. In order to evaluate the role of these differences in the vertical discretization and 4 

the LSMs, we performed a sensitivity analysis as detailed in the next paragraph. 5 

In addition to the CMEM simulations performed to model TBOR and TBHT using the 6 

configurations indicated in Table 1, the following simulations were carried out to test if 7 

parameterization assumptions could affect the resulting TBs: 8 

• Simulation 1: TBHT(VC), where the subscript “VC” stands for “Vegetation Cover”. 9 

Vegetation cover is a key input. Since this parameter is directly related to land-surface 10 

emissivity, the effects of a different vegetation cover were tested on TBHT. For this 11 

matter, a new set of TBs was modelled using H-TESSEL's state variables with the 12 

same configuration as detailed in Table 1, except for the vegetation cover input, where 13 

H-TESSEL's prescribed vegetation (Boussetta et al., 2013) was considered. One of the 14 

differences between this input and the ECOCLIMAP database (used in the original 15 

configuration), is that the former consists of 20 vegetation types, while the latter 16 

considers 7. 17 

• Simulation 2: TBOR(SD), where the subscript “SD” stands for “Soil Discretization”, 18 

The impact of a coarser soil discretization on modelled TBs was tested by 19 

recomputing TBOR using ORCHIDEE's state variables averaged to 3 soil layers: upper 20 

(9 cm), medium (66 cm), and lower (125 cm).  21 

• Simulation 3: TBOR(FW), where the subscript “FW” stands for “Fresnel Wigneron”. 22 

We tested the combined effect of using the Fresnel law to compute ɛs, rather than the 23 

parameterization proposed by Wilheit (1978), and calculating Teff using the 24 

methodology proposed by Wigneron (2001) instead of the soil temperature profile. For 25 

this, TBs were simulated using ORCHIDEE's state variables. 26 

The input variables required by the CMEM to model TBs are summarized in Table 2. They 27 

are classified into dynamic and constant fields and consist of meteorological data, vegetation 28 

characteristics and soil conditions. 29 
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2.2.1 The ORCHIDEE and H-TESSEL Land Surface Models 1 

The ORCHIDEE LSM (de Rosnay and Polcher, 1998; Krinner et al., 2005) was developed by 2 

the Institut Pierre – Simon Laplace (IPSL). It can be run coupled with the general circulation 3 

model LMDZ, which was developed by the Laboratoire de Météorologie Dynamique (LMD), 4 

or in stand-alone mode. Uncoupled simulations were carried out for this study. 5 

The hydrological scheme used by ORCHIDEE approaches hydrology through the resolution 6 

of a diffusive equation with a multilayer scheme. For this, the Fokker-Planck equation is 7 

solved over a soil 2 m deep with an 11 layer discretization. The layers' depths are informed in 8 

Table 1. The lower boundary condition is free drainage, under the hypothesis that the water 9 

content gradient between the last modelled layer and the next one (not modelled) is zero. The 10 

upper boundary condition sets the bare soil evaporation as the maximum upward hydrological 11 

flux which is permitted by diffusion if it is lower than potential evaporation 12 

The multilayer scheme considers a sub-grid variability of soil moisture, which together with 13 

the fine soil discretization improves the representation of infiltration processes. The soil 14 

infiltration follows the Green-Ampt equation (Green and Ampt, 1911) to represent the 15 

evolution in time of the wetting front through the soil layers. It should be noted that partial re-16 

infiltration occurs from surface runoff if the local slope of the grid-cell is ≤0.5% (D’Orgeval 17 

et al., 2008). Each grid box has a unique soil texture and structure (Post and Zobler, 2000), 18 

but three different soil columns are considered, each one with its own soil moisture 19 

discretization and root profile. These are classified as: bare soil, low and high vegetation 20 

regrouping the 13 Plant Functional Types (PFT) defined in ORCHIDEE. These PFTs 21 

contribute to the soil layers of each grouping a root density to compute extraction and soil 22 

moisture stress to the plants. The water balance is solved for each soil column resulting in 23 

three different soil moisture profiles in each grid box.  24 

ORCHIDEE's soil temperature profile is calculated solving the heat diffusion equation. 25 

Contrary to the hydrological scheme, it considers a 7 layer discretization, where the layers' 26 

thicknesses follow a geometric series of ratio 2, and a total soil depth of 5.5 m (Hourdin, 27 

1992; Wang et al., 2016). For this study, the first 2 m of the temperature profile were 28 

calculated following the same soil discretization as the one considered in the soil moisture 29 

calculation. The energy balance takes into account the skin temperature as presented in Schulz 30 

et al. (2001) to derive the Land Surface Temperature (LST). The soil and vegetation are 31 

considered as a single medium assigned with a surface temperature (Santaren et al., 2007).  32 
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The H-TESSEL LSM (Balsamo et al., 2009), developed by the ECMWF, revises and 1 

improves certain aspects regarding the soil hydrology of the TESSEL model. Its hydrology 2 

scheme solves a diffusive equation over a multilayer scheme with a 4 layer discretization. 3 

Layer depths follow an approximate geometric relation (Table 1). In addition, the soil can be 4 

covered by a single snow layer. H-TESSEL considers the same lower boundary condition as 5 

ORCHIDEE. However, it differs in the upper one that accounts also for infiltration. It defines 6 

a maximum infiltration rate given by the maximum downward diffusion from the saturated 7 

surface. Once this rate is exceeded by the water flux at the surface, the excess of water is 8 

derived to surface runoff. 9 

The model considers six types of tiles over land: bare soil, low and high vegetation, water 10 

intercepted by leaves, as well as shaded and exposed snow. Each one of these has its own 11 

energy and water balance. However, only one soil moisture reservoir is considered. Recent 12 

improvements have replaced a globally uniform soil type (loamy) by a spatially varying one 13 

(coarse, medium, medium-fine, fine, very fine, organic). Surface runoff, based on variable 14 

infiltration capacity, was also a recent improvement. 15 

H-TESSEL's soil temperature profile is computed using the same soil discretization as the one 16 

defined in its hydrological scheme. The soil heat budget follows a Fourier diffusion law, 17 

which has been modified to consider also thermal effects caused by changes in the soil water 18 

phases (Holmes et al., 2012). To simulate the LST, a skin layer is defined representing i) the 19 

layer of vegetation, ii) the top layer of bare soil, or iii) the top layer of the snow pack. The 20 

surface energy balance equation is then linearised for each tile (Viterbo and Beljaars, 1995). 21 

Both LSMs are forced with the ERA-Interim forcing (Dee et al. 2011), which is suitable for 22 

this study because it ranges from 1979 to 2012 and recent data were needed to perform the 23 

comparison with SMOS's. We are aware that biases in this kind of forcings have an effect on 24 

the LSMs simulations (Ngo-Duc et al., 2005). ORCHIDEE was configured to output hourly 25 

TB values. However, TBHT is only available at 6 hourly time steps (at 00, 06, 12, and 18 26 

hours). Due to this difference, each set of modelled TBs was sampled in a different way to 27 

approximate TBSM measurement times. The sampling processes will be explained in Section 28 

3. 29 

The above paragraphs show that the hydrology, soil processes and land surface temperatures 30 

are approached very differently by both models. Therefore, the impact of these differences 31 

needs to be considered when comparing simulated TBs. 32 
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2.3 Precipitation and Land Surface Temperature 1 

One important common feature of the presented model simulations is the forcing data. Since 2 

biases in the imposed atmospheric conditions can affect modelled TBs, it was decided to 3 

validate two important variables for which independent observations exist. Focus was put on 4 

Precipitation (P) and the Land Surface Temperature (LST), as they are key variables for the 5 

water and radiative balances. 6 

P is the main driver of SSM, and this directly drives the L-Band emissivity. According to 7 

Zollina et al. (2004), P generated by a reanalysis (like ERA-Interim which is used here) is 8 

highly model dependent and one of the less reliable forecast parameters since models do not 9 

represent accurately all the physical processes of the atmospheric water cycle. Therefore, the 10 

verification of this forcing variable of the LSMs with independent data is essential. 11 

As for the radiative balance, the available energy at the surface is one of the major drivers of 12 

LST. We chose to verify this variable in this study for two reasons. First, it provides a good 13 

summary of the surface energy balance. Second, it is a key parameter in CMEM's estimation 14 

of TB. Therefore, its analysis will indicate whether the LSM thermodynamics shows biases 15 

with spatio-temporal characteristics similar to those from TBs. 16 

The independent datasets used for validation are: 17 

• P from the E-OBS dataset (Haylock et al., 2008), 18 

• LST provided by the LandSAF product (http:// landsaf.meteo.pt). 19 

 20 

3 Methods 21 

3.1 Data sampling and filtering processes 22 

To compare modelled and measured brightness temperatures, TBOR and TBHT were sampled 23 

with TBSM and remapped to the nearest neighbour of the SMOS grid. This allows to keep the 24 

spatial structures of the coarse model resolution. Next, the three TB signals were filtered to 25 

exclude certain situations, such as frozen soils or RFIs, which are known to make SSM 26 

estimates unreliable. 27 
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3.1.1 Sampling 1 

The objective of sampling the data is to use only modelled TBs corresponding to available 2 

measured values. TBOR were sampled at an hourly scale. However, TBHT consists of 6 hourly 3 

values, thus potentially resulting in a large number of neglected data because TBHT and 4 

SMOS time steps did not always correspond. Therefore, TBHT were sampled considering a 3 5 

hour window around the observation in order to keep a larger number of modelled data for the 6 

comparison. To test the impact of this approximation, we also applied it to the TBOR and 7 

compared it to the original hourly data. Differences between them were under 0.1% for the 8 

diagnostics used here, and thus, it was considered to be negligible. 9 

3.1.2 Filtering 10 

Data was filtered to discard unreasonable TB values from the comparison study. Filtering 11 

rules were devised following the ECMWF criteria used to screen TBHT (Table 3). Common 12 

filters were also applied to measured and modelled TBs. 13 

 The filters applied in TBHT corresponding to the water content in snow cover (snow water 14 

equivalent) and the criterion on ERA-Interim's 2 m air temperature aim to discard frozen 15 

soils, which might affect the SM retrieval (Dente et al., 2012). The same result was achieved 16 

by filtering TBOR with the 2 m temperature from the forcing (as in the previous case) as well 17 

as with ORCHIDEE's average surface temperature. The first common criterion excludes TBs 18 

higher than 300 K to avoid effects of RFIs, which can result in overestimated brightness 19 

temperatures (higher than 1000K). The second common criterion aims at removing points 20 

which might be influenced by coastal or topographic effects, as does H-TESSEL's orography 21 

(slope) criterion too. The mask was built using the L2 SMOS product. Any pixel with no 22 

surface soil moisture data retrieved, together with the 24 pixels surrounding it, was excluded 23 

from the comparison. 24 

3.2 Comparison analyses 25 

3.2.1 Spatio-temporal correlation 26 

The first diagnostic performed to compare measured and modelled TBs consisted in temporal 27 

and spatial correlation analyses. Our aim is to study the similarity between the spatio-28 

temporal patterns. We used the Pearson product-moment correlation coefficient. Only values 29 
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statistically significant at the 95% level are considered. An averaging window of 5 days is 1 

applied for the spatial correlation analysis to ensure the highest coverage possible. 2 

Even though the correlation coefficient is a widely used statistical tool, it may not be suitable 3 

when analysing certain fields. For instance, Polcher et al. (2015) showed that temporal 4 

correlation measured between remotely sensed, in-situ, and modelled SSM, is mainly driven 5 

by the high frequency behaviour of SSM. Therefore, this diagnostic is not very sensitive to 6 

the slower variations of the field studied. Performing the correlation analyses allowed us to 7 

study if this conclusion also applies to TBs.  8 

3.2.2 Empirical Orthogonal Function 9 

The Empirical Orthogonal Function (EOF) analysis extracts the dominant spatial and 10 

temporal modes of variability of a field. It relates the spatial patterns of each variation mode 11 

with a time series and its explained variance. We will refer to the time series of each variation 12 

mode as the Expansion Coefficients (ECs). They provide information about the spatial 13 

pattern's temporal evolution. Positive values of ECs imply that there is no sign change in the 14 

patterns. The EOF methodology is detailed in Björnsson and Venegas, (1997) for instance. 15 

We apply the EOF analysis to the error between measured and modelled TBs, to characterize 16 

it spatially and temporally. Identifying the main modes of variability of an error field allows 17 

to propose and test hypotheses about its causes. We will follow this approach to analyse the 18 

impact of forcing biases on modelled TBs. Other studies have also applied this methodology 19 

to error analysis. For example, Kanamitsu et al. (2010) analyze the impact of a regional model 20 

error on the inter-annual variability of a set of analysis fields. 21 

4 Results 22 

The temporal evolution and spatial structures of measured and modelled TBs are analysed in 23 

this section. This study follows the comparison between modelled and retrieved SSM 24 

(Polcher et al., 2015) and attempts to elucidate if the difference found can be attributed either 25 

to the retrieval algorithm, which converts TBs into estimated SSM, or its modelled 26 

counterpart. 27 

4.1 Comparison of modelled and measured TBs 28 

The mean temporal and spatial correlations between measured and modelled TBs, over the IP 29 

from 2010 to 2012, are shown in Table 4. Values from the SSM comparison performed by 30 
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Polcher et al. (2015) are also included. The differences between spatial and temporal 1 

correlation are already apparent and warrant separate analyses as a first step. 2 

4.1.1 Temporal correlation 3 

Fig. 1 shows the temporal correlation between measured and modelled daily TBs for the 4 

horizontal and vertical polarizations. Both polarizations show a good agreement between 5 

models and observations in their temporal evolution, with values above 0.7 over a large part 6 

of the IP. This can be explained by the strong annual cycle imposed by the surface 7 

temperature, but more important are the quick responses of temperature and emissivity to 8 

precipitation events, which drive TB's fast variations and correspond to the synoptic 9 

variability of the signal. The high correlations indicate that it is well captured by both models. 10 

Most of the areas with lower correlations correspond to mountain ranges. Relief effects on 11 

MW radiometry over land (Mätzler and Standley, 2000) are a difficult remote sensing 12 

problem and thus, discrepancies are expected. In fact, the lowest correlations (0.3 to 0.6) 13 

appear over some areas of the Pyrenees. Other examples are the Iberian System and the 14 

Cantabrian Mountains, located over the North-Eastern and the Northern regions of the 15 

peninsula, respectively. 16 

There are no large differences between the temporal correlation maps of TBOR and TBHT with 17 

TBSM (Fig. 1). Since the same forcing was used, the two LSMs share the same synoptic 18 

variability from the ERA-Interim reanalysis. However, Fig. 1 shows that the synoptic 19 

variability of H-TESSEL leads to slightly higher correlation values than ORCHIDEE's, 20 

especially over the northern part of the IP. 21 

4.1.2 Spatial correlation 22 

For clarity, the 5 daily spatial correlations are averaged per season and the distribution of 23 

values obtained is represented in a boxplot form in Fig. 2. In general, the correlation is poor 24 

throughout the year. Although maxima are around 0.6, the annual mean ranges between 0.2 25 

and 0.3 (Table 4). This implies that the spatial structures from both modelled TBs are not 26 

consistent with those observed by SMOS. We would like to point out the seasonality in the 27 

correlation. The lowest correlations occur during winter, where even negative values are 28 

obtained. These improve during spring and summer, and weaken again in fall. Moreover, 29 

winter and fall generally show larger ranges of variability and thus, a wider dispersion of the 30 

data than spring and summer. Fig. 2 also shows that the vertical polarization has 31 
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systematically higher mean correlations than the horizontal one, except for the winter season. 1 

Finally, there is no significant difference in the correlation of TBSM with either modelled TB 2 

as has already been noted for the temporal correlation. 3 

4.2 Spatial and temporal characterization of the TB error 4 

The spatio-temporal variability of the error between modelled and measured TBs is studied to 5 

better understand the poor consistency of their spatial structures. We want to analyse if this 6 

difference can be related to some physical process which might be incorrectly represented in 7 

both models. For this, an EOF analysis of the TB errors (TBOR - TBSM and TBHT - TBSM) is 8 

carried out. 9 

4.2.1 TB error 10 

Spatial patterns 11 

Fig. 3 shows the spatial patterns of the first two EOF variation modes correspondent to the TB 12 

error of ORCHIDEE (TBOR – TBSM), for the horizontal and the vertical polarizations. The 13 

variance explained by each mode is also provided as a percentage in brackets. The total 14 

variance explained by the patterns of the first variation mode is above 30% in both 15 

polarizations: 36% (horizontal) and 31% (vertical). These two patterns show a similar 16 

structure characterised by high values over the South-West and a smaller area further North of 17 

the IP, which weaken as they extend through the rest of the peninsula. This similarity is 18 

confirmed by their high spatial correlation, which is 0.99 (Table 5). The second variation 19 

mode exhibits a structure that is also maximum over the South-West of the IP in both 20 

polarizations. However, the total variance explained is reduced to 6% and 7% (horizontal and 21 

vertical polarization, respectively). 22 

Fig. 4 is equivalent to Fig. 3 but presents the TB error of H-TESSEL (TBHT – TBSM). The 23 

variance fractions explained by the first EOF mode are 30% and 18% for the horizontal and 24 

vertical polarization, which are lower than those obtained for the TB error of ORCHIDEE. As 25 

in Fig. 3, the first variation modes show similar spatial structures, which are highly spatially 26 

correlated (0.86, Table 5). It is interesting to note that this structure coincides with the one 27 

identified for the TB error of ORCHIDEE (Fig. 3 a and c). This is confirmed by the high 28 

correlation obtained between the patterns of the two errors: 0.92 and 0.73 for the horizontal 29 

and vertical polarization, respectively (Table 5). The second variation mode of H-TESSEL's 30 
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TB error explains 8% (horizontal polarization) and 12% (vertical polarization). The horizontal 1 

polarization pattern shows that the error is maximum over the South-Western region of the IP, 2 

while the vertical polarization pattern does not show a clear structure. Contrary to the first 3 

variation mode, patterns from the second one show larger differences with the patterns 4 

depicted by the TB error of ORCHIDEE. 5 

Expansion coefficients 6 

Fig. 5 shows the ECs of the first EOF variation mode of both TB errors. Therefore, the 7 

projection of the error time series on the EOF pattern, summarizing how much the error field 8 

varies according to the pattern. 9 

The four series show a strong annual variation which peaks in fall. High values are also 10 

observed in December 2012 and during the winter 2010 - 2011. It should be noted that the 11 

behaviour of the ECs coincides with the marked seasonality shown in Fig. 2 and thus, 12 

reinforces our observation that modelled TB patterns have their strongest disagreement with 13 

SMOS measurements in fall and winter. The ECs of the second EOF variation mode of each 14 

TB error have not been included in Fig. 5, because the spatial patterns of each error differ 15 

between them. Nevertheless, it is important to note that they show variations at higher 16 

frequency than those from the first mode. 17 

Two conclusions can be drawn from these results: 18 

First, the largest spatially coherent error identified in Fig. 3 and 4 (a and c) is dominated by 19 

the slow varying component of the TB signals, which is driven by the annual cycle. At first 20 

sight, this might seem to contradict the temporal correlation analysis (Fig. 1). However, it 21 

evidences that the slow (annual cycle) and fast (synoptic variability) components of TBs show 22 

different behaviours. In addition, it confirms our hypothesis that the temporal correlation of 23 

TB is driven by its synoptic variability, as demonstrated in the SSM comparison performed by 24 

Polcher et al. (2015). 25 

Second, modelled TBs are warmer than measured ones over South-Western IP during fall and 26 

winter, as revealed by the first EOF patterns and their oscillations (Fig. 3 to 5). To further 27 

analyze this result, we looked at ECMWF's mean first guess departure from the months of 28 

November 2010 to 2012. This diagnostic consists of the time averaged geographical mean of 29 

the difference between SMOS measured TBs and modelled ones using the CMEM and H-30 

TESSEL's surface state variables (Fig. 6). For all three years we see a contrast between the 31 
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error over the North-Western region of the IP (in an orange colour) and over the South-1 

Western region and a smaller area further North (in a blue colour). According to this, 2 

measured TBs are warmer than modelled ones over the North-West of the IP during these 3 

three periods, while modelled TBs are warmer than SMOS's over the South-West of the IP. 4 

This is in good agreement with the behaviour described by the first EOF variation mode of 5 

both TB errors (Fig. 3 and 4, a and c). It should be noted that the mean first guess departure 6 

shows a global bias between the spatial patterns of measured and modelled TBs. However, 7 

only the IP is represented in this figure to show clearly the spatial structures. 8 

To sum up, the EOF analyses of the two TB errors identified a common dominant structure, 9 

which is maximum in the fall and winter seasons, over the South-West of the IP and a smaller 10 

area further North. It represents between 18% and 36% of the error depending on the 11 

modelled TB set considered and its polarization. Moreover, it corresponds well with the 12 

ECMWF mean first guess departure for the 2010-2012 November months. 13 

4.2.2 LST and Precipitation errors 14 

Precipitation and LST data are used to explore possible causes for the difference between 15 

measured and modelled TBs. Errors are calculated with respect to independent datasets. The 16 

dominant error pattern of each variable is computed via EOF analysis and compared with the 17 

dominant pattern of the two TB errors. If similarities can be identified, then possible causal 18 

links between these variables and the TB error can be explored. 19 

The precipitation error was calculated as the difference between the P provided by the ERA-20 

Interim forcing and the E-OBS independent dataset. The LST errors were computed as the 21 

difference between modelled LST (from ORCHIDEE or H-TESSEL) and the EUMETSAT 22 

LandSAF product (http://landsaf.meteo.pt). 23 

Spatial patterns 24 

The first EOF patterns of P and LST errors are represented in Fig. 7, together with their 25 

explained variance. The precipitation error is common to both models as it originates in the 26 

selected forcing. The dominant spatial structure of this error, which represents only 15% of 27 

the total variance, has its maximum in the South-East of the IP and is different from the one 28 

found for TB. The error patterns from LST differ remarkably between the two models and do 29 

not seem related to the TB error. On the one hand, a North-South gradient is observed in 30 

ORCHIDEE's LST error (Fig. 7 a), which is most likely explained by forcing induced biases 31 
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due to available energy affecting the LSM simulation. On the other hand, H-TESSEL's LST 1 

error pattern (Fig. 7 c) shows a gradient from East to West. 2 

Expansion coefficients 3 

The ECs correspondent to each of these patterns are presented in Fig. 8. Those for the 4 

precipitation error show a higher frequency variation than those of the LST and TB errors. 5 

ORCHIDEE's LST error behaves as expected from land-surface physics, with a maximum in 6 

summer when the largest amount of energy is absorbed by the surface and thus, small errors 7 

in the energy balance translate into large temperature differences. This is not the case for H-8 

TESSEL's LST error, whose ECs show higher frequency variation with maxima in the fall 9 

season and at the end of the winter in 2011 and 2012.  10 

The dominant modes of variability of P and LST errors show different spatial and temporal 11 

characteristics than the TB error dominant pattern. Neither the spatial structures coincide, nor 12 

their temporal evolution over the 2010 to 2012 period. The TB errors show a strong annual 13 

variation which peaks in fall and winter. The ECs of ORCHIDEE's LST error show a 14 

maximum in summer, while those for H-TESSEL's LST and P errors are characterized by 15 

higher frequency variations.  16 

Therefore, this analysis excludes the hypothesis that biases in precipitation driving the models 17 

or errors in their surface temperature are the direct cause of the inconsistency in TB's spatial 18 

structures. The strong similarities of the TB errors in two quite different LSMs further 19 

strengthens the rejection of this hypothesis. 20 

4.2.3 Analysis of CMEM assumptions 21 

The CMEM is another candidate to explain the TB error since it is also a common element 22 

from both sets of modelled TBs. In fact, modelled TBs have been shown to be more sensitive 23 

to the configuration of the microwave model than to the LSM used (de Rosnay et al., 2009). 24 

As explained in section 2, we performed a sensitivity analysis to test if certain CMEM 25 

parameterizations could explain the differences between measured and modelled TBs. As a 26 

result, three new sets of modelled TBs were estimated: TBHT(VC), TBOR(SD), and TBOR(FW) to 27 

evaluate the role of vegetation, vertical discretization, and the emissivity parameterization 28 

respectively. 29 
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In the first place, TBHT(VC) shows similar mean spatial correlations with TBSM as the ones for 1 

TBHT and TBSM (Table 4). In addition, an EOF analysis of the difference between this new 2 

estimate and observed TBs (figure not included) shows similar spatial patterns as the ones 3 

identified in Fig. 4 (a and c), as well as a good agreement between their ECs. 4 

In the second place, no significant differences were observed between TBOR(SD) and TBOR 5 

when compared to TBSM. For instance, mean spatial correlations computed using TBOR(SD) 6 

and TBSM are 0.22 and 0.33 for the horizontal and vertical polarization, which are similar to 7 

the values obtained for TBOR and TBSM (Table 4). 8 

In the third place, an EOF analysis of the TB error computed using the TBOR(FW) and the TBSM 9 

sets (figure not included), shows a similar dominant structure both in space and time to the 10 

one observed in Fig. 3 (a and c). In addition, similar spatial correlations between TBOR(FW) 11 

and the TBSM to those from TBOR and TBSM are also found (Table 4).  12 

As synthesized in Table 4, in the current state of CMEM the vegetation cover, the number of 13 

soil layers, and the ɛs and Teff parameterizations can be discarded as the dominant factors 14 

responsible for the poor spatial correlation between modelled and SMOS TBs. 15 

4.3 Annual cycle of TBs 16 

The slow varying component of the TB signals is analysed pixel by pixel, because it has been 17 

identified as the driver of the largest spatially coherent error structure between measured and 18 

modelled TBs (Fig. 5). For this matter, the mean annual cycle of each TB signal was 19 

computed for each pixel and then smoothed using a spline filter to remove sub-monthly 20 

fluctuations. The period of study is too short to ensure that a simple annual mean cycle filters 21 

out high frequency variations. In Fig. 9 the normalized amplitudes of the annual TB cycle are 22 

displayed. 23 

The spatial structures shown in SMOS's maps (Fig. 9, c and f) exhibit strong resemblances to 24 

those observed in the first EOF patterns of the TB error (Fig. 3 and 4, a and c). However, this 25 

structure is not found in the maps corresponding to TBOR and TBHT, where there is less 26 

contrast in the spatial distribution of the relative amplitude of the annual cycle. This indicates 27 

that the LSMs combined with CMEM do not reproduce the annual cycle amplitude of TBs 28 

observed by SMOS. 29 
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To further analyse this result, two study areas are defined (Fig.10). The first one is over the 1 

South-Western IP (7.5W : 4W, 40N : 38N) and corresponds to part of the area where the 2 

largest differences in TB’s normalized amplitudes are identified. The second one is the North-3 

Western region (8.25W : 6W, 43N : 41.75N) of the IP and is chosen because it shows similar 4 

annual cycle amplitudes of TB in the two models and SMOS. In addition, the EOF analysis of 5 

the TB error showed opposite behaviours in these areas. 6 

Fig. 10 shows the smoothed annual cycle of the horizontal and vertical polarizations of the TB 7 

signals from both regions. The LST from the LandSAF product as well as those modelled by 8 

ORCHIDEE and H-TESSEL are also displayed because of their direct relation to TBs. The 9 

plots show that the TB's annual cycle behaviour differs between the two regions. Therefore, 10 

the processes responsible for the TB error are probably different in each one of them. 11 

The following results can be extracted from the plot corresponding to the South-Western area 12 

(Fig. 10 a): 13 

In winter the difference between models is small compared to their relative warm bias when 14 

compared to SMOS. In summer the agreement is relatively good with observations laying 15 

within the spread of the models. This explains the result presented above, namely that the 16 

amplitude of the simulated annual cycle is smaller than for the remotely sensed TB. 17 

Examining the LST one can note that the biases are relatively small and ORCHIDEE 18 

generally matches better the LandSAF product, but H-TESSEL shows a larger and more 19 

correct amplitude of the annual cycle. This might explain why this model has the largest 20 

amplitude of TB in both polarisations, indicating that a large fraction of the error on the 21 

annual cycle of TB is caused by the emissivity simulated by CMEM given the surface states 22 

of both LSMs. 23 

Over the North-Western IP SMOS observations are mostly within the uncertainty spanned by 24 

the two models. One notable exception is the summer period for the horizontal polarization 25 

where both models are cooler. Also in this region the amplitude of TB in both polarizations is 26 

larger in H-TESSEL than ORCHIDEE and closer to that measured by SMOS. Again, this can 27 

be related to LST. Although ORCHIDEE has smaller biases, the H-TESSEL amplitude of the 28 

annual cycle is larger and closer to the observed one. 29 

The strong difference in behaviour between the two selected regions in winter explains the 30 

resemblance of the dominant EOF mode in TB errors of both models with the regions of 31 

maximum amplitude of the annual cycle of observed TBs. For both regions, the LST biases of 32 
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the LSMs do not show a clear relation to the simulated TBs. H-TESSEL has the warmest 1 

surface temperatures but the lowest TBs, indicating that its state variables produce a lower 2 

emissivity than ORCHIDEE when processed by CMEM. On the other hand the differences in 3 

annual amplitudes of LST could contribute to those seen for the TB. This is also supported by 4 

the fact that the dominant variation modes of LST errors are not related to those of TBs. This 5 

would indicate that the major contribution to the TB errors found for the models does not 6 

originate in their forcing or their ability to simulate the land surface energy balance and 7 

temperature, but rather in the way CMEM simulates L-band emissivity based on their 8 

description of the surface state. 9 

5 Discussion  10 

This work complements with an analysis of TBs the study by Polcher et al. (2015), which 11 

compared the SSM product of SMOS with ORCHIDEE’s modelled SSM. Both studies 12 

present a spatio-temporal correlation analysis and obtain similar results: a good agreement in 13 

temporal evolutions and a large mismatch between the spatial structures of measured and 14 

modelled SSM and TB. 15 

The temporal correlation between TBOR and TBSM is very similar to that between retrieved 16 

(SMOS) and modelled (ORCHIDEE) SSM (Table 4). In addition, both variables show lower 17 

correlations over mountain ranges. As noted for SSM, the temporal correlation is mainly 18 

driven by its fast varying component and is not very sensitive to the annual cycle (Polcher et 19 

al., 2015). 20 

Spatial correlations are low for both variables, indicating an inconsistency between the spatial 21 

structures of measured and modelled data. Polcher et al. (2015) showed that the spatial 22 

correlation between retrieved and modelled SSM is worse for the SSM’s slow varying 23 

component than for its fast varying component. This can be due to the fact that the largest 24 

spatially coherent error between measured and modelled TBs is dominated by their slow 25 

varying component, as shown in this paper. 26 

The EOF analysis presented here identified a dominant structure over the South-Western IP 27 

using both sets of modelled TBs, which explains a large fraction of the TB error. This 28 

structure differs from the error characterization of the SSM comparison, which showed the 29 

largest discrepancies between modelled and retrieved SSM over the North-Western IP. In 30 

fact, only weak differences were found for SSM over the South-Western region (Polcher et 31 

al., 2015). These results indicate that the transfer functions used by SMOS to derive SSM 32 
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from observed TBs or CMEM, which estimates TBs from modelled SSM (together with other 1 

state variables), play an important role and have to be better understood in order to explain the 2 

differences between the SMOS observations and the simulated surface states. 3 

None of the hypotheses tested to identify a methodological weakness in the forcing of both 4 

LSMs or the configuration of CMEM, which would explain this common error, was 5 

conclusive. The differences in TB between the LSMs and SMOS are noteworthy and we 6 

believe that understanding them should be a priority for the community to achieve a better 7 

usage of these observations. As the LSMs used here are very different in their conception, it is 8 

unlikely that they produce the same systematic SSM bias which would explain the large 9 

discrepancy in the South-West of the IP during winter. On the other hand, processes which 10 

are not represented with enough detail in both schemes could explain the error and need to be 11 

analysed as to their potential to explain the discrepancies. 12 

• In the first place, it is interesting to study the Leaf Area Index (LAI), because it is 13 

linked to the seasonal cycle of vegetation. It may, therefore, reveal some 14 

underestimated effects of vegetation dynamics on modelled TBs, which could be 15 

related, to a certain extent, to the seasonality identified in the dominant structure of the 16 

TB error. In addition, the LAI is a key component in the CMEM parameterization of 17 

τveg. However, the areas of the IP where the TB error is the largest are those of least 18 

vegetation. Therefore, in our opinion, modelled LAI is not likely to be the main cause 19 

of the differences in TB’s spatial structures.   20 

• In second place, assumptions made in the modelling of rainfall interception may also 21 

explain some differences between modelled and measured TBs. In particular, those 22 

shown in Fig. 10 (b) over the North-Western region of the IP. This region is 23 

characterized by an oceanic climate and thus, wet winters and mild summers, with a 24 

high precipitation, and often rainfall occurring as drizzle. Contrary to the Southern 25 

region, there is more vegetation and thus, rainfall interception plays a key role over 26 

this area and may be of interest to revise how this process is modelled. However, the 27 

IP region with strong interception is not the one with the largest TB error. The error 28 

over the South-Western region is larger than over the North-Western region, as shown 29 

by the EOF analysis. 30 

• In third place, the attenuation effect of litter on the soil and its interception of water 31 

could also explain differences obtained between modelled and measured TBs, since it 32 
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is not taken into account by models, but is part of satellite observations. However, we 1 

believe that probably it would not cause an impact structured as the one observed over 2 

the South-Western area of the IP without affecting other regions. Indeed this process 3 

would be strongest in regions with dense vegetation. 4 

• Finally, issues related to the fundamental simplification of subgrid processes in LSMs 5 

may also contribute to the inconsistency between the spatial structures of modelled 6 

and measured TBs. For instance, LSMs do not represent small scale features as open 7 

water in lakes and rivers, swamps, irrigated areas or other water ponded on the surface 8 

and could contribute strongly to L-band emissivity of the surface. Assumptions made 9 

by LSMs could neglect key issues from the small scale which could be carried over to 10 

the large scale of TBs. For the moment, we do not see why these simplifications of 11 

LSMs would have the strongest impact in the South-West of the IP.  12 

Instrumental issues from SMOS could also explain the differences in TB spatial structures, in 13 

case these are not of climatological or geophysical nature. For example, one of the most 14 

important causes of noise in SMOS surface soil moisture is Radio-Frequency Interferences 15 

(RFIs). Daganzo-Eusebio et al. (2013) describe their effect on SMOS data. Some of them are 16 

difficult to detect and thus, RFIs may not be properly filtered out. For instance, Dente et al. 17 

(2012) identified an irregular angular pattern in the TBs affecting data from the L1C product 18 

used to retrieve soil moisture. In their opinion, this was caused by weak RFIs which were not 19 

correctly filtered. Another explanation could be antenna pattern errors, as SMOS TBs 20 

seasonal and latitudinal drifts detailed in Oliva et al. (2013). However, RFIs are not likely to 21 

be the main cause of the differences between measured and modelled TBs, because the main 22 

spatial structure identified in both TB errors is found to be dominated by the brightness 23 

temperature's annual cycle. This suggests that it contains a geophysical signal. 24 

In our opinion, further analyses should be carried out regarding the CMEM assumptions 25 

concerning emissivity. According to Jones et al. (2004), the soil moisture and vegetation 26 

water content have a significant effect on the sensitivity of TB at the top of the atmosphere. 27 

However, they impact microwave emission in different ways. On the one hand, an increase in 28 

soil moisture results in a higher soil dielectric constant (Є) and thus, on lower emissivities. On 29 

the other hand, an increase in the vegetation water content rises the scatter and the absorption, 30 

increasing the emission. The Є is key in the computation of emissivity, while the vegetation 31 

optical depth (τveg) is closely related to the vegetation water content. Both variables are 32 
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modelled in CMEM and the same parameterization has been used to estimate the two sets of 1 

modelled TBs: Wang and Schmugge (1980) for Є and Wigneron et al. (2007) for τveg. 2 

Furthermore, the same parameterization has been used to model the rough surface emissivity 3 

(εr) in both cases: Wigneron et al., 2001. Considering that similar spatial patterns were 4 

obtained for the TB error using two different LSMs, focus should be put on the above 5 

mentioned variables (Є, τveg, and εr) in CMEM. We suggest to prioritize the analysis of the 6 

relation between the vegetation water content and TB because of the role the vegetation 7 

opacity model plays in CMEM’s configuration, as shown in de Rosnay et al. (2009). In 8 

addition, no significant differences were observed between modelled and retrieved SSM over 9 

South-Western IP (Polcher et al. 2015), where the maximum TB error was identified. This 10 

reassures our suggestion of prioritizing τveg with respect to Є, since the latter is directly related 11 

to SSM. 12 

6 Conclusions 13 

TBs of SMOS Level 1C product were compared to two sets of modelled TBs. The latter were 14 

obtained using simulated state variables (from the ORCHIDEE and H-TESSEL LSMs) and a 15 

radiative transfer model, CMEM. The study was carried out over the Iberian Peninsula (IP) 16 

for the period 2010 to 2012. 17 

On the one hand, a temporal correlation analysis between measured and modelled data shows 18 

that there is a good agreement in their temporal evolution. However, this diagnostic is mainly 19 

driven by the TB's signal synoptic variability, as occurs with SSM (Polcher et al., 2015). On 20 

the other hand, a spatial correlation analysis detected a large mismatch between the TB spatial 21 

structures provided by models and observations.  22 

An EOF analysis of the error between modelled and measured TBs suggests that the 23 

inconsistency is not limited to a particular LSM. It is dominated by the TB slow varying 24 

component, peaking in fall and winter. In addition, modelled TBs are larger than SMOS 25 

measurements during these seasons over the dominant error structure detected. This structure 26 

explains between 18% and 36% of the TB error variance, depending on the LSM and 27 

polarization. Therefore, there is a high percentage of the error (between 82% and 64%) that 28 

shows structures which have to be analysed and explained. Since these are not present in both 29 

LSMs, they are of lower priority and have not been approached in this study. 30 

Forcing induced biases are discarded as the main cause of the spatial inconsistency in TBs 31 

after computing the dominant error structures of precipitation and Land Surface Temperature 32 
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(LST). Nevertheless, the degree of accuracy of the forcing cannot be fully established because 1 

of scale issues and the lack of sufficient independent measurements. The difference in TBs' 2 

spatial structures could also be thought of a combination of non linear relations between 3 

errors in precipitation and LST, but this is beyond the scope of this paper. 4 

Assumptions made in certain CMEM parameterizations are also discarded as the main source 5 

of the spatial inconsistency between measured and modelled TBs: the vegetation cover input; 6 

the number of soil layers defined; and some parameterizations to compute the smooth surface 7 

emissivity (Fresnel law and Wilheit (1978)) and the effective temperature (Wigneron et al. 8 

(2001) and the temperature profile). 9 

Previous studies found differences between the spatial structures of modelled and retrieved 10 

SSM (Parrens et al., 2012; Polcher et al., 2015). This paper shows that these structures are not 11 

consistent also when comparing modelled and observed TBs. In addition, this issue is 12 

amplified for the TBs compared to SSM, because the latter are bounded by zero and 13 

saturation. This could explain the generally better spatial correlation for SSM in winter, when 14 

it reaches saturation in large parts of the IP. Although this study is limited to the IP, 15 

differences in spatial structures occur at a global scale. We would like to draw the reader's 16 

attention to the fact that TBs are not only the main input of SMOS soil moisture retrieval 17 

algorithm, but that they are used to retrieve other variables, like vegetation optical depth or 18 

salinity. We believe that analysing the spatial inconsistencies between modelled and measured 19 

TBs is important, as these can affect the estimation of geophysical variables, TB assimilation 20 

in operational models, as well as result in misleading validation studies. Therefore, obtaining 21 

the spatial contrast of measured TBs in models is a challenge which, in our opinion, deserves 22 

a higher priority in the community. 23 
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Table 1. CMEM configuration for the two sets of modelled TBs. 1 

Configuration Parameterization 

ORCHIDEE H-TESSEL 

Physical 
configuration 

Soil dielectric constant Wang and Schmugge (1980) 

Effective temperature Soil temperature 
profile 

Wigneron et al. 
(2001) 

Smooth surface emissivity Wilheit (1978) Fresnel law 

Rough surface emissivity Wigneron et al. (2001) 

Vegetation optical depth Wigneron et al. (2007) 

Atmospheric optical depth Pellarin et al. (2003) 

Temperature of vegetation Surface soil temperature 

Vegetation cover input data Ecoclimap 

Observing 
configuration 

Microwave frequency 1.4Ghz 

Incidence angle 42.5° 40° 

Soil and 
atmospheric level 
configuration 

Number of soil layers* 

(number of layers in the top 5 cm) 

11 

(5) 

3 

(1) 

*Layer depths of ORCHIDEE's hydrological scheme [cm]:  0.099, 0.391, 0.978, 2.151, 4.497, 2 

9.189, 18.570, 37.340, 74.880, 150, and 200 3 

*Layer depths of H-TESSEL's hydrological scheme [cm]:  7, 21, 72, and 189 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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Table 2: Input variables for the CMEM to compute TBs at TOA. 3 

Soil conditions Constant fields Soil texture fraction [%] 

Orography [km] 

Vegetation Constant fields High and low vegetation types 

High and low vegetation fractions 

Water fraction 

Dynamic fields Low vegetation LAI 

Meteorology Dynamic fields Soil moisture profile [m3m-3] 

Soil temperature profile [K] 

Skin temperature [K] 

Snow depth [m] 

Snow density [kgm-3] 

2 m temperature [K] 

 4 

 5 

 6 

 7 

 8 

 9 

 10 



 33

 1 

 2 

Table 3: TB filtering criteria to keep data, applied to the TB signals. 3 

TBOR TBHT All TB signals 

ORCHIDEE's daily average 

surface temperature > 275 K 

Snow water equivalent < 0.01 m Daily TB < 300 K 

ERA-Interim's daily average  

2 m air temperature > 273 K 

ERA-Interim's daily average  

2 m air temperature > 273.5K 

Mask  

(from SMOS's L2 

product) 
Orography (slope) < 0.04 
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Table 4: Mean temporal and spatial correlations for SSM (Polcher et al., accepted) and the 3 

horizontal and vertical polarization of TBs over the Iberian Peninsula from 2010 to 2012. 4 

 Temporal Spatial 

Horizontal Vertical Horizontal Vertical 

TBOR vs. TBSM 0.75 0.76 0.20 0.30 

TBHT vs. TBSM 0.82 0.82 0.24 0.29 

TBHT(VC) vs. TBSM - - 0.17 0.36 

TBOR(SD) vs. TBSM - - 0.22 0.33 

TBOR(FW) vs. TBSM - - 0.20 0.30 

SSMOR vs. SSMSM 0.81 0.28 
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Table 5: Spatial correlation for the first and second variation modes of the EOF analyses 5 

performed for the difference between modelled and measured TBs. TBH and TBV correspond 6 

to the horizontal and vertical polarizations, respectively. 7 

 Mode 1 Mode 2 

TBOR – TBSM (TBH) vs. TBOR – TBSM (TBV) 0.99 0.97 

TBHT – TBSM (TBH) vs. TBHT – TBSM (TBV) 0.86 0.75 

TBOR – TBSM (TBH) vs. TBHT – TBSM (TBH) 0.92 0.69 

TBOR – TBSM (TBV) vs. TBHT – TBSM (TBV) 0.73 0.48 
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Figure 1: Temporal correlation between modelled and measured TBs from 2010 to 2012. 4 

TBH and TBV correspond to the horizontal and vertical polarizations, respectively. 5 
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Figure 2: Boxplot showing the annual cycle of the spatial correlation between modelled and 4 

measured TBs, over the Iberian Peninsula from 2010 to 2012. TBH and TBV correspond to 5 

the horizontal and vertical polarizations, respectively. Values have been grouped per seasons: 6 

winter (DJF), spring (MAM), summer (JJA), and fall (SON). 7 
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Figure 3: Spatial patterns associated with the first two EOF variation modes (P1 and P2) of 4 

the difference between modelled TB (ORCHIDEE) and measured TB (SMOS). TBH and 5 

TBV correspond to the horizontal and vertical polarizations, respectively. The percentage of 6 

variance explained by each mode is included in brackets. 7 
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Figure 4: Spatial patterns associated with the first two EOF variation modes (P1 and P2) of 4 

the difference between modelled TB (H-TESSEL) and measured TB (SMOS). TBH and TBV 5 

correspond to the horizontal and vertical polarizations, respectively. The percentage of 6 

variance explained by each mode is included in brackets. 7 
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Figure 5: Temporal evolution of the expansion coefficients correspondent to the first EOF 4 

variation mode of the TB errors (ORCHIDEE versus SMOS and H-TESSEL versus SMOS) 5 

over the Iberian Peninsula. Values have been normalised using the standardization method. 6 

TBH and TBV correspond to the horizontal and vertical polarizations, respectively. 7 
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Figure 6: ECMWF’s mean first guess departure (observation-model [K]) from the months of 4 

November 2010 to 2012. TBH and TBV correspond to the horizontal and vertical 5 

polarizations, respectively. 6 
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Figure 7: Spatial patterns from the first EOF variation mode of the LST and the precipitation 4 

errors. The percentage of variance explained by each mode is included in brackets. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 



 43

 1 

 2 

 3 

Figure 8: Temporal evolution of the expansion coefficients correspondent to the first EOF 4 

variation mode of the LST and the precipitation errors. As in Fig. 5, values have been 5 

normalised using the standardization method. 6 
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Figure 9: Normalised amplitude of the smoothed annual cycle of modelled and measured 4 

TBs: 
TB

(TB) amplitude
. TBH and TBV correspond to the horizontal and vertical polarizations, 5 

respectively. 6 
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Figure 10: Smoothed annual cycle of TBSM, TBOR, and TBHT, as well as of the LST signals 4 

from ORCHIDEE, H-TESSEL, and LandSAF over a South-Western (a) and North-Western 5 

(b) region of the Iberian Peninsula, from 2010 to 2012. The TBH and TBV correspond to the 6 

horizontal and vertical polarizations, respectively. The regions' location is shown in figure c: 7 

South-West (red) and North-West (blue).  8 


