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Abstract

L-Band radiometry is considered to be one of thatrsaitable techniques to estimate Surface
Soil Moisture (SSM) by means of remote sensinggliriess temperatures are key in this
process, as they are the main input in the retriggarithm which yields SSM estimates. The
work exposed compares brightness temperatures me€aby the SMOS mission to two
different sets of modelled ones, over the Iberianifsula from 2010 to 2012. The latter were
estimated using a radiative transfer model an@ statiables from two land surface models: i)
ORCHIDEE and ii) H-TESSEL. The radiative transfevdal used is the CMEM.

Measured and modelled brightness temperatures shgaod agreement in their temporal
evolution, but their spatial structures are notsistent. An Empirical Orthogonal Function
analysis of the brightness temperature's errortiities a dominant structure over the South-
West of the Iberian Peninsula which evolves duting year and is maximum in fall and
winter. Hypotheses concerning forcing induced lsam®d assumptions made in the radiative

transfer model are analysed to explain this ingtescy, but no candidate is found to be
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responsible for the weak spatial correlations atrttoment. Further hypotheses are proposed

and will be explored in a forthcoming paper.
1 Introduction

The United Nations (UN), the Food and Agricultureg@nization (FAO), and the World
Health Organization (WHO), have reported that watspurces are not being managed in an
optimum way at present. As a result, scarcity, éygi and pollution issues related to
improper water policies are detected. In addititve, world's population is expected to grow
by 2 to 3 billion people over the next 40 yearsoadimg to the UN's World Water
Development Report from 2012 (WWAP, 2012). Thisluehd to a significant increase in

freshwater demand which will likely be affectedthg effect of a changing climate.

To achieve a better management of water resouitess, necessary to improve our
understanding of hydrological processes. In ordata this, the study of Soil Moisture (SM)
is essential. It is defined as the water contentha soil and has a key role on the soil-
atmosphere interface. SM determines whether evaporaver land surfaces occurs at a
potential rate (controlled by atmospheric condgiprr if it is limited by the available
moisture (Milly, 1992). In addition, it influenceseveral processes, like infiltration and
surface temperature, which have an important etiegblant growth and the general state of
the continental surfaces. However, SM is a complarable to model as the interactions
between soils and water are not simple to repre#tisndefinition requires knowledge of soll
hydraulic properties, which are not often availabk direct measurements. Pedo-transfer
functions (Marthews et al., 2014), allow to estienhyydrodynamic characteristics of the soil
from available soil texture and structure inforroati However, the suitability of these
functions is under debate (Baroni et al., 2008)thesr performance depends on several
factors like the climate, geology, and the measergntechniques used. Furthermore,
different hydrological schemes are found in Landf&e Models (LSM), leading to various

ways of understanding and formulating soil moisture

Remotely sensed soil moisture products have broafout new ways to perform data
retrieval, adding new observations to data assiimilachains. The optimal combination of
these products with modelled ones is expected ¢oige better estimates of the true soil
moisture state. Remote sensing allows to estimstdymeans of retrieval algorithms, like
inversion algorithms (Kerr et al., 2012) or neuratworks (Kolassa et al., 2013). Their main

input depends on the type of sensor used. Thibaskscattering for an active sensor and
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Brightness Temperature (TB) for a passive senddrcdrresponds to the radiance emitted by
the Earth at a given wavelength and is the magaitundasured by a radiometer. It is defined
as the physical temperature times the emissivithefsurface.

L-Band radiometry is one of the best methods tomegé soil moisture, due to the relation
between SM and the soil dielectric consta@) (n this wavelength. The latter differs

significantly between a dry soil and water (4 \8, &spectively) and this difference is key to
estimate the soil water content. It should be ndked the retrieved SM corresponds to the
water contained in the first centimetres of thel.sbhe penetration depth in averaged
conditions is about 5 cm (Kerr et al., 2010). Hfere, we will refer to Surface Soil Moisture

(SSM) instead of soil moisture. Some studies, likscorihuela et al. (2010) lower the

penetration depth to 1-2 cm.

In the last decade, three space missions have lbeaohed with L-Band radiometers on-
board: the Soil Moisture and Ocean Salinity (SMQ#8ission (Kerr et al., 2010), the
Aquarius/SAC-D mission (Le Vine et al., 2010), ahe Soil Moisture Active and Passive
(SMAP) mission (Entekhabi et al., 2010).

A large number of validation studies of remotelpsed SSM products have been carried out
(Albergel et al., 2011; Sanchez et al., 2012; Bircét al., 2013). These studies are usually
performed using airborne and or ground-observed daer a well equipped site. Other
studies, like the one described in Gonzalez-Zanatral. (2015), validate SMOS SSM
products using in situ soil moisture measuremetwaorks, which allow to extend the study
period to annual and inter-annual scales. Seveuglies have been performed to validate
brightness temperatures too (Rudiger et al., 204dntzka et al. 2013). In Bircher et al.
(2013) TBs are also validated with network and aine data over a SMOS pixel in the
Skjern river Catchment (Denmark). LSMs coupled smlidtive Transfer Models (RTMs) can
contribute to the analysis and validation of pasdiWicrowave (MW) data. Models permit
extending the validation to a longer period of tiewed perform an extensive analysis of
observed and retrieved data, as shown in Schleat €2012). In this study, they compare
TBs and vegetation optical depth from SMOS with eilmdl ones obtained from a LSM
coupled to a radiative transfer model, over a gedbseven months in 2011 in the Vils test
site (Germany). Comparing modelled with satelliteasured brightness temperatures can
help to better understand inconsistencies betwegreved and modelled data. It provides
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information regarding the origin of their differeas; and whether they are due to the retrieval

algorithm or to issues related to the modellingcpss.

Polcher et al. (2015) present the first comparisiothe spatial patterns of Level 2 (L2) SMOS
product corresponding to retrieved SSM, with SSMilelled by the ORganising Carbon and
Hydrology In Dynamic EcosystEms (ORCHIDEE) LSM (&®snay and Polcher, 1998;
Krinner et al., 2005) over the Iberian PeninsuR) from 2010 to 2012. They have identified
inconsistencies between the spatial structuresetsfeved and modelled SSM. The main
objective of the work presented herein is to extémel analysis of this inconsistency by
comparing brightness temperatures measured by SM@®el 1C, L1C, product) with
modelled ones obtained from the coupling of ORCHI3EState variables and a RTM. In
addition, a second set of modelled TBs using stateéables from the Hydrology — Tiled
ECMWF Scheme for Surface Exchanges over Land (HSHS, is included in the
comparison. The RTM used is the Community Microw&maission Model (CMEM) [de
Rosnay et al., 2009], developed by the Europeantr€eior Medium-Range Weather
Forecasts (ECMWF). The comparison is performed ¢lversame period and region as the
study carried out by Polcher et al. (2015). ThéslBn excellent test case for remote sensing
of SSM, as its two characteristic climate regimeseénic and Mediterranean) result in a
strong contrast in soil water content. Furtherm&®$M is a critical variable regarding water
resources especially in the IP, which makes thidyseven more necessary.

The data from SMOS and the LSMs used in this pajilebe presented in the next section.
Next, a methodology section will follow, describitige data filtering and sampling processes
carried out, together with the analysis perforr@ddmpare TBs. Afterwards, results will be
presented. First, modelled and measured TBs wittdmepared. Secondly, their error will be
characterised spatially and temporally and ceiftgjpotheses to explain the differences found
in the TB comparison will be analysed. Finally, wél study the amplitude of the annual

cycle of the TB signals. The paper will end witkalission and conclusion sections.

2 Data

2.1 SMOS retrievals of TB

The SMOS mission is the second Earth Explorer Qppdy mission from the European
Spatial Agency (ESA). The SMOS satellite was lagacbn November 2nd, 2009. One of its
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main objectives is to provide surface soil moistaver land with a target accuracy of 0.04
m*m’3,

As previously said, TBs are the main input of SM®S0il moisture retrieval algorithm. L-
band brightness temperatures are measured by tl@@SStddiometer at different incidence
angles (from 0 to 65°) and polarizations (H, V, HVhe retrieval algorithm also models TBs
using the state-of-the-art L-band Microwave Emissas the Biosphere (L-MEB) forward
model (Wigneron et al., 2007) with some modificaio These brightness temperatures are
then used to retrieve SSM using an inversion algaribased on an iterative approach. Its
objective is to minimize the sum of the squaredghiad differences between measured and
modelled TBs for all available incidence anglestdie about the retrieval algorithm are
provided in Kerr et al. (2012).

The SMOS L1C v5.05 product over the 10W : 5W to 4586N region was selected and
SMOS TBs at the antenna reference plane were deris are first screened out for Radio-
Frequency Interferences (RFIs) (strong, point sewaned tails), and also for Sun (glint area,
aliases and tails), and Moon (aliases) contaminatiosing the corresponding flags.
lonospheric effects (geometric and Faraday rotaji@me later corrected to obtain TB at the
Top Of the Atmosphere (TOA). TB maps at a consiaoidence angle of 42.5t5° are
obtained through chi squared linear fit of all \eduncluded in the interval 42.5£5°, which is
the methodology used to generate the SMOS L1C lmgwsduct (McMullan et al., 2008).
Finally, these maps are resampled from the Icogah&hyder Equal Area (ISEA) 4H9 grid

to a 0.25° regular latitude-longitude grid, to faiate its manipulation.

The L1C product containing horizontally and vetficgolarized brightness temperatures,
was provided by the SMOS Barcelona Expert CentesmFnow on, this product will be

referred to as T&u.

2.2 Modelled TB: CMEM

The Community Microwave Emission Modelling (CMEM) laHorm,
(https://software.ecmwf.int/wiki/display/LDAS/CMEMJ)eveloped at ECMWEF, is a forward
operator for low frequency passive MW brightnessgeratures of the surface. Its physics is
based on that of the L-MEB forward model and thed_§urface Microwave Emission Model
(LSMEM) [Drusch et al., 2001]. CMEM is charactedzéy its modular structure, which
allows the user to choose among different physomaifigurations to compute TB's key
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parameters. Polarized brightness temperaturesdedvat TOA result from the contribution
of three dielectric layers: atmosphere, soil andetation. Snow, also considered, is
characterized as a single additional homogeneges.la

The two sets of modelled TBs used in this studyewestimated by means of the CMEM
provided with state variables from i) ORCHIDEE, anH-TESSEL simulations. From now
on we will refer to these sets as JBand TByr, respectively. TBr was computed
specifically for this study, while T was provided by the ECMWF to widen the comparison
between measured and modelled data. The CMEM agmatign used to compute each set of
TB is listed in Table 1. The table is divided irttree configuration categories: physical,
observing, and soil and atmospheric levels. Evepugh both sets have similar
configurations, there are some differences whieheaplained below.

First, the “Physical configuration” of Tdk was selected to be as similar as possible tor.TB
However, they differ in the parameterization usedampute the smooth surface emissivity
(es). For TByr the reflectivity of the flat soil surface was comgd following the Fresnel law
(Ulaby et al., 1986), so it is expressed as a fanodf the soil dielectric constant and the
observation incidence angle. This formulation cdess the emission at the soil interface. As
it is simple and affordable in computing time itaemmonly used for microwave emission
modelling and soil moisture retrieval, as well asdperational applications (e.g. Wigneron et
al., 2007, de Rosnay et al., 2009). It assumes@iod soil moisture sampling depth, which
in this study corresponds to the first soil laydrtioe land surface model (7cm for H-
TESSEL). For TBg, the multilayered soil hydrology of ORCHIDEE allswo take into
account the soil moisture profile and the resultrajume scattering effects on the soaill
emission. Therefore the reflectivity of the flatilssurface was computed using the
parameterization proposed by Wilheit (1978). Th&edent parameterizations chosen to
calculatees lead to another variation between the CMEM comfgjons. Ifes is computed
using Wilheit (1978), the soil temperature profie used to compute the Effective
Temperature (&). On the contrary, if the Fresnel law is used, wker can choose among

different parameterizations to computg.TFor TByr, Wigneron et al. (2001) was selected.

Second, the “Observing configuration” considerdedént incidence angles for each set.
Although the available T& were modelled considering an angle of 40°, 42.88% wsed to
model TByr, because measured TBs were provided at this angle.
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Third, a different number of soil layers was definr the “Soil and atmospheric level
configuration™ 11 (TBgr) and 3 (TBi). ORCHIDEE's soil discretization is finer. For
instance, its first layer's depth is of the ordérnallimetres, while H-TESSEL's is of

centimetres. In order to evaluate the role of thikerences in the vertical discretization and

the LSMs, we performed a sensitivity analysis dsitésl in the next paragraph.

In addition to the CMEM simulations performed to deb TBor and TByr using the

configurations indicated in Table 1, the followisgnulations were carried out to test if

parameterization assumptions could affect the tiegul Bs:

Simulation 1: TBrvc), where the subscript “VC” stands for “Vegetatioover”.

Vegetation cover is a key input. Since this paramistdirectly related to land-surface
emissivity, the effects of a different vegetatiaover were tested on TB. For this
matter, a new set of TBs was modelled using H-THSSEtate variables with the
same configuration as detailed in Table 1, exceptife vegetation cover input, where
H-TESSEL's prescribed vegetation (Boussetta eP@l3) was considered. One of the
differences between this input and the ECOCLIMARabase (used in the original
configuration), is that the former consists of 2€getation types, while the latter
considers 7.

Simulation 2: TBg(spy Where the subscript “SD” stands for “Soil Disazation”,

The impact of a coarser soil discretization on nllede TBs was tested by
recomputing TBr using ORCHIDEE's state variables averaged to I3as@rs: upper

(9 cm), medium (66 cm), and lower (125 cm).
Simulation 3: TBrEw), Where the subscript “FW” stands for “Fresnel Wigim”.

We tested the combined effect of using the Frelswelto computes, rather than the
parameterization proposed by Wilheit (1978), andcuating Te using the
methodology proposed by Wigneron (2001) insteaith@foil temperature profile. For
this, TBs were simulated using ORCHIDEE's statéatées.

The input variables required by the CMEM to modBisTare summarized in Table 2. They

are classified into dynamic and constant fields emakist of meteorological data, vegetation

characteristics and soil conditions.
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2.2.1 The ORCHIDEE and H-TESSEL Land Surface Models

The ORCHIDEE LSM (de Rosnay and Polcher, 1998; iiret al., 2005) was developed by
the Institut Pierre — Simon Laplace (IPSL). It cerun coupled with the general circulation
model LMDZ, which was developed by the LaborataieeMétéorologie Dynamique (LMD),
or in stand-alone mode. Uncoupled simulations wareed out for this study.

The hydrological scheme used by ORCHIDEE approablgdsology through the resolution
of a diffusive equation with a multilayer schemer Ehis, the Fokker-Planck equation is
solved over a soil 2 m deep with an 11 layer distaidon. The layers' depths are informed in
Table 1. The lower boundary condition is free dag®, under the hypothesis that the water
content gradient between the last modelled laydrthe next one (not modelled) is zero. The
upper boundary condition sets the bare soil evaiporas the maximum upward hydrological

flux which is permitted by diffusion if it is lowehan potential evaporation

The multilayer scheme considers a sub-grid vaitgoff soil moisture, which together with
the fine soil discretization improves the repreagan of infiltration processes. The soil
infiltration follows the Green-Ampt equation (Greemd Ampt, 1911) to represent the
evolution in time of the wetting front through tkeil layers. It should be noted that partial re-
infiltration occurs from surface runoff if the Idcslope of the grid-cell i50.5% (D’Orgeval

et al., 2008). Each grid box has a unique soiluextnd structure (Post and Zobler, 2000),
but three different soil columns are consideredcheane with its own soil moisture
discretization and root profile. These are clasdifas: bare soil, low and high vegetation
regrouping the 13 Plant Functional Types (PFT) rafi in ORCHIDEE. These PFTs
contribute to the soil layers of each grouping at density to compute extraction and soll
moisture stress to the plants. The water balans®lised for each soil column resulting in

three different soil moisture profiles in each doiuk.

ORCHIDEE's soil temperature profile is calculatemlviig the heat diffusion equation.
Contrary to the hydrological scheme, it considers layer discretization, where the layers'
thicknesses follow a geometric series of ratio r] a total soil depth of 5.5 m (Hourdin,
1992; Wang et al., 2016). For this study, the f2stn of the temperature profile were
calculated following the same soil discretizatiathe one considered in the soil moisture
calculation. The energy balance takes into accthenskin temperature as presented in Schulz
et al. (2001) to derive the Land Surface Tempeea(lwST). The soil and vegetation are

considered as a single medium assigned with acitéanperature (Santaren et al., 2007).

8
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The H-TESSEL LSM (Balsamo et al., 2009), develofwdthe ECMWF, revises and
improves certain aspects regarding the soil hydnsolof the TESSEL model. Its hydrology
scheme solves a diffusive equation over a multilssgheme with a 4 layer discretization.
Layer depths follow an approximate geometric rela{iTable 1). In addition, the soil can be
covered by a single snow layer. H-TESSEL consitleessame lower boundary condition as
ORCHIDEE. However, it differs in the upper one thatounts also for infiltration. It defines
a maximum infiltration rate given by the maximumwehavard diffusion from the saturated
surface. Once this rate is exceeded by the waterédt the surface, the excess of water is

derived to surface runoff.

The model considers six types of tiles over lararebsoil, low and high vegetation, water
intercepted by leaves, as well as shaded and exmos®v. Each one of these has its own
energy and water balance. However, only one soiktm@ reservoir is considered. Recent
improvements have replaced a globally uniform ggk (loamy) by a spatially varying one

(coarse, medium, medium-fine, fine, very fine, oiga Surface runoff, based on variable

infiltration capacity, was also a recent improvemen

H-TESSEL's soil temperature profile is computedhgshe same soil discretization as the one
defined in its hydrological scheme. The soil heatiget follows a Fourier diffusion law,
which has been modified to consider also thermfaces caused by changes in the soil water
phases (Holmes et al., 2012). To simulate the &53kin layer is defined representing i) the
layer of vegetation, ii) the top layer of bare sot iii) the top layer of the snow pack. The

surface energy balance equation is then lineafaeehch tile (Viterbo and Beljaars, 1995).

Both LSMs are forced with the ERA-Interim forcinQde et al. 2011), which is suitable for
this study because it ranges from 1979 to 2012recent data were needed to perform the
comparison with SMOS's. We are aware that bias#sisrkind of forcings have an effect on
the LSMs simulations (Ngo-Duc et al., 2005). ORCHBwas configured to output hourly
TB values. However, TR is only available at 6 hourly time steps (at 06, 02, and 18
hours). Due to this difference, each set of modellBs was sampled in a different way to
approximate TBy measurement times. The sampling processes wiixptined in Section

3.

The above paragraphs show that the hydrology,psodesses and land surface temperatures
are approached very differently by both models.réfuge, the impact of these differences

needs to be considered when comparing simulated TBs



o 01~ WO DN PP

\]

10
11

12
13
14
15
16

17

18

19

20

21

22

23
24
25
26
27

2.3 Precipitation and Land Surface Temperature

One important common feature of the presented msidellations is the forcing data. Since
biases in the imposed atmospheric conditions céettamodelled TBs, it was decided to
validate two important variables for which independobservations exist. Focus was put on
Precipitation (P) and the Land Surface Temperatiugd), as they are key variables for the

water and radiative balances.

P is the main driver of SSM, and this directly égvthe L-Band emissivity. According to
Zollina et al. (2004), P generated by a reanalflgie ERA-Interim which is used here) is
highly model dependent and one of the less relitdskecast parameters since models do not
represent accurately all the physical processdlseoatmospheric water cycle. Therefore, the
verification of this forcing variable of the LSMgtlvindependent data is essential.

As for the radiative balance, the available enexigthe surface is one of the major drivers of
LST. We chose to verify this variable in this stuidy two reasons. First, it provides a good
summary of the surface energy balance. Seconsl aitkey parameter in CMEM's estimation
of TB. Therefore, its analysis will indicate whetltbe LSM thermodynamics shows biases

with spatio-temporal characteristics similar tosadrom TBs.
The independent datasets used for validation are:
« P from the E-OBS dataset (Haylock et al., 2008),

e LST provided by the LandSAF product (http:// larfds@teo.pt).

3 Methods

3.1 Data sampling and filtering processes

To compare modelled and measured brightness tetapesaTBr and TByr were sampled
with TBsy and remapped to the nearest neighbour of the S§HASThis allows to keep the
spatial structures of the coarse model resolufdext, the three TB signals were filtered to
exclude certain situations, such as frozen soilkbrs, which are known to make SSM

estimates unreliable.

10
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3.1.1 Sampling

The objective of sampling the data is to use onbdelled TBs corresponding to available
measured values. BB were sampled at an hourly scale. HoweveryT&nsists of 6 hourly
values, thus potentially resulting in a large numbg neglected data because jFBand
SMOS time steps did not always correspond. ThesefbByt were sampled considering a 3
hour window around the observation in order to kadgrger number of modelled data for the
comparison. To test the impact of this approxinmgtiwe also applied it to the BB and
compared it to the original hourly data. Differesdsetween them were under 0.1% for the

diagnostics used here, and thus, it was consideried negligible.

3.1.2 Filtering

Data was filtered to discard unreasonable TB vafue® the comparison study. Filtering
rules were devised following the ECMWEF criteria dige screen TBr (Table 3). Common
filters were also applied to measured and moddisl

The filters applied in TBr corresponding to the water content in snow cosapy water
equivalent) and the criterion on ERA-Interim's 2ain temperature aim to discard frozen
soils, which might affect the SM retrieval (Denteaké, 2012). The same result was achieved
by filtering TBor with the 2 m temperature from the forcing (ashe previous case) as well
as with ORCHIDEE's average surface temperature fifstecommon criterion excludes TBs
higher than 300 K to avoid effects of RFIs, whidmncesult in overestimated brightness
temperatures (higher than 1000K). The second comonibgrion aims at removing points
which might be influenced by coastal or topograpgffects, as does H-TESSEL's orography
(slope) criterion too. The mask was built using 2 SMOS product. Any pixel with no
surface soil moisture data retrieved, together with 24 pixels surrounding it, was excluded

from the comparison.

3.2 Comparison analyses

3.2.1 Spatio-temporal correlation

The first diagnostic performed to compare measaretdmodelled TBs consisted in temporal
and spatial correlation analyses. Our aim is talystthe similarity between the spatio-
temporal patterns. We used the Pearson product-mtocoerelation coefficient. Only values

11
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statistically significant at the 95% level are ddesed. An averaging window of 5 days is

applied for the spatial correlation analysis toueaghe highest coverage possible.

Even though the correlation coefficient is a widesed statistical tool, it may not be suitable
when analysing certain fields. For instance, Poalobieal. (2015) showed that temporal
correlation measured between remotely sensediunaid modelled SSM, is mainly driven
by the high frequency behaviour of SSM. Therefdings diagnostic is not very sensitive to
the slower variations of the field studied. Perforgnthe correlation analyses allowed us to

study if this conclusion also applies to TBs.

3.2.2 Empirical Orthogonal Function

The Empirical Orthogonal Function (EOF) analysistrasts the dominant spatial and
temporal modes of variability of a field. It relatéhe spatial patterns of each variation mode
with a time series and its explained variance. WWkrefer to the time series of each variation
mode as the Expansion Coefficients (ECs). They igeownformation about the spatial
pattern’'s temporal evolution. Positive values okE@ply that there is no sign change in the

patterns. The EOF methodology is detailed in Bjgonsand Venegas, (1997) for instance.

We apply the EOF analysis to the error between mredsand modelled TBs, to characterize
it spatially and temporally. Identifying the mairodes of variability of an error field allows
to propose and test hypotheses about its causesvilellow this approach to analyse the
impact of forcing biases on modelled TBs. Othedigs have also applied this methodology
to error analysis. For example, Kanamitsu et &l1() analyze the impact of a regional model

error on the inter-annual variability of a set akgysis fields.
4 Results

The temporal evolution and spatial structures odsneed and modelled TBs are analysed in
this section. This study follows the comparisonwaein modelled and retrieved SSM
(Polcher et al., 2015) and attempts to elucidatkafdifference found can be attributed either
to the retrieval algorithm, which converts TBs in&stimated SSM, or its modelled

counterpart.

4.1 Comparison of modelled and measured TBs

The mean temporal and spatial correlations betwesasured and modelled TBs, over the IP

from 2010 to 2012, are shown in Table 4. Valuesnfthe SSM comparison performed by

12
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Polcher et al. (2015) are also included. The difiees between spatial and temporal

correlation are already apparent and warrant separalyses as a first step.

4.1.1 Temporal correlation

Fig. 1 shows the temporal correlation between nredsand modelled daily TBs for the
horizontal and vertical polarizations. Both polatisns show a good agreement between
models and observations in their temporal evolytwith values above 0.7 over a large part
of the IP. This can be explained by the strong ahraycle imposed by the surface
temperature, but more important are the quick nesp® of temperature and emissivity to
precipitation events, which drive TB's fast vaoas and correspond to the synoptic
variability of the signal. The high correlationslicate that it is well captured by both models.
Most of the areas with lower correlations corregsptm mountain ranges. Relief effects on
MW radiometry over land (Matzler and Standley, 20@0e a difficult remote sensing
problem and thus, discrepancies are expected.chn tlae lowest correlations (0.3 to 0.6)
appear over some areas of the Pyrenees. Other s the Iberian System and the
Cantabrian Mountains, located over the North-East@nd the Northern regions of the

peninsula, respectively.

There are no large differences between the temporatlation maps of Tg and TByr with

TBsw (Fig. 1). Since the same forcing was used, the 8Ms share the same synoptic
variability from the ERA-Interim reanalysis. HoweyeFig. 1 shows that the synoptic
variability of H-TESSEL leads to slightly higher reelation values than ORCHIDEE's,

especially over the northern part of the IP.

4.1.2 Spatial correlation

For clarity, the 5 daily spatial correlations arer@ged per season and the distribution of
values obtained is represented in a boxplot forrRig 2. In general, the correlation is poor
throughout the year. Although maxima are around thé annual mean ranges between 0.2
and 0.3 (Table 4). This implies that the spatialcttres from both modelled TBs are not
consistent with those observed by SMOS. We wolke 10 point out the seasonality in the
correlation. The lowest correlations occur duringnter, where even negative values are
obtained. These improve during spring and summmad, \@eaken again in fall. Moreover,
winter and fall generally show larger ranges ofiataility and thus, a wider dispersion of the

data than spring and summer. Fig. 2 also shows that vertical polarization has
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systematically higher mean correlations than th#&zbotal one, except for the winter season.
Finally, there is no significant difference in tberrelation of Ty with either modelled TB
as has already been noted for the temporal caoelat

4.2 Spatial and temporal characterization of the TB error

The spatio-temporal variability of the error betwarodelled and measured TBs is studied to
better understand the poor consistency of theitigpstructures. We want to analyse if this

difference can be related to some physical proagssh might be incorrectly represented in

both models. For this, an EOF analysis of the Ti®rer(TBor - TBsy and TByr - TBsy) is

carried out.

4.2.1 TB error
Soatial patterns

Fig. 3 shows the spatial patterns of the first B@F variation modes correspondent to the TB
error of ORCHIDEE (TBr — TBsy), for the horizontal and the vertical polarizasomhe
variance explained by each mode is also providea @ercentage in brackets. The total
variance explained by the patterns of the firstiateom mode is above 30% in both
polarizations: 36% (horizontal) and 31% (verticalhese two patterns show a similar
structure characterised by high values over thétSdlest and a smaller area further North of
the IP, which weaken as they extend through the okshe peninsula. This similarity is
confirmed by their high spatial correlation, whish0.99 (Table 5). The second variation
mode exhibits a structure that is also maximum dber South-West of the IP in both
polarizations. However, the total variance expldireereduced to 6% and 7% (horizontal and

vertical polarization, respectively).

Fig. 4 is equivalent to Fig. 3 but presents the &Br of H-TESSEL (TBr — TBsy). The
variance fractions explained by the first EOF made 30% and 18% for the horizontal and
vertical polarization, which are lower than thos¢ained for the TB error of ORCHIDEE. As
in Fig. 3, the first variation modes show similgasal structures, which are highly spatially
correlated (0.86, Table 5). It is interesting tdenthat this structure coincides with the one
identified for the TB error of ORCHIDEE (Fig. 3 adhc). This is confirmed by the high
correlation obtained between the patterns of the éwors: 0.92 and 0.73 for the horizontal

and vertical polarization, respectively (Table Bhe second variation mode of H-TESSEL's
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TB error explains 8% (horizontal polarization) a6 (vertical polarization). The horizontal

polarization pattern shows that the error is maxmayer the South-Western region of the IP,
while the vertical polarization pattern does nobvwsha clear structure. Contrary to the first
variation mode, patterns from the second one shaget differences with the patterns
depicted by the TB error of ORCHIDEE.

Expansion coefficients

Fig. 5 shows the ECs of the first EOF variation enad both TB errors. Therefore, the
projection of the error time series on the EOFgrattsummarizing how much the error field

varies according to the pattern.

The four series show a strong annual variation whpeaks in fall. High values are also
observed in December 2012 and during the winte0202011. It should be noted that the
behaviour of the ECs coincides with the marked @eafy shown in Fig. 2 and thus,

reinforces our observation that modelled TB pa#idrave their strongest disagreement with
SMOS measurements in fall and winter. The ECs efsécond EOF variation mode of each
TB error have not been included in Fig. 5, becatsespatial patterns of each error differ
between them. Nevertheless, it is important to rtbeg they show variations at higher

frequency than those from the first mode.
Two conclusions can be drawn from these results:

First, the largest spatially coherent error idesdifin Fig. 3 and 4 (a and c) is dominated by
the slow varying component of the TB signals, whiehiriven by the annual cycle. At first
sight, this might seem to contradict the tempo@taiation analysis (Fig. 1). However, it
evidences that the slow (annual cycle) and fastq(gtyc variability) components of TBs show
different behaviours. In addition, it confirms duypothesis that the temporal correlation of
TB is driven by its synoptic variability, as demtmased in the SSM comparison performed by
Polcher et al. (2015).

Second, modelled TBs are warmer than measuredaweesSouth-Western IP during fall and
winter, as revealed by the first EOF patterns dmair toscillations (Fig. 3 to 5). To further
analyze this result, we looked at ECMWF's meart fitgess departure from the months of
November 2010 to 2012. This diagnostic consisttheftime averaged geographical mean of
the difference between SMOS measured TBs and neadeles using the CMEM and H-
TESSEL's surface state variables (Fig. 6). Fothae years we see a contrast between the
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error over the North-Western region of the IP (m @ange colour) and over the South-
Western region and a smaller area further North&(iblue colour). According to this,
measured TBs are warmer than modelled ones oveNdhnin-West of the IP during these
three periods, while modelled TBs are warmer th®lOS's over the South-West of the IP.
This is in good agreement with the behaviour describy the first EOF variation mode of
both TB errors (Fig. 3 and 4, a and c). It showdnbted that the mean first guess departure
shows a global bias between the spatial pattermaezfsured and modelled TBs. However,

only the IP is represented in this figure to shdsady the spatial structures.

To sum up, the EOF analyses of the two TB erroestiled a common dominant structure,

which is maximum in the fall and winter seasonerdhe South-West of the IP and a smaller
area further North. It represents between 18% abfb ®f the error depending on the

modelled TB set considered and its polarization.réddger, it corresponds well with the

ECMWEF mean first guess departure for the 2010-20d2ember months.

4.2.2 LST and Precipitation errors

Precipitation and LST data are used to explore iplessauses for the difference between
measured and modelled TBs. Errors are calculatéd respect to independent datasets. The
dominant error pattern of each variable is computadEOF analysis and compared with the
dominant pattern of the two TB errors. If similee# can be identified, then possible causal

links between these variables and the TB erroheaaxplored.

The precipitation error was calculated as the difiee between the P provided by the ERA-
Interim forcing and the E-OBS independent dataEbé LST errors were computed as the
difference between modelled LST (from ORCHIDEE oiTBSSEL) and the EUMETSAT
LandSAF product (http://landsaf.meteo.pt).

Soatial patterns

The first EOF patterns of P and LST errors areesgmted in Fig. 7, together with their
explained variance. The precipitation error is camnnio both models as it originates in the
selected forcing. The dominant spatial structuréhef error, which represents only 15% of
the total variance, has its maximum in the SoutstiBathe IP and is different from the one
found for TB. The error patterns from LST diffenrarkably between the two models and do
not seem related to the TB error. On the one handprth-South gradient is observed in
ORCHIDEE's LST error (Fig. 7 a), which is most likexplained by forcing induced biases
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due to available energy affecting the LSM simulatiOn the other hand, H-TESSEL's LST
error pattern (Fig. 7 ¢) shows a gradient from EadVest.

Expansion coefficients

The ECs correspondent to each of these patterngrasented in Fig. 8. Those for the
precipitation error show a higher frequency vaoiatthan those of the LST and TB errors.
ORCHIDEE's LST error behaves as expected from famthce physics, with a maximum in
summer when the largest amount of energy is abddrpdehe surface and thus, small errors
in the energy balance translate into large temperatifferences. This is not the case for H-
TESSEL's LST error, whose ECs show higher frequarariation with maxima in the fall
season and at the end of the winter in 2011 and.201

The dominant modes of variability of P and LST esrshow different spatial and temporal
characteristics than the TB error dominant pattNeither the spatial structures coincide, nor
their temporal evolution over the 2010 to 2012 @eriThe TB errors show a strong annual
variation which peaks in fall and winter. The ECs @RCHIDEE's LST error show a

maximum in summer, while those for H-TESSEL's LSW & errors are characterized by

higher frequency variations.

Therefore, this analysis excludes the hypothesishiases in precipitation driving the models
or errors in their surface temperature are thecticause of the inconsistency in TB's spatial
structures. The strong similarities of the TB esran two quite different LSMs further

strengthens the rejection of this hypothesis.

4.2.3 Analysis of CMEM assumptions

The CMEM is another candidate to explain the TBregince it is also a common element
from both sets of modelled TBs. In fact, modelldgasThave been shown to be more sensitive

to the configuration of the microwave model thath® LSM used (de Rosnay et al., 2009).

As explained in section 2, we performed a sensjti@nalysis to test if certain CMEM
parameterizations could explain the differencesvbeh measured and modelled TBs. As a
result, three new sets of modelled TBs were estithalByr(vc), TBorspy and TBrEw) to
evaluate the role of vegetation, vertical discadtan, and the emissivity parameterization

respectively.
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In the first place, TBrwc) shows similar mean spatial correlations withsiiBis the ones for
TByt and TBw (Table 4). In addition, an EOF analysis of thded#nce between this new
estimate and observed TBs (figure not includedwshsimilar spatial patterns as the ones

identified in Fig. 4 (a and c), as well as a gogtkament between their ECs.

In the second place, no significant differencesenabserved between §Rspy and TBr
when compared to Td. For instance, mean spatial correlations computedg TBpr(sp)
and TBsy are 0.22 and 0.33 for the horizontal and vertpdarization, which are similar to
the values obtained for TR and TByv (Table 4).

In the third place, an EOF analysis of the TB ecamputed using the Td&Fw) and the TBy
sets (figure not included), shows a similar domirgtructure both in space and time to the
one observed in Fig. 3 (a and c). In addition, Eimspatial correlations between dixw)
and the TBy to those from TBg and TBsy are also found (Table 4).

As synthesized in Table 4, in the current stat€MIEM the vegetation cover, the number of
soil layers, and thes and &« parameterizations can be discarded as the domfaatdrs
responsible for the poor spatial correlation betwewdelled and SMOS TBs.

4.3 Annual cycle of TBs

The slow varying component of the TB signals islgs®d pixel by pixel, because it has been
identified as the driver of the largest spatialbherent error structure between measured and
modelled TBs (Fig. 5). For this matter, the meamuah cycle of each TB signal was
computed for each pixel and then smoothed usingliaesfilter to remove sub-monthly
fluctuations. The period of study is too short is@re that a simple annual mean cycle filters
out high frequency variations. In Fig. 9 the norimed amplitudes of the annual TB cycle are
displayed.

The spatial structures shown in SMOS's maps (Fig.ghd f) exhibit strong resemblances to
those observed in the first EOF patterns of theef®r (Fig. 3 and 4, a and c). However, this
structure is not found in the maps correspondindBgr and TByr, where there is less
contrast in the spatial distribution of the relatamplitude of the annual cycle. This indicates
that the LSMs combined with CMEM do not reproduice annual cycle amplitude of TBs
observed by SMOS.
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To further analyse this result, two study areasd&fened (Fig.10). The first one is over the
South-Western IP (7.5W : 4W, 40N : 38N) and coroesis to part of the area where the
largest differences in TB’s normalized amplitudesidentified. The second one is the North-
Western region (8.25W : 6W, 43N : 41.75N) of thealRl is chosen because it shows similar
annual cycle amplitudes of TB in the two models 8MIOS. In addition, the EOF analysis of

the TB error showed opposite behaviours in thesasar

Fig. 10 shows the smoothed annual cycle of thezbotal and vertical polarizations of the TB
signals from both regions. The LST from the LandS#éduct as well as those modelled by
ORCHIDEE and H-TESSEL are also displayed becaudbeif direct relation to TBs. The
plots show that the TB's annual cycle behaviouedifbetween the two regions. Therefore,
the processes responsible for the TB error areggldifferent in each one of them.

The following results can be extracted from the plmrresponding to the South-Western area
(Fig. 10 a):

In winter the difference between models is smathpared to their relative warm bias when
compared to SMOS. In summer the agreement is velgtigood with observations laying
within the spread of the models. This explains mé®ult presented above, namely that the
amplitude of the simulated annual cycle is smatlean for the remotely sensed TB.
Examining the LST one can note that the biasesralaively small and ORCHIDEE
generally matches better the LandSAF product, btRBSSEL shows a larger and more
correct amplitude of the annual cycle. This migkplain why this model has the largest
amplitude of TB in both polarisations, indicatingat a large fraction of the error on the
annual cycle of TB is caused by the emissivity sated by CMEM given the surface states
of both LSMs.

Over the North-Western IP SMOS observations aretlynogthin the uncertainty spanned by
the two models. One notable exception is the sunpaaod for the horizontal polarization
where both models are cooler. Also in this reglmsmamplitude of TB in both polarizations is
larger in H-TESSEL than ORCHIDEE and closer to thaasured by SMOS. Again, this can
be related to LST. Although ORCHIDEE has smallasbs, the H-TESSEL amplitude of the

annual cycle is larger and closer to the observied o

The strong difference in behaviour between the $el@cted regions in winter explains the
resemblance of the dominant EOF mode in TB errérboth models with the regions of

maximum amplitude of the annual cycle of observBgd.TFor both regions, the LST biases of
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the LSMs do not show a clear relation to the sitealarBs. H-TESSEL has the warmest
surface temperatures but the lowest TBs, indicativag its state variables produce a lower
emissivity than ORCHIDEE when processed by CMEM.t@mnother hand the differences in

annual amplitudes of LST could contribute to thesen for the TB. This is also supported by
the fact that the dominant variation modes of L&Drs are not related to those of TBs. This
would indicate that the major contribution to thB €rrors found for the models does not
originate in their forcing or their ability to sifate the land surface energy balance and
temperature, but rather in the way CMEM simulatebabhd emissivity based on their

description of the surface state.
5 Discussion

This work complements with an analysis of TBs thelg by Polcher et al. (2015), which
compared the SSM product of SMOS with ORCHIDEE’sdeited SSM. Both studies
present a spatio-temporal correlation analysisabtdin similar results: a good agreement in
temporal evolutions and a large mismatch betweensthatial structures of measured and
modelled SSM and TB.

The temporal correlation between gBand TBsyy is very similar to that between retrieved
(SMOS) and modelled (ORCHIDEE) SSM (Table 4). laliadn, both variables show lower
correlations over mountain ranges. As noted for S8 temporal correlation is mainly
driven by its fast varying component and is notyva&nsitive to the annual cycle (Polcher et
al., 2015).

Spatial correlations are low for both variablesligating an inconsistency between the spatial
structures of measured and modelled data. Poldhat. €2015) showed that the spatial
correlation between retrieved and modelled SSM @se for the SSM’s slow varying
component than for its fast varying component. Tdaa be due to the fact that the largest
spatially coherent error between measured and teod@Bs is dominated by their slow

varying component, as shown in this paper.

The EOF analysis presented here identified a damistaucture over the South-Western IP
using both sets of modelled TBs, which explainsaé fraction of the TB error. This
structure differs from the error characterizatidntbee SSM comparison, which showed the
largest discrepancies between modelled and retli&®&M over the North-Western IP. In
fact, only weak differences were found for SSM otlex South-Western region (Polcher et
al., 2015). These results indicate that the tranfsfiections used by SMOS to derive SSM
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from observed TBs or CMEM, which estimates TBs frmiodelled SSM (together with other
state variables), play an important role and havsetbetter understood in order to explain the
differences between the SMOS observations andrindated surface states.

None of the hypotheses tested to identify a metlogilmal weakness in the forcing of both
LSMs or the configuration of CMEM, which would egpi this common error, was
conclusive. The differences in TB between the LSisl SMOS are noteworthy and we
believe that understanding them should be a pyidoit the community to achieve a better
usage of these observations. As the LSMs usedanenreery different in their conception, it is
unlikely that they produce the same systematic S$&4 which would explain the large
discrepancy in the South-West of the IP during @nn©On the other hand, processes which
are not represented with enough detail in bothreelsecould explain the error and need to be

analysed as to their potential to explain the @isancies.

« In the first place, it is interesting to study tbheaf Area Index (LAIl), because it is
linked to the seasonal cycle of vegetation. It malyerefore, reveal some
underestimated effects of vegetation dynamics omleted TBs, which could be
related, to a certain extent, to the seasonalégtified in the dominant structure of the
TB error. In addition, the LAl is a key componentthe CMEM parameterization of
Teg HOwever, the areas of the IP where the TB esdhe largest are those of least
vegetation. Therefore, in our opinion, modelled li&\hot likely to be the main cause

of the differences in TB’s spatial structures.

* In second place, assumptions made in the modeadlinginfall interception may also
explain some differences between modelled and mea@siBs. In particular, those
shown in Fig. 10 (b) over the North-Western regiointhe IP. This region is
characterized by an oceanic climate and thus, wiugtevs and mild summers, with a
high precipitation, and often rainfall occurring dszzle. Contrary to the Southern
region, there is more vegetation and thus, rainfdérception plays a key role over
this area and may be of interest to revise howghigsess is modelled. However, the
IP region with strong interception is not the onighwhe largest TB error. The error
over the South-Western region is larger than ovemNorth-Western region, as shown

by the EOF analysis.

* In third place, the attenuation effect of litter thre soil and its interception of water

could also explain differences obtained betweeneted and measured TBs, since it
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is not taken into account by models, but is paaitllite observations. However, we
believe that probably it would not cause an imaatctured as the one observed over
the South-Western area of the IP without affecttiger regions. Indeed this process

would be strongest in regions with dense vegetation

e Finally, issues related to the fundamental simgatfion of subgrid processes in LSMs
may also contribute to the inconsistency betweensibatial structures of modelled
and measured TBs. For instance, LSMs do not represeall scale features as open
water in lakes and rivers, swamps, irrigated acgagher water ponded on the surface
and could contribute strongly to L-band emissiafythe surface. Assumptions made
by LSMs could neglect key issues from the smallesadnich could be carried over to
the large scale of TBs. For the moment, we do metwshy these simplifications of
LSMs would have the strongest impact in the Soutrst/éf the IP.

Instrumental issues from SMOS could also explaindifferences in TB spatial structures, in
case these are not of climatological or geophysiedlre. For example, one of the most
important causes of noise in SMOS surface soil msis Radio-Frequency Interferences
(RFIs). Daganzo-Eusebio et al. (2013) describe #féect on SMOS data. Some of them are
difficult to detect and thus, RFIs may not be prbpéltered out. For instance, Dente et al.
(2012) identified an irregular angular patternhie fTBs affecting data from the L1C product
used to retrieve soil moisture. In their opinidmstwas caused by weak RFIs which were not
correctly filtered. Another explanation could beteama pattern errors, as SMOS TBs
seasonal and latitudinal drifts detailed in Olivaak (2013). However, RFIs are not likely to
be the main cause of the differences between me@dsund modelled TBs, because the main
spatial structure identified in both TB errors @ufd to be dominated by the brightness

temperature's annual cycle. This suggests thaniams a geophysical signal.

In our opinion, further analyses should be carmed regarding the CMEM assumptions
concerning emissivity. According to Jones et aDO@®), the soil moisture and vegetation
water content have a significant effect on the isieitg of TB at the top of the atmosphere.
However, they impact microwave emission in différeays. On the one hand, an increase in
soil moisture results in a higher soil dielectromstant €) and thus, on lower emissivities. On
the other hand, an increase in the vegetation watgent rises the scatter and the absorption,
increasing the emission. Tléeis key in the computation of emissivity, while thegetation

optical depth {.g is closely related to the vegetation water cont@®@oth variables are
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modelled in CMEM and the same parameterizationbegn used to estimate the two sets of
modelled TBs: Wang and Schmugge (1980) ¢orand Wigneron et al. (2007) fageq
Furthermore, the same parameterization has beehtasaodel the rough surface emissivity
(er) in both cases: Wigneron et al.,, 2001. Considetimgt similar spatial patterns were
obtained for the TB error using two different LSMecus should be put on the above
mentioned variables( 1. ande;) in CMEM. We suggest to prioritize the analysistioé
relation between the vegetation water content aBdb&cause of the role the vegetation
opacity model plays in CMEM'’s configuration, as smoin de Rosnay et al. (2009). In
addition, no significant differences were obsertsetiveen modelled and retrieved SSM over
South-Western IP (Polcher et al. 2015), where tlgimum TB error was identified. This
reassures our suggestion of prioritizing, with respect t&, since the latter is directly related
to SSM.

6 Conclusions

TBs of SMOS Level 1C product were compared to tets f modelled TBs. The latter were
obtained using simulated state variables (fromQRECHIDEE and H-TESSEL LSMs) and a
radiative transfer model, CMEM. The study was earout over the Iberian Peninsula (IP)
for the period 2010 to 2012.

On the one hand, a temporal correlation analydisden measured and modelled data shows
that there is a good agreement in their temporalugon. However, this diagnostic is mainly
driven by the TB's signal synoptic variability, @scurs with SSM (Polcher et al., 2015). On
the other hand, a spatial correlation analysisatetea large mismatch between the TB spatial

structures provided by models and observations.

An EOF analysis of the error between modelled arshsured TBs suggests that the
inconsistency is not limited to a particular LSM.i$ dominated by the TB slow varying
component, peaking in fall and winter. In additionpdelled TBs are larger than SMOS
measurements during these seasons over the doneimanstructure detected. This structure
explains between 18% and 36% of the TB error vagardepending on the LSM and
polarization. Therefore, there is a high percentaigihe error (between 82% and 64%) that
shows structures which have to be analysed anciegal. Since these are not present in both

LSMs, they are of lower priority and have not bapproached in this study.

Forcing induced biases are discarded as the maisecaf the spatial inconsistency in TBs
after computing the dominant error structures efcjypitation and Land Surface Temperature
23
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(LST). Nevertheless, the degree of accuracy ofdh@ng cannot be fully established because
of scale issues and the lack of sufficient indepahdneasurements. The difference in TBs'
spatial structures could also be thought of a coatlmn of non linear relations between
errors in precipitation and LST, but this is beydhe scope of this paper.

Assumptions made in certain CMEM parameterizatemesalso discarded as the main source
of the spatial inconsistency between measured autkled TBs: the vegetation cover input;
the number of soil layers defined; and some paramzetions to compute the smooth surface
emissivity (Fresnel law and Wilheit (1978)) and #iféective temperature (Wigneron et al.

(2001) and the temperature profile).

Previous studies found differences between thaadpstuctures of modelled and retrieved
SSM (Parrens et al., 2012; Polcher et al., 201bis paper shows that these structures are not
consistent also when comparing modelled and obdefms. In addition, this issue is
amplified for the TBs compared to SSM, because lteer are bounded by zero and
saturation. This could explain the generally bedfmatial correlation for SSM in winter, when

it reaches saturation in large parts of the IP.hdugh this study is limited to the IP,
differences in spatial structures occur at a glauale. We would like to draw the reader's
attention to the fact that TBs are not only the miaput of SMOS soil moisture retrieval
algorithm, but that they are used to retrieve otlarables, like vegetation optical depth or
salinity. We believe that analysing the spatiabmsistencies between modelled and measured
TBs is important, as these can affect the estimaifogeophysical variables, TB assimilation
in operational models, as well as result in misiegdalidation studies. Therefore, obtaining
the spatial contrast of measured TBs in modelscisadienge which, in our opinion, deserves
a higher priority in the community.
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Table 1. CMEM configuration for the two sets of retdd TBs.

Configuration

Parameterization
ORCHIDEE H-TESSEL

Physical
configuration

Soil dielectric constant

Wang and Schmugge (1980)

Effective temperature

Soil temperature Wigneron et al.
profile (2001)

Smooth surface emissivity

Wilheit (1978) Fresnal la

Rough surface emissivity

Wigneron et al. (2001)

Vegetation optical depth

Wigneron et al. (2007)

Atmospheric optical depth

Pellarin et al. (2003)

Temperature of vegetation

Surface soil temperature

Vegetation cover input data Ecoclimap
Observing Microwave frequency 1.4Ghz
configuration Incidence angle 42.5° 40°
Soil and Number of soil layers* 11 3
atmospheric level
configuration (number of layersinthetop 5 cm) (5) Q)

*Layer depths of ORCHIDEE's hydrological schemeJici9.099, 0.391, 0.978, 2.151, 4.497,
9.189, 18.570, 37.340, 74.880, 150, and 200

*Layer depths of H-TESSEL's hydrological scheme]fc, 21, 72, and 189
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2

3 Table 2: Input variables for the CMEM to computesT@ TOA.

Soil conditions Constant fields Solil texture fracti{%]
Orography [km]
Vegetation Constant fields High and low vegetatigres

High and low vegetation fractions

Water fraction

Dynamic fields

Low vegetation LAI

Meteorology Dynamic fields

Soil moisture profile Jm*]

Soil temperature profile [K]

Skin temperature [K]

Snow depth [m]

Snow density [kgr]

2 m temperature [K]
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Table 3: TB filtering criteria to keep data, apdlt® the TB signals.

TBor TBuT All TB signals

ORCHIDEE's daily average Snow water equivalent < 0.01 m Daily TB < 300 K
surface temperature > 275 K

ERA-Interim's daily average ERA-Interim's daily average Mask

2 m air temperature > 273 K 2 m air temperature > 273.5K (from SMOS's L2

product)
Orography (slope) < 0.04
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Table 4: Mean temporal and spatial correlationsS8M (Polcher et al., accepted) and the

horizontal and vertical polarization of TBs ovee tiberian Peninsula from 2010 to 2012.

Temporal Spatial
Horizontal Vertical Horizontal Vertical

TBogr VS. TBsm 0.75 0.76 0.20 0.30
TBut Vvs. TBsy 0.82 0.82 0.24 0.29
TBhur(vcy VS. TBsy - - 0.17 0.36
TBoresp VS. TBsm - - 0.22 0.33
TBorFw) VS. TBsm - - 0.20 0.30
SSMor VS. SSMy 0.81 0.28
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Table 5: Spatial correlation for the first and setosariation modes of the EOF analyses
performed for the difference between modelled aedsured TBs. TBH and TBV correspond

to the horizontal and vertical polarizations, respely.

Mode 1 Mode 2
TBor — TBsu (TBH) vs. TBog — TBsy (TBV) 0.99 0.97
TByr — TBsy (TBH) vs. TByr — TBsy (TBV) 0.86 0.75
TBor — TBsw (TBH) vs. TByr — TBsy (TBH) 0.92 0.69
TBog — TBsw (TBV) vs. TByr — TBgy (TBV) 0.73 0.48
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Figure 1: Temporal correlation between modelled arehsured TBs from 2010 to 2012.
TBH and TBV correspond to the horizontal and vettmolarizations, respectively.
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