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Abstract.
Inter-annual variability of precipitation is traditionally de-

scribed by fitting a probability model to yearly precipitation
totals. There are three potential problems with this approach:
a long record (at least 25∼30 yrs) is required in order to fit5

the model, years with missing rainfall data cannot be used,
and the data need to be homogeneous, i.e., one has to assume
stationarity. To overcome some of these limitations, we test
an alternative methodology proposed by Eagleson (1978),
based on the derived distribution (DD) approach. It allows10

estimation of the probability density function (pdf) of annual
rainfall without requiring long records, provided that contin-
uously gauged precipitation data are available to derive exter-
nal storm properties. The DD approach combines marginal
pdfs for storm depths and inter-arrival times to obtain an15

analytical formulation of the distribution of annual precip-
itation, under the simplifying assumptions of independence
between events and independence between storm depth and
time to the next storm. Because it is based on information
about storms and not on annual totals, the DD can make use20

of information from years with incomplete data; more im-
portantly, only a few years of rainfall measurements should
suffice to estimate the parameters of the marginal pdfs, at
least at locations where it rains with some regularity.

For two temperate locations in different climates (Con-25

cepción, Chile, and Lugano, Switzerland), we randomly re-
sample shortened time series to evaluate in detail the effects
of record length on the DD, comparing the results with the
traditional approach of fitting a Normal (or Lognormal) dis-
tribution. Then, at the same two stations, we assess the bi-30

ases introduced in the DD when using daily, totalized rain-
fall, instead of continuously gauged data. Finally, for ran-

domly selected periods between 3 and 15 years in length, we
conduct full blind tests at 52 high-quality gauging stations in
Switzerland, analyzing the ability of the DD to estimate the35

long-term standard deviation of annual rainfall, as compared
to direct computation from the sample of annual totals.

Our results show that, as compared to the fitting of a Nor-
mal or Lognormal distribution (or equivalently, direct esti-
mation of the sample moments), the DD approach reduces40

the uncertainty in annual precipitation estimates (especially
inter-annual variability) when only short records (below 6∼8
years) are available. In such cases, it also reduces the bias
in annual precipitation quantiles with high return periods.
We demonstrate that using precipitation data aggregated ev-45

ery 24 h, as commonly available at most weather stations,
introduces a noticeable bias in the DD. These results point
to the tangible benefits of installing high-resolution (hourly,
at least) precipitation gauges, next to the customary, man-
ual rain-measuring instrument, at previously ungauged loca-50

tions. We propose that the DD approach is a suitable tool for
the statistical description and study of annual rainfall, not just
when only short records are available, but also when deal-
ing with non-stationary time series of precipitation. Finally,
to avert any misinterpretation of the presented method, we55

should like to emphasize that it only applies for climatic anal-
yses of annual precipitation totals; even though storm data
are used, there is no relation to the study of extreme rainfall
intensities needed for engineering design.

60
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1 Introduction

Total annual precipitation and its variability between years
are important climatic variables for water balance studies, de-
veloping regional climatologies, planning and management
of water resources, and assessing water stress in general.65

Inter-annual variability in rainfall results from many factors
such as long term multi-year atmospheric anomalies (ENSO,
NAO, etc.; see, e.g., Higgins et al., 1999; Barlow et al., 2001),
the strength and persistence of seasonality (e.g., Fatichi et al.,
2012), and stochasticity in weather and precipitation forma-70

tion. Inter-annual variation in precipitation is an important
descriptor of the climatic environment which directly im-
pacts the occurrence of droughts (e.g., Dai et al., 2004; Dai,
2011), vegetation productivity in water-limited ecosystems
(e.g., Knapp and Smith, 2001; Reyer et al., 2013; Fatichi and75

Ivanov, 2014), as well as the distribution of rainfall extremes
(e.g., Groisman et al., 2005).

A traditional statistical analysis of annual precipitation
typically consists of estimating key statistics (mean, vari-
ance, skewness, etc.) and fitting a probability distribu-80

tion model to the annual (or seasonal) data. According to
Markovic (1965) and Linsley et al. (1982), in temperate
zones this would typically be a Normal or a Lognormal dis-
tribution, fitted to a sample of at least 25∼30 years of data.
However, this approach is often impractical, because at many85

locations only a few years of precipitation data are available
and many records are incomplete. With short records, the
estimated statistics and parameters of the fitted probability
model are highly uncertain. Moreover, natural fluctuations
in climate over decadal or longer time scales, now accen-90

tuated by anthropogenic change, imply that most long cli-
mate records are not statistically homogeneous and station-
ary (Milly et al., 2008). This leads to the problem that while
long records are required to accurately estimate the statistics
and probability distribution of annual rainfall, precipitation95

itself might in fact be non-stationary over such long periods.
Thus, an approach is needed that would allow for a better
estimation of the probability distribution of annual precipita-
tion without requiring long records.

Eagleson (1978) developed such a methodology by deriv-100

ing the distribution of annual precipitation from the prop-
erties of the individual storms making up the yearly totals.
Given independent storm arrivals and using prescribed mod-
els for the marginal probability distributions of storm inter-
arrival times and storm depths, the probability density func-105

tion (pdf) of annual precipitation can be derived analyti-
cally. Under this derived distribution (DD) approach, only
a few years of continuously gauged precipitation data, from
which storm arrivals and depths can be extracted and their
distributions estimated, are necessary to estimate the prob-110

ability distribution of annual precipitation for a site. Even
though Eagleson’s (1978) original paper has a large num-
ber of citations, most of these relate to ecohydrological
modelling of soil moisture and vegetation dynamics (e.g.,

Dufrêne et al., 2005; Ivanov et al., 2008), derived distribu-115

tions of runoff and flood frequency (e.g., Freeze, 1980; Dı́az-
Granados et al., 1984), rainfall modelling (for example, Onof
et al., 1998; Willems, 2001), or morphological evolution of
drainage basins (Tucker and Bras, 2000). We are not aware
of any previous attempt at applying Eagleson’s DD approach120

to the study of the inter-annual variability of precipitation,
even though the method seems particularly well-suited to
deal with locations with short records, as well as to account
for non-stationarities introduced by a changing climate.

The main aim of this work is to investigate the perfor-125

mance of the DD approach for describing inter-annual vari-
ability of rainfall. We do this by comparing it with traditional
procedures based on long series of annual precipitation to-
tals. This paper specifically addresses two questions in detail:
(a) what is the effect of record length on the estimates of an-130

nual precipitation (mean, deviation, and quantiles) obtained
with the different methods? (b) What is the effect of rainfall
temporal resolution (sampling time-step) on the results? The
latter question is important for sites where only daily rainfall
data are available from manually-read instruments, so that135

the accuracy of storm statistics for the DD is reduced.

2 Methods

2.1 Study sites and data

The DD and Normal/Lognormal probability distributions
were fitted to precipitation data for two temperate locations140

with dissimilar climate. For the first site in Concepción,
Chile, the data come from the Bellavista Research Weather
Station, which was operated by Universidad de Concepción.
They consist of 19 years of daily and 6 years of weekly
pluviograms (paper rain charts), continuously recorded over145

the period 1975–1999 with a Lambrecht float-recording
and siphoning rain gauge. For the second site in Lugano,
Switzerland, we used a 32 year long precipitation record
(1981–2012) available from MeteoSwiss (the Swiss Federal
Office of Meteorology and Climatology). The full blind tests150

were conducted on 52 weather stations of the MeteoSwiss
network, including that in Lugano. These are all 10 min pre-
cipitation depths, with 0.1 mm resolution, measured over
the exact same period (1981-2012) with the same Lam-
brecht tipping-bucket instruments, with standardized calibra-155

tion and maintenance. These rainfall data are of very good
quality and have recently been used in other studies of storm
properties in Switzerland (e.g., Gaál et al., 2014; Molnar et
al., 2015).

2.2 Event definition160

Using derived distributions first requires defining indepen-
dent storms in the record, in order to obtain the parame-
ters needed for the marginal distributions of storm depth
and inter-arrival time. Although there are many different ap-
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proaches for selecting a criterion for event independence165

(e.g., Dunkerley, 2008), we chose to discriminate successive
independent storms based on a Minimum Inter-event Time,
MIT (Restrepo-Posada and Eagleson, 1982; Driscoll et al.,
1989; Gaál et al., 2014). With this scheme, any dry spell (i.e.,
between recorded precipitation) longer than the MIT defines170

two independent storms. Conversely, if a gap without pre-
cipitation is shorter than the MIT, then we assign both pre-
cipitation pulses to the same storm event (see Figure 1). For
each independent storm, we obtained the following external
storm properties from the data: storm depth H , rainfall event175

duration Tr, time elapsed between the end of the storm and
the beginning of the next storm Tb, and time between the be-
ginning of successive storms Ta (inter arrival time). These
variables are shown in Figure 1, where independent storms
are simplified into rectangular pulses in the lower panel.180

2.3 Derived distribution of annual precipitation

Eagleson (1978) defined annual precipitation (Pa) as the sum
of precipitation depths over the finite number of events that
occur throughout a year (or wet season). Pa can thus be con-
sidered a compound variable which depends on the number185

ν of storm events in a given year (wet season), as well as on
the storm depths Hj contributed by each storm:

Pa(ν) =

ν∑
j=1

hj (1)

Both ν and Hj , are random variables with probability dis-
tributions that can be estimated on the basis of available, con-190

tinuously gauged precipitation data. We are interested in ob-
taining the probabilistic behavior of the compound variable
Pa, knowing the pdfs of the external properties of indepen-
dent storm events.

In his work, Eagleson (1978) assumed that both the inter-195

arrival time Ta and the rainfall depth per stormHj are identi-
cally and independently distributed (iid) variables, which are
in turn mutually independent. The first assumption (“iden-
tically distributed”) means that the probabilistic behaviour
of these variables is time-invariant, i.e., storms behave sim-200

ilarly in terms of their frequency and rainfall depth, every
year, and throughout the year. Although weather disturbances
are much more frequent and intense in certain seasons, both
in Concepción (central south, temperate part of Chile) and
in Switzerland, there are no clear limits between dry and205

wet seasons (rainfall events occur all year round). Thus, it
should be fine to assume that Pa corresponds to an integra-
tion of the precipitation process at the yearly scale. Instead,
homogeneity could also be assumed at the seasonal scale, if
there were evidence for this in the data. In turn, the “inde-210

pendently distributed” assumption implies that the character-
istics of a given storm are not affected by previous rainfall
events. Finally, the assumption of mutual independence en-
tails that storm depths are not affected by the time elapsed

since the previous event, and vice-versa. Under these three215

assumptions, the distribution of annual rainfall is given by:

fPa
(y) =

∞∑
ν=1

fPa(ν)(y) ·Pθ(ν) (2)

where fPa
(y) is the probability density corresponding to

an annual rainfall of exactly y mm; fPa(ν)(y) is the probabil-
ity density corresponding to a rain depth of y mm occurring220

in ν storms; and Pθ(ν) is the discrete probability mass of
having exactly ν storms in a given year.

Equation 2 represents the probability density that the sum
of the rainfall depths contributed by ν annual storms adds up
to exactly y mm, weighted by the discrete probability of hav-225

ing ν storms in that year. We followed Eagleson (1978) in
modelling the occurrence of storm events as a Poisson pro-
cess in order to determine the discrete probability (or proba-
bility mass) of having ν storm events over a period of length
t:230

Pθ(ν) =
(ωt)ν · e−ωt

ν!
ν = 0,1,2, ... (3)

The single parameter in this distribution ω represents the
average rate of arrival or occurrence of events, whilst its in-
verse ω−1 corresponds to the average time elapsed between
the beginning of two consecutive events, i.e., the mean inter-235

arrival time. As explained above, in our analysis t is a whole
calendar year, but in semi-arid and arid climates it could
represent the duration of the wet season within the year, as
described in Eagleson (1978). Note that mathematically, the
above choice is equivalent to fitting an Exponential distribu-240

tion with parameter ω to the sample of inter-arrival times.
To obtain fPa(ν)(y) in Equation 2 it is necessary to pre-

scribe the probability distribution of precipitation depths of
the iid events. For this, Eagleson (1978) chose the Gamma
distribution with two parameters λ and κ, because of its ver-245

satility and its regenerative property. The latter means that the
sum of n iid Gamma(λ,κ) variables also has a Gamma dis-
tribution with parameters (λ,nκ) such that the mean storm
depth is then mH = κ/λ and its variance σ2

H = κ/λ2. The
density function of total precipitation y from ν storms,250

fPa(ν)(y), can then be expressed as:

fPa(ν)(y) =
λ · (λy)νκ−1 · e−λy

Γ(νκ)
y > 0 (4)

where Γ(x) is the gamma function.
Replacing the expressions for Pθ(ν) and fPa(ν)(y) in

Equation 2 yields the probability density function of annual255

precipitation as (Eagleson, 1978):

fPa
(y) =

∞∑
ν=1

λ · (λy)νκ−1 · e−λy

Γ(νκ)
· (ωt)ν · e−ωt

ν!
y > 0
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(5)

Integrating Equation 5 results in the cumulative distribu-
tion function (cdf) for annual precipitation (Eagleson, 1978):

FPa(y) = e−ωt+

∞∑
ν=1

(ωt)ν · e−ωt

ν!
P [νκ,λy] y ≥ 0 (6)260

where P [νκ,λy] is Pearson’s incomplete Gamma func-
tion.

In concluding this section, we should briefly discuss the
choice of the models for the marginal distributions. Having
rainfall data at a given location for a specific period, one265

could certainly use the pdfs of best fit, instead of prescribing
the Exponential and Gamma distributions for the storm inter-
arrival times and depths, respectively. In such case, though, it
would be highly improbable that a closed-form solution for
fPa(y) could be found, so that numerical methods would be270

needed. As we are primarily interested here in testing through
comparisons the general ability of the DD approach for de-
scribing the inter-annual variability of precipitation, we stick
to Eagleson’s (1978) formulation, as described above.

2.4 Performance of the DDA275

If long records are available, e.g., at least 25 ∼ 30 yrs, then
key statistics as well as the distribution of annual precipi-
tation totals can be estimated from such data. For example,
in temperate, humid areas, annual precipitation typically fol-
lows a Normal or a Lognormal distribution (e.g., Linsley280

et al., 1982; Markovic, 1965), which can be fitted to the
yearly totals. On the other hand, the DD approach summa-
rized above allows for the description of annual precipita-
tion based only on storm statistics (with parameters repre-
senting the mean number of storms in a year, as well as the285

mean and variance of event depth). At locations with suffi-
cient storms, such statistics can be adequately estimated from
much shorter records, provided these have a temporal res-
olution that is detailed enough to accurately describe event
properties. We assess the performance of the DD method vs.290

traditional model fitting to annual precipitation data with two
important effects in mind.

First is the effect of record length, i.e., the uncertainty and
bias which come from using short precipitation records both
for the traditional and derived distribution approaches. We295

address this issue using two different methods:
(i) After testing for one-year lag independence, we ran-

domly subsample shorter records from the original series in
Concepción and Lugano, without replacement, to which we
apply both the DD and the traditional fitting of a distribution.300

Instead of using independent continuous records (as done
by Pranzini, 2000; Pranzini and Meier, 2001), which would
yield only a handful of subsamples, the analyses are car-
ried out after assembling 200 n-year-long resampled records,
where n is the number of different, randomly picked years (n305

= 3, 5, 7, 10, 15 years). For example, one of the 200 5-yr-
long resampled datasets for Concepción was assembled with
the rainfall data for the years 1988-1991-1977-1981-1994.
At each of the two locations we thus consider 200 shorter,
resampled records for each one of the five record durations310

n, on top of the full (25 or 32 year-long) original time-series.
Next, for each one of the 1001 different records at each site,
we identify all independent storm events in the series, ex-
tract their inter-arrival times and total precipitation depths,
and then fit the respective Exponential and Gamma distribu-315

tions, thus obtaining the DD of annual precipitation. We also
fit Normal and Lognormal pdfs to each record, and then com-
pare various statistics (mean, standard deviation, and skew-
ness) and quantiles to assess the performance of the pro-
posed DD versus the “traditional” methodology. This proce-320

dure allows us to generate enough subsamples to draw statis-
tically significant conclusions. It is important to note though,
that the resampling destroys any long-range dependency that
could be present in the original record. In this method, repli-
cation (200 x) is achieved through resampling.325

(ii) In order to provide a more realistic setting but still al-
low for statistical comparisons, we also conduct full blind
tests of the DD approach, at 52 different locations in Switzer-
land, each with the same 32 years of high-quality rainfall
data. In these, we analyze the ability of the DD to estimate330

the long-term (32-yr) standard deviation of annual rainfall, as
compared to direct computation from the sample of annual
totals, when only a shorter, continuous record is available.
The tests are done for all possible short record durations N
between 3 and 15 years (i.e., N = 3, 4, 5, . . . , 14, 15 years).335

For each value of N, at each one of the 52 stations, we ran-
domly choose a N-yr long, continuous record; for example,
for N = 5 years at Genève-Cointrin, we randomly selected the
record between January 1st, 1996, and December 31st, 2000.
We next fit the DD to this short record and compute the stan-340

dard deviations as obtained both from the DD and from the
sample of size 5 years, and then compare them with the long-
term (1981-2012) deviation at the station by computing their
relative errors. In this second method, replication (52 x) is
achieved by considering a large number of stations.345

The second focus of our work is the effect of data res-
olution on the DD. At many locations precipitation is ob-
served only once a day, so that higher resolution, continu-
ously gauged records are not available. Thus, it is interesting
to test how applicable the DD approach is when using such350

low-resolution, daily data. To this end we aggregate the con-
tinuously gauged data for Concepción and Lugano every 24 h
(between 08:00 LT in a given day and 08:00 LT next day, as is
commonly done in meteorological practice). When decreas-
ing the data resolution, the MIT is accordingly changed to 1355

day, at both locations, to accommodate the minimum identi-
fiable dry spell under the new scenario. In this case we are
interested in the differences within the DD method, between
using continuously-gauged rainfall data and daily data, con-
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sidering the same 200 n-year-long (n = 3, 5, 7, 10, 15 years)360

shortened records that were previously assembled.

3 Results

3.1 Event properties

Storm events in Concepción are dominated by mid-latitude
extra-tropical cyclones, which produce fronts resulting in365

low to mid-intensity rainfall events that occur throughout the
year, but with higher frequency and magnitude during the
winter months (Falvey and Garreaud, 2007). When using a
12 h MIT in order to discriminate independent storms, we ob-
tain a total of 1350 rainfall events over the 1975–1999 period.370

This count neglects storms with a total depth below 1 mm,
because of the difficulties involved in extracting the proper-
ties for such small events from paper pluviograms. These dis-
carded trace events amount on average for 4.1 mm per year,
whereas mean annual rainfall in Concepción is around 1200375

mm, so we neglect this source of bias. In Concepción, the
Gamma and Exponential distributions fit the data adequately,
as visually shown in Fig. 2. In the case of the storm depths,
we fit a Gamma with parameters λ= 0.02784 mm−1, and
κ= 0.6157 (χ2 = 58.5, df = 10, p = 7 ∗ 10−9). For the inter-380

arrival times, we choose an Exponential distribution with pa-
rameter ω = 0.006261 h−1 (χ2 = 239.7, df = 10, p = 0). Both
marginal distributions are shown in Figure 2. Even though
both distributions would be rejected at the 0.05 significance
level, we still use them because of the reasons explained in385

Section 2.3.
In Lugano, storms are dominated by local-scale convective

systems in the summer and fall, which produce mid to high
intensity showers during a few hours, accentuated by oro-
graphic effects (Schiesser et al., 1995; Panziera et al., 2014).390

Consequently, a 4 h MIT was chosen, resulting in 1794 inde-
pendent storms over the 1981–2012 period. Storm depths are
fitted with a Gamma distribution with parameters λ= 0.0255
mm−1, and κ= 0.3281 (χ2 = 57.2, df = 11, p = 3 ∗ 10−8),
whilst the inter-arrival times are fitted with an exponential395

distribution with parameter ω = 0.0136 h−1 (χ2 = 541.5, df
=11, p = 0), as shown in Figure 3.

3.2 Effect of record length

3.2.1 Resampling tests

At Concepción and Lugano, for the complete records, we ob-400

tained the cumulative distribution functions of annual pre-
cipitation using the DD, based on the marginal distributions
for storm counts and depths, and compared them with fit-
ted Normal and Lognormal distributions (Figure 4). At both
locations, we find that there are no significant visual differ-405

ences between the three distributions, at least in the range
where the bulk of the data lies. Goodness-of-fit tests indicate
similar performance for the Normal and Lognormal distribu-

tions, at both locations. In Concepción (n = 25), the Normal
has a K-S statistic of 0.0846 (p = 0.987), and a (χ2 statistic410

of 0.465 (p = 0.793, df = 2), while the Lognormal has K-S
= 0.0978 (p = 0.952) and (χ2 = 0.0829 (p = 0.959, df = 2).
In Lugano, the Normal has K-S = 0.0961 (p = 0.902) and
(χ2 = 0.194 (p = 0.979, df = 3), while the Lognormal has
K-S = 0.0819 (p = 0.971) and (χ2 = 0.824 (p = 0.975, df =415

5). Because of these results, and considering that our focus
is on the relative improvement that can be had by using the
DD approach, we omit the Lognormal results from the rest
of this paper. It should be noted that it is basically impossi-
ble to reject any specific model for the small samples we are420

interested in.
The sampling of shorter records was conducted on an an-

nual basis in order to maintain seasonal coherence within a
given year, i.e., years were selected at random and all storms
within those years were sampled. As this sampling destroys425

any correlation in precipitation between years, if it exists, we
verified the lack of temporal correlation in annual precipita-
tion using Kendall’s τ statistic (Ferguson et al., 2000) for lag-
1 autocorrelation. In Concepción, Kendall’s τ = −0.1522
(p-value = 0.3128) for n= 25 years. For Lugano Kendall’s430

τ = 0.0151 (p-value = 0.9195) for n= 32 years. Thus, the
null hypothesis that there is no lag-1 autocorrelation is not
rejected in either case. This gives some support to the deci-
sion of resampling shorter records based on whole years.

The consequences of reducing record lengths to n= 5 and435

n= 10 years are shown in Figures 5 and 6 for Concepción,
and Figures 7 and 8 for Lugano, respectively. At both lo-
cations the results show a clear increase in dispersion of the
pdfs of annual precipitation with shorter records, but the vari-
ability is significantly lower when using the DD. The results440

for other subsample sizes (n= 3,7,15) show the same ten-
dency. The reproduction of the standard deviation of annual
precipitation in Figure 9 clearly shows that the DD approach
reduces the uncertainty in this estimate of inter-annual vari-
ability for shorter record lengths.445

In hydrological practice, we commonly fit distributions in
order to estimate quantiles. These results are presented in Ta-
bles A1-A4, where we show the values of annual precipita-
tion for different return periods, as computed with both meth-
ods for all record lengths, using continuously-recorded data,450

both in Concepción and Lugano. The tables show the mean,
standard deviation and skewness, as well as 10 selected quan-
tiles, obtained both with the DD and by fitting a Normal pdf.
These statistics are computed for both the complete records
and the resampled, shorter records, in which case the mean455

and standard deviation of 200 samples are presented.
The uncertainty in estimating the variability of annual pre-

cipitation from short records is very large if only annual to-
tals are used. Based on the resampling tests, it would seem
that the DD for the same short records significantly reduces460

this uncertainty. Still, one should be careful with the results
obtained from these resampled records, as they hinge on the
applicability of the model’s assumptions.
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3.2.2 Full blind tests

These were conducted in order to test the ability of the DD465

approach to estimate the long-term inter-annual variability of
precipitation based on short records, without the need for any
assumptions. For each record length (3 to 15 years), at each
one of the 52 locations, we computed the percentual relative
errors between the ‘true’ long-term (32 yr) standard devia-470

tion of annual rainfall, and two different estimations from
the short record: (i) using the DD, and (ii) direct computa-
tion from the (small-size) sample of annual totals. Figure 10
shows the mean (± standard deviation) and median (N=52)
decrease in percentual relative error that is achieved when475

using the DD (positive values indicate that the DD performs
better). Smoothing our results, we conclude that for these 52
Swiss stations, both in the mean and the median, the DD im-
proves estimation of the long-term variability of annual rain-
fall when record length is shorter than about 6 ∼ 8 years, with480

a marked gain when N ≤ 4 yrs. When records longer than 8
yrs are available, there is little difference between both esti-
mation methods.

3.3 Effect of data resolution

Most weather stations world-wide are not equipped with con-485

tinuously recording rain gauges; in such cases precipitation
is usually measured only once per day. In order to test the
suitability of daily rainfall data for the DD method, we total-
ized our high resolution data over 24 h long periods and then
applied the DD approach to these daily data. Figure 11 shows490

that when we use daily instead of continuously recorded pre-
cipitation data we obtain similar values for the central ten-
dency indicators, but the extremes of the distribution show
important biases.

This occurs as well, at both locations, when combining the495

use of aggregated data and shorter record lengths, as shown
in Figures 12 and 13. The spread of annual precipitation
increases both when reducing the record length as well as
when data are aggregated, which may lead to an important
bias, especially in wet years. This result points to the ben-500

efits of installing high-resolution gauges to derive accurate
storm statistics as well as to the limited value of short daily
records for deriving reliable precipitation statistics at the an-
nual scale, using the DD approach.

4 Discussion and conclusions505

The distributions of annual precipitation obtained with Ea-
gleson’s (1978) derived distribution approach are very simi-
lar to the fitting of a Normal or Lognormal distribution when
using the complete, continuously gauged record (Figure 4).
Thus, whenever a long and homogeneous (stationary) rainfall510

record is available, the traditional approach of fitting a Nor-
mal or Lognormal distribution should be adequate. On the
other hand, the amount of information used in the DD ap-

proach is much greater, because it explicitly includes statis-
tics from the many storm events that occur within each year515

with data, instead of considering only annual sums.
More importantly, the DD method still yields good results

when attempting to estimate the annual rainfall distribution
with shorter records, as long as these consist of continuously
gauged data. Shorter records yield larger variability in annual520

precipitation, but using the DD, measures of both the central
tendency and dispersion are still more consistent with those
estimated using all of the information available. This is be-
cause even if, say only 3 years of data are available, there
is still a sufficiently large number of rainfall events (e.g.,525

an average of 54 yearly storms for Concepción and 119 for
Lugano) to allow for an adequate probabilistic description of
their external characteristics.

On the other hand, when one attempts to fit a distribution
(Figures 5-8), or estimate sample moments (Figures 9 and530

10) with only a few annual rainfall totals, there is a large
uncertainty in the estimates. Furthermore, years with incom-
plete records may still be used with the DD method in or-
der to extract storm properties and estimate model parame-
ters, while fitting a distribution to annual totals requires years535

with complete data. However, our results also show that a
bias is introduced when only daily rainfall records are avail-
able (Figures 11-13), so that the use of low-resolution rainfall
data cannot be recommended for the DD method.

Overall, our results show that Eagleson’s derived distri-540

bution approach is a better way of estimating the probabil-
ity distribution of annual precipitation, when only a short,
high-resolution record is available, because the uncertainty
in estimates is reduced. The importance of these results lies
not only in the possibility of estimating annual rainfall and545

its variability when only short records are available. When
there is suspicion of non-stationarity in a rainfall record, the
DD method should be useful for describing the long-term be-
haviour of annual precipitation (even if a long series is avail-
able) by breaking the longer record into shorter series over550

which it is more tenable to assume stationarity. In turn, one
could also think of using the DD approach as part of a test
for homogeneity of rainfall records, under the basic assump-
tion that if annual rainfall is showing trends, these should be
reflected in event frequency and in the distribution of storm555

depths.
An important conclusion of this work is that installing

high-resolution (hourly or less) precipitation gauges in previ-
ously ungauged locations next to the customary, manual rain-
measuring instrument, even for short periods, has tangible560

benefits in the estimation of long-term precipitation statistics,
such as inter-annual variability and quantiles of annual pre-
cipitation with high return periods. This is important because
accurate gauge-level precipitation estimates remain vital for
the correction of remotely sensed data and in merging dif-565

ferent precipitation data types, e.g., weather radar, satellite,
etc. (e.g., Xie and Arkin, 1996), as well as for the spatial in-
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terpolation of precipitation, especially in areas with complex
topography (e.g., Masson and Frei, 2014).
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Blöschl and an anonymous reviewer much improved our original580

manuscript.

References

Barlow, M., Nigam, S., and Berbery, E.H.: ENSO, Pacific decadal
variability, and US summertime precipitation, drought, and
streamflow, J. Climate, 14(9), 2105–2128, 2001.585

Benjamin, J.R., and Cornell, C.A.: Probability, Statistics, and Deci-
sion for Civil Engineers, McGraw-Hill, New York, 1970.

Dai, A. G.: Drought under global warming: a review, Wiley Inter-
disc. Rev. Climate Change, 2(1), 45–65, 2011.

Dai, A. G., Trenberth, K.E., and Qian, T.T.,: A global dataset of590

Palmer Drought Severity Index for 1870-2002: Relationship with
soil moisture and effects of surface warming, J. Hydrometeorol.,
5(6), 1117–1130, doi:10.1175/JHM-386.1, 2004.

Dı́az-Granados, M.A., Valdés, J.B., Bras, R.L.: A physically based
flood frequency distribution. Water Resources Research, 20 (7),595

pp. 995-1002, 1984.
Driscoll, E. D., Palhegyi, G. E., Strecker, E. W., and Schelley, P.

E.: Analysis of storm event characteristics for selected rainfall
gages throughout the United States, U.S. Environmental Protec-
tion Agency, Washington D.C., 1989.600
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Fig. 2. Fitted distributions to interarrival times (left) and rainfall depths (right) for 25 years of data in Concepción.
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Fig. 3. Fitted distributions to interarrival times (left) and rainfall depths (right) for 32 years of data in Lugano.
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Fig. 4. Cumulative distributions derived with the DDA and fitted as a Normal and Lognormal distribution to annual precipitation totals for
Concepción, Chile (left) and Lugano, Switzerland (right).
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Fig. 5. Estimated PDFs for 10-year subsamples using Normal Distributions (red, left) and Derived Distributions (blue, right) in Concepción.

500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Annual Rainfall (mm)

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

Normal Dist., 5 years
Derived Dist., 25 years
Normal Dist., 25 years

500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Annual Rainfall (mm)

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

Derived Dist., 5 years
Derived Dist., 25 years
Normal Dist., 25 years

Fig. 6. Estimated PDFs for 5-year subsamples using Normal Distributions (red, left) and Derived Distributions (blue, right) in Concepción.
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Fig. 7. Estimated PDFs for 10-year subsamples using Normal Distributions (red, left) and Derived Distributions (blue, right) in Lugano.
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Fig. 8. Estimated PDFs for 5-year subsamples using Normal Distributions (red, left) and Derived Distributions (blue, right) in Lugano.

25 15 10 7 5 3
0

50

100

150

200

250

300

350

400

Record Length (years)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(m
m

)

 

 

Samples
Derived Distribution

32 15 10 7 5 3
0

50

100

150

200

250

300

350

400

Record Length (years)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(m
m

)

 

 

Samples
Derived Distribution

Fig. 9. Sample standard deviations of annual precipitation computed from yearly totals (in blue), compared to the corresponding population
standard deviations estimated with the DDA (in green). For record lengths 6 15 yr, the whiskers show the range ± 1 std from resampling
(n=200). Concepción is on the left and Lugano on the right.

Table A1. Quantiles of the distribution of annual rainfall in Concepción, as obtained with different record lengths resampled 200 times and
continuous data using derived distributions (in mm).

Sample Size Mean STD Skew.
QUANTILES

Q .01 Q .02 Q .05 Q .10 Q .20 Q .80 Q .90 Q .95 Q .98 Q .99

25 Years 1213.6 265.4 0.35 670 727 817 900 1006 1451 1579 1688 1814 1900

15 Years
m 1209.8 264.9 0.35 667 725 814 897 1002 1447 1575 1683 1809 1895
s 39.5 8.0 0.01 27.1 28.4 30.3 32.1 34.5 45.3 48.5 51.4 54.7 57.0

10 Years
m 1217.3 266.2 0.35 672 730 820 903 1009 1456 1584 1693 1820 1906
s 60.0 13.2 0.01 38.8 40.9 44.2 47.3 51.5 70.2 75.9 80.8 86.6 90.5

7 Years
m 1214.0 264.8 0.35 672 729 818 902 1007 1451 1579 1687 1813 1899
s 82.1 17.6 0.02 53.9 56.6 61.0 65.2 70.7 95.5 103.0 109.5 117.1 122.4

5 Years
m 1205.0 263.8 0.35 665 722 811 894 998 1442 1569 1677 1802 1888
s 99.1 21.2 0.02 66.4 69.6 74.6 79.5 85.9 114.9 123.8 131.4 140.6 146.9

3 Years
m 1242.2 271.1 0.35 687 746 837 922 1030 1485 1616 1727 1856 1944
s 140.7 28.1 0.04 98.4 102.5 109.2 115.4 123.6 160.6 171.8 181.6 193.2 201.2
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Table A2. Quantiles of the distribution of annual rainfall in Concepción, as obtained with different record lengths resampled 200 times fitting
Normal distributions (in mm).

Sample Size Mean STD
QUANTILES

Q .01 Q .02 Q .05 Q .10 Q .20 Q .80 Q .90 Q .95 Q .98 Q .99

25 Years
(DDA)

1213.6 265.4 670 727 817 900 1006 1451 1579 1688 1814 1900

25 Years
(Normal)

1194.1 269.8 566 640 750 848 967 1421 1540 1638 1748 1822

15 Years
m 1189.8 270.2 561 635 745 843 962 1417 1536 1634 1745 1818
s 42.3 28.2 80.9 74.5 65.3 57.8 50.1 46.8 53.4 60.3 69.0 75.2

10 Years
m 1197.9 271.7 566 640 751 850 969 1427 1546 1645 1756 1830
s 63.8 42.6 123.7 113.9 99.9 88.4 76.6 69.7 79.3 89.5 102.5 111.9

7 Years
m 1194.9 264.4 580 652 760 856 972 1417 1534 1630 1738 1810
s 87.6 60.1 172.8 158.8 138.9 122.7 105.8 96.4 110.3 124.9 143.6 156.9

5 Years
m 1186.7 266.4 567 640 749 845 963 1411 1528 1625 1734 1807
s 104.1 75.5 215.6 197.8 172.2 151.2 128.9 114.5 132.4 151.1 174.9 191.9

3 Years
m 1224.2 242.2 661 727 826 914 1020 1428 1535 1623 1722 1788
s 152.0 115.9 325.2 297.6 257.8 225.0 190.3 170.4 199.3 229.1 266.6 293.2

Table A3. Quantiles of the distribution of annual rainfall in Lugano, as obtained with different record lengths resampled 200 times and
continuous data using derived distributions (in mm).

Sample Size Mean STD Skew.
QUANTILES

Q .01 Q .02 Q .05 Q .10 Q .20 Q .80 Q .90 Q .95 Q .98 Q .99

32 Years 1529.8 280.0 0.27 942 1006 1105 1197 1311 1786 1919 2032 2163 2252

15 Years
m 1531.2 270.8 0.27 960 1023 1120 1208 1319 1778 1907 2016 2142 2227
s 60.4 8.3 0.03 44.1 45.9 48.8 51.4 54.7 68.9 72.9 76.3 80.3 83.1

10 Years
m 1520.5 268.6 0.27 955 1017 1112 1200 1310 1765 1893 2001 2126 2210
s 71.5 10.2 0.03 52.7 54.8 58.1 61.1 64.9 81.4 86.2 90.3 95.0 98.3

7 Years
m 1531.6 269.8 0.26 962 1024 1121 1210 1321 1779 1908 2017 2143 2228
s 101.8 14.7 0.05 73.8 76.9 81.9 86.5 92.5 117.9 125.3 131.6 139.0 144.0

5 Years
m 1532.0 268.8 0.25 964 1026 1123 1211 1322 1780 1908 2017 2142 2228
s 121.1 16.5 0.07 89.0 92.7 98.4 103.9 110.7 140.1 148.6 155.9 164.4 170.1

3 Years
m 1529.5 267.4 0.24 963 1025 1121 1210 1320 1778 1906 2015 2140 2225
s 150.9 21.4 0.09 110.2 114.9 122.2 129.2 137.9 175.8 186.8 196.3 207.2 214.8

Table A4. Quantiles of the distribution of annual rainfall in Lugano, as obtained with different record lengths resampled 200 times fitting
Normal distributions (in mm).

Sample Size Mean STD
QUANTILES

Q .01 Q .02 Q .05 Q .10 Q .20 Q .80 Q .90 Q .95 Q .98 Q .99

32 Years
(DDA)

1529.8 280.0 942 1006 1105 1197 1311 1786 1919 2032 2163 2252

32 Years
(Normal)

1530.5 290.1 856 935 1053 1159 1286 1775 1902 2008 2126 2205

15 Years
m 1530.5 280.2 879 955 1070 1171 1295 1766 1890 1991 2106 2182
s 56.8 43.7 101.9 92.1 78.4 68.0 58.6 75.6 90.0 103.1 118.6 129.3

10 Years
m 1521.7 281.6 867 943 1058 1161 1285 1759 1883 1985 2100 2177
s 69.0 62.0 137.7 123.1 102.4 86.2 71.3 99.5 121.4 141.0 163.9 179.5

7 Years
m 1530.0 276.0 888 963 1076 1176 1298 1762 1884 1984 2097 2172
s 98.8 81.6 177.4 158.8 132.9 113.2 96.4 140.1 169.0 194.6 224.6 245.1

5 Years
m 1532.6 264.0 918 990 1098 1194 1310 1755 1871 1967 2075 2147
s 116.4 103.6 239.7 215.2 180.5 152.9 126.6 162.0 197.3 229.2 266.9 292.7

3 Years
m 1530.0 258.8 928 999 1104 1198 1312 1748 1862 1956 2062 2132
s 141.9 135.2 322.9 290.1 243.2 205.0 166.6 196.1 241.5 282.9 332.1 365.8
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Fig. 10. Mean (± std. dev.) and median decrease in relative per-
centual error when using short records (3 to 15 yrs long) and the
derived distribution instead of direct computation from the sample
annual totals, to estimate the long-term (32 yr) standard deviation
of annual rainfall at 52 locations in Switzerland.
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Fig. 11. Effects of data resolution on the distributions obtained with Derived Distributions for Concepción (left) and Lugano (right). The
diagonal black line represents a perfect agreement.
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Fig. 12. Estimated PDFs for 10-year (left) and 5-year (right) subsamples using a 24-h totalized record in Concepción.
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Fig. 13. Estimated PDFs for 10-year (left) and 5-year (right) subsamples using a 24-h totalized record in Lugano.


