

Supplement of

From meteorological to hydrological drought using standardised indicators

L. J. Barker et al.

Correspondence to: L. J. Barker (lucybar@ceh.ac.uk)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 Supplementary Material

2 S1 Modified Chelton method

The following outlines the implementation of the 'modified Chelton' method (Pyper and
Peterman, 1998) for determining the level of autocorrelation in time series.

5 The effective degrees of freedom will be fewer in an autocorrelated series, resulting in a larger 6 critical value (r_{crit}) that the correlation coefficient must exceed to be considered significant. The 7 effective degrees of freedom is estimated based on the method outlined in Chelton (1984),

8
$$\frac{1}{N^*} \approx \frac{1}{N_{comp}} + \frac{2}{N_{comp}} \sum_{j=1}^{N_{lag}} \rho_{XX}(j) \rho_{YY}(j),$$

9 where N_{comp} is the number of complete data-pairs across the two series, N_{lag} is the maximum 10 number of lags, *j*, over which the autocorrelation values $\rho_{XX}(j)$ and $\rho_{YY}(j)$ are summed. N_{lag} was 11 calculated *as* $N_{comp}/5$, as recommended by Pyper and Peterman (1998). The critical correlation 12 value (r_{crit}) was calculated using a two-sided test for N^* -2 degrees of freedom,

13
$$r_{crit} = \sqrt{\frac{t_{\alpha,N^*-2}^2}{t_{\alpha,N^*}^2(t_{\alpha,N^*}^2 + N^*)}},$$

14 where *t* is the Student's *t*-distribution calculated using a two-sided test and a significance level 15 (α) of 0.05 (Zar, 1996).

16 The autocorrelation values $\rho_{XX}(j)$ and $\rho_{YY}(j)$ are calculated using methods outlined in Pyper and 17 Peterman (1998), amended to take missing data at any time step, *i*, into account, by using the 18 term $N_{comp,j}$ which denotes the number of complete pairs of data for series *X* when lagged by 19 lag *j*,

20
$$\rho_{XX}(j) = \frac{\frac{1}{N_{comp,j}} \sum_{t=1}^{N-j} [(X_t - \bar{X})(X_{t+j} - \bar{X})]}{\frac{1}{N_x} \sum_{t=1}^N (X_t - \bar{X})^2}$$

21 Here, \overline{X} is the mean of data series *X* and *N_x* is the number of non-missing values in *X*. 22

1 S2 Drought characteristic maps

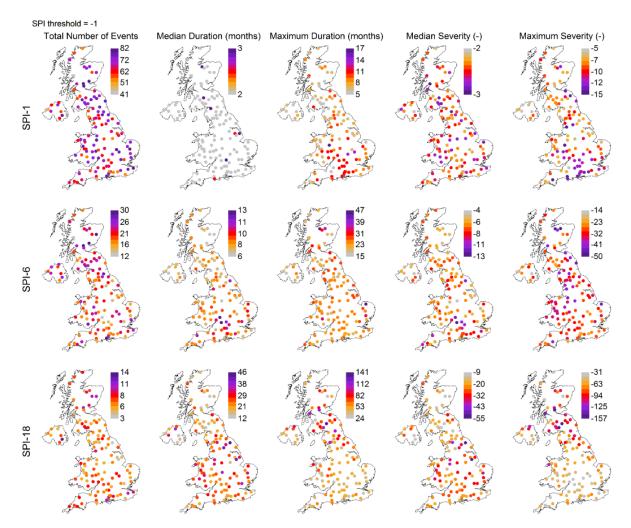


Figure S1. Maps showing selected drought characteristics for SPI-1, SPI-6 and SPI-18
calculated using a threshold of -1. Note that the colour scale is different for each accumulation
period to best show the spatial variability of the results.

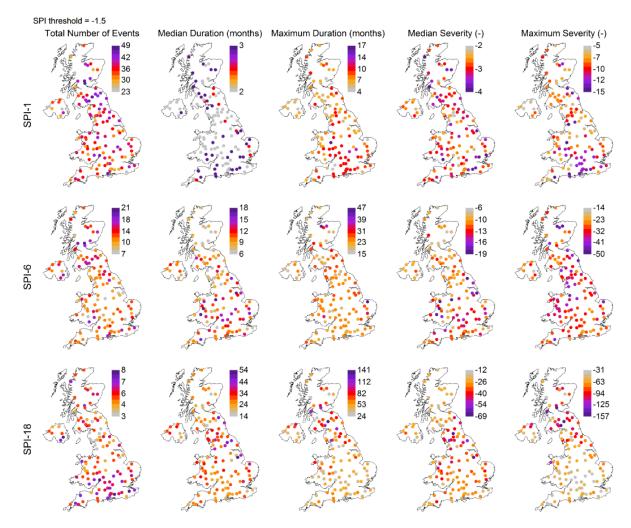


Figure S2. Maps showing selected drought characteristics for SPI-1, SPI-6 and SPI-18
calculated using a threshold of -1.5. Note that the colour scale is different for each accumulation
period to best show the spatial variability of the results.

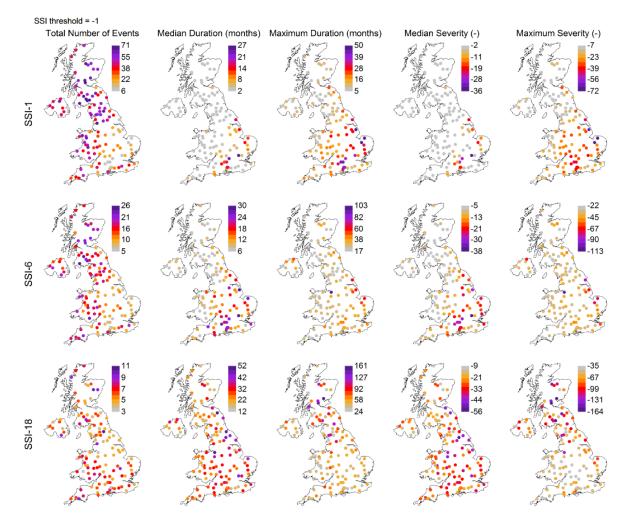


Figure S3. Maps showing selected drought characteristics for SSI-1, SSI-6 and SSI-18
calculated using a threshold of -1. Note that the colour scale is different for each accumulation
period to best show the spatial variability of the results.

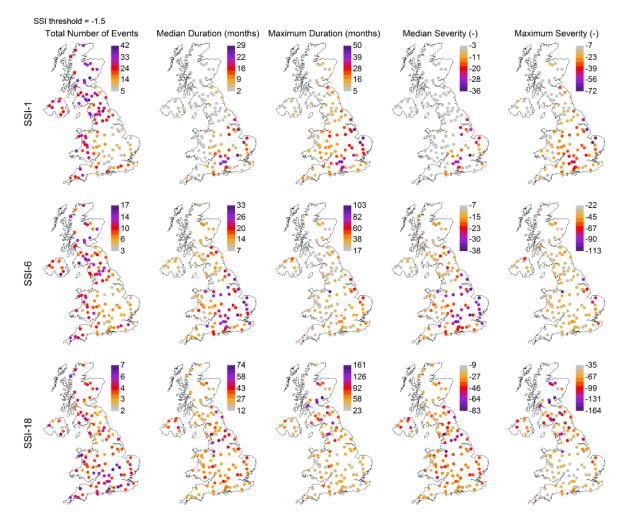


Figure S4. Maps showing selected drought characteristics for SSI-1, SSI-6 and SSI-18
calculated using a threshold of -1.5. Note that the colour scale is different for each accumulation
period to best show the spatial variability of the results.

1 S3 References

- 2 Chelton, D.: Commentary: short-term climatic variability in the northeast Pacific Ocean, in:
- 3 The influence of ocean conditions on the production of salmonids in the North Pacific, Pearcy,
- 4 W. G. (Ed.), The Program, 1984.
- 5 Zar, J.: Biostatistical analysis, 3rd Edn., Prentice-Hall Inc, Upper Saddle River, New Jersey,
 6 1996.
- 7