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Author’s Response

Dear Editor,

We believe most of the referees’ comments have been addressed in the revised manuscript.
Apart from the numerous changes following specific comments – which appear in the marked-up
version –, three main changes have been made:

• Several elements have been transferred from discussion to methods, and from results to
discussion,

• A new subsection dedicated to the advantages and limitations of the QE-ANOVA approach
has been added to the discussion,

• A supplementary material including additional verification graphs has been appended to the
manuscript.

Best regards.
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The referee comments are recalled in italics and followed by the authors’ responses.

The paper proposes a methodology to estimate a transient probability distribution of
yearly hydrological variables conditional to ensemble projections. Specifically, yearly
anomalies and rolling means over 30 years of anomalies of MAM7 are analysed. The
projections are derived from a model chain involving GCMs, statistical downscaling
methods and hydrological models and the contribution of each model chain member to
total uncertainty is quantified using quasi-ergodic analysis of variance.

General comments

The authors investigate the relevant topic of future changes to low flow behavior and
C6918

makes use of transient projections which is important for water management for specific
years. The paper is generally well written and provides relevant and timely references.
It also presents clear figures to support their statements.

The authors would like to thank the referee for this positive evaluation of the manuscript.

However, I see some points that need to be addressed before I feel confident in rec-
ommending final publication:

1. Since projections are used on hydrological models I miss the description on how
these models were tested on robustness. If a hydrological model is not robust
- in this case particularly targeting low flow-, I do not trust indications that are
made with projections, i.e. in changed conditions. See for instance the simple
recommendations made by Klemes (1986).

We understand this point of view, and this comment calls for different elements
of response.

First, as mentioned P12657L11, ORCHIDEE has not been calibrated and inci-
dentally shows a very low performance on various low flow metrics. Moreover,
only manual sensitivity tests have been performed to select J2000 parameters.

Second, for GR5J, MORDOR, CEQUEAU and CLSM, tests of robustness have
been run by following the approaches recommended by Klemeš (1986): split-
sample tests have been performed over two consecutive periods P1 (1980-1994)
and P2 (1994-2009). Results on different metrics (including low flow metrics)
are summarized by Sauquet et al. (2015, p. 63-69). They show that all models
tend to have difficulty in simulating low flows. Moreover, as mentioned in the
manuscript P12671L1-7, differential split sample tests have been performed by
considering 5-year subperiods with contrasted climatic conditions: 1983-1988
(cold and snowy), 1988-1993 (dry and quite cold), 1993-1998 (wet and snowy),
1999-2004 (wet and warm) and 2004-2009 (dry and warm). The results for all
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these tests on different metrics (including low flow metrics) are summarized by
Sauquet et al. (2015, p. 70-72). They show that all calibrated models seem
equally robust with regard to their low flow simulations. Other differential split
sample tests have been performed with CLSM and are summarized by Magand
et al. (2015). The results from all these tests prompted us to comment in the
manuscript on the necessity to include parameter uncertainty in future uncertainty
assessments (see P12670L25 to P12671L12). As mentioned in the manuscript
P12671L5-7, detailed results of split-sample tests will be presented in a follow-up
paper.

Third, and most importantly, this manuscript focuses on the decomposition of un-
certainties, independently of the quality of the models, be they GCMs (Global
Climate Models), SDMs (Statistical Downscaling Methods) or HMs (Hydrological
Models). To this aim, only anomalies with respect to the REF period (1980-2009)
are considered throughout the manuscript, in order to remove the effect of poten-
tial biases in low flow indicators. What may be relevant to the present paper is an
assessment of how the models are able to simulate the observed interannual vari-
ability of low flow anomalies. All models show a very good interannual variability
of MAM7 anomalies, except for the low-elevation catchment (Verdon@Sainte-
Croix) in summer where their performance is a bit lower. The above statement
are however not valid for ORCHIDEE which shows only a fair performance.

Some of the above comments will be added to Section 5.3.

2. The paper reads nicely and logic until the discussion starts. Here there are many
parts that actually would belong to the Methods and Results sections. Please,
restructure for better readability of the entire paper. (See also Specific comments)

We will restructure the manuscript to (1) integrate the analysis of the origins of
divergence of low flow responses from different HMs (Sect. 5.2) in the Methods
section, keeping only the comparison to findings from other studies, (2) move
specific comparisons to other studies currently in the Results section to a ded-
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icated subsection of the Discussion section. For the sake of readability of this
document, specific comments corresponding to this main comment will not be
recalled below.

3. The authors introduce convincingly the benefit of transient projections. Hence,
I would expect a discussion on this benefit underlined with the results that are
presented as well as concrete examples for application. Particularly, the time of
emergence and related uncertainties are not discussed (see also Specific com-
ments).

Some comments will be added to the revised manuscript to discuss the bene-
fit of a transient decomposition of uncertainties, for example for assessing the
time of emergence of the change signal on low flows for an individual year or for
30-year time slice averages. Such comments will be included on a subsection
discussing the advantages and the limitations of the QE-ANOVA approach. See
also responses to specific comments below.

Specific comments

• 12652L20 Does the reference present the low number or does it propose alter-
natives? (not clear from its placement); name these alternatives briefly

Peel et al. (2015) actually proposes an alternative to circumvent the low number
of GCM runs, by stochastically generating time series based on resampled GCM
projections. This will be made explicit in the revised manuscript.

• 12653L5 why is it called comprehensive, briefly state why

All possible combinations of the available GCMs / GCM runs / SDMs / SDM real-
izations / HMs are considered in this dataset. To hopefully be even clearer, each
run of each GCM has been downscaled with each SDM, and each realization of

C6921



this downscaled climate projection dataset has served as forcing for each of the
HMs.

• 12654L17 does the higher elevated catchment contain glacierized parts?

The Durance@Serre-Ponçon indeed contains some glacierized parts mainly lo-
cated in the Écrins massif, accounting for around 20ḱm2 in 2006-2009 (Gardent,
2014, p. 181) and shrinking (Gardent et al., 2014). These parts represent only
0.5% of the catchment surface area and glacier melt has therefore little influence
on the low flows at Serre-Ponçon.

• 12654L21-L25 I wonder if these reconstitutions and their related uncertainties
could influence the outcomes of the uncertainty contribution partitioning. Please,
clarify.

Reconstituting natural streamflow is a prerequisite of any climate change effect
on hydrology in regulated catchments like the Durance one, in order to remove
anthropogenic influence from reservoir operations that may vary from year to
year. Such reconstitutions – that of course carry some uncertainties – are here
only used to calibrate the hydrological models to hopefully simulate the natural
component of the catchment hydrology. In the present study, these models are
only used with forcings from the downscaled GCM projections. We therefore
hardly see how these reconstitutions may influence the uncertainty contribution
partitioning as they were used in a similar way by all calibrated hydrological mod-
els.

• 12655L16ff the basic principle is introduced, but since three different SDMs are
used it would be good to briefly introduce the specific differences among them,
or earlier refer to Table2

An earlier reference to Table 2 and previous references (which both contain ad-
ditional information and differences between SDMs) will be made in the revised
manuscript.
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• 12656l12-17 How often and how much was the temperature corrected? -> possi-
ble impacts on results? And impacts on the interpretation in 12668L2 "identical"?

The temperature correction (occurrence and amount) is highly dependent on the
SDM considered. For example, few and generally small corrections are required
for d2gen which include the large-scale temperature at 700hPa above the catch-
ment, corrections are higher for dsclim that includes the large-scale T2m above
France as a predictor, and again higher for analog that does not include any
temperature-related predictor. Such a correction may therefore contribute to re-
duce the difference in downscaled projections from the different SDMs, at least
for the temperature at the scale of the whole Durance basin, the spatial aspects
being unchanged. It may therefore contribute to reduce the SDM uncertainty part
in the overall uncertainty. This discussion will be added to the revised manuscript.
Concerning the second point of this comment, there is no impact on the interpre-
tation of the sentence P12669L2: when a specific combination (GCM / GCM
run / SDM / SDM realization) is considered, meteorological forcings (downscaled
gridded projections) are indeed identical for all HMs.

• 12657L13 what are the consequences of this initially coupled mode if any?

There is no direct consequence as they are here used here in a forced mode.
This sentence was simply intended to highlight the initial purpose of such mod-
els – which is different from the one of rainfall-runoff hydrological models – and
therefore the potentially lower adequacy to such catchment-scale modelling. It
will be clarified in the revised text.

• 12657L14 Here I miss the description on how the hydrological models were
tested on robustness (Klemeš 1986)

See response to main comment #1.

• 12657L19 is there a practical motivation for choosing the MAM7 and not any
other low flow metric?
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The choice of the MAM7 was guided by the requirement for (1) an annual indica-
tor, and (2) an indicator commonly used internationally for operational purposes.
This will be clarified in the revised text.

• 12658L5 is there snowfall already before November in the higher catchment?

Based on data from the 1980-2009 period, snowfall may happen in late October
in the Durance@Serre-Ponçon but in limited amounts.

• 12665L26 -12666L2 Methods not Results – also I find this Time of Emergence
very appealing and would appreciate more details and thoughts on applicability
on it

See response to main comment #3. The concept of Time of Emergence (ToE)
has been introduced by Giorgi and Bi (2009) and popularized by Hawkins and
Sutton (2012). The only requirement for applying this concept is an estimate of
the multimodel signal of change and an estimate of the natural/internal variability.
Some discussion will be added to the revised manuscript.

• 12669L26-28 actually, less snow pack can have two natural reasons related to
precipitation: 1) less precipitation fell in general or 2) precipitation fell as rain;
these two would have different effects and would not necessarily result in more
water for winter low flow

The referee is right. But the fact that precipitation totals are identical for all HMs
(for a specific GCM / GCM run / SDM / SDM realization) makes reason 1) not rel-
evant here. What is left is therefore reason 2), hence our difficulty on interpreting
this result. We would be happy to have more external insights on this particular
point, as mentioned in the manuscript.

• 12671L13 I would appreciate a discussion on the time of Emergence and its
relevance for application respectively the limitations that are related to this metric;
could it be influenced by the initial calibration for instance?
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See response to main comment #3. We do not believe the ToE metric could be
influenced by the calibration processes, but some additional analysis may confirm
this. What is true, however, is that the ToE is intrinsically linked to the choice
of the reference period chosen for calculating the anomalies (see Hawkins and
Sutton, 2016, for some relevant comments on that issue). It is also highly linked to
the quality of the estimates for both the multimodel mean signal and the internal
variability. The time series approach used here makes this estimation rather
robust. This would have not been the case with other uncertainty estimation
approaches such as the one proposed by Yip et al. (2011) as the contribution of
internal variability to total uncertainty variance is here very high.

• 12671L25- 12672L4 the benefit of transient quantification of uncertainties should
be discussed before appearing in the conclusions - potentially comparing to other
studies that used other than low flow variables and then leading to applicability
particularly for the water management with the focus on low flow as pointed at in
the conclusions 12672L24f

Some discussion on this point will be added to the revised manuscript. See
also the response to main comment #3 and responses to specific comments on
the Time of Emergence (ToE). Benefits for the water manager will be discussed,
and notably how such results may inform robust adaptation strategies and how
they may change the focus of such strategies compared to previous studies that
looked only at changes in 30-year average quantities.

• 12689 I like this Figure very much!

Thank you.

• 12692 Figure4 Durance@Serre-Ponçon makes me wonder how suitable GCMs
in higher Alpine catchments are. ECHAM5 and CNCM33 show opposite signals
over the entire period (winter). Could the authors add some words on the suit-
ability of GCMs in high Alpine catchments?
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The performance of GCMs in higher Alpine catchment is actually not really rel-
evant here. Indeed, the downscaling step makes use of GCM predictors not
necessarily located above the specific catchment. Geopotential height predic-
tors used by all 3 SDMs are for example considered over a large spatial domain
covering a large part of France.

Technical comments

• 12650L8 and L9 "of" ->"for"?

We believe the appropriate use of "to take account" is with "of".

• 12650L12 "possible transient futures" rephrase!

We may replace it by "transient possible futures" if required.

• 12650L16 "most elevated", only two catchments are studied -> change

This will be replaced by "more elevated".

• 12650L19-21 Unclear, rephrase

This will be replaced by "The time of emergence of the change signal is however
detected for low-flow averages over 30-year time slices starting as early as 2020."

• 12651L20 either "paragraphs propose" or "paragraph proposes" (I guess the lat-
ter?)

This will be replaced by: "The following paragraphs propose...".

• 12652L25f reformulate for better understanding

This will be replaced by: "Lastly, the majority of hydrological change studies so
far mainly focused on uncertainties in the streamflow regime."

C6926

• 12652L26 when -> while

The sentence will be modified as: "Some of them [...], but relatively few..."

• 12653L1 "possible futures", please change to "future possibilities" or similar

We would like to keep the wording as “possible futures” as we believe it conveys
the appropriate concept.

• 12653L5 move 1980-2065 after hydrological projections

We will rephrase the sentence as: "[...] transient hydrological projections over the
1980-2065 period..."

• 12653L12 verb missing after critically

We don’t think any verb is missing, as the sentence draws a parallel between
"relative contributions of model uncertainty...." and "[relative contributions] of both
large-scale and local-scale components of internal variability". We may add num-
bers in brackets to make it more explicit.

• 12655L7 add "the" before year

The sentence will be modified accordingly.

• 12655L9 that -> these GCM runs

We unfortunately don’t understand the modification proposed by the referee.

• 12655L10 runs -> is

We believe using the verb "to run" is valid here.

• 12656L1 predictors

The plural is indeed appropriate here.
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• 12659L5 NFS would mean N* F* S mathematically speaking, please change to
S N F or similar throughout

There is obviously a misunderstanding over "NFS". NFS refers to Noise-Free
Signal, an abbreviation already used by Hingray and Saïd (2014). It will be made
more explicit and defined earlier on in the revised manuscript to remove any
possible confusion with mathematic notations.

• 12661L16 did Hingray and Saïd do the same of did they overfit - not clear from
this sentence

The sentence is indeed unclear and will be rephrased. Hingray and Saïd (2014)
also used a linear trend not to overfit interannual fluctuations.

• 12668L13 "snowpack building" rephrase

We propose to replace it by "snowpack accumulation and snowpack melt".

• 12671L27 change "account of" into "into account" and place after "variability"

We believe the two formulations are equally valid, but we may use the proposed
one in the revised manuscript.

• 12692 correct to "catchments" in the caption

This typo will be corrected.

• 12701 add "the" before year 2065

The sentence will be modified accordingly.
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The referee comments are recalled in italics and followed by the authors’ responses.

The article presents a transient decomposition of uncertainties in low flow changes in
two Alpine catchments. The decomposition is done for 30-year as well as for yearly
statistics. As a method for the decomposition, the quasi-ergodic ANOVA method pro-
posed by Hingray and Saïd (2014) is used. It is shown that in the ensemble mean,
the low flows generally decrease. The largest fraction of uncertainty comes from in-
ternal variability. Hydrological models also contribute substantially to the total uncer-
tainty, which is discussed to be due to differences in snow and evapotranspiration rou-
tines between the different hydrological models. Also, a comparison to a standard
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ANOVA method is presented. It shows that the quasi-ergodic ANOVA method results
in a smoother transient uncertainty decomposition than the standard ANOVA.

General comments

The discussion paper studies a relevant topic and applies state-of-the art methods to
look at low-flows in a climate-impact study. It is well written and has a high scien-
tific quality including a sound literature discussion. Also, the mathematical details of
the applied method are given in a conclusive way. I recommend publication after my
comments below have been taken into account.

The authors would like to thank the referee for this positive evaluation of the manuscript
and for the insightful comments on the QE-ANOVA method.

Major comments

The paper very much relies on the statistical method of the quasi-ergodic ANOVA in-
troduced by Hingray and Saïd (2014) and consequently, other aspects in the impact
modeling chain are less well detailed. I do not mind that and in fact would like to
see even more discussion of the QE-ANOVA. There are many assumptions made in
the QE-ANOVA and some of them could be verified. For example, the stationarity of
the variance has not been proved, something which is even more relevant since the
authors use yearly anomalies with a higher degree of variability. If there is a consider-
able degree of non-stationarity in the variability, I would like this to be included in the
discussion of the QE-ANOVA results.

Assuming a constant coefficient of variation of the variable studied with respect to the
inter-realization dispersion (for SSIV) and with respect to the inter-run dispersion (for
LSIV) is indeed a central hypothesis in the QE-ANOVA method. We will try to avoid
here using the term of stationarity which is subject to much discussion in the recent
literature.

It is indeed possible to relax this hypothesis and compute yearly empirical values of
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the variance terms in Equation (A1) for SSIV. In Equation (A1), the empirical variance
Vark[Y(m,r,k,t)/ŷ(m,t)] may be calculated for any (m,r) at any time horizon t of the sim-
ulation period. SSIV(t) may then be calculated without the quasi-ergodic assumption.
Figure 1 below compares the temporal evolution of SSIV with the quasi-ergodic (QE)
assumption – as in the manuscript – and without it, as defined above. It shows that the
hypothesis is quite reasonable and allows removing some noise without altering the
overall temporal evolution.

Similarly, it is also possible to relax this hypothesis for LSIV, even if in a degraded mode
because of the different numbers of runs from each GCM, and because of the fact that
2 of them (out of 4) only have one run. In equation (A3), the temporal evolution of
Varr[Y(m,r,•,t)/ŷ(m,t)] may therefore be calculated for any m where r>1 (i.e. for model
chains that include either IPCM4 and ECHAM5). Figure 2 below shows here again
that the quasi-ergodic hypothesis is quite reasonable. The above comments will be
included in the discussion section and figures provided as a supplementary material or
in annex.

Over all, I would also like to see a more critical discussion of the results, not only
highlighting the advantages but also the limitations of the QE-ANOVA results. It has to
be clear for a Non-ANOVA specialist what they can expect from the method, since many
impact modelers would probably like to use the QE-ANOVA approach. For example, the
QE-ANOVA approach would not be suitable to study changes of extreme precipitation
for which other studies have shown that the variability can increase even in case of
decreasing mean.

In addition to the response to the above comment, the revised manuscript will also
include a dedicated subsection of the discussion on the advantages and limitations of
the QE-ANOVA method, including the central issue of extracting the signal with a rele-
vant shape. This issue necessarily leads to overestimate LSIV (see Hingray and Saïd,
2014). As a complement to the response of the previous comment, the hypothesis of a
constant coefficient of variation over the whole period may actually be thus relaxed by
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using only a limited number of time steps around the target time horizon for calculat-
ing LSIV. In such a local QE-ANOVA approach, the estimation can next be applied in
turn for each target time horizon, allowing the LSIV to depend on the target time. This
approach leads to quite interesting results for synthetic data with various response to
uncertainty ratios, as shown by Hingray et al. (submitted).

Also, although the literature review is generally good, it would be good to include a
part about other ANOVA methods. In particular, the study by Northrop and Chandler
(2014) could be cited to refer to another method that is able to deal with an unbalanced
design.

We agree that a number of other ANOVA methods have been presented and applied
in the recent years. The main focus on our work was however not to present a new
ANOVA method but rather to explore the hierarchy of uncertainty sources in a specific
hydrological issue using (and adapting in a way) an already existing ANOVA method. Of
course the results of the uncertainty analysis may significantly depend on the method.
We recently explored this issue from synthetic experiments (Hingray et al., submitted).
We will acknowledge this point in the discussion and mention the possibility / interest
to apply other methods such as the one of Northrop and Chandler (2014) pointed out
here, which seems indeed interesting to explore especially the robustness of uncer-
tainty estimates.

I have tried to give as detailed comments as possible below. I am looking forward to the
author’s response and would also be happy to discuss certain aspects if necessary.

Detailed comments

• Title: The term "Hierarchy" is a bit misleading, as there is no dominating hierarchy
but the contributions of the different uncertainty sources are changing over time.
To me, hierarchy is something structurally inherent. Also, the term might lead to
confusions with the use of hierarchical ANOVA models, which are not used in this
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study.

We would prefer to keep the current title as the work indeed attempts at finding
the hierarchy of climate and hydrological uncertainties in hydrological projections.
The fact that such a hierarchy depends on the target time horizon will be spec-
ified in the revised abstract and conclusions in order to remove any ambiguity.
Moreover, we do not think confusions may arise with hierarchical ANOVA models
as we never use the term in the manuscript (abstract included).

• Section 2.2.1: Which variables were used from the GCMs?

The GCM variables used as statistical downscaling predictors depend on the
SDM. More information on predictors can be found in Lafaysse et al. (2014),
but SDM versions used here slightly differ. A complete description of versions
used here may be found in Hingray et al. (2013, p. 24). With their notations, the
versions used here are: analog20, d2gen22 and dsclim11. In short, all 3 SDMs
use some sort of geopotential fields (either sea level pressure or geopotential
height at 700 or 1000 hPa), and for d2gen and dsclim, some large-scale indicator
of temperature (either at the surface or at 700 hPa), and additional predictors
like for example humidity (relative, specific or flux at 700hPa) or geostrophic wind
components at 700 hPa.

• And what do the different runs in Tab. 1 stand for? Of course, the introduction
gives some hints, but it should be clearly stated in this section, too.

The different runs correspond to different free simulations of a GCM differing only
by their initial conditions (here in 1850), and thus provide an estimate of the GCM
internal variability. This will be reminded in this section.

• Also, has the data since the end of ENSEMBLES been published publicly? If so,
please indicate the data source.
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ENSEMBLES data are publicly available through the project website http://
ensembles-eu.metoffice.com. This data source will be added to the revised
manuscript.

• Page 12656, lines 18-29: It is unclear which parameters that are used for the
subsampling. Was it changes in mean annual temperature and precipitation or
anything else? Please specify.

The conditioning variables used for the subsampling have indeed not been spec-
ified in the manuscript. They are changes between 2 periods (1980-2009 and
2036-2065), on summer and winter precipitation and temperature, and on inter-
annual variability of annual precipitation and temperature, all of them on basin-
average (whole Durance basin) variables. They have been carefully chosen
based on their relevance for water management. This will be added to the re-
vised manuscript.

• Also, what are the properties of LHS regarding the joint properties of the sub-
sampled distributions?

Conditioned LHS critically seeks to preserve the joint properties of the multivari-
ate distributions (see e.g., Christierson et al., 2012).

• Section 2.2.3 and Table 3: A list of required input variables for each hydrologi-
cal model should be given. Furthermore, since the evapotranspiration process
description is mentioned later on to be a potential reason for differences in low
flow projections, a short description of the evapotranspiration routines should be
included in Table 3 in a similar manner as the snow routines have been listed.

We agree with the referee. We opted in the first place not to mention these
descriptions, but we now understand it may bring some relevant information.
Roughly, two types of evapotranspiration modelling approaches may be identi-
fied: computation of actual evapotranspiration from energy balance models in
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CLSM and ORCHIDEE, and use of Penman-Monteith potential evapotranspira-
tion (Allen et al., 1998) for the other HMs. This information will be added to Table
3.

• Section 3.1: Please indicate in the text and caption of Fig. 2 that the regimes
were estimated based on reconstructed streamflows and not observations.

We will specify that naturalised streamflow time series have been used for esti-
mating natural regimes.

• Page 12660, lines 19-20: This is only true if the trend model is correctly sepa-
rating the LSIV from the NFS for any given lead time. In general and given the
linear trend model, it is likely that LSIV and the SSIV are overestimated (see also
discussion in Raisänen 2001 and Hingray and Saïd (2014). Please discuss this
limitation here and at other text passages where the partitioning between NFS
and variability is presented.

As mentioned in a response above, this will be commented in the "QE-ANOVA
advantages and limitations" subsection of the Discussion.

• Page 12660, line 20-22: I understand that the SSIV is generated using the
stochastic SDM realizations which in turn use the GCM data as input. Thus,
there might be some sort of interaction between the LSIV and SSIV. For e.g.,
the SDM might generate a different variability for a GCM that is at the high end
of the range with respect to one that is at the low end of the range of projected
changes. It would be good if the authors could comment on that and discuss
this either here or later in the article. Is there a reason why not to construct a
2-way-ANOVA for the variability part of the data? Such an ANOVA could take in-
teractions into account. The design is unbalanced, but this should not affect your
sum of squares estimation in a more severe way as what you do in Eq. A3 and
A4 where all available runs of a particular GCM are taken thereby giving more
weight to the GCMs with more runs.
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Unfortunately, it is not possible to use a standard 2-way ANOVA to disentangle
the two internal variability components. Indeed, for a given chain GCM-SDM,
SDM realization#1 of, say, GCM run#1, does not correspond to realization#1 of
run#2, due to the stochastic nature of SDM realizations. No ANOVA with only
fixed effects can therefore be applied here. Mixed-effects ANOVA models may
be tested, but they cannot provide an assessment of possible interactions. Con-
sidering the comment on the number of runs, Equations (A3) and (A4) use an
average over all available runs for a given model chain. There is therefore no
larger weight given to GCMs with more runs.

On the other hand, we agree that the SSIV value could in principle depend on the
GCM. Figure 3 below shows the QE-ANOVA estimates of the SSIV for groups of
hydrometeorological chains associated with each GCM. No clear dependence of
SSIV to GCMs emerges from this figure: discrepancies between GCMs do exist
but they may vary over time.

• Page 12662, line 6: It is unclear how the time slice averages are calculated. Do
you use some fixed time slices or a moving 30 year approach? Please clarify at
some stage in the manuscript. I have noticed that this comes later in 4.2 but I
would have expected it to be defined earlier.

Thank you for pointing out this possible source of confusion. We actually use a
moving 30-yr approach. This will be clarified in the revised manuscript.

• Section 4.2, subsection title: Same comment as for the title. Hierarchy is arguably
not the best term here.

As mentioned above, we would prefer to keep this term here for supporting the
message that hydrological uncertainty is qualitatively and quantitatively as impor-
tant as climate uncertainty.

• Page 12663, line 21: Although I agree that internal variability often is larger than
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other sources of uncertainty, the manuscript has up to this point not given a rea-
son why this had to be expected.

We will add some supporting information earlier in the manuscript to support
the fact that this results was expected, notably by including results from other
studies (Hawkins and Sutton, 2011, etc.), but also by referring to Figure 3 where
internal variability components are both very high compared to the change signal
from this particular hydrometeorological modeling chain, but also from the grand
ensemble change signal.

• Page 12663, line 27: "previous studies". References are needed to point the
reader to the previous studies.

They actually refer to the studies referenced in the previous sentence (Lafaysse
et al. 2014; Hingray et al, 2014). This will be clarified.

• Page 12664, lines 2-4: Interesting to see that the same set of SDMs leads to
different degrees of uncertainty distributions when mean streamflow or low flows
are analysed. I would ask the authors to also include a short discussion on the
relation to other uncertainty sources. Without knowing the details about the em-
ployed SDMs, it seems to me that all make use of a similar concept (analogues)
and represent only a small part of all available SDMs. If more diverse SDMs
would have been used, the SDMs might have contributed more to the total un-
certainty.

The representativity of the set of SDMs applied here within the large superpop-
ulation of possible SDMs (with reasonable skill) is an interesting question, which
could be also posed for GCMs and HMs. It has to be noted that even if the
three SDMs rely on the same basic idea of analogue resampling, the concepts
for selecting analogue situations are quite different (see Table 2 and detailed de-
scription in Lafaysse et al., 2014). Moreover, Lafaysse et al. (2014) found large
differences between different versions of a given SDM using slightly different sets
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of predictors. It is therefore unclear whether more diverse SDMs (or a larger
number of versions from the SDMs used) would contribute more to the total un-
certainty. To come back to the different effects on different streamflow indicators,
it has to be noted that low flows are much more dependent on catchment pro-
cesses than annual streamflow, therefore reducing the impact of different SDMs.
These comments will be added to Section 5.3.

• Page 12664, lines 25-27: The authors use a lognormal distribution to transfer the
estimated variances into confidence bounds. I think this cannot be done straight-
forwardly since the variance parameter in QE-ANOVA is estimated based on non-
logarithmized data. In other words, from the QE-ANOVA you get an effect with
is normally distributed with zero mean and some variance, but those parameters
are not directly portable to a lognormal distribution, which can be seen by, for
e.g., the fact that a lognormal distribution never has zero mean. Anyway, judging
from the results in Fig. 10 that look fairly ok, I assume that the authors have taken
this into account and there is just a need for more clarification in the text on how
the estimated variance and mean parameters are transferred so that a lognormal
distribution can be used.

The relevant transformations of mean and variance from a normal distribution to
the ones of a log-normal distribution have indeed been used. This will be clarified
in the revised manuscript.

• Page 12665, lines 9: The authors should state that also here, the decrease in
internal variability for the 30-year time averages is due to the decrease in the
ensemble mean.

We agree. See also responses to previous comments on this topic.

• Page 12665, lines 10-14: A discussion of the decrease in the internal variability
is necessary. A link to the relevant equations in the appendix might be helpful
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for the interested reader. It should also be stated that this decrease is a direct
consequence of the quasi-ergodic assumption and could be an artefact.

This is right, and this issue will be added to the new "QE-ANOVA advantages and
limitations" subsection of the Discussion, as detailed in the response to previous
comments.

• Page 12665, line 21: "...in 2033-2039, that is for 30 year time-slices starting
before 2015." Unclear as both 2033-15 and 2039-15 are not less or equal than
2015.

The sentence indeed contains a typo. It should read: "... starting around 2020".

• Page 12666, lines 13-17: Unclear sentence. I understand it in a way that you
are discussing the time of emergence for the results based on yearly anomalies,
however, I cannot see that the lines in Fig. 11 exceed the 95

The sentence is indeed unclear. It actually comments the differences between
actual modelling chains and perfect ones. It notably states that with a perfect
modelling chain, one may be able to detect the change signal one decade earlier
for both catchments in summer. We will rephrase it accordingly in the revised
manuscript.

• Section 5.1: I would suggest including a discussion of the relation between hy-
drological model uncertainty and the performance of the hydrological models with
respect to the analyzed variable - here low flows. The two LSMs (ORCHIDEE
and CLSM) used are behaving quite differently from the rest of the hydrological
models. If those two were excluded from the analysis, the hydrological model
uncertainty would probably be quite a bit smaller. And I would also expect those
two HMs to have a worse performance in the reference period than the remaining
ensemble - of course due to their main goal to be a LSM rather than a catchment
model.
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The relation between a present-day performance and a climate change signal is
being highly discussed in the literature for GCMs. And indeed, a similar reasoning
may of course be followed for HMs. However, this study uses anomalies from a
reference period as a target variable in order to remove any present-day bias, and
to hopefully reduce such a relationship if it actually exists. See also the response
to comments to referee #1 on this particular topic. About the specific HMs OR-
CHIDEE and CLSM now: while present-day performance of ORCHIDEE on the
interannual variability of low flows is indeed low, CLSM performance is actually
generally in the middle range of other models. This result thus does not corrob-
orate a simple relation between present-day performance and future changes. A
sensitivity test of the uncertainty decomposition results on the subset of HMs re-
tained would therefore be interesting (and similarly on subsets of GCMs or SDMs)
but out of the scope of the present study. However, the above comments will be
added to the discussion in Section 5.3, together with corresponding answers to
comments from referee #1. It has to be noted that a similar experiment on HM
uncertainty evolution following removal of CLSM has been performed on another
multimodel study on the Seine catchment by Habets et al. (2013).

• Section 5.1, first paragraph: I would argue that also the common way how HMs
are calibrated leads to larger uncertainties for low flows. If, for e.g., NSE is max-
imized, the model is fitted better to high values than low values as the squared
deviations give more weight to high values.

Actually, each HM has been calibrated in a specific way, as this has been left to
the discretion of each R2D2-2050 project partner. The following table summa-
rizes the objective function used for each model and provides some additional
comments.

This table will be added to the Table 3 of the manuscript. The general guidelines
for the R2D2-2050 project were aiming at having HMs able to correctly simu-
late the whole range of flows, and not specifically high flows. However, the ref-
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Table 1. Hydrological model calibration details. KGE refers to the Kling-Gupta Efficiency (Gupta
et al., 2009).

Acronym Calibration approach Objective function
GR5J Optimisation KGE on

√
Q

MORDOR Optimisation KGE on Q
CEQUEAU Semi-distributed optimisation multicriteria
J2000 Manual sensitivity analysis –
CLSM Manual calibration KGE on Q plus bias
ORCHIDEE – –

eree is right when stipulating that different calibration approaches may lead to
an increase in HM uncertainty in low flow changes. This also goes along the
lines discussed in the manuscript P12670L25-P12671L12 about the uncertainty
in hydrological parameters. Some comments on the different possible objective
functions across HMs will be added to Section 5.3.

• Page 12667, lines 17-19: Isn’t this to be expected since HM’s fraction of variance
is estimated based on the linear trend fit as well as the internal variability is very
much smoothed due to the quasi-ergodic assumption, therefore removing a large
part of the variability in time? The authors should discuss that the smoothness
comes at the cost that one relies on the assumptions made.

This is right of course, and it indeed directly follows the assumptions made in
the QE-ANOVA method. The underlying hypotheses behind this method are that
both the Noise-Free Signal (NFS) and the internal variability evolve in a smooth
way over time. These hypotheses appear quite reasonable as they ensue from
a global gradual phenomenon – the increase in greenhouse gas concentrations
– whose consequences are themselves gradual, at least within the time frame
considered in this study. What can be discussed is how these hypotheses are
implemented here in the uncertainty decomposition method, i.e. through (1) the
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choice of a linear trend for estimating NFSs and (2) the choice of a constant
coefficient of variation of internal variability over time. The above comments will
be added to the discussion on the advantages and limitations of the QE-ANOVA
method.

• Figure 1: The coordinate system is not defined here. Preferably, the coordinates
should be converted to Lat/Lon or at least the projection specifications for the
lambert projection should be indicated.

We prefer sticking to the projection most commonly used in France. This is a
Lambert conformal conic projection called "Lambert II étendu" with parameters
specified in this document for example: http://www.ign.fr/sites/all/files/geodesie_
projections.pdf. This reference will be added to the figure caption.

Technical comments

• Page 12653, line 3: Should be "water manager’s"

This will be corrected.

• Page 12666, line 9: "an unchanged ..." instead of "a unchanged..."

This will be corrected.
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Fig. 1. Temporal evolution of SSIV with and without the quasi-ergodic (QE) assumption.
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Fig. 2. Temporal evolution of LSIV with and without the quasi-ergodic (QE) assumption.
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Abstract. This paper proposes a methodology for estimating the transient probability distribution of yearly hydrological

variables conditional to an ensemble of projections built from multiple general circulation models (GCMs), multiple statistical

downscaling methods (SDMs) and multiple hydrological models (HMs). The methodology is based on the quasi-ergodic

analysis of variance (QE-ANOVA) framework that allows quantifying the contributions of the different sources of total

uncertainty, by critically taking account of large-scale internal variability stemming from the transient evolution of multiple5

GCM runs, and of small-scale internal variability derived from multiple realizations of stochastic SDMs. The QE-ANOVA

framework
::::
This

:::::::::
framework

::::
thus

::::::
allows

::::::::
deriving

:
a
:::::::::
hierarchy

::
of

:::::::
climate

:::
and

:::::::::::
hydrological

:::::::::::
uncertainties

::::
that

:::::::
depends

:::
on

:::
the

::::
time

::::::
horizon

::::::::::
considered.

::
It

:
was initially developed for long-term climate averages and is here extended jointly to (1) yearly

anomalies and (2) low flow variables. It is applied to better understand possible transient futures of both winter and summer

low flows for two snow-influenced catchments in the southern French Alps. The analysis takes advantage of a very large dataset10

of transient hydrological projections that combines in a comprehensive way 11 runs from 4 different GCMs, 3 SDMs with 10

stochastic realizations each, as well as 6 diverse HMs. The change signal is a decrease in yearly low flows of around −20 % in

2065, except for the most
::::
more elevated catchment in winter where low flows barely decrease. This signal is largely masked by

both large- and small-scale internal variability, even in 2065. The time of emergence of the change signal on 30year
::
is

:::::::
however

:::::::
detected

:::
for low-flow averages is however around 2035, i.e. for

:::::::
averages

::::
over

:::::::
30-year

:
time slices starting in

::
as

::::
early

:::
as 2020.15

The most striking result is that a large part of the total uncertainty – and a higher one than that due to the GCMs – stems from

the difference in HM responses. An analysis of the origin of this substantial divergence in HM responses for both catchments

and in both seasons suggests that both evapotranspiration and snowpack components of HMs should be carefully checked for

their robustness in a changed climate in order to provide reliable outputs for informing water resource adaptation strategies.

1 Introduction20

Incorporating global change in long-term water resource planning, water management and water governance is a major issue

water managers currently have to face (see e.g. Clarvis et al., 2014; Bréthaut and Hill Clarvis, 2015). Indeed, hydrological
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impacts of climate change may significantly alter amounts and timing of both the water demand and the water availability.

Future water availability informing water resource adaptation strategies are usually assessed based on hydrological modelling

with forcings from General Circulation Model (GCM) projections for specific catchments and/or at the national scale (see e.g.

Christierson et al., 2012; Chauveau et al., 2013). In this context, a water manager with some degree of awareness in potential

climate change impact studies is entitled to ask the following question, particularly relevant for long-term planning: for a given5

year in the future, what will be the probability of having a low flow value lower than a given baseline? Note that a very similar

question has been recently addressed by Sexton and Harris (2015) on the probability of a seasonal temperature/precipitation

average for a given year being lower or higher than a present-day baseline. In order to answer the water manager question, one

should address four different scientific issues: (1) computing future hydrological changes, (2) generating a transient evolution

of those changes, (3) disentangling hydrological change signal from effects of natural/internal climate variability, and (4)10

focusing on the lower part of the streamflow distribution. The following paragraphs proposes a
::::::
propose

::
a brief review of how

such
:::
the issues listed above have been tackled in the literature.

The first issue has been largely addressed in the literature over the last decades, through the use of hydrometerological

modelling chains composed of GCMs, downscaling techniques – either regional climate models or statistical downscaling

techniques
:::::::
methods

:
(SDMs) – and hydrological models (HMs). Such hydrometerological chains provide a quantification of15

the hydrological change signal, but also an estimate of the uncertainty associated to each level of the modelling chain, provided

of course that they include multiple models at each level (Wilby and Dessai, 2010). There is a growing body of literature

on the quantification of the contribution of each level of the hydrometeorological chain to the overall modelling uncertainty

in hydrological changes (Dobler et al., 2012; Finger et al., 2012; Bosshard et al., 2013; Hagemann et al., 2013; Addor et al.,

2014; Lafaysse et al., 2014; Schewe et al., 2014; Giuntoli et al., 2015; Vetter et al., 2015). In most cases, contributions from20

the different sources of uncertainty are derived through more or less formal analysis of variance (ANOVA) techniques which

recently became a common tool in climate studies (Yip et al., 2011; Sansom et al., 2013).

These projections are however historically and still generally derived for specific time slices in the future, and only few

studies engaged in deriving transient hydrological projections (Lafaysse et al., 2014; Barria et al., 2015).

The issue of quantifying internal climate variability and its additional contribution to modelling uncertainty has retained25

much attention from the climate community over the last few years (Hawkins and Sutton, 2009, 2011; Deser et al.,

2012). The quantification of global climate variability has been recently propagated downstream the modelling cascade

in some hydrological studies (Lafaysse et al., 2014; Seiller and Anctil, 2014; Gelfan et al., 2015; Peel et al., 2015; van

Pelt et al., 2015). When internal variability is estimated from the analysis of multiple runs from a GCM in most studies,

alternatives have been proposed to circumvent the often low number of available runs which prevent simple robust estimations30

(see e.g. Peel et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. Peel et al., 2015, for an example alternative approach) . Another type of internal variability

has moreover been taken into account in a few regional studies: the variability of small-scale meteorological features given

a signal from GCMs, estimated from stochastic downscaling methods (either perfect-prog methods or weather generators)

(Lafaysse et al., 2014; Fatichi et al., 2015; Peel et al., 2015).
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Lastly, the first objective of the majority of hydrological changes
::::::
change

:
studies so far was on

::::::
mainly

:::::::
focused

:::
on35

::::::::::
uncertainties

::
in

:::
the

:
streamflow regime. When some

::::
Some

:
of them explored changes in the entire flow duration curve (Dobler

et al., 2012; Bosshard et al., 2013; Fatichi et al., 2015),
::
but relatively few focused on the lower end of the hydrological spectrum

(see e.g. Wilby and Harris, 2006; Giuntoli et al., 2015; Vetter et al., 2015).

The objective of this work is to deliver relevant information on possible futures of low flows for informing water resource

adaptation strategies. To this aim, it attempts to answer the water manager
:
’s
:
question by addressing all four issues listed above5

for two specific snow-influenced Alpine catchments with high stakes on water resources. This work takes advantage of a very

large dataset of transient 1980–2065 hydrological projections that combines in a comprehensive way
::::::::::
hydrological

::::::::::
projections

:::
over

::::
the

:::::::::
1980–2065

:::::::
period,

:::
that

:::::::
gathers

:::
all

:::::::
possible

::::::::::::
combinations

::
of

:::::::::::::::::
hydrometeorological

:::::::::
modelling

::::::
chains

::::
built

:::::
from

:
11

runs from 4 different GCMs, 3 SDMs with 10 stochastic realizations each, as well as 6 diverse HMs. Time series of mean

annual minimum flow over 7 days are first derived separately for winter and summer for both catchments and for each of the10

1980 hydrological projections. The quasi-ergodic analysis of variance (QE-ANOVA) framework developed by Hingray and

Saïd (2014) is applied on this low flow dataset to quantify the relative contributions of
::
(1)

:
model uncertainty due to GCMs,

SDMs and HMs, but also critically of
::
(2)

:
both large-scale and local-scale components of internal variability. This framework

is here extended to analyse not only changes in time-slice averages, but also yearly anomalies, in order to take account of the

year-to-year variability that is of much interest for operational water management.15

Section 2 introduces the two case study catchments and describes the hydrological projection dataset used. Section 3 presents

the selected low flow indicator for two separate seasons and details the QE-ANOVA approach and its adaptation and extension

to yearly anomalies of low flows. Results are given in Sect. 4 and discussed in Sect. 5.

2 Data

2.1 Case study catchments20

The Durance basin is located in the Southern French Alps, and water flows into the Rhône river. This basin has a total area

of 14 000 km2 and an altitude range of 4000 m. It carries high stakes for water resources as it produces 10 % of French

hydropower and supplies drinking water to approximately 3 million people (Warner, 2013). It is moreover exposed to various

climatic influences, from Alpine climate in the upper northern part to Mediterranean climate in the lower southern part.

Water resources are already under high pressure due to substantial abstractions within and out of the river basin, and global25

change will question the sustainability of the current rules for water allocation among the different uses, among all other

governance challenges (Bréthaut and Hill Clarvis, 2015). The R2D2-2050 project addressed this issue by building projections

of future water availability, prospective scenarios of water demand, as well as prospective scenarios of future water management

(Sauquet et al., 2014).

Two case study catchments are considered here: the Durance@Serre-Ponçon and the Verdon@Sainte-Croix (see Fig. 1).30

They have been selected here for two main reasons: first, they are located upstream the two largest reservoirs in the

Durance catchment, the Serre-Ponçon reservoir being actually the second largest in Europe. The management of these
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Figure 1.
::::::::

Delineation
::
of

:::
the

::::::
Durance

:::::
basin

:::
and

:::
the

:::
two

::::
case

::::
study

:::::::::
catchments

:::::
drawn

::
on

:::
the

::::::
gridded

:::
map

:::
of

::
the

:::::::::
1980–2009

::::
mean

::::::
annual

:::::::::
precipitation

::::
from

:::
the

::::::
SPAZM

:::::::
reanalysis

:::::::::::::::::
(Gottardi et al., 2012) .

::::
The

::::::::
coordinate

:::::
system

::
is

::
the

:::::::
Lambert

:
II
:
Étendu

::::::::
conformal

::::
conic

::::::::
projection

:
(http://www.ign.fr/sites/all/files/geodesie_projections.pdf

:
).

reservoirs is coordinated to fulfil water demands from various uses. Second, their hydrological regime is largely influenced

by snowpack/snowmelt processes, with differences stemming from their altitude range and geographical location. The

Durance@Serre-Ponçon (3580 km2) is located in the heart of the French Alps and more than half of its area is above 2500 m,

whereas the .
::
It
:::::::
contains

::
a
:::::
small

:::::::::
glacierized

:::
part

:::::::::::::::::::::::::::::::::::::::::::::
(0.5 % of the catchment area, Gardent et al., 2014) that

::::
may

::::::::
contribute

::
to

::::
late

::::::
summer

::::::::::
streamflow

::
in

:::::
some

::::::
specific

:::::
upper

:::::::::::::
subcatchments

:::::::::::::::::::
(Lafaysse et al., 2011) ,

:::
but

:::::
much

::::
less

::
so

:::
for

:::
the

:::::
whole

::::::::::
catchment.

:::
The

:
Verdon@Sainte-Croix (1620 km2) is located on the southern Mediterranean edge of the Alpine range, with a maximum5

altitude of 2500 m.

Reconstitutions of natural streamflow for both stations were provided by the EDF power company which manages both

Serre-Ponçon and Sainte-Croix reservoirs. Reconstructed streamflow were derived prior to the R2D2-2050 project from

outflows and stored volumes in the two reservoirs, and corrected from the influence of other upstream hydropower reservoir

operations.
:
In

::::
this

:::::
study,

:::::
these

::::::::::::
reconstructed

:::::::::
streamflow

:::::
time

:::::
series

:::::
were

::::
only

::::
used

:::
to

:::::::
calibrate

:::::
some

:::
of

:::
the

:::::::::::
hydrological10

::::::
models

::
as

:::::::
detailed

::
in

::::
Sect.

:::::
2.2.3.

:

4
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Table 1.
:::::
Global

:::::
model

:::
runs

:::::
under

::
the

::::
A1B

::::::::
emissions

:::::::
scenario.

:::::::
Different

::::
runs

::::
from

:
a
::::
given

:::::
GCM

:::::::::
correspond

:
to
:::::::::

simulations
:::::::
differing

::::
only

:::
from

::::
their

:::::
initial

::::::::
conditions

:::::::::::::::::
(see Johns et al., 2011)

Acronym Institute GCM name Number of runs Reference

CNCM33 CNRM (France) CNRM-CM3.3 1 Salas-Mélia et al. (2005)

EGMAM2 FUB (Germany) EGMAM+ 1 Huebener et al. (2007)

IPCM4 IPSL (France) IPSL-CM4_v2 3 Marti et al. (2010)

ECHAM5 DMI (Denmark) & MPI (Germany) ECHAM5-C 6 Roeckner et al. (2006)

2.2 Hydrological projection dataset

2.2.1 Global climate projections

Climate projections over the Durance basin are based on global projections from the ENSEMBLES project (van der Linden

and Mitchell, 2009), and more specifically from the STREAM2 simulations using more recent versions of the GCMs (Johns

et al., 2011). The simulations used here are forced by 20C3M forcings (historical forcing by greenhouse gases and aerosols)5

until
:::
the year 2000, and emissions from the A1B scenario afterwards (Nakićenović et al., 2000). Table 1 lists the GCM runs

::::
used

::
in

:::
this

::::::
study, for which appropriate variables for downscaling were available and that were used in this study

::::
from

:::
the

::::::::::::
ENSEMBLES

::::::
project

::::::
website1. The specific period considered here runs from 1 August 1958 to 31 July 2065.

2.2.2 Downscaled climate projections

The spatial resolution of the global projections is not adapted to hydrological modelling over small areas like the Durance10

basin. A downscaling step has therefore been performed within a previous project on this basin (RIWER2030, Hingray

et al., 2013). Three statistical downscaling methods (SDMs) have been applied here
:::
(see

:::::
Table

:::
2), all of them primarily

based on the analogue principle introduced by Lorenz (1969). This principle is based
::::
relies

:
on the assumption that similar

large-scale atmospheric circulation patterns lead to similar local-scale values of near-surface meteorological variables. SDMs

build statistical relationships between an archive for predictors and an archive for predictands. For each GCM run, each15

SDM provides 100 stochastic realizations of meteorological time series in order to generate a probabilistic output of the

downscaling step (see Lafaysse et al., 2014, for details on the stochastic generation process). All three methods have been

extensively used in previous climate change impact studies (see e.g. Bourqui et al., 2011; Vidal et al., 2012; Chauveau et al.,

2013; Lafaysse et al., 2014), and their main characteristics are given in Table 2. Further details on the SDMs are given by

Hingray and Saïd (2014)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Hingray et al. (2013, p. 24: with their notations, the versions used here are analog20, d2gen22 and dsclim11) ,

:::::::::::::::::::::
Hingray and Saïd (2014) , and Lafaysse et al. (2014).

The archive for predictor
::::::::
predictors

:
is the NCEP/NCAR global reanalysis (Kalnay et al., 1996) and the archive for

predictands is the DuO near-surface reanalysis (Magand et al., 2014) built as a hybrid between the SPAZM (Gottardi et al.,

1http://ensembles-eu.metoffice.com

5
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Table 2.
::::::::
Statistical

:::::::::
downscaling

:::::::
methods.

Acronym Institute Method name Description Reference

analog EDF/LTHE analog20 Analogues Obled et al. (2002)

dsclim CERFACS dsclim11a2 Weather types+ transfer functions Boé et al. (2006)

d2gen LTHE d2gen22 Transfer functions+ analogues Mezghani and Hingray (2009)

2012) and Safran (Vidal et al., 2010) reanalyses. DuO combines the higher spatial resolution of SPAZM (1 km2) – relevant for5

example for high-altitude precipitation – and the higher temporal resolution (hourly) and the additional variables (including

wind and radiation) of Safran that are required inputs for land surface models. The period considered as an archive for analogue

dates runs from 1 August 1980 to 31 July 2005 (Hingray et al., 2013). Local-scale variables for target dates are taken as the ones

from each analogue date. The Penman–Monteith reference evapotranspiration (ET0, Allen et al., 1998) required as an input

by conceptual models is additionally computed from meteorological variables. An additional correction on the temperature10

of the analogue date is moreover potentially applied to ensure the consistency with large-scale regional temperature from

the GCM (Mezghani and Hingray, 2009; Boé et al., 2009; Hingray et al., 2013). When such a correction is applied, related

meteorological variables like infrared radiation or specific humidity from the analogue date are also corrected for ensuring

inter-variable consistency following Etchevers et al. (2002).

The downscaling process thus led to 3300 (11 GCM runs× 3 SDMs× 100 realizations) hourly/daily gridded climate15

projections over the Durance catchment for the period 1 August 1958 to 31 July 2065. A subsampling of 10 realizations

out of 100 from each combination of SDM and GCM run has next been applied to reduce the number of different forcings

for the impact models and therefore lighten the computational burden by an order of magnitude. This subsampling was made

through a Latin Hypercube Sampling (LHS) approach, which allows to subsample a multidimensional distribution while

preserving its marginal properties (McKay et al., 1979; Minasny and McBratney, 2006). This approach has been recently20

used by Christierson et al. (2012) and Green and Weatherhead (2014) to sample the UKCP09 probabilistic climate projections

(Murphy et al., 2009).
:::
The

::::::::::
conditioning

::::::::
variables

:::::
used

::
for

::::
the

::::
LHS

::::
have

:::::
been

:::::::
carefully

:::::::
chosen

:::::
based

::
on

:::::
their

::::::::
relevance

:::
for

::::
water

::::::::
resource

:::::::::::
management:

::::
they

:::
are

:::::::
changes

:
–
::::::::
between

:::::::::
1980-2009

:::
and

:::::::::
2035-2065

::
at

:::
the

:::::
scale

::
of

:::
the

:::::
whole

:::::::
Durance

:::::
basin

::
–

::
on

:::::::
summer

:::
and

::::::
winter

:::::::::::
precipitation

:::
and

::::::::::
temperature,

::::
and

::
on

::::::::::
interannual

:::::::::
variability

::
of

::::::
annual

::::::::::
precipitation

::::
and

::::::::::
temperature.

:

2.2.3 Hydrological projections

Six hydrological models have been run by different R2D2-2050 project partners over up to 26 catchments in the Durance basin

during the project. Only simulations with GCM-driven forcings described above at the two selected catchments described in

Sect. 2.1 are considered In
:
in
:
the present work. The main characteristics of the 6 models

::
as

::::
well

::
as

:::
the

:::::::::
calibration

::::::::::
approaches

::::::
against

:::
the

::::::::
reference

:::::
period

::::::::::
1980–2009

::
–

:::::
called

::::
REF

:::
in

:::
the

::::::::
following

::
– are shown in Table 3. Most of them

::
All

::::::::::
conceptual5

::::::
models

:::
use

:
a
::::::::::
degree-day

::::::::
approach

:::
for

::::::::
modelling

:::
the

:::::::::
snowpack

::::::::
evolution,

:::::
while

::::::::::::::
physically-based

::::::
models

::::
rely

:::
on

::::
their

::::::
energy

::::::
balance

::::::
models

:::::::
(3-layer

:::::
snow

::::::
model

:::
for

::::::
CLSM

:::
and

::::::
1-layer

::::::
model

::::
with

:::::::
constant

:::::::::
properties

:::
for

:::::::::::
ORCHIDEE).

:::
All

::::::::::
conceptual

6



Table 3.
::::::::::
Hydrological

:::::
model

:::::::::::
characteristics.

::::
KGE

:::::
refers

::
to

::
the

::::::::::
Kling-Gupta

::::::::
Efficiency

:::::::::::::::
(Gupta et al., 2009)

Acronym Project partner Type / Distributed Calibration Reference

GR5J Irstea HBAN Conceptual / No Optimisation on KGE
(√

Q
)

Pushpalatha et al. (2011)

MORDOR EDF DTG Conceptual / No Optimisation on KGE(Q) Garçon (1999)

CEQUEAU EDF R&D Conceptual / Yes Semi-distributed optimisation on multiple criteria Hendrickx (2001)

J2000 Irstea HHLY Conceptual / Yes Manual sensitivity analysis Krause (2002)

CLSM UMR METIS Physically-based / Yes Manual calibration on KGE(Q) and bias Ducharne et al. (2000)

ORCHIDEE UMR METIS Physically-based / Yes No calibration Krinner et al. (2005)

::::::
models

:::
use

:::::::::::::::
Penman-Monteith

::::
ET0

:::::
while

:::::::::::::
physically-based

:::::
ones

:::::::
compute

:::::
actual

:::::::::::::::
evapotranspiration

:::::
from

::::
their

:::::
water

:::
and

::::::
energy

::::::
balance

:::::::
models.

::::
Most

:::
of

::::
these

::::::
models

:
have been extensively used in previous climate change impact and adaptation studies in

other French catchments, often in multimodel contexts (see e.g. Paiva et al., 2010; Moatar et al., 2010; Bourqui et al., 2011;10

Chauveau et al., 2013; Habets et al., 2013). Hydrological models have been calibrated against naturalized streamflow data over

the reference period 1980–2009 – called REF in the following – except for ORCHIDEE for which default parameters were

used. It has to be noted that CLSM and ORCHIDEE are land surface models initially built for running in a coupled mode with

GCMs.

The hydrological modelling step thus led to 1980 daily streamflow time series from 1980
:::::::
transient

::::::::::
hydrological

::::::::::
projections15

:
–
::::
330

:::::::::
downscaled

:::::::
climate

:::::::::
projections

:::::
times

::
6

::::
HMs

::
–
:::
for

:::
the

:::::
period

::
1
::::::
August

:::::
1958 to 2009 for each of the two

::
31

::::
July

:::::
2065.

::::
They

::::::
include

:::::
daily

::::::::::
streamflow,

:::::
actual

:::::::::::::::
evapotranspiration

::::
and

::::
snow

:::::
water

:::::::::
equivalent

:::
for

:::
the

:
2
:
catchment case studies.

3 Methods

3.1 Low flow indicator

The low flow indicator chosen here is the Mean Annual Minimum flow over 7 days (MAM7) (WMO, 2008).
::::
This

::::::
choice5

:::
was

::::::
guided

:::
by

:::
the

::::::::::
requirement

:::
for

:::
(1)

::
an

::::::
annual

:::::::
indicator

::::
and

:::
(2)

::
an

::::::::
indicator

:::::::::
commonly

::::
used

::::::::::::
internationally

:::
for

::::::::::
operational

::::::::
purposes. In Alpine catchments influenced by snowpack/snowmelt processes, two distinct low flow periods can be identified

with different underlying physical processes (see, e.g. Laaha and Blöschl, 2006a, b; Laaha et al., 2013). Summer low flows

occur as a consequence of persistent dry and warm weather periods when evaporation exceeds precipitation. Winter low flows

occur when precipitation is temporarily stored in the snow cover causing runoff recession. Two distinct seasons are therefore10

considered for computing the MAM7: summer (1 June–31 October) and winter (1 November–31 May). Figure 2 shows these

two low flow
::::::::
low-flow seasons and the observed daily interannual regime over the REF period for the two catchment case

studies. Low flow
:::::::
Low-flow

:
seasons are less well marked for the low elevation Verdon@Sainte-Croix which experiences

a higher interannual variability of autumn flows due to potentially heavy rainfall events.
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Figure 2.
::::
Daily

:::::::::
interannual

:::::
regime

::
of

::::::::
naturalised

:::::::::
streamflow

:::
over

:::
the

::::
REF

:::::
period

::
for

:::
the

:::
two

::::::::
catchment

:::
case

::::::
studies,

:::
and

:::::
season

:::::::::
boundaries

::
for

:::
low

::::
flow

:::::::
analysis.

::::
Grey

:::::
ribbons

:::::
frame

:::
the

:::
first

:::
and

:::
last

:::::
deciles

:::
and

:::
the

::::
black

::::
line

::::
shows

:::
the

::::::
median

:::::
value.

3.2 The Quasi-Ergodic ANOVA framework15

3.2.1 General principles

The partitioning of uncertainties in hydrological projections is performed in the framework of the quasi-ergodic analysis

of variance (QE-ANOVA) framework developed by Hingray and Saïd (2014). This framework allows disentangling model

uncertainty from internal variability in any unbalanced multimember multimodel ensemble, as the one available here. Model

uncertainty components are estimated from the noise-free change signals (NFSs) of the different modeling chains using a20

classic analysis of variance framework. Internal climate variability components are then estimated based on the residuals from

the NFSs, relying on the quasi-ergodic assumption for transient climate simulations. The paragraph below describes briefly

the QE-ANOVA framework and the reader is referred to Hingray and Saïd (2014) for more details on the methodology, and to

Lafaysse et al. (2014) for an application to hydrological variables.

Previous applications of the QE-ANOVA framework focused on changes in time-slice averages of the raw data y. In the25

following equations, the variable studied is noted Y and represents such a time-slice average. Equation (2) defines the relative

change of the variable studied Y with respect to a baseline Y0, for any prediction lead time t:

∆(g,s,h,r,k, t) =
Y (g,s,h,r,k, t)

Y0
− 1 (1)

8



where g, s and h are indices over GCMs, SDMs and HMs, respectively, r is an index over runs from a given GCM, and k

an index of stochastic realizations from a given SDM. In the following, m will denote a GCM-SDM-HM modelling chain as30

a short for (g,s,h)
::::::
(g,s,h). The relative change ∆ may be written as:

∆(m,r,k, t) = NFS(m,t) + η(m,r,k, t) (2)

where NFS(m,t) is the noise-free signal
:::::::::
Noise-Free

:::::
Signal

::::::
(NFS)

:
of the change variable for chain m, i.e. the estimated

response of the modelling chain, and η(m,r,k, t) are the residuals of stochastic realization k of SDM s for the run r of GCM g.

The total uncertainty of ∆ corresponds to the sum of variances of both terms on the right hand side of Eq. (2). They correspond5

respectively to the model uncertainty and to the internal variability of ∆ for the modelling chains. Their different components

are estimated as follows.

3.2.2 Deriving noise-free change signals (NFSs)

NFSs are estimated by first fitting trend models to the raw data y for each of the modelling chains, considering all available

GCM runs and all SDM stochastic realizations available for this specific chain. NFSs are then obtained by considering relative10

changes of these trend models with respect to the baseline Y0:

NFS(m,t) =
ŷ(m,t)

Y0
− 1 (3)

where ŷ is the trend model output. In the present work, Y0 is taken as the average of the trend model over the reference period

for a given modelling chain:

Y0(m) = ŷ(m,t) |t∈REF (4)15

This choice has also been made by Bracegirdle et al. (2014) and is similar to the approach of Charlton-Perez et al. (2010) who

considered changes with respect to a fitted trend value for a given reference year.

3.2.3 Partitioning model uncertainty

NFSs can be partitioned into GCM, SDM and HM contributions through a 3-way ANOVA according to the following equation:

NFS(m,t) = µ(t) +α(g, t) +β(s, t) + γ(h,t) + ε(m,t) (5)20

where µ(t) is the overall climate response representing the grand ensemble mean of all projections at time t, α(g, t), β(s, t)

and γ(h,t) are the main effects of GCM g, SDM s and HM h, respectively, and ε is the residual that may partly be due to

model interactions. The empirical variances associated to these different effects correspond to the different components of

model uncertainty – namely GCM, SDM, and HM uncertainty – and of residual/model interaction uncertainty, noted RMI in

the following.
:::
The

:::::
3-way

:::::::
ANOVA

:::
on

:::::
NFSs

::::::::
moreover

:::::
allows

::::::::::
identifying

::::::::
individual

::::::
model

:::::
effects

:
,
::
i.e.

:::::::
average

:::::::::
deviations

::
of

:::
the25

::::
NFSs

:::::
from

:::
the

:::::
grand

::::::::
ensemble

:::::
mean

:
µ
::::
due

::
to

:
a
:::::
given

::::::
model,

:::
be

:
it
::
a

:::::
GCM,

:
a
:::::
SDM

::
or

::
a
::::
HM.

:

9



3.2.4 Partitioning internal variability

The internal climate variability variable η in Eq. (2) can be partitioned into a large scale and a small scale
:::::::::
large-scale

:::
and

::
a

:::::::::
small-scale

:
component. The first one originates from the internal/natural fluctuations of the climate and the latter results from

the variability in local meteorological situations observed given a large scale
:::::::::
large-scale

:
atmospheric configuration. In the

present multimember multimodel ensemble, the large scale
::::::::
large-scale

:
internal variability (LSIV) stems from GCM internal

variability. For a modeling chain driven by a given GCM, the LSIV leads to the fluctuations around the long term trend5

simulated with that chain. It also corresponds for any prediction lead time to the dispersion between projections obtained or

that would be obtained for different runs of this GCM. The small scale
:::::::::
small-scale

:
internal variability (SSIV) originating here

from a stochastic SDM is expressed as the deviations
:::::::::
dispersion of the different stochastic realizations of a SDM for a given

lead time.

For the present ensemble of projections, estimates of both internal variability components are derived with the quasi-ergodic10

assumption of transient climate simulations for relative change variables, following Appendix B of Hingray and Saïd (2014).

This assumes that the variance of the studied variable – or more precisely the coefficient of variation – is constant over the

whole simulation period. In the present study, and conversely to the previous work, the baseline used for the estimation of the

change variable is a constant Y0(m) that depends only on the modelling chain m. The expressions of SSIV(t) and LSIV(t)

given by Hingray and Saïd (2014) thus simplify. They are given in Appendix A.15

3.3 Application of the QE-ANOVA framework to low flows

3.3.1 Choice of NFS

Simple linear trend models are used to fit MAM7 projections of the whole period considered (1980–2065), on the contrary to

Hingray and Saïd (2014) who considered piecewise NFSs composed of a constant value over a control period and a linear or

polynomial trend over a transient period separated by a pivot year. The choice of a unique trend model is motivated by the20

shorter and wholly transient period considered here. Indeed, the pivot year has been estimated as 1950 and 1980 for temperature

and precipitation respectively for the Durance@Serre-Ponçon by Hingray and Saïd (2014). The choice of a linear trend
:::::
linear

::::
trend

::
–

::::::::
following

:::::::::::::::::::::::
Hingray and Saïd (2014) for

:::::::::::
precipitation

:
–
:
was made not to overfit large interannual fluctuations of the low

flow indicator, as done by Hingray and Saïd (2014) for precipitation. The NFS are computed from .
:

72 fitted linear trend models
:::
were

:::::
fitted, one for each

::::::::
modelling

::::::
chain,

:::
e.g.

:::
for

:::::
each

:
combination of GCM, SDM and25

hydrological model. Each NFS
:::
HM.

::::
The

::::
NFS

::
of

:::::
each

::::::::
modelling

:::::
chain

:
is then obtained by considering relative changes with

respect to the average of the trend model for the associated chain over the 1980–2009 REF period following Eq. (4).

Figure 3 shows an example of winter low flow NFS for the Durance@Serre-Ponçon, for the IPCM4 GCM, the d2gen SDM,

and the CLSM hydrological model
:::
HM. This specific NFS is a decrease reaching around −25 % in 2065 when the grand

ensemble mean shows a much smaller decrease.
::::
This

:::::
figure

::::
also

:::::::::
exemplifies

:::
the

:::::::::
prominent

::::::::::
contribution

::
of

:::::::
internal

:::::::::
variability30

::::::::::
components

:
–
::::::
within

::::
panel

:::
for

:::::
SSIV

:::
and

::::::
across

:::::
panels

:::
for

:::::
LSIV

:
–
::::::::
compared

::
to
:::
the

::::::
change

::::::
signal

::::
from

:::
this

::::::::
particular

:::::::::
modelling

:::::
chain,

:::
but

::::
also

::::::::
compared

::
to

:::
the

:::::
grand

::::::::
ensemble

::::::
change

::::::
signal.

:
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Figure 3.
:::::
Winter

:::
low

::::
flow

:::::::::::::::::::::::::::::::
NFS(g = IPCM4,s= d2gen,h= CLSM)

::
for

:::
the

:::::::::::::::
Durance@Serre-Ponç

::
on,

::::
fitted

::
to

::
all

:::
30

::::::::
projections

:::::::
available

::
as

::::::::::
combinations

::
of

::
the

::::::
IPCM4

::::
GCM

::
(3
:::::
runs),

:::
the

::::
d2gen

::::
SDM

::
(10

::::::::::
realizations)

:::
and

::
the

::::::
CLSM

:::::::::
hydrological

::::::
model.

::::
Each

::::
panel

:::::
shows

::
10

:::::
d2gen

::::::::
realizations

::::
from

:
a
:::::

given
::::::
IPCM4

::
run

::
as
::::
well

::
as

:::
the

::::::
common

::::
NFS

:::
and

:::
the

::::
grand

::::::::
ensemble

::::
mean.

:

3.3.2 Extension of
:::::::::
Extending the framework to uncertainties in yearly anomalies

In this study, the QE-ANOVA framework is extended for partitioning the uncertainties not only on changes in time-slice

averages as in the previous applications, but also on yearly anomalies of the raw values, in order to capture the effects of5

year-to-year variability in the uncertainty quantification. The studied variable Y in Eq. (2) is therefore taken as either y – the

raw yearly variable – or y – a
:::::
rolling

:
30 year time-slice average. Uncertainty analyses on both yearly values and time-slice

averages will be presented in parallel in the next section. It has to be noted that in both cases, NFSs are fitted to the yearly data,

resulting in a similar decomposition of model uncertainties
:::::::::
uncertainty

:::::::
sources through the 3-way ANOVA.

4 Results10

3.1 Identification of individual model effects

3.0.1
:::::::
Deriving

:::::::::
transient

:::::::
low-flow

::::::::::
confidence

::::::
bounds

The 3-way ANOVA on NFSs (cf. Eq. 5)allows identifying individual model effects
:::
total

::::::::
variance

:::::
and

::::::
grand

::::::::
ensemble

:::::
mean

:::::::::
computed

::::::::
through

::::
the

:::::::::::
QE-ANOVA

:::::::::
approach

::::::
allows

::::::::
deriving

::::::::
transient

::::::::::
confidence

:::::::
bounds

::::
for

::::
the

11



:::::::
evolution

:::
of

::::
low

::::::
flows,

::::::::
provided

:::::
that

:::
an

::::::::::
assumption

::
is
::::::

made
:::
on

::::
the

:::::
shape

:::
of

::::
the

::::::::::
distribution.

::::::::::
Following

::::::::
previous

:::::::::
uncertainty

:::::::::::::
decomposition

:::::
work

:::
on

:::::::
decadal

:::::::::
averages,

:
a
:::::::

normal
::::::::::

distribution
:::

is
:::::::
selected

:::
for

::::::::
30-year

::::::::
low-flow

::::::::
averages

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g. Hawkins and Sutton, 2009; Charlton-Perez et al., 2010; Hawkins and Sutton, 2011) .

:::
A

::::::::::
lognormal

::::::::::
distribution

:::
is

::::::
selected

::::
here

:::
for

::::::
yearly

::::::
values

::
in

::::
order

:::
to

:::
take

:::::::
account

::
of

:::
the

:::::::
skewed

:::
and

::::::::
bounded

::::::::::
distribution

::
of

:::
low

::::::
flows,

:::
and

::::::::::
appropriate

::::::::
lognormal

::::::::::
distribution

:::::::::
parameters

:::::
have

::::
been

::::::
derived

:::::
from

:::
the

:::::
grand

::::::::
ensemble

:::::
mean

:::
and

:::
the

::::
total

::::::::
variance

:::
(see

:::::::::
Appendix

:::
B).5

::::::::::
Additionally,

::::
the

:::::::::
confidence

:::::
range

::::
may

::
be

::::::::::
partitioned

:::
into

:::
the

::::::::
different

::::::
sources

:::
of

:::::::::
uncertainty

::::::::
identified

:::
by

:::
the

:::::::::::
QE-ANOVA

:::::::
approach

::
in
:::::
order

::
to

:::::::
provide

:
a
::::::::
transient

:::::::
evolution

:::
of

::::
these

:::::::::::
uncertainties.

:

3.0.2
::::::::
Detecting

:::
the

:::::
Time

::
of

::::::::::
Emergence

:::
of

:
a
::::::::
low-flow

::::::
change

::::::
signal

::::::
Having

:::::::
transient

:::::::::::
probabilistic

:::::::::
projections

::::::
further

:::::
allows

::::::::
detecting

:::
the

::::
Time

::
of

::::::::::
Emergence

:::::
(ToE)

::
of

:
a
::::::
change

:::::
signal

::
in

::::
low

::::
flows,

i.e. average deviations of the NFSs from
::
the

::::
time

:::::
when

::::
this

:::::
signal

::::::::
emerges

::::
from

:::
the

::::::::::
underlying

:::::::::
variability

:::
and

::::::::::
uncertainty10

::::
noise

:::::::::::::::::::
(Giorgi and Bi, 2009) .

:::
We

:::::
define

::::
here

:::
the

::::
ToE

::
as

:::
the

::::
first

::::
time

:::::
when

:::
the

::
95%

:::::::::
confidence

::::::
interval

:::
of

:::::::
low-flow

:::::::::
anomalies

:
–
:::::
either

::::::
yearly

::
or

::::::
30-year

::::::
rolling

::::::::
averages

:
–
:::::
does

:::
not

::::::
include

:::
the

::::
zero

:::::::
change.

::::
This

::::
ToE

:
is
::::::::

therefore
::::::::::
determined

::
in

:
a
::::::::
transient

::::
way,

::::
more

:::
on

:::
the

::::
line

::::
with

:::
the

::::::::
approach

::
of

::::::::::::::::::::::::::
Hawkins and Sutton (2012) than

:::::
with

:::
the

:::
few

::::::
recent

::::::::::
hydrological

:::::::::::
applications

::
in

:::::
which

:
it
::

is
::::
only

::::::::
resolved

::
at

:::
the

:::
20-

::
to

::::::
30-year

::::
time

:::::
scale

::::::::::::::::::::::::
(see e.g. Köplin et al., 2014) .

:

:::
The

::::
ToE

:::::::
analysis

::::::::
described

:::::
above

::
is

::::
also

::::::
applied

::
to

::::::
perfect

:::::::::::::::::
hydrometeorological

:::::::
chains,

::
i.e.

::::::
chains

::::
with

:::
no

:::::
GCM,

::::::
SDM,

::
or15

:::
HM

::::::::::
uncertainty.

::::
The

::::
total

:::::::
variance

::
is
::
in
::::

this
::::
case

::::::::
estimated

:::::
from

::::::
internal

:::::::::
variability

::::::::::
components

::::
and

::::::::
residuals

::::
only,

::::
and the

grand ensemble mean µ due to a given model, be it a GCM, a SDM or a HM
:
is

:::::::
retained

::::
from

:::
the

:::::::
analysis

::::
with

:::::
actual

:::::::::
modelling

::::::
chains.

::::
Note

:::
that

:::
the

:::::
latter

::::::::::
assumption

:::::::
requires

:::::::
adopting

:
a
:::::::::::::
thruth-centered

::::::::
paradigm

::::::::::::::::::::::::::
(see e.g. Knutti et al., 2010) for

::
all

::::::
model

:::::
types,

:::::
which

::
is

:::
yet

:::::::::::
controversial

::
for

::::::
GCMs

::::::::::::::::::::::::::::::::
(see e.g. Sanderson and Knutti, 2012) .

:::
The

::::::::::::
corresponding

:::::::::
confidence

:::::::
interval

::::
thus

:::::
allows

::
to
::::::

assess
:::
the

::::::::
potential

::
to

:::::
detect

:::
as

::::
early

::
as

::::::::
possible

:::
the

::::
ToE

:::::
when

::::::::::
considering

::::
only

:::
the

:::::::::
irreducible

::::
part

::
of

:::
the

::::::
future20

:::::::::
uncertainty,

:::::::::
following

:::
the

:::::::::
framework

::::::::
developed

:::
by

::::::::::::::::::::::::::::
Hawkins and Sutton (2009, 2011) .

:

3.1
:::::::::::
Investigating

:::
HM

::::::::::::
contribution

::
to

::::::::::
uncertainty

::
in

::::::::
low-flow

:::::::
changes

:
A
:::::::

specific
:::::
issue

::
of

:::::::
interest

::
in

:::
this

:::::
study

::
is
:::
the

::::::::::
dependence

:::
of

:::
the

:::::::
low-flow

::::::::
evolution

:::
on

:::
the

::::
HM

:::::
used,

::
all

:::::
other

::::::
things

:::::
being

:::::
equal.

::::
The

:::::::
fraction

::
of

::::::::
variance

::::
due

::
to

:::
the

:::::
HMs

::
in

::::
the

:::::
whole

:::::::::
ensemble

::
of

:::::::::::
hydrological

::::::::::
projections

::
as

:::::
given

:::::::
through

::::
the

::::::::::
QE-ANOVA

::::::::
approach

:::::::::
described

:::::
above

::
is

:::::::
checked

::::::
against

::
a
::::::
simple

::::::::::
single-time

:::::::
ANOVA

:::::::::::::
decomposition

::::::::
approach

::::::::
proposed25

::
by

:::::::::::::::::::::::::::::::::::
von Storch and Zwiers (1999, chap. 9) and

:::::::
recently

:::::::
applied

:::
by

:::::::::::::::::::::::
Christierson et al. (2012) for

::
a
::::::
similar

::::::::::::::::
hydrology-climate

:::::::::
partitioning

::::::::
purpose.

:::
The

:::::::
fraction

::
of

:::::::
variance

::::
due

::
to

:::
the

::::
HMs

::
is

::::::::
estimated

:::
for

::::
each

:::::::::
prediction

:::
lead

:::::
time

:::::
based

::
on

::::
only

::::
data

:::
for

:::
that

::::
lead

::::
time,

:::::::::
conversely

::
to
:::
the

::::
time

::::::
series

:::::::
approach

:::
of

:::::::::::
QE-ANOVA.

:
It
::
is
:::::::::
computed

::
as:

:

R2
a =

SSA− p−1
p(n−1)SSE

SST
::::::::::::::::::::

(6)

:::::
where

::::
SSA

::
is

:::
the

::::::::
treatment

::::
sum

::
of

:::::::
squares,

::::
SSE

:::
the

::::
error

::::
sum

::
of

:::::::
squares,

::::
SST

:::
the

::::
total

::::
sum

::
of

:::::::
squares,

::
p

::
the

:::::::
number

::
of

:::::
HMs30

:::
(6),

:::
and

::
n

:::
the

::::::
number

:::
of

:::::::
different

::::::
climate

::::::::::
projections

::::
used

::
to

:::::
force

::::
each

:::
HM

::::::
(330).
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:::::::
Potential

:::::::
sources

::::
for

:::
the

:::::
HM

:::::::::::
contribution

:::
to

:::
the

:::::
total

::::::::::
uncertainty

::::
are

::::::
further

:::::::::::
investigated

:::::::
through

::::
the

:::::::::
evolution

::
of

::::::::
selected

::::
HM

:::::
state

:::::::::
variables

::::::::::
potentially

::::::::
relevant

::::
for

:::::::::
explaining

::::
the

:::::::::
evolution

:::
of

::::::::
summer

:::::::
and/or

::::::
winter

:::::
low

:::::
flows.

:::::::::
Computed

::::::::
summer

::::
low

:::::
flows

:::
in

::::::::::::::
snow-influenced

::::::::::
catchments

:::::::
depend

:::
on

::::
two

:::::
main

:::::::
factors

:::::
other

::::
than

::::::::
external

::::::::::::
meteorological

::::::::
forcings:

::::::::::::::::
evapotranspiration

:::
and

::::::::
previous

::::::
winter

:::::::::
snowpack.

:::::
More

:::::::::
precisely,

::::
both

:::::::::::::::::::::
Godsey et al. (2014) and

:::::::::::::::::::::::::
Jenicek et al. (2016) suggested

:::::::::
maximum

::::::
Snow

::::::
Water

:::::::::
Equivalent

:::
as

::
a
::::::::

relevant
::::::::

predictor
::::

for
::::::::

summer
:::::::::
minimum

::::
low5

:::::
flows.

:::::::
Drivers

::
of

:::::::::
computed

::::::
winter

::::
low

:::::
flows

::::
are

::
a
:::
bit

::::::
harder

::
to
::::::::

identify.
::::::

Three
:::::::::::
hydrological

:::::::
drought

:::::
types

:::::::::
identified

::
by

::::::::::::::::::::::
Van Loon et al. (2015) for

:::::
cold

:::::::
climates

::::
are

::::::::
relevant

:::
for

:::::::::
assessing

::::::
winter

::::::::
absolute

::::
low

::::::
flows.

::::
On

::::
one

:::::
hand,

::::
the

:
“
::::
Cold

:::::
snow

:::::::
season

:::::::
drought

:
”
::::
and

:::
the

::
“
:::::
Warm

::::::
snow

::::::
season

:::::::
drought

:
”
::::

are
:::::::
closely

::::::
related

:::
to

:::
the

:::::::
timing

:::
of

:::::::::
snowpack

:::::::::::::::
accumulation/melt,

::::::::::
indicators

:::
of

::::::
which

:::
are

::::::::
difficult

:::
to

:::::::
extract

:::::
from

:::::
time

::::::
series

::::::::::::::::::::::
(see e.g. Whitfield, 2013) .

::::
On

::::
the

::::
other

::::::
hand,

::::
the

::
“
:::::::::::::::::
Rain-to-snow-season

:::::::
drought

:
”
:::::::::

describes
::::

the
:::::::::::

continuation
:::

of
::::::::::

preceding
:::::
water

:::::::
deficit

::::
into

:::::::
winter10

::::::::::::::::::::::::::
(see also Van Loon et al., 2010) .

::::
All

:::::::
external

:::::::::::::
meteorological

:::::::
forcings

::::
like

::::
total

:::::::::::
precipitation

:::::
being

::::::
equal,

::::
only

::::::::::
differences

::
in

::::::::
modelled

:::::::::::::::
evapotranspiration

::::
can

:::
be

::
in

::::
this

::::
case

:::::::
retained

:::
as

::
a

:::::::
potential

::::::
source

:::
of

::::
HM

::::::::::
contribution

:::
in

::::::
winter

::::::::
low-flow

:::::::::
uncertainty.

::::
The

::::
two

:::::::
selected

::::
HM

::::
state

::::::::
variables

:::
for

::::
both

:::::::
seasons

:::
are

::::::::
therefore

:::
the

:::::
mean

::::::
annual

::::::
Actual

::::::::::::::::
Evapotranspiration

:::::
(AET)

::::
and

:::
the

::::::::
maximum

:::::
Snow

:::::
Water

:::::::::
Equivalent

::::::::::
(maxSWE).

:::::
AET

:::
and

::::::::
maxSWE

::::::
output

::::
time

:::::
series

:::
are

::::::::
extracted

:::
for

::
all

:::::
1980

::::::::::
hydrological

::::::::::
projections.

:::::::::
Noise-free

::::::
signals

:::
are

:::::::
extracted

:::::
from

::::
these

:::::
series

::
in

:::
the

:::::
same

:::
way

::::
than

:::
for

:::
low

:::::
flows

::::
(see

::::
Sect.

::::::
3.2.2),

:::
and

::::
HM

::::::
effects

:::
are

::::::
derived

:::::
from

::::
these

:::::
NFSs

::::
(see

:::::
Sect.

:::::
3.2.3).

::::::::::
Comparing

::::
HM

::::::
effects

::
on

::::
low

::::
flow

:::::::
changes

::::
with

::::
HM

::::::
effects

::
on

:::::::::::::
AET/maxSWE

::::
may

::::::
confirm

:::::::
possible

::::::
drivers

::
of
:::
the

::::::::::
divergence,

::::
even

::
if

::
no

::::::
causal

::::::::::
relationship

:::
can

:::
be

::::::
actually

::::::
drawn.5

4
::::::
Results

4.1
::::::::

Individual
::::::
model

::::::
effects

:::
on

:::::::
low-flow

::::::::
changes

Figure 4 shows individual GCM effects around the grand ensemble mean. Looking first at this grand ensemble mean, low flows

are projected to decrease in both catchments and in both seasons. However, when the decrease in 2065 is around only −7 % of

the 1980–2009 average for the Durance in winter, it reaches−25 % in summer for both catchments and even exceeds−30 % in10

winter for the Verdon. The dispersion between GCM effects around the grand ensemble mean is quite large in winter, leading to

changes ranging for example from−20 to +2 % for the Durance in 2065. The range of GCM effects is more limited in summer,

but still higher than 10 % in 2065. CNCM33 (resp. ECHAM5) tends to systematically give a larger (resp. lower) decrease than

the grand ensemble mean. IPCM4 (resp. EGMAM2) also gives a larger (resp. lower) decrease, but only in summer.

Figure 5 shows individual SDM effects around the grand ensemble mean. Individual SDM effects are not homogeneous over

catchments and seasons, with analog for example generating a stronger decrease for the Durance in winter and a smaller one

for the Verdon in summer. In the other two situations, the dispersion between SDM effects is hardly noticeable.

Figure 6 shows individual hydrological model
:::
HM

:
effects around the grand ensemble mean. The dispersion is here generally5

very large, with ranges of more than 30 % for the Durance in winter and for the Verdon in summer. The dispersion is more

limited for the Verdon in winter. Looking into more details at individual models, ORCHIDEE stands as an outlier for the

Durance in winter with a projected decrease of −28 % in 2065. Similarly, CLSM projects a much more severe decrease than

13
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Figure 4.
::::
GCM

::::::
effects

::
on

:::
low

::::
flow

::::::
changes

:::::
around

:::
the

::::
grand

::::::::
ensemble

::::
mean

:::
for

:::
both

:::::::::
catchments

:::
and

::::
both

::::::
seasons.

other models in summer for both catchments. J2000 contrarily tends to generate a smaller decrease
::::::
smaller

::::::::
decrease

::::
than

:::
the

:::::
grand

::::::::
ensemble

::::
mean

:
in all four cases.10

4.2 Hierarchy
::::::::::::::
Time-dependent

::::::::
hierarchy

:
of the different sources of uncertainty

The contribution of each source of uncertainty quantified by the QE-ANOVA approach can be expressed as a fraction of the

total variance for each lead time t (see, e.g. Hawkins and Sutton, 2011). Figure 7 shows this decomposition of total variance for

rolling 30year average low flow
::::::
30-year

:::::::
average

:::::::
low-flow

:
changes in both catchments and both seasons. As expected

:::::
shown

::
in

::::
many

::::::::
previous

::::::
studies

::::::::::::::::::::::::::::::
(see e.g. Hawkins and Sutton, 2011) , internal variability components contribute for the most part of the15

total variance for short lead times. They remain generally above 20 % in 2065– ,
:
and around 45 % for the Verdon in winter–,

which is consistent with the analyses performed for the Durance by Hingray and Saïd (2014) on mean annual precipitation,

and by Lafaysse et al. (2014) on mean annual streamflow. Large-scale internal variability accounts for around three quarters

of the total internal variability, which is also consistent with previous studies. The decomposition of model uncertainty into

GCM, SDM and HM contributions reveals interesting features: first, GCMs accounts for 15 to 25 % of the total variance at the5
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Figure 5.
::
As

:::
for

:::
Fig.

::
4,

:::
but

::
for

:::::
SDM

:::::
effects.

:

end of the period, and SDMs for less than 6 %, with even negligible contributions for the Verdon in winter and for the Durance

in summer. The SDM contribution is thus much smaller than for the mean annual streamflow (see Lafaysse et al., 2014) .

HM contribution to total variance is however largely non negligible. Values in 2065 reach 35 % in summer for both

catchments and even 43 % for the Durance in winter. The Verdon in winter is the only case where values remain around

10 %. Lastly, residuals and model interactions generally account for 10 to 20 % of total variance.10

Figure 8 shows a similar decomposition of total variance in both catchments and both seasons, but for yearly low flow

anomalies. The most striking point is the very large contribution of internal variability components in all cases and for all

lead times, up to more than 80 % in 2065, and even 94 % for the Verdon in winter. Such a prominence of internal variability

is clearly visible in individual time series plots , even in
:::
like

:
Fig. 3, where the change signal of the considered NFS is yet

rather high. Small-scale internal variability generally accounts here for one third of the total internal variability uncertainty.

By construction of the NFSs, the remaining part of variance due to model uncertainties divides up into GCM, SDM, HM and

residuals (RMI) in the same way as for time-slice averages in Fig. 7.

4.3 Projected evolution and associated confidence bounds5

15



Durance@Serre−Ponçon Verdon@Sainte−Croix

−40

−20

0

−40

−20

0
W

inter
S

um
m

er

2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060

A
no

m
al

y 
(%

)

Grand ensemble mean  

GR5J                 

MORDOR               

CEQUEAU              

CLSM                 

J2000

ORCHIDEE

Figure 6.
::
As

:::
for

:::
Fig.

::
4,

:::
but

::
for

::::
HM

:::::
effects.

:

The total variance and grand ensemble mean computed through the QE-ANOVA approach allows deriving transient

confidence bounds for the evolution of low flows, provided that an assumption is made on the shape of the distribution.

Following previous uncertainty decomposition work on decadal averages, a normal distribution is selected for 30year

low flow averages (see, e.g. Hawkins and Sutton, 2009; Charlton-Perez et al., 2010; Hawkins and Sutton, 2011) . A lognormal

distribution is selected here for yearly values in order to take account of the skewed and bounded distribution of low flows.10

Additionally, confidence range may be partitioned into the different sources of uncertainty identified by the QE-ANOVA

approach in order to provide a transient evolution of these uncertainties.

4.3
::::::::

Projected
::::::::
evolution

::::
and

:::::::::
associated

:::::::::
confidence

:::::::
bounds

Figure 9 shows the evolution of 30year
:::::::
30-year average changes in low flows and associated confidence bounds for both

catchments and for both seasons. The total uncertainty increase
::::::::
increases with lead time in all cases and by a factor of 2.5

between 2009 and 2065 in summer, more than 3.5 for the Durance in winter, and only 1.3 for the Verdon in winter. The main

contributor to this increase is HM uncertainty followed by GCM uncertainty. For the Verdon in winter, a decrease in both

internal variability components nearly offsets this increase in model uncertainty.
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Figure 7.
::::::
Fraction

::
of

::::
total

::::::
variance

::::::::
explained

::
by

::::
each

:::::
source

::
of

::::::::
uncertainty

:::
for

:::::
rolling

:::
30

:::
year

:::::::
time-slice

:::::::
averages

::
of

:::
low

::::
flow

::::::
changes

::::
with

:::::
respect

::
to

:::
the

:::
REF

:::::
period

:::::::
average.

:::::
Values

:::
are

:::::
plotted

::
in

:::
the

:::::
middle

::
of

::::
each

:::
time

:::::
slice.

Figure 10 plots the evolution of low flow
:::::::
low-flow yearly anomalies. The difference with respect to Fig. 9 lies in the5

amplitude of internal variability components. They moreover both tend to decrease with lead time as a consequence of

the decrease in the grand ensemble mean. Their evolution counterbalances the increase in model uncertainties, leading to a

reduction in total uncertainty in all cases except the Durance in winter.

4.4 Probability
::::
Time

::
of

::::::::::
Emergence

:
of a low flow decrease and potential to reduce uncertainty

Figure 9 suggests
:::::
above

:::::::::
suggested that the probability of a 30year

::::::
30-year

:
average low flow lower than the REF period10

average could be very close to 1 after 2050, except for the Durance in winter. Blue curves in Fig. 11 show the evolution of this

probability along the period considered. Except for the Durance in winter where the change signal is too weak compared to

uncertainties, the probability of a negative change between the REF period and a future period reaches 95 % in 2033–2039,

that is for 30year
::::::
30-year

:
time-slices starting before 2015.

::::::
around

:::::
2020.

Red curves in Fig. 11 show the probability of a low flow for a given year being lower than the REF average. This second

probability remains below 90 % even at the end of the period in all cases. It thus prevents to draw any definitive conclusion

on the sign of the yearly anomaly with respect to the REF period average for any given lead time up to the end of the studied

period.
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Figure 8.
::
As

:::
for

:::
Fig.

::
7,

:::
but

::
for

:::::
yearly

:::
low

::::
flow

:::::::
anomaly

:::
with

::::::
respect

::
to

::
the

::::
REF

:::::
period

::::::
average.

:

The Time of Emergence (ToE) of the signal of change in average low flows is here determined in a transient way, more on5

the line with the approach of Hawkins and Sutton (2012) than with recent hydrological applications in which it is only resolved

at the 20 to 30year time scale (see e.g. Köplin et al., 2014) .

Figure 11 also shows the potential to reduce the uncertainty in low flow projections and more specifically its effect on

the estimation of the probability of a low flow decrease. The potential to reduce uncertainty in projections is the part of

total uncertainty due to models, i.e. the reducible part of this uncertainty (see Hawkins and Sutton, 2009, 2011) .
:::::::
low-flow10

:::::::
decrease.

:
Dashed lines in Fig. 11 denote results that would be obtained with a perfect hydrometeorological model chain, by

considering only uncertainties due to internal variability components and residuals, and assuming a unchanged grand ensemble

mean response. Note that the latter assumption requires adopting a thruth-centered paradigm (see e.g. Knutti et al., 2010) for

all model types, which is yet controversial for GCMs (see e.g. Sanderson and Knutti, 2012) . The probability of a low flow

:::::::
low-flow

:
decrease is of course higher in all cases. If little improvement is noted for yearly anomaliesbecause of

:::
For

::::::
yearly

:::::::::
anomalies,

:::
due

::
to

:
the large contribution of internal variability components, the time of emergence of the signal

::::
using

::
a

::::::
perfect

::::::::
modelling

:::::
chain

:::
still

::::
does

:::
not

:::::
allow

::
to

:::::
detect

:::
the

::::
ToE

:::::
within

:::
the

::::
time

::::::
horizon

::::::::::
considered.

::::::::
However,

:::
for

::::::
30-year

::::::
rolling

::::::::
averages,

::
the

::::
ToE

:
at the 95confidence level occurs around a %

:::::::::
confidence

::::
level

::::
can

:::
be

:::::::
detected

::::::
around

::
a
:
decade earlier for both5

catchments in summer, and can be estimated at 2070 for the Durance in winter, where the signal is not expected to emerge with

actual models
:::::
within

:::
the

:::::::::
considered

::::
time

:::::::
horizon

:::::
using

:::
the

:::::
actual

:::::::::
modelling

:::::
chains.
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Figure 9.
:::::::
Projected

::::::
changes

::
in

::::::
30-year

::::::
averages

::
of
:::
low

::::
flow

::
for

::::
both

::::::
stations

:::
and

::::::
seasons,

:::::::
together

:::
with

:
a
:::::::::
partitioning

::
of

:::
the

::
90 %

::::::::
confidence

:::::
interval

::::
into

:::
the

::::::
different

:::::::::
uncertainty

::::::
sources.

::::
See

:::
text

:::
for

:::::
details.

::::::
Values

::
are

::::::
plotted

::
in

:::
the

:::::
middle

::
of
::::

each
::::
time

::::
slice.

::::
The

::::::
fraction

::
of

:::
the

::::::::
confidence

::::::
interval

::
for

:
a
:::::
given

:::::
source

::
of

::::::::
uncertainty

::
is

:::::::::
proportional

::
to

::
the

:::::::
standard

:::::::
deviation

::
of

::
its

:::::::::
contribution

::
to

::
the

::::
total

::::::
standard

::::::::
deviation,

:::::::
following

:::::::::::::::::::::::
Hawkins and Sutton (2011) and

:::::::::::::::::::
Hingray and Saïd (2014) .

:

5 Discussion

4.1 On
::::::
Further

::::::::
analysis

::
on

::::
HM

:::::::::::
contribution

:::
to the hydrological model

::::
total uncertainty

Figure 7 highlighted the large and growing part of total uncertainty due to hydrological models on low flow projections10

in summer for both catchments, and in winter for the Durance. This part of uncertainty is higher than values obtained in

other studies for other hydrological indicators like monthly flows (see e.g. Christierson et al., 2012; Bosshard et al., 2013) .

However, it is consistent with recent findings that HM uncertainty is higher than GCM uncertainty in snow-dominated

catchments (see e.g. Giuntoli et al., 2015) . Indeed, low flows are strongly linked to catchment processes that may be

represented differently in different hydrological models. It is therefore understandable that the contribution of HMs to the

total uncertainty is higher than, say, for annual flood peak projections.

The fraction of variance due to the HMs in the whole ensemble of hydrological projections is checked against a simple

single-time ANOVA decomposition approach proposed by von Storch and Zwiers (1999, chap. 9) and recently applied by5

Christierson et al. (2012) for a similar hydrology-climate partitioning purpose. The fraction of variance due to the HMs is

estimated for each prediction lead time based on only data for that lead time, conversely to the time series approach of
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Figure 10.
::
As

:::
for

:::
Fig.

::
9,

:::
but

::
for

:::::
yearly

::::::::
anomalies.

QE-ANOVA. It is computed as:

R2
a =

SSA− p−1
p(n−1)SSE

SST

where SSA is the treatment sum of squares, SSE the error sum of squares, SST the total sum of squares, p the number of HMs10

(6), and n the number of different climate projections used to force each HM (330). Figure 12
::::
now compares QE-ANOVA to

the simpler approach for computing the fraction of variance explained by HMsfor yearly low flow anomalies. Due to internal

variability, estimates from the single-time approach
:::
for

:::::
yearly

::::
low

::::
flow

:::::::::
anomalies are very noisy from one year to the next.

QE-ANOVA results are quite consistent with this simpler approach and interestingly propose a smoother and more robust

version of it. Figure 12 also shows a similar comparison for 30year
::::::
30-year

:
rolling averages and proposes similar conclusions,

except that the noise in the simple approach estimates occur at the multidecadal time scale.

4.2 Origins of divergence in low flow responses from different hydrological models

After noticing this divergence in low flow responses to climate change from different hydrological models, one may ask about

its origins in terms of physical processes. Recall that for a given GCM-SDM chain – and a given run and stochastic realization5

of this chain – meteorological forcings are identical for all HMs. The only differences in hydrological effects thus originate

from the physical parametrization of the HMs. The effects from individual models shown in Fig. 6 show that this divergence
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Figure 11.
::::::::
Evolution

::
of

::
the

:::::::::
probability

::
of

:
a
::::

low
:::
flow

:::::
below

:::
the

::::
REF

:::::
period

:::::::
average,

::
for

:::::
yearly

::::::::
anomalies

::::
and

::::::
30-year

:::::
rolling

::::::::
time-slice

:::::::
averages,

:::
with

:::
the

:::::::::::::::
hydrometeorological

:::::
model

:::::
chains

::::
used

::::
here

:::
and

:::
with

::
a
:::::
perfect

::::::::::::::::
hydrometeorological

:::::
model.

:::
See

:::
text

:::
for

:::::
details.

::
the

::::
HM

:::::::::
divergence

::
in
::::
low

::::
flow

:::::::
changes emerges from hydrological processes evolving differently in different models under a

changed climate, all climate forcings being equal.

Computed summer
:::::
Figure

::
13

::::
first

::::::
shows

:::
that

::::
HM

:::::
effects

:::
on

::::
AET

:::
are

:::::::::
negatively

::::::::
correlated

::::
with

::::
HM

::::::
effects

::
on

:
low flows in10

snow-influenced catchments depend on two main factors other than external meteorological forcings: evapotranspiration and

previous winter snowpack. More precisely, both Godsey et al. (2014) and ? suggested maximum Snow Water Equivalent
::::
both

:::::::::
catchments

:::
and

::::
both

:::::::
seasons.

:::::::::
Otherwise

::::
said,

:::::::::::
hydrological

::::::
models

:::::::
showing

::
a

:::::::
stronger

:::::::
increase

::
in

::::::::::
evaporation

:::
tend

::
to
::::::::
simulate

:
a
:::::::
stronger

::::::::
decrease

::
in

::::
low

:::::
flows.

::
It
::

is
:::::::::

important
::
to

::::
note

::::
that

::::
this

:::::::::
somewhat

:::::::::
reasonable

:::::::
relation

::
is

:::::::
however

::::
not

:::::::::
significant

::
for

:::::::
summer

:::::
flows

::
at
::::

the
::
90 %

:::::::::
confidence

::::
level.

:::
In

:::::::
summer,

::::
and

:::
for

:::
the

:::::::
Durance

:::::
only,

::::::
effects

:::
on

:::
low

:::::
flows

:::
are

:::::::::::
significantly

::::::::
correlated

::::
with

::::::
effects

:::
on

:::
the

::::
other

::::::::
potential

:::::
driver

:
(maxSWE)as a relevant predictor for summer minimum low flows

:
.
::::
The

::::
slope

::
of

:::
the

::::::::::
relationship

:::::::::
correspond

::
to

::::::
around

:::
20 %

::
of

::::::::
reduction

::
in

:::
low

:::::
flows

:::
for

::::
each

::
10 %

:::::::
reduction

::
in

:::::::::
maxSWE.

:::
The

:::::::
relation

:::::::
between

:::::
effects

:::
on

:::
low

:::::
flows

::::
and

:::::
effects

:::
on

::::::::
maxSWE

:::
for

:::
the

::::::
Verdon

::
in

:::::::
summer

::
is

:::
not

:::::::::
significant

:::
and

:::
has

::
a
::::::
gentler

:::::
slope.5

Drivers of computed winter low flowsare a bit harder to identify: indeed, winter low flowsdepend on the first hand on the

timing of the snowpack building and melting
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Figure 12.
::::::
Fraction

:::
of

:::
total

:::::::::
uncertainty

:::
due

::
to

::::::::::
hydrological

:::::
models

::::::::
computed

::::
from

:::
the

::::::::::
QE-ANOVA

:::
and

:
a
::::::
simpler

:::::::
approach

::::
(see

:::
text

:::
for

::::::
details),

::
for

::::
both

:::::
yearly

::::::::
anomalies

:::
and

::::::
changes

::
in

::
30

:::
year

::::::
rolling

:::::::
averages.

5
:::::::::
Discussion

5.1
::

On
:::::::::::
QE-ANOVA

::::::::::
advantages

::::
and

::::::::::
limitations

:::
for

:::::
future

::::::::
low-flow

:::::::
analysis

:::
The

::::::::
approach

::::
used

::::
here

:::::::
provides

::
a
:::::::
transient

:::::::::
evaluation

::
of

:::::::::::
uncertainties

::
in

:::::
yearly

::::::
values

::
or

::::::::
time-slice

::::::
rolling

:::::::
averages

::
in
::::::
future10

:::
low

:::::
flows.

::
It
:::::::
notably

::::::
allows

::
to

:::::::
estimate

:::
the

::::
ToE

:::
of

:
a
::::::::
decrease

:::::
signal

::
in

::::
low

:::::
flows.

::::
The

::::
time

::::::
series

::::::::
approach

::
at

:::
the

::::
heart

:::
of

::
the

:::::::::::
QE-ANOVA

::::::::::
framework

::::::
makes

:::
this

:::::::::
estimation

:::::
rather

:::::::
robust.

::::
This

::::::
would

:::
not

::::
have

:::::
been

:::
the

::::
case

::::
with

:::::
other

::::::::::
uncertainty

::::::::
estimation

::::::::::
approaches

::::
such

::
as

:::
the

::::
one

::::::::
proposed

::
by

:::::::::::::::
Yip et al. (2011) ,

::::
due

::
to

:::
the

::::
high

::::::::::
year-to-year

:::::::::
variability

::
in

:::
the

::::::::
low-flow

:::::::
indicator

::::
(and

:::::
more

::::::::
generally

:::
on

:::
any

::::::::::::::
catchment-scale

::::::::::
hydrological

:::::::::
indicator).

:::::::::
Smoothing

::::
out

::::
such

:::::::::
variability

::::
may

:::::
allow

:::
the

::::
water

::::::::
manager

:::::::::
mentioned

::
in
::::

the
::::::::::
introduction

::::::
having

::
a
::::
clear

:::::
view

:::
on

:::
the

:::::::::
probability

:::
of

:::::::
crossing

::::
any

::::::::::::::::::
management-relevant15

:::::::
threshold

:::
for

::::
any

::::
year

::
in

:::
the

::::::
future, and therefore on rain/snow transition threshold and snowmelt parameters. On the other

hand, they also depend on baseflow and therefore on evapotranspiration processes over the preceding months. Existing

drought typologies as proposed by ? and Van Loon et al. (2015) may help in identifying potential drivers. Indeed, one way

to consider a hydrological model leading to a higher than average low flow decrease is through its tendency to simulate more

– with respect to the grand ensemble mean – hydrological droughts during one of the two low flow seasons in a changed20

climate.We use here the word hydrological drought for a streamflow deficit with respect to a daily variable threshold level

as in ? . In that specific sense, a drought is not necessarily associated with a severe low flow. Out of the 5 hydrological

drought types identified by Van Loon et al. (2015) for cold climates, only 3 are therefore relevant for assessing winter low
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Figure 13.
:::::::
Relations

:::::::
between

:::
HM

:::::
effects

:::
on

:::
low

::::
flow

::::::
anomaly

::::
and

:::
HM

:::::
effects

:::
on

:::::::::::
AET/maxSWE

:::::::
anomaly

::
for

:::
the

::::
year

::::
2065.

:::::::::
Significant

::::::
relations

::
at

:::
the

::
90 %

::::::::
confidence

::::
level

::
are

::::::
shown

:::
with

::::
solid

::::
lines.

flows. On one hand, the Cold snow season drought
:::::::::
anticipating

:::::
when

::::
such

:::::::::::
probabilities

::::
will

:::
not

::
be

::::::::::
compatible

:::
any

:::::
more

::::
with

::::::
current

:::::::::::
management

:::::::
options,

:::::::
facilities

::::
and

::::::::::
regulations.

::::::::
Moreover,

::::::
water

::::::::::
management

:::::
rules

::::
rely

::
on

:::::::::
long-term

:::::::
average

:::::
water25

:::::::
available

::::::
during

:::
the

::::::::
low-flow

::::::
season,

::::
but

::::
also

::
on

:::::::::
thresholds

::::::
related

::
to
:::::::::

individual
::::::::
low-flow

::::::
values

:::::::
reached

:::
for

:
a
:::::
given

:::::
year.

:::
The

::::
two

::::
time

:::::
scales

:::::::
studied

::::
here

::::
may

::::
thus

:::::::::
contribute

::
to

:::::
build

:::::
more

:::::
robust

:::::::::
adaptation

::::::::
strategies

:::::
than

:::
the

::::
ones

:::::
based

::::::
solely

::
on

:::::::
changes

::
in

:::::::
30-year

::::::::
time-slice

::::::::
averaged

:::::::::
quantities,

:::::
which

::::
has

::::
been

:::
the

:::::
focus

::
of

:::::
many

::::::
studies

:::::
until

::::
now.

::
It

:::
has

::
to

:::
be

:::::
noted

:::
that

::::
such

::::
ToE

:::::::::
estimates

:::
are

::::::::::
intrinsically

::::::
linked

::
to

:::
the

::::::
choice

:::
of

:::
the

::::::::
reference

::::::
period

::::::
chosen

:::
for

::::::::::
calculating

:::
the

:::::::::
anomalies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Hawkins and Sutton, 2016, for relevant comments on this issue) .30

::::
More

::::::::::
generally,

:::
all

::::::
above

::::::::::
statements

::::
rely

::::
on

::::
the

:::::::::::
assumptions

:::
of

:::::
both

::::
the

::::::::::::
QE-ANOVA

::::::::::
framework

:::::::::
described

::
in

:::::
Sect.

::::
3.2

:::::
and

::::
the

:::::::
further

::::::::
choices

::::::
made

::::
for

::::
this

::::::::
specific

:::::::::::
application

:::
to

:::::::
yearly

::::::::
low-flow

::::::::::
indicators

:::::
(see

::::
Sect.

:::::
3.3).

:::::
Four

:::::::
points

::::
are

:::::::::
discussed

::::::
below.

::::::
First,

::::
the

::::::::::::
QE-ANOVA

::::::::::
framework

::::
was

::::::::
retained

::::
for

::::::::
studying

:::::
this

:::::::
complex

::::::::::
uncertainty

:::::::
design

::::::
partly

:::::::
because

:::
it

::::::::
critically

:::::::
allows

:::
to

::::::::::
disentangle

::::::::::
large-scale

:
and Warm snow season

droughtare closely
:::::::::
local-scale

::::::::::
variability,

::::::
which

::
is
::::

not
::::

the
:::::

case
:::::

with
:::::

other
::::::::

recently
:::::::::

published
:::::::::

ANOVA
::::::::
methods

:::::::::::::::::::::::::::::::::
(see, e.g. Northrop and Chandler, 2014) .

:::::::
Second,

:::
the

::::::
simple

:::::
linear

:::::
trend

::::::
model

:::::::
adopted

:::::
likely

:::::::::::
overestimates

:::::
both

:::
the

:::::
LSIV

:::
and

:::
the

:::::
SSIV

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Raïsänen, 2001; Hingray and Saïd, 2014, for discussions on this issue) .

::::::::
However,

::::
this

::
is

::::::
clearly

:::
the

:::::
most
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:::::::::
reasonable

::::::
choice

:::::
when

::::::
dealing

:::::
with

:::::::::
indicators

::::
with

::
a
::::
high

::::::::::
interannual

:::::::::
variability.

::::::
Third,

:::
the

::::::
slight

:::::::
decrease

:::
in

:::::::
internal

::::::::
variability

::::::::::
components

::::
that

:::
can

:::
be

::::::
spotted

::
in

::::
Fig.

:
9
::
is

:
related to the timing of snowpack building/melting, indicators of which5

are difficult to extract from time series (see e.g. Whitfield, 2013) . On the other hand, Rain-to-sow-season droughtdescribes the

continuation of preceding water deficit into winter (see also Van Loon et al., 2010) . This deficit may be due to either a lack

of precipitation – but this feature is not relevant here as total precipitation is a common forcing for all HMs – or to a strong

evapotranspiration.

Based on all the above considerations, we selected two potential drivers of divergence in hydrological model responses:10

mean annual actual evapotranspiration (AET) and the maxSWE. We extracted AET and maxSWE output time series for all

1980 hydrological runs used in the low flow analysis above. Noise-free signals were extracted from these series in the same

way than for low flows (see Sect. 3.2.2), and HM effects derived from these NFSs. Comparing HM effects on low flow changes

with HM effects on AET/maxSWE may confirm possible drivers of the divergence, even if no causal relationship could be

actually drawn
:::::::::::
quasi-ergodic

::::::::::
assumption

::
of

:
a
::::::::

constant
:::::::::
coefficient

::
of

::::::::
variation

::
in

:::
the

::::::::
low-flow

::::::::
indicator

:::
and

:::
the

::::
fact

::::
that

:::
the15

:::::
grand

::::::::
ensemble

:::::
mean

:::::::
actually

:::::::::
decreases.

::::::
Fourth,

::::
this

::::::::::
assumption

::::
may

::
be

:::::::
relaxed

:::
for

:::::
SSIV

:::
by

:::::::::
computing

:::::
yearly

:::::::::
empirical

:::::
values

::
of

:::
the

::::::::
variance

:::::
terms

::::
over

::::::::
stochastic

:::::::::::
downscaling

:::::::::
realizations

:::
in

::::
Equ.

:::
A1.

::::::::::
Comparing

:::
the

::::::::
temporal

::::::::
evolution

::
of

:::::
SSIV

::::
with

:::
and

:::::::
without

:::
the

:::::::::::
quasi-ergodic

::::::::::
assumption

:::::
shows

::::
that

:::
this

::::::::::
assumption

::
is

::::
quite

:::::::::
reasonable

:::::
(See

::::::::::::
Supplementary

:::::::::
Material).

::::::::
Similarly,

:
it
::

is
::::
also

:::::::
possible

::
to

:::::
relax

:::
this

::::::::::
assumption

:::
for

:::::
LSIV,

::::
even

::
if
::
in

::::::::
degraded

:::::
mode

:::
(1)

:::::::
because

::
of

:::
the

:::::::
different

::::::::
numbers

::
of

::::
runs

::::
from

::::
each

::::::
GCM,

:::
and

:::
(2)

:::::
more

::::::::::
importantly

:::::::
because

::
of

:::
the

:::
fact

::::
that

:
2
:::
out

:::
of

:
4
::::::
GCMs

::::
only

::::
have

::::
one

:::
run.

::::
The

::::::::
temporal20

:::::::
evolution

:::
of

:::
the

:::::::
variance

:::::
terms

::
in
:::::

Equ.
:::
A3

::::
may

::::::
indeed

::
be

:::::::::
computed

::::::::::
empirically

:::
for

:::
any

::
m

::::::
where

::::::
r > 1.

:::
The

::::::::::::
quasi-ergodic

:::::::::
assumption

::
is

:::::
again

:::::::::
confirmed

::
by

::::::::::
comparing

:::
the

:::::::
temporal

::::::::
evolution

:::
of

:::::
LSIV

::::
with

::::
and

::::::
without

::::
this

::::::::::
assumption,

:::::
using

:::
the

::
2

:::::
GCMs

::::
with

::::::::
multiple

::::
runs

::::
(See

::::::::::::
Supplementary

::::::::
Material).

Figure 13 first shows that effects on AET are negatively correlated with effects on low flows in both catchments and both

seasons. Otherwise said, hydrological models showing a stronger increase in evaporation tend to simulate a stronger decrease25

in low flows

5.2
::

On
::::
HM

:::::::::::
contribution

:::
The

::::
HM

:::::::::::
contribution

:::
to

::::
total

::::::::::
uncertainty

::::::
shown

:::
in

::::
Fig.

:::
12

::
is
:::::::

higher
::::
than

::::::
values

::::::::
obtained

:::
in

:::::
other

::::::
studies

::::
for

:::::
other

::::::::::
hydrological

:::::::::
indicators

:::
like

:::::::
monthly

:::::
flows

::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. Christierson et al., 2012; Bosshard et al., 2013) .

:::::::::
However,

:
it
::
is
:::::::::
consistent

::::
with

:::::
recent

:::::::
findings

:::
that

::::
HM

::::::::::
uncertainty

::
in

:::::::
low-flow

:::::::
changes

::
is
::::::
higher

::::
than

:::::
GCM

:::::::::
uncertainty

::
in
::::::::::::::
snow-dominated

::::::::::
catchments30

:::::::::::::::::::::::::
(see e.g. Giuntoli et al., 2015) .

::::::
Indeed,

:::
low

:::::
flows

:::
are

:::::::
strongly

:::::
linked

::
to

:::::::::
catchment

::::::::
processes

:::
that

::::
may

::
be

::::::::::
represented

:::::::::
differently

::
in

:::::::
different

:::::::::::
hydrological

::::::
models. It is important to note that this somewhat reasonable relation is however not significant for

summer flows at the 90confidence level. In summer , and for the Durance only, effects on low flowsare significantly correlated

with effects on the other potential driver (maxSWE). The
::::::::
therefore

::::::::::::
understandable

::::
that

:::
the

::::::::::
contribution

:::
of

::::
HMs

::
to
::::

the
::::
total

:::::::::
uncertainty

::
is

:::::
higher

:::::
than,

:::
say,

:::
for

::::::
annual

:::::
flood

::::
peak

::::::::::
projections.

:::::::
Possible

::::::
drivers

::
of

::
the

:::::::::
divergence

::
in
::::
HM

::::::::
responses

:::
has

::::
been

::::::::
explored

::::::
through

:::
the

:::::::
analysis

::
of

:::::::
changes

::
in

:::::
model

::::
state

::::::::
variables

::::
AET

:::
and

:::::::::
maxSWE.

::::::
Figure

:::
13

:::::::::
highlighted

:::
the

::::::::::::::::
evapotranspiration

:::::::::
component

:::
as

:
a
::::::::
probable

:::::
driver

::
of

::::
HM

:::::::::
divergence

:::
in

::::
both
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::::::
summer

::::
and

:::::
winter

::::
low

:::::
flows.

:::::::::
Moreover,

::
the

:
slope of the relationship correspond to around 20of decrease in low flows for each5

10decrease in maxSWE , which
::::::
between

::::
HM

::::::
effects

::
on

:::::::
summer

:::
low

:::::
flows

:::
and

::::
HM

::::::
effects

::
on

::::::::
maxSWE

::
in
:::
the

::::::::
Durance is quite

consistent with findings from Godsey et al. (2014) on historical data in the Sierra Nevada (California). The relation between

effects on low flows and effects on maxSWE
:::
less

:::::::
marked

:::::::::
relationship

::::::::
obtained for the Verdon in summer is not significant and

has a gentler slope. This last result is again consistent with findings of ?
::::::::::::::::
Jenicek et al. (2016) who found a lower sensitivity of

summer low flows to snow accumulation for less elevated catchments.10

The interpretation of
::::::::::
Interpreting the positive (and significant) relation between

:::
HM

:
effects on winter lows flows and

:::
HM

effects on maxSWE is much more difficult. One would indeed expect on the contrary that storing less water in the snowpack

would leave more water to sustain winter low flows. As mentioned above, winter low flows may originate from various and

complex processes and some compensations may occur. Godsey et al. (2014) indeed found that under a changed climate,

a reduction in maxSWE may be offset by increased storage in autumn or winter and by shifts in the timing of maximum15

evapotranspiration. Moreover, both Magand et al. (2014) and Lafaysse et al. (2014) showed that a reduction in snow cover

area leads to a higher evaporation on the Durance catchment. Further studies aiming at explaining the precise processes leading

to a divergence in hydrological model
:::::::::
divergence

::
in

::::
HM responses on winter low flows should therefore explore these leads.

A way forward to disentangle the origins of the divergence in low flow responses from different hy-

drological models in general would be to make use of the Framework for Understanding Structural errors20

(FUSE Clark et al., 2008)
::::::::::::::::::::::
(FUSE, Clark et al., 2008) , which has already has been applied by Staudinger et al. (2011) to assess

the performance on low flow
:::::::
low-flow indicators of a variety of model structures. Assessing the robustness of such structures

in a climate change context would perhaps lead to improvements of existing model structure
::::::::
structures

:
as those used in the

present work.

::::::
Finally,

::::
this

:::::
study

::
is

:::::
based

::
on

::::
the

:::::::::
assumption

::::
that

::::::::
low-flow

:::::::::
projections

:::::::
derived

::::
from

:::
all

:::::::::
individual

::::
HMs

::
–
:::
but

::::
also

:::::
from25

::
all

:::::::::
individual

::::::
GCMs

:::
and

::::::
SDMs

:
–
::::

are
::::::
equally

:::::
valid.

:::
No

::::::
simple

:::::::
relation

:::::
could

::
be

::::::
found

:::::::
between

::::::::::
present-day

:::::::::::
performance

::
in

::::::::
simulating

::::::::::
interannual

:::::::::
variability

::
in

::::::::
low-flow

:::::::::
anomalies

::::
and

::::
HM

::::::
effects.

::::
The

:::::::::
robustness

::
of

::::
the

:::::::::
uncertainty

:::::::::::::
decomposition

:::::
results

:::::
may

::::::::
therefore

::
be

::::::
tested

:::::
with

::::::
subsets

:::
of

:::::
HMs,

:::
as

::::
well

:::
as

::::::
subsets

:::
of

::::::
GCMs

::::
and

:::::::
SDMs.

::
It

:::
has

:::
to

::
be

::::::
noted

::::
that

::
an

::::::::::
experiment

:::
on

::::
HM

::::::::::
uncertainty

:::::::::
evolution

:::::::::
following

:::::::
removal

:::
of

:::
an

::::::
outlier

::::::
model

::::
has

:::::
been

:::::::
recently

::::::::::
performed

:::
by

:::::::::::::::::
Habets et al. (2013) .30

5.3 Integrating additional
:::
On sources of uncertainty

The hydrological projection dataset explored in this work includes a fairly comprehensive list of uncertainty types compared to

most of previous studies (see Dobler et al., 2012; Addor et al., 2014, for recent hydrological studies with multiple uncertainty

sources). However,
::::
The

::::::::::
contribution

:::
of

::::::
internal

:::::::::
variability

:::::::::::
components

::
is

:::::::::
consistent

::::
with

::::
the

:::::::
analyses

:::::::::
performed

:::
for

::::
the

:::::::
Durance

::
by

:::::::::::::::::::::::
Hingray and Saïd (2014) on

:::::
mean

::::::
annual

:::::::::::
precipitation,

:::
and

:::
by

::::::::::::::::::::
Lafaysse et al. (2014) on

:::::
mean

::::::
annual

:::::::::
streamflow.

:

:::
The

::::::::
hierarchy

:::
of

::::::
model

:::::::::::
uncertainties

::
is

:::::::
however

::::::::
different

::::
from

:::::
other

:::::::::::
hydrological

:::::::::
indicators.

::::
For

:::::::
changes

::
in
::::

the
:::::
mean

:::::
annual

::::::::::
streamflow

::
of

:::
the

:::::::
Durance

:::::::::
catchment,

:::::
SDM

::::::::::
uncertainty

:::
was

::::::
found

::
to

::
be

:::::
larger

::::
than

:::::
GCM

::::::::::
uncertainty

::::::::
(Lafaysse

::
et

:::
al.

:::::
2014).

::
It

::
is

::::
here

:::::
much

:::::
lower

:::
for

:::
low

:::::
flows,

::::::::
probably

:::
due

::
to
:::

the
:::::
lower

::::::::::
inter-SDM

:::::
spread

::
in
:::::::
dry/wet

:::::
states

::::
than

::
in

:::::::::::
precipitation
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:::::::
amounts.

::::::::
However,

::::
one

::::::
cannot

:::::::
exclude

:::
the

:::::::::
possibility

::
of

:::
the

:::::
SDM

::::::::::
contribution

:::::
being

::::::::::::::
underestimated,

::
in

:::
two

::::::::
possible

:::::
ways.5

::::
First,

::::
one

::::::
cannot

:::::::::
guarantee

:::
that

::::
the

::::::
sample

:::
of

::::::
SDMs

:
–
::::

but
::::
also

::::::
GCMs

::::
and

:::::
HMs

:
–
:::

is
::::::::::::
representative

::::
from

::::
the

::::::::
unknown

::::::::::::::
superpopulations.

:::::::
Indeed,

:::
no

:::::::::
dynamical

::::::::::
downscaling

:::::
with

::::::::
Regional

:::::::
Climate

::::::
Model

:::
has

:::::
been

:::
for

:::::::
example

::::::::::
considered

::::
here

::
on

:::
top

::
of

:::
the

::
3

::::::
SDMs.

::::::::
Moreover

:::
the

:::::
latter

::
all

::::::
belong

::
to

:::
the

::::::
single

:::::
family

::
of

:::::::
Perfect

::::::::
Prognosis

:::::::
methods

:::::::::::::::::::
(Maraun et al., 2010) .

:::::::::::
Nevertheless,

:
it
::::

has
::
to

::
be

::::::
noted

:::
that

:::
the

::::::::
concepts

:::
for

::::::::
selecting

:::::::
analogue

:::::::::
situations

::::
with

:::
the

::
3

:::::
SDMs

:::::
used

:::
are

::::
quite

::::::::
different

:::::::::::::::::::::::::::::::
(see Sect. 2 and Lafaysse et al., 2014) .

::::::::
Morever,

:::::::::::::::::::::::
Lafaysse et al. (2014) found

::::
large

::::::::::
differences

:::::::
between

:::::::
different

:::::::
versions

::
of

::
a10

::::
given

:::::
SDM

:::::
using

:::::::
slightly

:::::::
different

:::
sets

:::
of

:::::::::
predictors.

:
It
::
is
::::::::
therefore

::::::
unclear

:::::::
whether

:::::
more

::::::
diverse

::::::
SDMs

:
–
:::
or

:
a
:::::
larger

:::::::
number

::
of

:::::::
versions

::::
from

:::
the

::::::
SDMs

::::
used

::
–
::::::
would

::::::::
contribute

:::::
more

::
to

:::
the

::::
total

::::::::::
uncertainty.

::
A
::::::
second

::::::::
possible

:::::
origin

::
of

:::
the

::::
low

:::::
SDM

:::::::::
uncertainty

::::::::::
contribution

::::
may

:::
be

:::
the

::::::
shared

:::::::::
adjustment

:::
of

:::::::
regional

:::::::
average

::::::::::
temperature

::
to

:::
the

::::
one

::
of

:::
the

:::::::
driving

:::::
GCM

::::
(see

::::
Sect.

::::::
2.2.2).

::::::::::
Additionally,

:
some other potential sources of uncertainty were not considered. First, this dataset is conditional on the single15

A1B emissions scenario, which should not be detrimental to results presented above given the relatively close time horizon

considered. Adding the scenario uncertainty in the QE-ANOVA framework would be relatively straightforward as it would

take the form of an additional fixed effect alongside GCMs, SDMs and HMs.

Another potentially important contribution to the overall hydrological uncertainty would be the uncertainty in hydrological

model parameters. The
:::
The

::::::::::
uncertainty

:::::::
related

::
to

:::
the

::::::::
temporal

:::::::::::::
transferability

::
of

::::::::::
parameters

::
–
:::::::
whether

:::::
from

::::::
SDMs

:::
or20

::::
HMs

::
–

:::
has

::::
not

::::
been

::::::::::
considered

:::::
either

::
in
::::

this
::::::
study.

:::
The

:::::::::::
hydrological

::::::::::
uncertainty

::::
was

::::::
found

::
to

:::
be

::::
high

:::::
when

:::::::::
compared

::
to

::::
that

::
of
:::::::

SDMs
::::
and

:::::::
GCMs,

:::
but

:::
it

::::
was

::::
also

::::::
likely

::::::::::::::
underestimated.

:::::::
Indeed,

:::
the

::
time transferability of model

:::
HM

parameters in a climate change context and its contribution to overall uncertainties has recently been explored by some

studies (see e.g. Finger et al., 2012; Dobler et al., 2012)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. Finger et al., 2012; Dobler et al., 2012; Parajka et al., 2016) .

One way to incorporate this source of uncertainty into the QE-ANOVA framework and combine it with hydrological model25

structure uncertainty would be to devise a calibration protocol common to all HMs that would split the calibration period

into distinct subperiods showing climatic contrasts, as proposed and applied by Thirel et al. (2015). Such a protocol has

actually already been applied in the R2D2-2050 project (see Sauquet et al., 2014) for a
:::::::::::::::::::::::::::::::
(see Sauquet et al., 2014, p. 70-72) for

:
a
:
subset of hydrological model structures and the analysis of results

::::::
results

:::::
show

:::
that

:::
all

:::::::::
calibrated

::::::
models

:::::
seem

:::::::
equally

:::::
robust

::::
with

::::::
regard

::
to

::::
their

:::::::
low-flow

:::::::::::
simulations.

::::
This will be the subject of a follow-up paper. Results

:::::
When

::::::
moving

::
to
::::::
future30

:::::::::
conditions,

::::::
results based on CLSM for a small upstream Durance subcatchment showed that hydrological projections may be

highly sensitive to the calibration period through some specific parameterized processes (Magand et al., 2015). Using such a

calibration protocol may then allow computing the hydrological model parameter contribution in a way similar to internal

climate variability components in the QE-ANOVA framework.

6 Conclusions

This paper proposes a methodology for estimating the transient probability distribution of yearly hydrological variables

conditional to an ensemble of projections built from multiple general circulation models (GCMs), multiple statistical5
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downscaling methods (SDMs) and multiple hydrological models (HMs). The methodology is based on the quasi-ergodic

analysis of variance (QE-ANOVA) framework that allows quantifying the contributions of the different sources of total

uncertainty, by critically taking account of (1) large-scale internal variability stemming from the transient evolution of multiple

GCM runs, and
::
of (2) small-scale internal variability derived from multiple realizations of stochastic SDMs. The QE-ANOVA

framework
::::
This

:::::::::
framework

::::
thus

::::::
allows

::::::::
deriving

:
a
:::::::::
hierarchy

::
of

:::::::
climate

:::
and

:::::::::::
hydrological

:::::::::::
uncertainties

::::
that

:::::::
depends

:::
on

:::
the10

::::
time

::::::
horizon

::::::::::
considered.

::
It
:

was initially developed for long-term climate averages and is here extended to include year-

to-year climate variability in probabilistic hydrological projections, thereby following the recommendations of Sexton and

Harris (2015). Indeed, results from climate impact and adaptation projects usually focus on time-slice changes, and therefore

underestimate the role of climate variability. Taking account of the year-to-year variability
:
–
:
which is large for hydrological

variables in general – and for low flows in particular –
:::
into

:::::::
account

:
is therefore especially relevant for better informing15

water resource adaptation strategies. To the authors’ knowledge, it is the first time that a transient quantification of low

flow uncertainties (including internal variability) is proposed.

The QE-ANOVA framework is applied to better understand possible transient futures of both winter and summer low flows

for two snow-influenced catchments in the southern French Alps. The analysis takes advantage of a very large dataset of daily

transient hydrological projections over the 1981–2065 period, that combines in a comprehensive way 11 runs from 4 different20

GCMs, 3 SDMs with 10 stochastic realizations each, as well as 6 diverse HMs. Results from the extended QE-ANOVA

approach may be summarized into three points. First, the change signal is a decrease in yearly low flows of around −20 %

in 2065 with respect to the 1980–2009 reference, except for the most elevated catchment in winter where low flows barely

decrease. Second, this change signal of yearly low flow anomalies is largely masked by both large- and small-scale internal

variability, even in 2065 at the end of the period considered. The time of emergence of the change signal on 30year
::::::
30-year25

low-flow averages is however around 2035, i.e. for time slices starting in 2020. But the most striking result is that a
:::::
Third,

::
a

large part of the total uncertainty – up to 40 % in 2065 for 30
:::
30-,year averages compared to less than 25 % due to the GCMs –

stems from the difference in hydrological model
:::
HM

:
responses.

Two main conclusions can be drawn from the above analysis, leading to corresponding lessons for future actions. First,

internal variability brings by far the largest part of the uncertainty in low flows for an individual year in the future, even30

when the change signal is relatively large. From the water manager point of view, the best way to adapt to climate change

would therefore be to adapt to
::::::::
Increasing

:::
the

:::::::::
robustness

::::
and

::::::::
resilience

::
of

:::::
water

:::::::
systems

:::
to

:::::
future

:::::::
climate

:::::::::
conditions

:::::
urges

:::::::
therefore

:::::
water

::::::::
resources

:::::::::
managers

::
to

:::
first

:::::::
account

:::
for

:::
the

:::::::
internal climate variability. The scientific focus should then be on

providing robust estimates of this internal climate variability by for example looking more and further into the past to identify

benchmark situations and events that would serve as training sets for testing adaptation strategies
:
,
:::
e.g.

:::::::
through

:::::::::
historical5

::::::::::::::::
hydrometerological

::::::::::::
reconstructions

:::::::::::::::::::::::::::
(see, e.g., Caillouet et al., 2016) .

Second, low flow responses from different hydrological models diverge in a changing climate, presumably due to differences

in both evapotranspiration and snowpack components resulting from the large range of approaches implemented in the 6

hydrological models used here. Hydrological models should therefore be carefully checked for their robustness in a changed

climate in order to increase the confidence in hydrological projections. In particular, efforts should be put on validating the10
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robustness of all components of hydrological models with specific analyses and relevant datasets, notably for evapotranspiration

and snowpack evolution.

Appendix A: Expressions of internal variability components

A1 Small scale internal variability

When a single GCM run is available for a given modelling chain m, the small-scale internal variability component of
:::
the15

::::::
relative

::::::
change

:
∆ for m

:::
(see

::::
Equ.

::
2)

:
can be estimated for any future prediction lead time t from the empirical inter-realization

variance of ∆ for t (Eq. B2 in Hingray and Saïd, 2014). In the present work, the reference used for the estimation of the change

variable is a constant (namely Y0(m)). The expression thus simplifies as:

Vark(∆)≈
(
ŷ(m,t)

Y0 (m)

)2

·Vark

[
Y (m,r,k, t)

ŷ(m,t)

]
(A1)

where Vark is the empirical variance over stochastic realizations.20

The variance in Eq. (A1) is equivalent to a coefficient of variation of Y with respect to the inter-realization variance.

Assuming this coefficient of variation as roughly constant over the whole simulation period, the SSIV of chain m may be

thus estimated from the temporal mean of this coefficient for this specific chain. When multiple runs are available for m, the

SSIV of ∆ for m is estimated from the multirun mean of their temporal mean. The SSIV component for the whole projection

ensemble is finally derived for each lead time t as the multichain mean of these chain-specific estimates:25

SSIV(t)≈ 1

NgNsNh

Ng∑
g=1

Ns∑
s=1

Nh∑
h=1

1

TNg,r

(
ŷ(m,t)

Y0(m)

)2

·
Ng,r∑
r=1

T∑
t=1

Vark

[
Y (m,r,k, t)

ŷ(m,t)

]
(A2)

where T is the total number of time steps covered by the simulation period and Ng,r is the number of runs for GCM g. Note

that the SSIV is a function of time via the signal terms ŷ(m,t) in Eqs. (A1) and (A2).

A2 Large scale internal variability

The large scale internal variability component for any given chain m has the same expression as that of SSIV in Eq. (A1)

but, due to the limited number of runs available, the inter-run variance (or equivalently the coefficient of variation) cannot

be estimated in a robust way. Following the quasi-ergodic assumption for transient climate projections, the LSIV for Y with

respect to the inter-run dispersion is assumed to be, in terms of coefficient of variation, constant over the whole simulation

period. It follows that for any time t and any chain m:5

Varr

(
Y (m,r,•, t)
ŷ(m,t)

)
≈ VarT

(
Y (m,r,•, t)
ŷ(m,t)

)
. (A3)

where Varr is the empirical variance over runs, VarT is the empirical variance over time, and Y (m,r,•, t) denotes the average

over all stochastic realizations from SDM s.
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When multiple runs are available for a chain, this variance component is estimated from all runs. The LSIV component of

∆ is finally estimated from the multimodel mean of the temporal and inter-run variance of Y (m,r,•, t)
::::::::::
Y (m,r,•, t) (Eq. B610

in Hingray and Saïd, 2014). Again, as the reference used here for estimating relative changes is a constant, the expression

simplifies as:

LSIV(t) =
1

NgNsNh

Ng∑
g=1

Ns∑
s=1

Nh∑
h=1

(
ŷ(m,t)

Y0(m)

)2

·VarT,Ng,r

Y (m,r,•, t)
ŷ(m,t)

Y (m,r,•, t)
ŷ(m,t)

::::::::::

 (A4)

Appendix B:
:::::::::::
Transferring

::::::
normal

:::::::::::
distribution

::::::::::
parameters

::
to
::::::::::
lognormal

::::::::::
distribution

:::::::::::
parameters

:::
Let

:::
mn::::

and
:::
vn:::

be
:::
the

:::::
mean

::::
and

::::::::
variance

::
of

::
a
::::::
normal

:::::::::::
distribution.

:::
Let

::::
Ml ::::

and
::
Vl:::

be
:::
the

:::::
mean

::::
and

::::::::
variance

::::
from

::::
the15

:::::::::::
corresponding

:::::::::
lognormal

::::::::::
distribution.

:::
Ml::::

and
::
Vl:::

can
:::
be

::::::::
expressed

:::
as:

Ml =
:::::

e(mn+
vn
2 )

::::::::
(B1)

Vl =
::::

(
e(vn)− 1

)
· e(2·mn+vn)

::::::::::::::::::::

(B2)

::::
This

:::::::::
formulation

::
is
::::
used

::
to
::::::
derive

:::
the

:::::::::
distribution

::
–
:::
and

:::::::::
associated

:::::::::
confidence

::::::
bounds

::
–

::
of

:::::
yearly

::::::::
low-flow

::::::::
indicators

:::::
based

:::
on

::
the

:::::
grand

:::::::::
ensemble

:
µ
::::
and

:::
the

::::
total

:::::::
variance

:::::::
obtained

:::::
from

:::
the

::::::::::
QE-ANOVA

:::::::::::::
decomposition.
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