
Dear Editor, 

Many thanks for your detailed remarks and suggestions. According to your comments we 

have changed the manuscript as following.(10 Jun 2016) by Jamie Hannaford 

 

Abstract: the numbers (1) and (2) are confusing for an abstract, are they necessary? If 

so perhaps make it clearer they do pertain to the two aims highlighted L18 and L20.  

We removed the unnecessary marking. 

 

P2, L7: tricky wording. Would suggest “…appropriateness of drought index selection 

for specific applications” or similar. 

Changed wording accordingly. 

 

P2, L17. Probably worth saying crop yields to avoid ambiguity. 

Very good suggestion, thank you. We changed it accordingly. 

 

P2, L25. Do these really need capitalising (Calamities Funds etc)? 

Changed as suggested. 

 

P3, L6. You later go on to say what vulnerability factors are, but is it worth adding a 

few examples here (otherwise there is a lot of talk of vulnerability factors without so 

much qualification as to what you are really talking about) 

Added “(e.g. information on water resources, society or technical infrastructure (Gonzalez 

Tanago et al. 2015)” at line 17 

 

P3, L13 and L27. Inconsistencies in use of single and double quotation marks, but I 

can’t particularly see why (also elsewhere in document). Check and standardize? 

Thank you for this remark. All quotations were changed to doubles. 

 

P6, L19. You mention the macro regions re: figure 2 but I don’t think you have yet 

introduced the macro regions, nor referred to Fig 1 (left) 

We added a reference to Figure 1, left in line 22 

 

P6, L25. This should be Figure 1, right. 

Correct. We changed it accordingly. 

 

P11, 5. There is a close brackets with no open 



Deleted. 

 

P11, 27-28. This sentence, adding following a referee comment, doesn’t quite make 

sense. Should this be something like “For vulnerability data which did not have 

multiple time steps available, the most…..” 

Thank you. We changed the sentence following your recommendation 

 

P12, L10 onwards. This section is made very confusing by the reference to the ‘steps’ 

which don’t seem to be consistent through the section. Firstly the six steps are 

introduced at L8 – L13. But then there are two long sections which just start with 

“first, …” and “second…” but which are not part of the steps per se. Then very 

confusingly, P13, L18 introduces step 1, then either self-refers, or refers to what 

seems to be a different step 1 (which seems to be the earlier paragraphs), two lines 

later!! Basically, the way this whole section skips about could be very confusing to the 

reader and could be made much clearer. 

We changed the steps to a “more understandable” numbering to: 1 (binary test), 

2(multivariable logistic regression), 3( drought maps) 

 

P14, L19 onwards. This sect 4.1 doesn’t contain a reference to Fig 2 which is 

surprising as it contains much of the info being discussed. 

Added a reference to fig. 2 right at the beginning of the chapter. 

 

P17, L8-9, some formatting issues 

corrected 

 

Sect. 4.3 . One thing that has struck me on re-reading is that this section doesn’t 

contain any interpretation of the selections of vulnerability factors as predictors. 

Which in hindsight I find a bit surprising and something readers may naturally enquire 

about. While some are very logical, many are quite surprising and non-intuitive (e.g. 

water use for industry as predictor for ag and forestry in SEE; aquatic ecosystem 

status as predictor for wildfires in W.med; etc). I just wonder whether it would be 

worth adding a paragraph or two to acknowledge this. Clearly this is driven by the 

model fits, but do these patterns suggest some of the relationships are down to 

chance, given the nature of the underlying vulnerability datasets? It would be worth 

fleshing this out with some (brief) discussion. 

Dear Editor, many thanks for this advice. Following your suggestion we added the following 

section on vulnerability factors in MLRMs to the manuscript: 

The selection of vulnerability factors for the final MLRMs in this study is also driven by the 

model fits and thus based on empirical relation rather than on commonly applied epistemic 

selection procedures (Gonzales Tanago et al. 2015). In several cases, MLRM performance 

differed only marginally between different factors included in the models. Due to the limitation 

of only selecting the best performing and model performance increasing vulnerability factors, 

further important factors that might have an influence on regional vulnerability may thus not 



have been included. Whereas there is considerable variability in the impact category specific 

or macro regional factors selected, some general trends can be noted. More than one third of 

applied factors quantitatively characterise regional landuse, and almost half of the selected 

factors characterise the water resources. This is in accordance with Tanago Gonzales et al. 

(2015) who summarised that drought vulnerability analyses have often applied information on 

water resources and landuse information. Nevertheless, according to Tanago Gonzales et al 

(2015), the most commonly applied information in drought vulnerability assessment are 

related to economic and financial resources and technical infrastructure, but these priorities 

are not reflected in our findings where e.g. “Economic wealth”, “Public Water Supply 

connection” or “Drought recovery capacity” were of minor importance or not selected at all in 

the model building process. Nevertheless, the results call for a review of the relevance of 

vulnerability factors in wider ranges of drought cases and for progress with regard to 

thematic content, data generation and transformation from qualitative to quantitative data and 

their regionalisation.  

 

P21, L1-2. This is an important addition following the referee comment. Wording is 

quite tricky though; would suggest “…this can be interpreted as meaning that prior 

standardization  

Changed accordingly. 

 

P22, L19. New paragraph here? 

Yes. 

 

P23, L5. Should be ‘as such’ 

Correct. 

 

P23, L20. “West to East and North” is confusing. Should this say “North to south” or 

something different? 

Changed to “and poor data availability in Northern Europe” 

 

Tables – check the numbering, they are now out of synch. 

Checked. 

 

The sub-caption to Table 2 (what should be Table 3) has a quite important key of 

impact class labels which are also referred to in the next table. Is there a better places 

for this that can be referred to by both tables? Alternatively, need to explicitly add a 

reference to the following table back to this key? Also, there is no description for 

“AQ” in this key 

Issues of the sub-captions Table 2 and Table 3 were corrected. Impact class labels of Table 

2 are not used in Table 3, hence sub-captions were not merged.  
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Abstract 12 

Drought is one of the most costly natural hazards in Europe. Due to its complexity, drought 13 

risk, meant as the combination of the natural hazard and societal vulnerability, is difficult to 14 

define and challenging to detect and predict, as the impacts of drought are very diverse, 15 

covering the breadth of socioeconomic and environmental systems. Pan-European maps of 16 

drought risk could inform the elaboration of guidelines and policies to address its documented 17 

severity and impact across borders. This work (1) tests the capability of commonly applied 18 

drought indices and vulnerability factors to predict annual drought impact occurrence for 19 

different sectors and macro regions in Europe and (2) combines information on past drought 20 

impacts, drought indices, and vulnerability factors into estimates of drought risk at the pan-21 

European scale. This “hybrid approach” bridges the gap between traditional vulnerability 22 

assessment and probabilistic impact prediction in a statistical modelling framework. 23 

Multivariable logistic regression was applied to predict the likelihood of impact occurrence on 24 

an annual basis for particular impact categories and European macro regions. (1) The results 25 

indicate sector- and macro region specific sensitivities of drought indices, with the Standardised 26 

Precipitation Evapotranspiration Index (SPEI) for a twelve month accumulation period as the 27 

overall best hazard predictor. Vulnerability factors have only limited ability to predict drought 28 

impacts as single predictor, with information about landuse and water resources being the best 29 
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vulnerability-based predictors. (2) The application of the “hybrid approach” revealed strong 1 

regional and sector specific differences in drought risk across Europe. The majority of best 2 

predictor combinations rely on a combination of SPEI for shorter and longer accumulation 3 

periods, and a combination of information on landuse and water resources. The added value of 4 

integrating regional vulnerability information with drought risk prediction could be proven. 5 

Thus, the study contributes to the overall understanding of drivers of drought impacts, 6 

appropriateness of drought indices selection for specific applicationscurrent practice of drought 7 

indices selection for specific application, and drought risk assessment. 8 

 9 

1 Introduction 10 

Drought is a natural phenomenon that can become a natural disaster if not adequately managed 11 

(Wilhite 2000). Unlike other natural hazards, it has a creeping onset and does not have a unique 12 

definition (Lloyd-Hughes 2014), which makes defining the beginning or end of a drought event 13 

difficult (Hayes et al. 2004, Wilhite et al. 2007). Drought is either defined by its physical 14 

characteristics: e.g. meteorological drought, soil moisture drought or hydrological drought (e.g. 15 

Wilhite and Glanz 1985); or by its consequences on socio-economic and environmental 16 

systems, i.e. its negative impacts (Blauhut et. al 2015a). These impacts can either be direct (e.g. 17 

reduced crop yields) or indirect (e.g. increased costs for food due to reduced crop yields) and 18 

can occur across a wide range of temporal and spatial scales. In the European Union (EU), more 19 

than 4800 unique drought impact entries have been identified in the European Drought Impact 20 

Report Inventory (EDII) across fifteen different impact categories from agriculture to water 21 

quality (Stahl et al. 2016) and financial losses over the last three decades were estimated to over 22 

100 billion Euros (EC 2007). 23 

To mitigate these impacts, until recently drought risk management at the pan-European scale 24 

has predominantly focused on coping with financial losses, mainly through cCalamities fFunds, 25 

Mutual mutual Funds funds and Insurances insurances (Diaz-Caneija, 2009). Nevertheless, 26 

today’s scientific consensus points to the need to move from a re-active to a pro-active risk 27 

management strategy (Wilhite et al. 2007). Rossi and Cancelliere (2012) stated that an advanced 28 

assessment of drought must include firstly, an investigation of socio-economic and 29 

environmental impacts, secondly, multi criteria tools to mitigate these and thirdly, a set of easily 30 

understood models and techniques for application by stakeholders and decision makers 31 

responsible for drought preparedness planning. 32 

http://iopscience.iop.org/1748-9326/10/1/014008/article#erl507334bib9
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The risk of natural disasters in a very general sense is a combined function of hazard and 1 

vulnerability (Birkmann et al. 2013). For drought risk analysis, risk may be estimated through 2 

a combination of hazard measures and estimates of vulnerability or proxies of it. Cardona et al. 3 

(2012) observed that “vulnerability and risk assessment deal with the identification of different 4 

facets and factors of vulnerability and risk, by means of gathering and systematising data and 5 

information, in order to be able to identify and evaluate different levels of vulnerability and risk 6 

of societies – social groups and infrastructures – or coupled socio-ecological systems”. Hence, 7 

the assessment of the vulnerability component of drought risk is based either on vulnerability 8 

factors or on past drought impacts, as these are considered to be symptoms of vulnerability 9 

(Knutson et al. 1998).  10 

According to Knutson et al. (1998), vulnerability assessments provide a framework for 11 

identifying the root causes of drought impacts at social, economic and environmental levels and 12 

measure a potential state, which will generate impacts if a given level of hazard occurs. 13 

Vulnerability to drought, as the predisposition to be adversely affected by a given hazard (IPCC 14 

2012), therefore is often assessed by the “factor approach”, in which a set of vulnerability 15 

factors (e.g. Swain and Swain 2011; Jordaan 2012; Naumann et al. 2013, Karavitis et al. 2014) 16 

contribute to an overall classification of vulnerability (e.g. information on water resources, 17 

society or technical infrastructure (Gonzalez Tanago et al. 2015)). . Based on their review of 46 18 

drought factor-based vulnerability assessments, Gonzalez-Tanago et al. (2015) observed that 19 

only 57% of the studies actually describe the process followed to select  vulnerability factors. 20 

Among those, the criteria used include the consultation of previous studies and specialised 21 

literature, data availability, and expert knowledge (Gonzalez-Tanago et al., 2015). The selection 22 

of vulnerability -factors is guided by the focus of the study, the definition of drought applied, 23 

the study location and data availability. Vulnerability factors are often combined and weighted 24 

by expert knowledge and stakeholder interaction, to a single, overall vulnerability index 25 

(Wilhelmi and Wilhite 1997; Adepetu and Berthe 2007; Deems and Bruggeman 2010). The 26 

majority of studies provide limited or no information on procedures applied to verify the derived 27 

index (Gonzales Tanago et al., 2015). Only few studies validate their results, among them, 28 

Aggett (2012), Naumann et al. (2013), and Karavitis et al. (2014). 29 

“‘Impact’ approaches” to vulnerability and risk assessment on the other hand, use information 30 

on past drought impacts as a proxy for vulnerability, assuming that a system has been vulnerable 31 

if it has been impacted. Drought risk is then considered the risk for a particular type of impact. 32 
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Typically, the impact of drought is then characterised based on data of either financial or 1 

quantitative losses of agricultural production (Hlavinka et al. 2009; Rossi and Niemeyer 2010; 2 

Tsakiris et al. 2010; Gil et al. 2011; Jayanthi et al. 2014; Quijano et al. 2014), human mortality 3 

(Dilley et al. 2005), or impacts on forestry (Vicente-Serrano et al. 2012; Muukkonen et al. 4 

2015). Blauhut et al. (2015a) applied annual impact occurrence based on reported information 5 

in the EDII to characterise sector-specific vulnerability. Drought risk was then estimated as the 6 

probability of impact occurrence as a function of the Standardised Precipitation and 7 

Evapotranspiration Index. The function used was a fitted logistic regression model. The 8 

estimated parameters could subsequently be used to generate a first set of pan–European 9 

drought risk maps. The displayed likelihood of impact occurrence on the maps can be 10 

considered “impact category specific drought risk” for selected hazard intensities. Stagge et al. 11 

(2015b) considered variations of the logistic regression and expanded the approach to include 12 

multiple hazard predictors. Bachmair et al. (2015a) applied regression tree and correlation 13 

approaches to link impact number and occurrence with a range of indices. Both studies relied 14 

on a rather high temporal resolution of reported impact occurrence, and hence considered only 15 

a few regions with particularly good data coverage. 16 

The hazard component of drought risk is commonly derived from a statistical analysis of a 17 

single drought indicator, a single or set of drought indices or a combined drought index (Hayes 18 

2000, Zargar et al.2011. Drought indices are well researched and have been applied to 19 

characterise drought patterns across Europe in several studies (Lloyd-Hughes and Saunders 20 

2002; Parry et al. 2012, Stagge et al. 2013, Tallaksen and Stahl, 2014, Spinoni 2015). The actual 21 

monitoring of drought in Europe is conducted at different scales: national (e.g. German Drought 22 

Monitor), transnational (e.g. Drought Management Centre for South-eastern Europe 23 

(DMCSEE), continental (e.g. European Drought Observatory, EDO) and global (e.g. SPEI 24 

Global Drought Monitor). But what is the basis for their selection as drought predictors? 25 

Bachmair et al. (2015b) reviewed pertinent literature and surveyed existing monitoring systems 26 

and found that tradition as well as data availability are commonly the criteria to select the ‘”most 27 

appropriate’ appropriate” drought index. Drought severity or warning levels are commonly 28 

categorised into arbitrary chosen hazard index thresholds such as those selected for the 29 

Standardized Precipitation Index SPI (-1.5<SPI<-1: moderate drought, -2<SPI<-1.5: severe 30 

drought, SPI< -2: extreme drought, where negative values represents less than median 31 

precipitation) (McKee et al., 1993). Defining hazard severity thresholds that relate to potential 32 

impacts on socio-economic and natural systems, and thus the drought risk, is often left to expert 33 
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judgement. However, an independent validation of the relevance of the various drought 1 

indicators for management purposes is of crucial importance (Pedro-Monzonís et al. 2015). 2 

Bachmair et al. (2016) found that although drought monitoring and early warning system 3 

providers often collect impact information, these are rarely used systematically to validate the 4 

usefulness of particular hazard indices. Such usefulness has been tested mostly in local or 5 

regional case studies based on empirical links between quantified losses such as financial or 6 

yield losses and climatic or resources (water availability) conditions (Jayanthi et al.2014, Stone 7 

and Potgieter 2008; Schindler et al. 2007). Stagge et al. (2015b) and Bachmair et al. (2015a) 8 

have assessed the link between impacts and different drought indices in selected European 9 

countries and found that the ‘”best’ best” indices vary with location and sector.  10 

In this study we expand the method of Blauhut et al. (2015a) into a ‘”hybrid’ approach”, which 11 

implies the consideration of vulnerability factors into the probabilistic impact prediction. The 12 

approach builds on earlier work developed for the agricultural sector (Zhang et al. 2011; Ahmed 13 

and Elagib 2014; Han et al. 2015; Yin et al. 2014) and an European assessment by De Stefano 14 

et al. (2015), who considered several physical and socio-economic factors to calculate 15 

sensitivity and adaptive capacity, and used impact information collected in the EDII to estimate 16 

exposure. More specifically, the hybrid approach aims to:  17 

1) Investigate the ability of commonly used drought indices and vulnerability factors to predict 18 

annual drought impact occurrence for various sectors,  19 

2) Identify the best-performing combinations of predictors to model drought risk for different 20 

sectors,  21 

3) Map sector-specific drought risk for selected hazard severity levels across Europe.  22 

This study addresses these aims through statistical modeling (logistic regression) of the 23 

combined effect of drought hazard, defined by drought indices, and drought vulnerability, 24 

defined by vulnerability factors, on the occurrence of historical drought impacts as extracted 25 

from the EDII. In a first step, potentially relevant drought indices and vulnerability factors were 26 

tested for their suitability as impact predictors in binary logistic models. Then, impact category 27 

and region specific multivariable logistic models were built in a hybrid approach, combining 28 

the most relevant drought indices and vulnerability factors as predictors of drought impact 29 

likelihood using stepwise selection. The final models were then used to construct pan-European 30 

drought risk maps for specific hazard severity levels. 31 
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 1 

2 Data 2 

2.1 Impact Information 3 

Information on drought impacts are derived from the European Drought Impact Report 4 

Inventory, EDII (Stahl et al., 2016; http://www.geo.uio.no/edc/droughtdb/). Since its creation 5 

in 2012, this archive has grown significantly due to extensive data collection. Documentation 6 

on the database’s structure and categorisation scheme can be found on the website and in a Pan-7 

European summary assessment by Stahl et al. (2016). All reports archived in the EDII database: 8 

a) describe negative impacts of drought on society, the economy, or the environment as reported 9 

by a given information source, e.g. government report, any type of public media, b) are spatially 10 

referenced, either to their respective NUTS (Nomenclature of Territorial Units for Statistics) 11 

region or to locations such as rivers, lakes or coordinates, c) are time referenced to at least the 12 

year of occurrence, preferably the season or month if given, and when possible assigned to a 13 

major regional drought event and d) are assigned to one of 15 impact categories and an 14 

associated number of subordinate impact types (105 in total). To guarantee a standard quality 15 

of entries, each entry has been reviewed by an expert (Stahl et al. 2016).  16 

In May 2015, the EDII database contained over 4800 drought impact reports. After the 17 

transformation to NUTS-combo scale (Figure 1, right), a custom combination of NUTS level 18 

regions of similar sizes (Blauhut et al., 2015a), 2745 entries for all impact categories were 19 

retained for analysis. Figure 2 provides an overview of the distribution of these reported impacts 20 

aggregated by year of impact occurrence and shows significant differences between European 21 

macro regions (Figure 1, left). These macro regions are climatologically comparable regions 22 

defined in order to cope with larger climatic differences and data shortfalls (Blauhut et al. 23 

2015a). The majority of impact reports are located in Maritime Europe (1290) with fewer 24 

entries in Western-Mediterranean (342), Southeastern Europe (283) and Northeastern Europe 25 

(62). The highest numbers for drought impact entries by NUTS-combo level (Figure 1, leftright) 26 

are available for southern UK, Central Europe and the south- western Iberian Peninsula. 27 

Northeastern Europe has the lowest number of EDII- entries. 28 

To overcome reporting biases, including regionally lacking data for a pan- European application 29 

of the EDII-dataset (Stahl et al., 2016), we followed Blauhut et al. (2015a) and: a) created binary 30 

datasets (occurrence/ absence of impact reports) from 1970-2012 for each impact category and 31 
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macro region, b) assigned multiyear-drought impacts to each affected year (e.g. 1975-1976: 1 

impact occurrence in 1975 and 1976) and c) generalised seasonal and short-term information 2 

to the year of occurrence. Figure 2 shows the timeline of annual drought impact occurrence for 3 

all reported impact categories pooled for European macro regions. 4 

Drought impact reports stem from various sources and are assigned with a certain level of 5 

reliability, decreasing by its enumeration-rank: academic work, governmental reports and 6 

documents, reports, media and webpages and other sources (Stahl et al., 2016). The proportions 7 

of impact sources by macro regions differ significantly. In both the Western- Mediterranean 8 

and Maritime Europe regions, academic work and governmental documents are the dominant 9 

sources of information (about 2/3). By contrast, EDII-entries for Northeastern Europe are 10 

strongly dominated by academic work and the media (~ 90%). The majority of information 11 

sources for Southeastern Europe are non-governmental reports and the media, which suggest 12 

that Southeastern Europe may have the least reliable data. Explicit information is lacking that 13 

would allow assigning an uncertainty flag depending on the source. Thus, in this study all 14 

information sources were treated equally. Nevertheless, uncertainties due to the nature of the 15 

impact data need to be discussed and considered in the interpretation of any study that are based 16 

on this or similar sources of data. 17 

2.2 Hazard indices 18 

Variables which describe drought hazard are numerous, and can be categorised into two main 19 

groups: indicators and indices (Heim Jr 2002; Zargar et al. 2011) Drought indicators directly 20 

measure a certain facet of the drought hazard, e.g. climatological conditions, vegetation health, 21 

or soil moisture, by a quantitative measure. Drought indices, such as the Standardised 22 

Precipitation Index (SPI) or Soil Moisture Anomaly (ΔpF), are quantitative measures 23 

characterising drought levels by assimilating data from one or multiple drought indicators to a 24 

single numerical value (Zargar et al. 2011). Unlike these, combined drought indices, e.g. 25 

Drought Intensity of the US Drought Monitor (Svoboda et al., 2002) or the ‘”Combined 26 

Drought Indicator’ Indicator” of the European Drought Observatory (Sepulcre Canto et al., 27 

2012) blend drought indicators and indices to a categorical hazard-severity index. For the 28 

purpose of this study, focus is on drought indices that are commonly recommended (Stahl et al. 29 

2015), readily available, monitored, and used operationally in Europe for drought monitoring 30 

(Table 1). For the purpose of this work, all drought indices (presented below) were first derived 31 

at the original grid scale on a monthly basis for periods with the necessary data availability.  To 32 
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match the spatial resolution of recorded impacts, these drought indices were aggregated to the 1 

NUTS-combo scale (Figure 1, right panel) by taking the mean of gridded values. 2 

Among the single indices, the most widely accepted meteorological drought index is the 3 

Standardized Precipitation Index (SPI, McKee et al., 1993). It is recommended by the WMO 4 

and is therefore applied widely in Europe for drought identification (e.g. Gregorič, G., and 5 

Sušnik, A., 2010; Vogt et al., 2011; Stagge et al., 2015a). As introduced by McKee et al. (1993) 6 

“the SPI is the transformation of the precipitation time series into a standardised normal 7 

distribution” (Lloyd-Hughes and Saunders 2002), and is commonly used to estimate wet or dry 8 

conditions based on long-term records of monthly precipitation. SPI is computed by summing 9 

precipitation over n months, termed accumulation periods, and is typically calculated at a 10 

monthly resolution. For instance, SPI-3 for December represents the number of standard 11 

deviations from the standard normal distribution of accumulated precipitation for Oct-Dec 12 

relative to a given reference period. The SPI’s strength is its low data needs and its multiscalar 13 

nature. It can be calculated for various accumulation periods and therefore can be related to 14 

different types of drought (e.g. soil moisture drought or hydrological drought) and temporal 15 

duration (e.g. summer drought to multi-year drought). Nevertheless, the SPI has limited 16 

interpretability for short accumulation periods (<2 months) in dry regions where monthly 17 

precipitation is often near zero (Stagge et al. 2015a). For this study we used gridded monthly 18 

aggregated precipitation from the E-OBS-9 dataset and derived the SPI for accumulation 19 

periods of 1-24 months (SPI-1, SPI-2, etc.) based on the Gamma distribution with a baseline 20 

for standardisation from 1970-2010. Subsequently, the gridded monthly SPI values were 21 

spatially aggregated by averaging all grid cells within each NUTS-combo level. 22 

The Standardised Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010; 23 

Stagge et al., 2015b) is an alternative drought index, which is defined as precipitation minus 24 

potential evapotranspiration. The index thus provides a more comprehensive measure of the 25 

climatic water balance while avoiding problems with zero precipitation as for the SPI. 26 

Consequently, it has been growing in popularity (Beguería et al 2010, Lorenzo-Lacruz et al. 27 

2010, Blauhut et al. 2015a). Here, the SPEI was calculated based on monthly aggregated E-28 

OBS-9 data following the recommendations of Stagge et al. (2015a), which uses the Hargreaves 29 

equation (Hargreaves 1994) to estimate potential evapotranspiration  and the generalised 30 

extreme value distribution for normalisation based on data from 1970-2010. Finally, all gridded 31 

SPEI indices were spatially averaged to NUTS-combo level. 32 

http://iopscience.iop.org/1748-9326/10/1/014008/article#erl507334bib4
http://iopscience.iop.org/1748-9326/10/1/014008/article#erl507334bib28
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Besides the standardised meteorological indices, we applied the following drought indices, as 1 

used by the Joint Research Centre of the European Commission (JRC) in their European 2 

Drought Observatory (EDO), a website that shows the recent and current drought situation in 3 

Europe from 2001 on. Soil moisture is known as a major driver for a variety of climate and 4 

hydrological processes and is the key indicator of agricultural drought (Kulaglic et al., 2013; 5 

Hlavinka et al., 2009; Potop, 2011). The JRC’s EDO provides daily and 10-day assessments of 6 

the moisture content of the top soil layer (upper 30 cm). Soil moisture is obtained from the 7 

LISFLOOD distributed rainfall-runoff model with a grid-cell resolution of 5 km across Europe, 8 

using daily meteorological input from the JRC MARS meteorological database. Soil moisture 9 

is expressed as soil suction (pF), providing a quantitative measure of the force needed to extract 10 

water from the soil matrix. Soil moisture anomalies (ΔpF) are then calculated as the 11 

standardised deviation from the long-term average for the period 1996 to 2014, and are used as 12 

input for the CDI. This standardisation results in a quantification of the soil moisture deficit 13 

which is normally distributed and thus comparable to the SPI and other similar indices. For this 14 

study, the index was aggregated temporally to monthly values, and spatially to NUTS-combo 15 

level by averaging.  16 

Direct measurement of stomatal activity (or photosynthetic activity, e.g. NDVI, VCI) (Chopra 17 

2006; Amoako et al. 2012) has been applied in many drought hazard analyses and has directly 18 

been used as a proxy for drought impacts (Skakun et al. 2014). The JRC derives the Fraction of 19 

Absorbed Photosynthetically Active Radiation (fAPAR) from satellite measurements at 20 

approximately 1 km spatial resolution and for 10-day periods. fAPAR is a quantitative measure 21 

of the fraction of solar energy that is absorbed by vegetation and a proxy for the status of the 22 

vegetation cover. Analogous to the SPI and soil moisture, fAPAR anomalies (ΔfAPAR) are 23 

calculated as the standardised deviation from the long-term mean (1975-2010). For this study 24 

the index was averaged to monthly values and the NUTS-combo level. The fAPAR anomaly 25 

can be associated with plant productivity and has therefore been recommended as an 26 

agricultural drought index by the UN Global Climate Observing System (GCOS) and the FAO 27 

Global Terrestrial Observing System (GTOS). However, fAPAR measures the photosynthetic 28 

activity of the vegetation cover only, which can be due to drought but also related to factors 29 

such as pests and diseases. It is therefore important to analyse the index in conjunction with 30 

other indices in order to ensure the link to a drought situation.  31 
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The ‘”Combined Drought Indicator’ Indicator” (CDI) (Sepulcre-Canto et al. 2012) generated 1 

by the JRC represents a logical combination of several drought indices to detect the severity of 2 

agricultural/ecosystem drought with a time step of 10 days. The method is a classification 3 

scheme that corresponds to different stages of drought propagation from the initial precipitation 4 

deficit, over a soil moisture deficit, to a water stress for the vegetation canopy. It is a logical 5 

combination of the SPI for 1 and 3 months accumulation periods, ΔpF, and ΔfAPAR with 6 

adjusted time lags. It results in four increasingly severe drought states: “Watch”, “Warning”, 7 

”Alert”,”Alert2” , as well as two recovery states: ”Partial recovery”, “Full recovery”. For the 8 

purpose of our analysis the levels of recovery were neglected. For this study, monthly and 9 

annual maxima within each NUTS-combo region were selected as further hazard indices 10 

available for the modelling. 11 

 12 

2.3 Vulnerability factors 13 

The most commonly used method to assess vulnerability to drought or other natural hazards is 14 

to employ a set of proxy factors, or composites of them. These factors aim at capturing different 15 

issues that influence the level of vulnerability of a system to a given hazard, herein referred to 16 

as vulnerability factors. Vulnerability is often assessed through the combination of factors in 17 

the following components of vulnerability: 18 

 Exposure: the extent to which a unit of assessment falls within the geographical range of a 19 

hazard event (Birkmann et al. 2013) 20 

 Sensitivity: the occupance and livelihood characteristics of the system (Smit and Wandel 21 

2006) 22 

 Adaptive capacity: particular asset bundles for risk reduction (Pelling 2001,Gosling et al. 23 

2009)  24 

In Europe, the assessment of vulnerability to drought has been undertaken mostly at national or 25 

local scales. With the exception of comprehensive efforts to characterise causes, components 26 

and factors of drought vulnerability(Flörke et al. 2011; Lung et al. 2011), De Stefano et al. 27 

(2015) was the first to map a vulnerability index at a pan-European scale. This study builds on 28 

the experience gained in that effort, which was complemented by some additional data, as 29 

explained below.  30 



 11 

De Stefano et al. (2015) defined 16 vulnerability factors grouped into three thematic 1 

components: exposure (1), sensitivity (5) and adaptive capacity (10). The latter further 2 

subdivided into four classes. The factors were assessed through a large set of parameters 3 

produced at the NUTS-2 resolution for the 28 Member States of the European Union plus 4 

Norway and Switzerland). To build the dataset, De Stefano et al (2015) extracted data from 5 

international databases, including Aquastat, the Eurobarometer, European Commission, the 6 

European Environment Agency, Eurostat, the World Bank, FAO, as well as from the literature. 7 

In order to be able to compare and combine data describing different factors, De Stefano et al. 8 

(2015) normalised the data from 0 to 1. Combined vulnerability factors and the vulnerability 9 

index itself were generated on the basis of equal weights (more details on the processes can be 10 

found in their report). For this analysis, we obtained the raw data as initially collected, their 11 

normalised values, as well as combined versions of vulnerability factors (Table 2).  12 

For some vulnerability factors, this study completed the original dataset with data for multiple 13 

time steps were available. Thus, the CORINE Landcover datasets for 1990, 2000, and 2006 14 

were added to the dataset. These data stem mainly from Eurostat (Statistical office of the 15 

European Communities, 1990) and the European Environment Agency 16 

(http://www.eea.europa.eu/data-and-maps). Data on land cover as derived from the CORINE 17 

Land Cover Datasets (http://www.eea.europa.eu/data-and-maps) was expressed as percentage 18 

of the NUTS-combo region area. All selected vulnerability factors with their respective spatial 19 

and temporal resolution are shown in Table 2. In summary, 69 vulnerability factors were 20 

considered for analyses. Some datasets are listed multiple times, as they were created for 21 

different spatial aggregations (e.g. ‘”Population density’ density” for NUTS-2 or country level), 22 

for different timesteps (e.g. ‘”Water use’ use” for single or multiple timesteps), or related to 23 

different spatial scales (e.g. ‘”Area of agriculture’ agriculture” to ‘”Area of agriculture’ 24 

agriculture” by NUTS-combo level). Furthermore, individual components of combined 25 

vulnerability factors are analysed (e.g. ‘”Dams capacity’ capacity” and ‘”Groundwater 26 

resources’ resources” for ‘”Dams + groundwater resources’resources”). 27 

For vulnerability data which did not have multiple time steps availableVulnerability data for 28 

which multiple timesteps were not available, the most recent information for the entire period 29 

of investigation was applied. Vulnerability data with multiple timesteps was assigned to the 30 

corresponding year, and preceding years up to the next time step available (e.g. available 31 

timesteps 1976, 1990, 2003,  1970-1976: 1976; 1977-1990:1990; 1991-2012: 2003).  32 



 12 

3 Methods 1 

The overall approach followed a series of steps to find the best logistic regression models. 2 

Hereby one model is determined for each European macro region and impact category, using 3 

annual impact occurrence as a target variable and corresponding hazard and vulnerability 4 

observations as predictors. This is achieved by employing a regionally pooled set of target and 5 

predictor variables that includes all NUTS-combo regions that lie within the macro region. 6 

NUTS regions that did not have any reported impact or information on a given vulnerability 7 

factor were disregarded. Step 1 tested the predictors SPEI and SPI for the temporal aggregations 8 

of 1, 2, 3, 4, 5, 6, 9, 12 and 24 months and 69 vulnerability factors as individual predictors in a 9 

univariate binary logistic regression, Steps 2-5 employed a stepwise selection process to 10 

evaluate the best performing combination of five possible predictors in a multivariable logistic 11 

regression model. Finally, Step 6 3 applied the best multivariate models for selected hazard 12 

level scenarios to create pan-European drought risk maps.  13 

FirstIn Step 1, the ability of each single predictor (drought indices and vulnerability factors) to 14 

predict the occurrence of drought impacts on an annual basis was tested separately. Following 15 

Blauhut et al. (2015a), the likelihood of drought impact occurrence LIO is assessed using binary 16 

logistic regression models (BLMs) (Equation 1) 17 

log (
𝐿𝐼𝑂𝑁𝑈𝑇𝑆

1−𝐿𝐼𝑂𝑁𝑈𝑇𝑆
) = 𝛼𝑀𝑎𝑐𝑟𝑜 + 𝛽𝑀𝑎𝑐𝑟𝑜 ∙ 𝑃𝑁𝑈𝑇𝑆       (1) 18 

The logit transformation of LIO equals the sum of the model parameter α and the product of 19 

the model parameter 𝛽𝑀𝑎𝑐𝑟𝑜 with the selected predictor 𝑃𝑁𝑈𝑇𝑆 of the NUTS-combo region. All 20 

model parameters were estimated using standard regression techniques within the framework 21 

of Generalised Linear Models (GLM) (Harrel 2001; Venables and Ripley 2002; Zuur et al. 22 

2009). Hence, the LIO is a measure of the probability of drought impact occurrence from 0 to 23 

1, depending on the selected predictor. The predictive power of each selected predictor was 24 

quantified by predictor-significance (p-value for the parameter β) to estimate LIO and by the 25 

overall model performance. The latter is measured using the area under the ROC (Receiver 26 

Operating Characteristics) curve, AROC, which quantifies the skill of probabilistic models 27 

(Mason and Graham 2002; Wilks 2011) in a range from 0 to 1. Significant predictors (p-values 28 

< 0.05) with AROC >0.5 indicate that the resulting model will be superior to random guessing, 29 

but are still considered ‘”poor’ poor” model performance (marked by a single star ‘*”*’”). 30 

Significant predictors with AROC >0.7 are considered considered ‘”good’ good” model 31 
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performance (‘**(“**’”), while significant predictors with AROC >0.9 are considered 1 

‘”excellent’ excellent” model performance (‘***(“***’”).  2 

SecondAs the next step (In Step 2), the approach was expanded by stepwise model building to 3 

include multiple hazard indices and vulnerability predictors (“hybrid approach”) into one 4 

statistical model. This analysis follows Stagge et al. (2015b) and Blauhut and Stahl et al. (2015) 5 

and applies multivariable logistic regression to assess the LIO (Equation 2).  6 

log (
𝐿𝐼𝑂𝑁𝑈𝑇𝑆

1−𝐿𝐼𝑂𝑁𝑈𝑇𝑆
) = 𝛼𝑀𝑎𝑐𝑟𝑜 + ∑  (𝛽𝑖,𝑀𝑎𝑐𝑟𝑜 ∙ 𝐻𝑁𝑈𝑇𝑆)𝑖   +  ∑  (𝛽𝑗,𝑀𝑎𝑐𝑟𝑜 ∙ 𝑉𝑁𝑈𝑇𝑆)𝑗     (2) 7 

Again, the left hand side is the logit transformation of LIO, while α and β are estimated using 8 

standard regression techniques within the framework of Generalised Linear Models (Harrel 9 

2001; Venables and Ripley 2002; Zuur et al. 2009). Multivariable logistic regression models 10 

(MLRMs) are fitted for each impact category and macro region. For each macro region and 11 

impact category, the aim was to find the best combination of one or two hazard indices (H) and 12 

up to three vulnerability factors (V). Due to the short period of available data (2001-2014) of 13 

∆fAPAR, ∆pF and CDI, only SPEI data of different aggregation periods were used as hazard 14 

indices for this part of analyses. The combined vulnerability factors ‘”sensitivity’ sensitivity” 15 

and ‘”adaptive capacity’ capacity” were also neglected as they are pre-determined combinations 16 

of individual factors that might also enter the model as predictors, resulting in multicollinearity. 17 

In Step 12, eEmphasising the effect of climatic hazard indices on drought impacts, the stepwise 18 

multivariate logistic regression began with the detection of the best single hazard index (from 19 

the univariate logistic regression model in Step 1). The best performing hazard index was 20 

selected by predictor significance, measured by p-values, and model performance, measured by 21 

AROC. In Step 23Then, a second hazard index was selected following two criteria: it is not 22 

correlated (r2 <0.5) with the best performing hazard index and it significantly improves the 23 

model. Again, the best performing predictor was assessed by predictor significance and overall 24 

model performance. Furthermore, ‘”overfitting by additional variables’ variables” was 25 

penalised by the Bayesian Information Criterion (BIC), with smaller numbers indicating better 26 

models. Accordingly, a second hazard index is only chosen for the final MLRM if AROC 27 

increases or remains constant and BIC decreases. A maximum of two hazard indices are 28 

allowed in the final MLRM. 29 

Steps 3-5 tFurthermore then,hen add uadditional predictors from the pool of vulnerability 30 

factors. Up to three vulnerability factors are included into the model in a stepwise fashion based 31 
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on the same criteria. Proceeding as in Step 2the previous step, best performing vulnerability 1 

factors are only considered for the final MLRM if they improve the overall model, either 2 

increasing AROC or producing equal AROC, but a lower BIC. If AROC decreases or remains 3 

constant with a poor BIC, the factor was not added to the final MLRM and further vulnerability 4 

factors were not analysed. A maximum of three vulnerability factors were included into the 5 

resultant MLRM. 6 

LastlyIn Step 3 of the study, the resultant MLRMs were applied to construct drought risk maps 7 

that show the likelihood of impact occurrence for three selected hazard levels, based on the 8 

standard deviation from normal -0.5, -1.5, -2.5. The hazard predictors were all standardised 9 

indices representing a certain hazard severity and likely frequency of occurrence. The definition 10 

of drought severity for SPI, SPEI, ΔpF, ΔfAPAR is inspired by the definition of McKee(1993) 11 

who assigned standard deviations from normal to hazard severity levels for SPI, with a 12 

threshold of ‘”1’ 1” corresponding to a return period of 6.3 years, classified as moderate 13 

drought, and ‘-“-2’ 2” as extreme drought conditions. The final pan- European drought risk map 14 

presents the LIO by best performing combination of predictors for fifteen impact categories and 15 

for three hazard levels. For countries with a lack of sufficient vulnerability data (Table S1), LIO 16 

was estimated using the best hazard-only model.  17 

 18 

4 Results 19 

4.1 Distribution of drought impacts and impact characteristics 20 

As shown in Figure 2, Tthe majority of the reported drought impacts occurred during well-21 

known major drought events: 1975-1976 in Central Europe, 1991-95 in the Mediterranean, 22 

2003 in all over Europe (except the Mediterranean), and 2004-2007 in the Western 23 

Mediterranean (Stagge et al. 2013; Stahl et al. 2016), as well as in more recent events, e.g. the 24 

drought of 2010-12 in the United Kingdom (Kendon et al. 2013; Parry et al. 2013), the European 25 

drought of 2011 (DWD 2011), and the 2011-12 drought in Southeastern Europe (Spinoni et al. 26 

2015). The highest number of reports is represented by the drought events of: ‘”1975-76 27 

Europe’Europe”, ‘”2003 Europe’ Europe” and ‘”2010-12 United Kingdom’Kingdom”. 28 

Except for Northeastern Europe, almost all impact categories (except Air Quality) have at least 29 

one annual impact recorded per macro region (Blauhut et al. 2015a). An increasing trend of 30 

impact reports with time is observed for all macro regions. Overall, Maritime Europe has the 31 
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highest number of impacted years in total, which is consistent with this region’s higher number 1 

of overall impact reports. Generally, the number of reported impacts cluster with well-known 2 

drought events, although impacts on ‘”Forestry’ Forestry” show a delay and longer duration 3 

compared to the meteorological hazard. ‘”Waterborne Transportation’Transportation”, 4 

‘”Tourism and Recreation’Recreation”, ‘”Public Water Supply’Supply”, ‘”Water Quality’ 5 

Quality” and ‘”Freshwater Ecosystems’ Ecosystems” show a similar temporal pattern of impact 6 

occurrence. Impacts on ‘”Agriculture and Livestock farming’farming”, ‘”Public Water Supply’ 7 

Supply” and ‘”Freshwater Ecosystems’ Ecosystems” are reported for almost every year. For 8 

Southeastern Europe, ‘”Agriculture and Livestock farming’ farming” has the most frequent 9 

impacts. Furthermore, ‘”Public Water Supply’ Supply” and ‘”Human Health and Public Safety’ 10 

Safety” have a continuous presence of impacts from 1983 to 1996. From 2000 on, all impact 11 

categories have reported impacts. Northeastern Europe has only a few impact categories with 12 

drought impacted years, but ‘”Forestry’ Forestry” shows a long continuous time with impacts, 13 

from 1991 on. The Western Mediterranean region shows a less scattered pattern. Besides a low 14 

number of impacts from the middle of the 1970s until the beginning of the 1980s for 15 

‘”Agriculture and Livestock farming’farming”, ‘”Forestry’Forestry”, ‘”Energy and Industry’ 16 

Industry” and ‘”Public Water Supply’Supply”, impacts occurred during the two major long-17 

term drought events of 1989-1995 and 2003-2008.  18 

The observed increase in the occurrence of reported impacts from 2000 onwards may have 19 

several reasons. One of the most important one being an increased reporting behaviour 20 

(governmental and news) due to an increased awareness of natural hazard impacts and the 21 

possibility of easy and fast communicated information (internet). Nevertheless, we cannot 22 

exclude the fact that Europe is warming and that this warming may lead to an increase in 23 

reported drought impacts. 24 

 25 

4.2 Suitable predictor variables for hazard and vulnerability 26 

First, the individual predictors in binary logistic regression models, BLMs, were evaluated by 27 

impact category and macro region. Data availability allowed the identification of robust BLMs 28 

for all impact categories only for the Maritime Europe region. For Southeastern Europe the 29 

impact category ‘”Terrestrial Ecosystems’Ecosystems”, for Northeastern Europe ‘”Water 30 

Quality’Quality”, and for the Western-Mediterranean ‘”Terrestrial Ecosystems’Ecosystems”, 31 
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‘”Air Quality’ Quality” and ‘”Human Health and Public Safety’ Safety” could not be modelled. 1 

All hazard indices performed differently across regions and impact categories. Tables S2 to S4 2 

show the model performance for the individual hazard indices and the vulnerability factors. 3 

These detailed results are only briefly summarised here as they only represent a preliminary 4 

screening step in the model building process. .  5 

Among the indices used within the European Drought Observatory, the index ∆fAPAR 6 

generally results in robust models during the growing season, but the annual average ∆fAPAR 7 

appears not to be a suitable predictor. The ∆pF performs as the overall best predictor with 8 

mostly ‘”good’ good” models between March and November and best overall performance of 9 

the annual average of ∆pF. The CDI resulted in only few ‘”poor’ poor” to ‘”good’ good” 10 

models. 11 

For the indices of SPEI, a longer period of hazard data was available (1970-2012) than for the 12 

EDO indices and hence overall better model fits were achieved. The best performing indices 13 

(in terms of aggregation times) are more specific to the impact category than to the macro region 14 

and tend to span from 6-12 month aggregation time. SPEI-12 performs with ‘”good’ good” to 15 

‘”excellent’ excellent” models for the majority of impact categories and macro regions from 16 

August to September. In comparison to the other impact categories, few robust models were 17 

identified for ‘”Forestry’ Forestry” and ‘”Public Water Supply’Supply”. In general, SPI follows 18 

the similar performance pattern as SPEI, but with consistently lower model performance and is 19 

therefore not shown in the tables. To estimate the influence of longer time series for model 20 

input, Table S5 shows model performance for SPEI applied for the shorter time period 2001-21 

2012. Resultant model performance follow similar performance pattern, but less strong, as for 22 

longer time series.  23 

To identify patterns in the many vulnerability factor variables tested, Table S4 groups the 24 

individual vulnerability factors by the vulnerability components of adaptive capacity and 25 

sensitivity. In general, none of these obtained an ‘”excellent’ excellent” model performance. 26 

Factors related to ‘”Sensitivity’ Sensitivity” that characterise landuse and are based on multiple 27 

timesteps, such as ‘”Area of Agriculture’Agriculture”, ‘”Area of forest’forest”, ‘”Area of semi-28 

natural areas’ areas” and ‘”Percentage of Area of Agriculture’ Agriculture” proved to be 29 

significant in many cases. In addition, robust model predictors for all macro regions include 30 

‘”Dams and Groundwater Resources’ Resources” and ‘”Water related Participation EC’ EC” 31 

for ‘”Agriculture and Livestock Farming’ Farming” or ‘”Social relevance for services sector’ 32 
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sector” for ‘”Energy and Industry’Industry”. For the remaining vulnerability factors, no clear 1 

patterns were detectable. Only few robust models could be identified. Predictive skill for 2 

vulnerability factors such as: ‘”GDP by country’country”, ‘”Public Water Supply connection 3 

by NUTS-2’ 2” or ‘”Biodiversity, Areas protected’ protected” was not found. The combined 4 

vulnerability factors resulted in few macro region and impact category robust models. Impact 5 

occurrence for the categories ‘”Aquacultures and Fisheries’Fisheries”, ‘”Soil 6 

Systems’Systems”, ‘”Wildfires’ Wildfires” and ‘”Air Quality’ Quality” were generally difficult 7 

to model by vulnerability factors.  8 

In summary, the drought hazard indices SPEI and SPI alone were better suited than the rather 9 

static vulnerability factors alone to estimate the likelihood of annual drought impact occurrence, 10 

and will therefore be treated as more important for the identification of best performing MLRMs 11 

(Step 2, ref. section 3). 12 

 13 

4.3 Estimating best performing combinations of hazard indices and vulnerability 14 

factors to assess the likelihood of impact occurrence 15 

Out of the final 44 best-performing multivariable logistic regression models (, MLRM), , 18 16 

models used the maximum of three vulnerability predictors, 14models used two, nine models 17 

only one, and three models did not use any vulnerability predictor at all. For the majority of 18 

MLRMs, two hazard predictors are used, whereas four models found that one hazard index 19 

alone was sufficient to obtain the optimum model performance. 20 

Table 3 shows the MLRM performance for the best performing hazard indices and the 21 

improvement for the final models that include vulnerability factors. In general, integrating 22 

vulnerability factors to the MLRMs improved the model performance, except for models of the 23 

impact categories ‘”Soil Systems’ Systems” and ‘”Wildfires’ Wildfires” for Southeastern 24 

Europe and ’Forests”Forests‘ “ for the Western-Mediterranean region. The improvement in 25 

model performance differed by region and impact category, whereas an increase of AROC and a 26 

decrease of BIC reflect model performance improvement. ∆ROC (improvement of AROC with 27 

vulnerability factor predictors) ranges from 0 to 0.32 with an average increase of 0.08, whereas 28 

∆BIC range between 9 to -347 with an average value of -65.  29 

Figure 3 summarises the selected hazard predictors and vulnerability factor predictors for all 30 

models. Among the drought hazard indices, 34 short- , 32 mid-, and 18 long-term SPEI 31 
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predictors were selected for best model performance (with short-, mid-, and long-term 1 

corresponding to 1-3, 4-9, and 12-24 month accumulation periods). The majority of MLRMs 2 

with two selected hazard indices, are combinations of SPEIs with one longer and one shorter 3 

accumulation period. Generally, the most frequent SPEI predictors cover the summer months 4 

from May to August with accumulation intervals between 1 and 6 months.  5 

For all regions, about 40% of the selected vulnerability factors describe land-surface 6 

characteristics related to agricultural and semi-natural land cover. Among the vulnerability 7 

factors, only 16% of those selected are associated with Adaptive Capacity components. For the 8 

Western- Mediterranean, all selected vulnerability factors, apart from ‘”Drought Management 9 

Tools’Tools”, describe ‘”Sensitivity’Sensitivity”.  10 

4.4 Mapping drought risk 11 

For each impact category, a robust MLRM was identified for at least one macro region. Figures 12 

4-6 show the results of applying these robust models for risk mapping, i.e. mapping the 13 

likelihood of drought impact occurrence (LIO) for three times five sectors (figures and 14 

columns) and three hazard severity levels (rows), in total 35 drought risk maps. Overall the 15 

maps illustrate that with increasing hazard severity (from top to lower row), the spatial patterns 16 

of LIO begin to diverge for each impact category, macro region, and NUTS-combo regions. 17 

LIOs start with rather low values at low severity levels and increase as the hazard intensifies, 18 

whereas the characteristics of drought risk differ with impact category and macro region. In 19 

general, Southeastern Europe and Northern Europe (Iceland, Norway, Finland) are under low 20 

drought risk in comparison to the other European regions, whereas parts of Maritime Europe 21 

and the Western- Mediterranean show increasing drought risk with hazard conditions for the 22 

majority of impact categories. 23 

The largest differences in drought risk are present under severe hazard conditions. ‘”Agriculture 24 

and Livestock Farming’ Farming” results in highest LIO in southern Sweden, the Netherlands, 25 

Portugal, Spain, southern Italy, whereas ‘”Forestry’ Forestry” is more likely to be affected in 26 

Sweden, southern Finland, Central Europe and Hungary, Slovenia and Romania. In contrast to 27 

these rather spatially consistent risk patterns, ‘”Aquaculture and Fisheries’ Fisheries” shows 28 

rather dispersed regions with increased LIOs: in Spain (Andalucía and La Rioja), southern 29 

France (Provence-Alpes-Côte d'Azur and Languedoc-Roussillon); North-East Italy, Southern 30 

Austria. The risk for impacts in the category ’Energy “Energy and Industry’ Industry” is high 31 
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for the majority of Maritime Europe and the Western-Mediterranean, with hot spots in Portugal, 1 

Croatia, Southeastern Germany (Bavaria) and Central France (Centre). For impacts in the 2 

category ‘”Waterborne transportation’transportation”, high LIO was found for Croatia and 3 

eastern Hungary (high risk), central Europe, and southern UK. Impacts on ‘”Tourism and 4 

Recreation’ Recreation” under the most severe hazard conditions are very likely for the majority 5 

of Maritime Europe and the Western-Mediterranean, with highest LIOs for Portugal, southern 6 

Italy, the Netherlands, Scotland, and central and northern Sweden; whereas Southeastern 7 

Europe is not at risk for any hazard level. Impacts on ‘”Public Water Supply’ Supply” appear 8 

not to be present for the majority of southeastern Europe, and are less likely for Central 9 

European regions, but show high LIOs for the Mediterranean, Bulgaria, Slovakia, Denmark and 10 

the UK. For the impact category of ‘”Water quality’ quality” these pattern change with higher 11 

drought risk for Central Europe. Hot spots of drought risk for this impact category are identified 12 

for the majority of the Western-Mediterranean, Bulgaria, northern central Europe and England. 13 

Northeastern Europe and the majority of Southeastern Europe are not at risk. High risk 14 

estimates for ‘”Freshwater ecosystems’ ecosystems” are rather spatially extensive and present 15 

for the majority of the Iberian Peninsula, England and northern central Europe. Impacts on 16 

‘”Terrestrial ecosystems’ecosystems”, which could only be modelled for Maritime Europe, 17 

display high risk for England, the Benelux countries, Switzerland, Bavaria and southern Austria 18 

under the most severe hazard conditions. Drought risk for the impact category of ‘”Soil 19 

Systems’ Systems” is limited to the Netherlands (high risk) and the region of Paris (Île de 20 

France), England, Belgium and some French NUTS-combo regions (low risk). Impacts related 21 

to ’Wildfires”Wildfires‘ “ are very likely for the majority of the Western-Mediterranean, 22 

Lithuania and northern Finland. ‘”Air Quality’ Quality” is the only impact category with almost 23 

no risk of drought impacts for all hazard severity levels. In contrast, under the most severe 24 

hazard conditions, impacts on ‘”Human Health’ Health” and ‘”Public Safety’ Safety” are at 25 

high risk for Bulgaria, Czech Republic, Switzerland, the Netherlands and Sweden and increased 26 

risk for the remaining Maritime regions. The risk of ‘”Conflicts’ Conflicts” under extreme dry 27 

conditions is either very high (majority Western-Mediterranean and Germany, Switzerland, 28 

Netherlands and South East UK) or not a risk at all. 29 

 30 
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5 Discussion 1 

5.1 Hazard indices and vulnerability factors’ individual predictive potential  2 

The systematic test of a series of hazard indices and vulnerability factors individually allowed 3 

a first order assessment of their potential to predict impact occurrence. Despite their short period 4 

of data availability, soil moisture anomalies from the JRC’s EDO proved to have high potential 5 

as an index for drought impact prediction in all impact categories. Concurring e.g. with Shakun 6 

et al. (2014), fAPAR proved its usage as drought index for vegetation-process-related impact 7 

categories, for the growing season particularly. Thus, of the use of a fAPAR based seasonal 8 

index in further studies appears promising. The combined index CDI, however, was not found 9 

to be a good predictor of impact occurrence in our study. Given that its individual contributing 10 

indices (∆fAPAR and ∆pF) performed generally well, and the fact that the CDI had been tested 11 

successfully against quantitative impacts in the agricultural sector by Sepulcre-Cantó et al. 12 

(2012), suggest that further studies should explore possible reasons for this poor performance, 13 

e.g. through further sector specific data stratification.  14 

Generally, the tests showed that the hazard-impact-linkage will benefit from longer time series 15 

and thus a wider range of drought conditions. Furthermore, it was found that the overall better 16 

performance of SPI and SPEI to JRC hazard indices was not due to the differences in time series 17 

length. SPEI shows an overall better model performance than SPI for all accumulation times 18 

and impact categories. This is in agreement with the studies of Lorenzo-Lacruz et al. (2010) 19 

and López-Moreno et al. (2013), who found the SPEI to be better correlated than the SPI with 20 

environmental impacts. The overall best performing (across all impact categories and macro 21 

regions) temporal accumulation was twelve months, which is as expected, since the target 22 

variables are impact occurrences on an annual basis. The best performance was found for SPEI-23 

12 of September and December. SPEI-12 of December measures the same calendar year used 24 

for aggregating annual impact information. Alternatively, the SPEI-12 of September measures 25 

water balance during a “water year”, defined by the U.S. Geological Survey as Oct 1-Sep 30, 26 

which captures the growing season along with the entire preceding winter. Thus, both indices 27 

can be recommended for analyses at an annual scale.  28 

The tested vulnerability factors alone revealed generally limited skills to predict impact 29 

occurrence, with exceptions of land surface cover types or information on regional water uses/ 30 

storages. This is somehow at odds with the fact that the most commonly used vulnerability 31 
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factors in vulnerability assessments are related to ‘”Economic and financial resources’ 1 

resources” and to technical, technological and infrastructural aspects (González-Tanago et al., 2 

2015). As few of the factors varied in time, the models reflect mostly spatial differences of 3 

impact occurrence among the pooled NUTS-combo regions rather than temporal differences. 4 

Although data to characterise vulnerability in Europe are numerous, there are important gaps 5 

that implied constraints in our analysis and predictor selection. Much of the data are available 6 

only at country level or are not available in a centralised data repository. For instance, De 7 

Stefano et al. (2015) observe that there are no European-wide data of water use efficiency, or 8 

data about alternative water sources such as desalination, reused water or rainwater harvesting, 9 

especially in those locations where these sources are important, such as the islands or tourist 10 

areas on the Mediterranean coast. We found that vulnerability factor normalisation practices 11 

did not improve the predictive potential model performance and composed vulnerability factors 12 

were not better than individual ones. For an application like in our study, this can be interpreted 13 

as meaning that prior standardisation, composition and weighting of vulnerability factors 14 

appears unnecessary.  15 

 16 

5.2 Building hybrid models with hazard indices and vulnerability factors 17 

The stepwise procedure employed to find predictor combinations for the multivariable models 18 

may have excluded possible similar or even better combinations. However, a full permutation 19 

of all possible combinations was computationally too expensive for this study. Nevertheless, it 20 

was possible to identify suitable models for most cases and the multivariable selection process 21 

further elucidated joint important controls on drought risk. The majority of SPEIs selected for 22 

final model application were combinations of SPEI with different accumulation times, often 23 

short and long periods. The stepwise procedure showed that hazard indices with temporal 24 

accumulations from three to twelve months generally performed best, depending on the region 25 

and impact. These results confirmed previous case studies on best-combinations, e.g. by Stagge 26 

et al. (2015b), and common practice using combined drought monitoring indices, such as the 27 

US Drought Monitor (Svoboda et al. 2002). The majority of MLRMs also performed better by 28 

adding at least one vulnerability factor suggesting that these can improve the predictability of 29 

annual drought impact occurrence. The vulnerability factors selected are dominated by factors 30 

associated with the vulnerability component of ’Sensitivity’”Sensitivity”. This could be 31 

explained by the fact that adaptive capacity evolves much faster than sensitivity and the values 32 
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of “Adaptive Capacity” factors used in the models refer to present conditions while impacts 1 

span over a 50-year time period. Thus the poor performance of Adaptive Capacity indicators as 2 

predictors of impact could be due to the mismatch between the adaptive capacity that existed 3 

when impact occurred in the past and the one used in our models rather than their lack of 4 

relevance in absolute terms. 5 

The predictor selection was likely influenced by some of the particular biases and 6 

characteristics of the underlying databases. The EDII’s impact categories broadly pool impact 7 

types of similar topics. Reported impact types within a category can be very different and 8 

reported impact types can differ between countries (Stahl et al., 2015). Using ‘”Agriculture and 9 

Livestock Farming’ Farming” impacts as an example, the large range of SPEIs selected for the 10 

final models (with regard to temporal accumulation and month) can be due to several reasons. 11 

These may include differences in impacts in irrigated versus rain-fed agriculture. Whereas 12 

impacts on rainfed agriculture are often described best by meteorological drought (short 13 

accumulation periods), irrigated agriculture strongly depends on lagged hydrological drought 14 

(Pedro-Monzonís et al. 2015). Characteristics of location and cultivation may also play a role. 15 

Depending on the climatic and orographic conditions of a NUTS-combo region, impact 16 

category specific characteristics differ (e.g. growing season, dormancy, development). Hence, 17 

the most relevant SPEI for each region may differ in accumulation time and month selected. 18 

This corresponds e.g. to Lei et al. (2011) and Potopováa et al. (2015) who detected  different 19 

optimal accumulation times of SPEI for maize productivity for Northern China and Czech 20 

Republic. A reason for the selection of more unexpected combination of SPEI (e.g. SPEI-6 of 21 

August was selected together with SPEI-1 in December for ‘”Agriculture and Livestock 22 

Farming’ Farming” in Southeastern Europe) might be due to the criterion of variable 23 

independence employed.  24 

For wildfires, Gudmundsson et al. (2014) suggested SPI with lead times not longer than two 25 

month to indicate major effects of wildfires in southern Europe, contradicting the longer 26 

accumulation times selected in this study. However, Gudmundsson et al (2014) used the 27 

comprehensive European Fire Database, whereas the EDII only contains wildfire reports that 28 

were directly attributed to drought. On the other hand, our variable selections match the results 29 

of Catry et al. (2010) who estimated that the majority (51%) of all wildfires occur during the 30 

summer months.  31 
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Hydrological drought takes the longest time to respond to drought conditions. Accordingly, 1 

impact categories for which surface- and ground water availability is important and often linked 2 

to water quality (e.g. higher water temperatures due to low flow) (‘(“Aquaculture and 3 

Freshwater Fisheries’Fisheries”, ‘”Energy and Industry’Industry”, ‘”Waterborne 4 

Transportation’Transportation”, ‘”Water Quality’Quality”, ‘”Freshwater 5 

Ecosystems’Ecosystems”), are best predicted by longer accumulation times (≥SPEI-9). Impacts 6 

on ‘”Public Water Supply’ Supply” are generally poorly predicted by SPEI. Best performances 7 

are obtained for long accumulation times (SPEI-24) indicating that impacts on water resources 8 

rely on the storage characteristics (natural or artificial) and thus depend on a variety of 9 

conditions that cannot be characterised by SPEI on the larger scale. Other impact categories 10 

show weaker pattern, but in general show better results for predictions in summer.  11 

This seasonal focus points to a related data challenge. The temporal resolution of reported 12 

impacts, which often only refer to an entire season, year, or multi-year drought, does not allow 13 

an identification of the onset, duration and ending of a given drought impact. The annual time 14 

scale employed here is a compromise between a sufficient high number of reported impacts and 15 

spatial coverage. Stagge et al. (2015b) showed that seasonal models can be constrained better, 16 

but sufficient seasonal information on impacts was not available for all regions or countries 17 

across Europe. Furthermore, in order to overcome data availability issues, Europe was divided 18 

into four European macro regions to pool impact information, some of which may not reflect 19 

regions with similar drought impacts and as such influence the model performance obtained 20 

(Blauhut et al. 2015a).  21 

The selection of vulnerability factors for the final MLRMs in this study is also driven by the 22 

model fits and are thus based on empirical relation rather than on commonly applied epistemic 23 

selection procedures (Gonzales Tanago et al. 2015). In several cases, MLRM performance 24 

differed only marginally between different factors included in the models. Due to the limitation 25 

of only selecting the best performing and model performance increasing vulnerability factors, 26 

further important factors that might have an influence on regional vulnerability may thus not 27 

have been included. Selected vulnerability factors are intended to reflect the most important 28 

drivers of macro-regional vulnerability with regard to drought impact occurrence. Whereas 29 

strongthere is considerable variability in the impact category specific or macro regional factors 30 

-selectioned, some general trends can be noted.  trends are lacking mMore than one third of 31 

applied factors do quantitatively characterise regional landuse, and almost half of the selected 32 
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factors characterise the any kind of water resources. This is in accordance with Tanago 1 

Gonzales et al. (2015) who summarised that about 46% of past drought vulnerability analyses 2 

have often applied information on water resources and 41% landuse information. Nevertheless, 3 

according to Tanago Gonzales et al (2015), the most commonly applied information in drought 4 

vulnerability assessment are related to economic and financial resources (68%) and technical 5 

infrastructure (68%), but thisese priorities practise isare not reflected in our findings where e.g. 6 

“Economic wealth”, “Public Water Supply connection” or “Drought recovery capacity” awere 7 

of minor importance or not selected at all in the model building process. Nevertheless,  8 

Due to a limitation to only best performing and model performance increasing vulnerability 9 

factors, further important information that might has strong influence to regional vulnerability 10 

are not displayed. For several cases of vulnerability factors applied, MLRM performance differs 11 

only marginal between different factors applied. Thus, the selected vulnerability factors are 12 

only the peak of best performing predictors. Despite these, the quality of several vulnerability 13 

factors that has not been selected for the final MLRMs, and also perform poor as single drought 14 

impact predictor should be questionedthe results call for a review of the relevance of 15 

vulnerability factors in wider ranges of drought cases and for progress  with regard to thematic 16 

content, data generation and (transformation from qualitative to quantitative data, e.g. “Law 17 

enforcement”, De Stefano et al. (2015)) or and their regionalisation practise.  18 

 19 

 20 

5.3 Regional patterns of modelled sectorial drought risk across Europe 21 

Statistical models to predict drought impact occurrence remain a relatively new approach that 22 

has proved successful within targeted country-scale studies (e.g. Bachmair et al., 2015a; Stagge 23 

et al., 2015b). As with any data-driven approach, the presented risk modelling relies on the 24 

quality and availability of its underlying data. Since its establishment, the EDII database has 25 

been constantly growing and now contains data across Europe, covering the majority of major 26 

past drought events (Stagge et al., 2013). The database used here was also considerably larger 27 

than that used in the previous Pan-European risk modelling study by Blauhut et al. (2015a). 28 

This increased database, as well as addition of vulnerability factors, led to some differences in 29 

the resulting risk maps. Nevertheless, the updated EDII database still has certain biases and 30 

characteristics (Stahl et al. 2016) that may affect the results of the risk models and maps this 31 
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study presents. One bias in the impact data is a decreasing data availability from West to East 1 

and poor data availability in Northern Europe. Additionally, using binary information of annual 2 

impact occurrence is less sensitive to these reporting biases than e.g. the number of reports or 3 

impacts as discussed by Bachmair et al. 2015a. Overall, uncertainties of the risk models are 4 

likely higher in regions with lower report availability as well as with lower availability of 5 

vulnerability data as in this study for the macro region of Southeastern Europe. 6 

‘”Agriculture and Livestock Farming’ Farming” is the best-covered impact report data category 7 

across Europe and thus an issue at pan-European scale (Kossida et al. 2012, Stahl et al., 2016). 8 

In accordance with reports of the European Commission (EC 2007a, 2008), the derived risk 9 

maps for ‘”Agriculture and Livestock Farming’ Farming” show high drought risk for most of 10 

the Western Mediterranean regions, covering water scarce regions as detected by Strosser et al. 11 

(2012). Moderate to high drought risk for Maritime Europe confirms pattern previously 12 

identified by Blauhut et al (2015a) based on hazard predictors only. A relatively low risk such 13 

as for most of France, may reflect the added vulnerability predictor, particular agricultural land 14 

use as well as drought management (e.g. compensation) tools. The relatively high risk for 15 

Sweden in the Nordic countries may reflect that agriculture is a much larger sector in Sweden 16 

than in the neighbouring countries (Eurostat database: ‘”Agricultural production’production”, 17 

2015). The relatively low drought risk for ‘”Agriculture and Livestock Farming’ Farming” in 18 

Southeastern Europe may result from the aforementioned lack of data. Stahl et al. (2015) 19 

actually found the impact category in the region to be relatively important among all impact 20 

categories. Regional pooling for this study may also have affected these results and should be 21 

further tested in future studies.  22 

The pattern of drought risk for ‘”Energy and Industry’ Industry” identified by Blauhut et al. 23 

(2015a) were confirmed by this study. Regions with a high dependency on water resources for 24 

energy production, such as Slovenia or Bavaria, are at higher risk of impacts in this category. 25 

As an example, Slovenia’s total energy production is based on ~55% hydropower sources and 26 

~45 % by thermal power plants (HEP 2009) and Bavaria (and also France) has several nuclear 27 

powerplants. Quite contrary, Norway is at low risk for severe hazard conditions even though 28 

about 98% of its energy production is by hydropower (Christensen et al. 2013). A relative index 29 

should be able to pick up deviations from normal inducing impacts on hydropower production. 30 

Rather there must be some other reasons (e.g. regional averaging of the indices, pooling of 31 

impact information to macro regions). Future work will require higher temporally and spatially 32 
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resolved impact information such as daily power production to solve this issue. Nevertheless, 1 

drought indices quantifying the absolute state of water reservoirs or sources could improve 2 

predictions for this impact category. 3 

The pattern of risk of impacts on ‘”Public Water Supply’ Supply” differs somewhat from the 4 

results of Blauhut et al. (2015a) who presented medium risk for extreme conditions (SPEI-12= 5 

-3) all over Europe. For regions with high water stress (Mediterranean) (EEA 2009), impacts 6 

on ‘”Public Water Supply’ Supply” are more likely, as well as in regions where water storage 7 

capacity is limited (UK). Estimates for Southeastern Europe are likely to be impaired due to 8 

data availability and regional pooling.  9 

‘”Water Quality’ Quality” aggregates very different impact causes within one impact category, 10 

ranging from water quality deterioration (e.g. algal bloom) to salt water intrusion, bathing water 11 

quality, and economic losses. Risk patterns show high LIOs for the majority of the Maritime 12 

region (excluding Scandinavia), the Western Mediterranean, Bulgaria, and northern Greece. 13 

This is in accordance with drought risk as estimated by Blauhut et al. (2015a). In Maritime 14 

Europe, relatively high risk areas reflect areas with poor ecological status of European waters 15 

and lakes for Maritime Europe (EEA, 2012), even though this was not a selected predictor in 16 

the models (as for the other regions). In their study on drivers of vulnerability, Blauhut et al. 17 

(2015b) raised an additional point of uncertainty to consider for this category: an increase of 18 

reported impacts due to an increased ecological monitoring and increased public and scientific 19 

recognition. The UK has the densest surface water monitoring network in Europe and the 20 

longest history of ecological status care (Batterbee et al. 2012). Hence, a higher number of 21 

reported impacts even under less severe drought is likely. A high risk for southern England, 22 

Northern Central Europe, and the Iberian Peninsula is also detected for the impact category of 23 

‘”Freshwater Ecosystems’Ecosystems”. For Maritime Europe the regional pattern also 24 

resembles that of diffuse agricultural emissions of nitrogen to freshwater (EEA 2010), and for 25 

the Mediterranean it resembles that of highly irrigated regions (EEA 2014). These relations 26 

indicate a strong influence of agriculture on Freshwater ecosystems, which could be taken into 27 

account in future impact-data based risk assessments. 28 

Analysing the risk of ‘”Wildfires’ Wildfires” at the pan European scale has particular 29 

challenges. According to the European Forest Fire Information System, over 95% of forest fires 30 

are human-induced (San-Miguel and Camia 2009; Ganteaume et al. 2013). The EDII data only 31 

contains reports that have been attributed fires to drought (Stahl et al., 2015). Hence, patterns 32 
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of high risk as derived for the Mediterranean, the Baltics and Finland do not fully agree e.g. 1 

with the findings of Gudmundsson et al. (2014). However, a comparison to the forest fire hazard 2 

map by the ESPON, which is based on a combination of numbers of observed fires and 3 

biogeographic regions (EEA, 2012) and to the fire density map by Catry et al. (2010), shows 4 

high similarities for the Western Mediterranean, Maritime and Northeastern Europe with only 5 

a few national exceptions. For Southeastern Europe, a high number of fires has been reported, 6 

but this is not reflected in the drought risk maps.  7 

For the impact category of ‘”Waterborne Transportation’ Transportation” a specifically high 8 

drought risk was modelled mainly for NUTS-regions with rivers of high international 9 

importance for transportation, such as the large rivers draining into the North and Baltic Sea 10 

and the Danube (Eurostat 2015  11 

Impacts on ‘”Tourism and Recreation’ Recreation” can occur all over Europe and throughout 12 

the year, whereas drought risk maps indicate comparably low risk for Spain, France, and 13 

Southeastern Europe. However, this category incorporates a very wide range of impacts and for 14 

more informative characteristics, a more detailed analyses of impact types or subjects, e.g. light 15 

outdoor activities, freshwater and tourism and winter sports as used by Amelung and Moreno 16 

(2009) may be required.  17 

‘”Conflicts’ Conflicts” caused by drought are reported over all of Europe and affect a wide 18 

range of interest groups such as farmers, fishers, golfers or citizens. However, the risk for these 19 

resource conflicts is elevated in southern Europe’s water scarce regions, regions with high 20 

proportion of irrigation in agriculture, and regions with a high Water Exploitation Index (EEA, 21 

2015).  22 

The presented hazard severity levels are based on an arbitrary choice inspired by McKee (1998) 23 

and cannot be used as fixed threshold. In accordance with Blauhut et al. (2015a) and Stagge 24 

(2015b), it should be highlighted that drought risk is sensitive to impact category and location, 25 

and develops very differently with increasing hazard severity (deviation from normal). Thus, 26 

common overall severity thresholds are not recommendable. 27 

 28 

6 Conclusion 29 

This study tested commonly used drought hazard indices and vulnerability factors for the 30 

empirical modelling of drought risk in terms of likelihood of impact occurrence and applied 31 
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these models to map sector specific drought risk across Europe. Building on prior applications 1 

of the statistical modelling of drought impact occurrence (Blauhut et al. 2015a, Stagge et al., 2 

2015b, Bachmair et al., 2015a), an important expansion of this study was the inclusion of 3 

vulnerability factors as predictors into the models in addition to only the hazard indices 4 

previously used. Furthermore, the use of the updated EDII database allowed a pan-European 5 

application to the risk modelling and assessment of a wider range of drought impact categories 6 

than previously possible. As with all empirical modelling, the application demonstrated the 7 

benefits of the availability of high quality data. Representative records on past drought impacts 8 

as well as a good coverage of vulnerability factors are crucial to obtain meaningful models. In 9 

regions where data are scarce, modelling may be biased due to the limited information available. 10 

Hazard indices were confirmed to be impact-sector-sensitive and should thus be selected 11 

carefully to enable the characterisation of different drought causing impacts. Here the 12 

distinction was mainly made through using different accumulation times of SPEI. However, 13 

hydrological drought indices based on streamflow, groundwater, reservoir levels, etc. may also 14 

improve the drought impact models.  15 

Generally, the addition of vulnerability factors improved the performance of the empirical 16 

drought risk models and for many impact categories, it added plausible spatial details to the 17 

drought risk. Since only vulnerability, and not hazard, can be reduced through active measures, 18 

a modelling exercise as presented here can shed light into possible opportunities for risk 19 

reduction. The collection of relevant data at a high resolution and at regular interval is key to 20 

advance the refinement of the assessment and the use of such maps for drought management. 21 

Present impact categories pool a wide range of impact types and further studies may want to 22 

evaluate the use of more specific impact types. Further, to overcome impact data scarcity, 23 

pooling of regions into larger macro regions based on an existing classification was necessary. 24 

A more specific classification could improve future applications. As also shown in smaller scale 25 

companion studies, generally, the smaller the region, the higher is the chance for appropriate 26 

impact detection and the better the impact-hazard relation can be quantified. Nevertheless, the 27 

larger, regional level applied in this study provide an important scale to explain regional 28 

differences of drought risk on a continental scale. Additionally, it provides ideas for further 29 

improvements towards a quantitative drought risk assessment with the potential to be adapted 30 

to larger scale or refined to focus on specific aspects of drought risk for the region in question.  31 

 32 
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Table 1, Overview of selected drought indices 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

Indices 
Application for Drought 
Monitoring in Europe (examples) 

Data requirements 
Data source used in 
this study 

Temporal 
aggregation and 
resolution used 

SPI 

Drought Management Centre 
South Eastern Europe 

Precipitation E-OBS 9.0  

Timescales of 1-
6, 9, 12, 24 
months; monthly; 
1950-2012 

European Drought Reference 
Database 

Global Drought Information 
System 

JRC 

SPEI SPEI Global Drought Monitor 

Precipitation 

E-OBS 9.0  

Timescales of 1-
6, 9, 12, 24 
months; monthly; 
1950-2012 

Evapo-transpiration 

ΔpF 

German Drought Monitor (soil 
moisture index) 

Precipitation, 
evapotranspiration, 
soil water potential, 
soil parameters, NDVI 

National Meteo Office, 
Joint Research 
Centre 

monthly; annual 
average; 2001-
2014 European Drought Observatory 

ΔfAPAR European Drought Observatory 

Fraction of the 
incoming solar 
radiation in 
the Photosynthetically 
Active 
Radiation spectral 
region 

Medium 
Resolution Imaging 
Spectrometer 
(MERIS), 
VEGETATION sensor 
onboard SPOT 

monthly ; annual 
average; 2001-
2014 

CDI European Drought Observatory SPI, ΔpF, ΔfAPAR 
Joint Research 
Center 

monthly ; annual 
maximum; 2001-
2014 
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Table 2 Factors used to assess vulnerability 1 

Vulnerability factor Scale  
Multiple 

timesteps Composed 

Applied 
for 

MLRM 
Data source or source 

combined 

Adaptive Capacity 

Corruption Country    De Stefano et al. (2015) 

Drought awareness Country    De Stefano et al. (2015) 

Drought management tools RDB    De Stefano et al. (2015) 

Drought recovery capacity Country    De Stefano et al. (2015) 

Education expenditure & skilled people NUTS-2    De Stefano et al. (2015) 

Innability to finance losses Country    Eurostat 

Innovation capacity NUTS-2    De Stefano et al. (2015) 

Law enforcement Country    De Stefano et al. (2015) 

Law enforcement and corruption Country    Corruption + Law enforcement 

Public participation Country    De Stefano et al. (2015) 

River Basin Management Plans Country    De Stefano et al. (2015) 

Water related Participation factor-EC Country    De Stefano et al. (2015) 

Sensitivity 

A. agriculture NC    Corine Land Cover, EEA 

A. agriculture, ratio of NC NC    Corine Land Cover, EEA 

A. artificial surfaces NC    Corine Land Cover, EEA 

A. artificial surfaces, ratio of NC NC    Corine Land Cover, EEA 

A. forest NC    Corine Land Cover, EEA 

A. forest, ratio of NC NC    Corine Land Cover, EEA 

A. inland water bodies NC    Corine Land Cover, EEA 

A. inland water bodies, ratio of NC NC    Corine Land Cover, EEA 

A. lakes within region NC   
WISE Large rivers and large 
lakes, EEA 

A. non irrigated agri NC    Corine Land Cover, EEA 

A. non irrigated agri, ratio of NC NC    Corine Land Cover, EEA 

A. NUTS - combo region NC    Corine Land Cover, EEA 

A. permant irrigated agri NC    Corine Land Cover, EEA 

A. permanent irrigated, ratio of NC NC    Corine Land Cover, EEA 

A. semi natural A.s NC    Corine Land Cover, EEA 

A. semi natural A.s, ratio of NC NC    Corine Land Cover, EEA 

A. wetlands NC    Corine Land Cover, EEA 

A. wetlands, ratio of NC NC    Corine Land Cover, EEA 

Agriculture under glass Country    Eurostat 

Aquatic ecosystem status RBD   

European Environment Agency 
(EEA). WISE WFD Database: 
Ecological and chemical status 
of surface water bodies 
Chemical and quantitative 
status of groundwater bodies 

Arable Land Country    Eurostat 

Biodiversity, A. protected Country    Corine Land Cover, EEA 
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Dams + groundwater (GW) resources Country    De Stefano et al. (2015) 

Dams capacity Country   

FAO, AQUASTAT: Geo-
referenced dams database. 
Europe (Data for DK, EE and 
MT was gathered in different 
sources) 

Economic resources and equity NUTS-2    De Stefano et al. (2015) 

Economic wealth NUTS-2    Eurostat 

Education Country    UNDP 

Environmental taxes Country    Eurostat 

GDP per capita by country Country    Eurostat 

Groundwater resources (GW) Country   

FAO, AQUASTAT: Total 
Renewable Water Resources -
Groundwater: total renewable  

Human health and public safety Country    Eurostat 

Irrigation by country Country    FAO, Aquastat 

Low wage earn Country    Eurostat 

Major Soil type 
Raster: 
100m 

   European Soil Database 

Population density N2 NUTS-2    Eurostat 

Population density by country Country    Eurostat 

Population density & age NUTS-2    Eurostat 

Public water supply NUTS-2    Eurostat 

Public water supply connection NUTS-2    Eurostat 

Public water supply infrastructure NUTS-2    Eurostat 

SR agriculture Country    De Stefano et al. (2015) 

SR industry Country    De Stefano et al. (2015) 

SR services Country    De Stefano et al. (2015) 

Tourist beds by N2 NUTS-2    Eurostat 

Tourist beds by country Country    Eurostat 

Water balance Country    De Stefano et al. (2015) 

Water body status Country    De Stefano et al. (2015) 

Water resources development Country    De Stefano et al. (2015) 

Water use Country   
Eurostat: Annual freshwater 
abstraction 

Water use Country   
Eurostat: Annual freshwater 
abstraction 

Water use agriculture Country   
Eurostat: Annual freshwater 
abstraction, Agriculture 

Water use industry Country   
Eurostat: Annual freshwater 
abstraction, Industry 

WR agri sector Country   
Eurostat: Annual freshwater 
abstraction 

WR industry sector Country   
Eurostat: Annual freshwater 
abstraction, Agriculture 

WR services sector Country   
Eurostat: Annual freshwater 
abstraction, Industry 

Combined factors 

SENSITIVITY NUTS-2    De Stefano et al. 2015 

ADAPTIVE CAPACITY NUTS-2    De Stefano et al. 2015 

VULNERABILITY NUTS-2    De Stefano et al. 2015 

Scale: indicates the spatial detail of information. Multiple timesteps: vulnerability data has been 1 

available for different timesteps or only the most recent state of the system. Composed: 2 

vulnerability factors is a composition of different data as. Applied to MLRM: Factor has been 3 

analysed in multivariable logistic regression models (Step 2) as possible best performing 4 
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predictor for impact detection. A.= Area of, SR= socioeconomic relevance, WR = water use 1 

relevance, NC= NUTS-combo region, N2= NUTS-2 region, RBD= river basin district, 2 

MLRM= multivariable logistic regression model 3 

 4 

 5 

 6 

Table 3, MLRM performance of models with hazard predictors only and performance 7 

improvement (∆) with added vulnerability factors 8 

IC: impact category, n: number of indices or vulnerability factors applied. ∆AROC: difference of 9 

AROC of MLRM with vulnerability factors to MLRM without vulnerability factors. ∆BIC: 10 

difference of BIC of MLRM with vulnerability factors to MLRM without vulnerability factors 11 

(negative values = performance increase). A&L: Agriculture and Livestock Farming, Fo: 12 

Forestry, A&F: Aquaculture and Fisheries, E&I: Energy and Industry, WT: Waterborne 13 

Transportation, T&R: Tourism and Recreation, PWS: Public Water Supply, WQ: Water 14 

Quality, FE: Freshwater Ecosystems, TE: Terrestrial Ecosystems, SS: Soil Systems, Wf: 15 

Wildfires, AQ: Air Quality, H&P: Human Health and Public Safety, Co: Conflicts. 16 

 17 

 18 

 19 

 20 

 21 

  
Maritime Europe Southeastern Europe Northeastern Europe Western-Mediterranen 

IC 

Hazard Vulnerability Hazard Vulnerability Hazard Vulnerability Hazard Vulnerability 

n AROC BIC n ∆AROC ∆BIC n AROC BIC n ∆AROC ∆BIC n AROC BIC n ∆AROC ∆BIC n AROC BIC n ∆AROC ∆BIC 

A&L 2 0.80 749 2 0.07 -95 2 0.86 378 3 0.04 -196 2 0.02 68 2 0.02 -5 2 0.79 318 3 0.10 -52 

Fo 2 0.83 477 2 0.10 -110 2 0.82 109 2 0.08 -30 2 0.32 287 3 0.32 -110 1 0.75 50 0    

A&F 1 0.96 86 1 0.01 -2 2 0.98 47 1 0.01 -6          2 0.97 37 2 0.02 9 

E&I 2 0.91 257 3 0.04 -25 2 0.86 237 2 0.10 -167          2 0.82 178 2 0.06 -23 

WT 2 0.82 456 2 0.09 -50 2 0.87 114 3 0.11 -46          1 0.98 45 2 0.02 -9 

T&R 2 0.85 331 3 0.09 -45 2 0.75 92 2 0.21 -34          2 0.89 116 1 0.05 -16 

PWS 2 0.76 1125 3 0.16 -347 2 0.75 511 3 0.19 -298          2 0.84 266 3 0.07 -29 

WQ 2 0.83 606 3 0.08 -115 2 0.78 178 2 0.20 -86          2 0.83 182 3 0.12 -57 

FE 2 0.77 845 3 0.14 -207 2 0.93 119 1 0.05 -60 2 0.01 37 1 0.01 0 2 0.83 238 3 0.09 -40 

TE 2 0.85 311 3 0.10 -83                            

SS 2 0.79 302 3 0.11 -31 2 0.95 64 0             2 1.00 30 1 0.00 -6 

WF 2 0.86 445 1 0.02 -25 2 0.93 134 0    2 0.04 58 3 0.04 9 2 0.90 101 3 0.08 -12 

AQ 2 0.95 67 1 0.02 2                            

H&P 2 0.94 287 2 0.02 -20 2 0.72 293 2 0.27 -198                   

Co 1 0.99 60 2 0.01 -16 1 0.93 65 1 0.05 -20             2 0.88 127 3 0.10 -31 
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  1 

Figure 1: Number of annual aggregated NUTS-combo scale impacts reported and archived in 2 

the European Drought Impact report Inventory (EDII) by European macro region (left panel) 3 

and by NUTS-combo region (right panel)  4 
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 1 

Figure 2 Annual drought impact occurrence by European macro region and impact category 2 

A&L: Agriculture and Livestock Farming, Fo: Forestry, A&F: Aquaculture and Fisheries, E&I: 3 

Energy and Industry, WT: Waterborne Transportation, T&R: Tourism and Recreation, PWS: 4 

Public Water Supply, WQ: Water Quality, FE: Freshwater Ecosystems, TE: Terrestrial 5 

Ecosystems, SS: Soil Systems, Wf: Wildfires, H&P: Human Health and Public Safety, Co: 6 
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 1 

Figure 3 Selected of best performing predictors, yellow: SPEI with short temporal 2 

accumulation, light yellow to brown: SPEI with increasing temporal aggregation (short-, 3 

medium-, with long temporal accumulation), red: vulnerability factors associated with 4 

sensitivity, blue: vulnerability factors associated with adaptive capacity, A. = Area of, GW = 5 

Groundwater, norm. = normalised, NC = NUTS-combo region, N2 = NUTS-2 region, SR = 6 

Socioeconomic relevance, WR= Water use relevance 7 

Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5

A&L SPEI-06 Jun SPEI-01 Jun Groundwater resources A. inland water bodies, ratio of NC

Fo SPEI-04 Jun SPEI-24 Nov Population density and age Water balance

A&F SPEI-09 Oct Dams + GW resources

E&I SPEI-06 Jul SPEI-01 Jun A. agriculture Innovation capacity A. perm irrigated agri, ratio of NC

WT SPEI-05 May SPEI-24 Dec Groundwater resources Wate body status

T&R SPEI-04 Apr SPEI-24 Nov Groundwater resources A. inland water bodies, ratio of NC A.  artificial surfaces

PWS SPEI-24 Dec SPEI-04 Jun Water use A. agriculture, ratio of NC Aquatic ecosystem status

WQ SPEI-09 Aug SPEI-02 Dec Dams & GW resources, norm. A. agriculture, ratio of NC SR services

FE SPEI-06 Jun SPEI-12 Feb Groundwater resources A. agriculture, ratio of NC SR industry

TE SPEI-09 Aug SPEI-01 Feb GW resources, norm. WR industry A. forest

SS SPEI-06 Jun SPEI-02 Jan Drought management tools A. inland water bodies, ratio of NC SR services, norm.

WF SPEI-05 Aug SPEI-04 Oct Drought awareness

AQ SPEI-03 Apr SPEI-04 Nov Drought recovery capacity

H&P SPEI-03 Apr SPEI-12 Dec Groundwater resources Water resources development

Co SPEI-04 Jun Drought recovery capacity Economic wealth

A&L SPEI-06 Aug SPEI-01 Dec Population density N2 Drought awareness A. artificial surfaces, ratio of NC

Fo SPEI-05 Oct SPEI-01 Feb A. NUTS-combo region Dams capacity

A&F SPEI-04 Jul SPEI-24 Mar Water use Indus

E&I SPEI-06 Aug SPEI-06 Dec WR services A. artificial surfaces, ratio of NC

WT SPEI-06 Sep SPEI-01 Nov Public participation A. agriculture, ratio of NC A. seminatural areas

T&R SPEI-06 Sep SPEI-24 Jun Population density and age A. artificial surfaces, ratio of NC
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 1 

Figure 4 Drought risk maps with the likelihood of impact occurrence (LIO) in the impact 2 

categories Agriculture and Livestock Farming, Forestry, Aquaculture and Fisheries, Energy and 3 

Industry, and Waterborne transportation (columns) for three hazard levels of SPEI with -0.5: 4 

‘”near normal’normal”, -1.5: ‘”severely dry’dry”, -2.5: ‘”extremely dry’ dry” (rows). 5 

 6 
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Figure 5 Drought risk maps with the likelihood of impact occurrence (LIO) in the impact 1 

categories Tourism and Recreation, Public Water Supply, Water Quality, Freshwater 2 

Ecosystems and Terrestrial Ecosystems (columns) for three hazard levels of SPEI with -0.5: 3 

‘”near normal’normal”, -1.5: ‘”severely dry’dry”, -2.5: ‘”extremely dry’ dry” (rows). 4 

 5 

 6 

Figure 6, Drought risk maps with the likelihood of impact occurrence (LIO) in the impact 7 

categories Soil System, Wildfires, Air Quality, Human Health and Public Safety and Conflicts; 8 

(columns) for three hazard levels of SPEI with -0.5: ‘”near normal’normal”, -1.5: ‘”severely 9 

dry’dry”, -2.5: ‘”extremely dry’ dry” (rows). 10 
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