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Abstract 15 

The main objective of the paper is to understand the contributions to the uncertainty in 16 

low-flow projections resulting from hydrological model uncertainty and climate projection 17 

uncertainty. Model uncertainty is quantified by different parameterizations of a conceptual 18 

semi-distributed hydrologic model (TUWmodel) using 11 objective functions in three 19 

different decades (1976-86, 1987-97, 1998-08), which allows disentangling the effect of the 20 

objective function-related uncertainty and temporal stability of model parameters. Climate 21 

projection uncertainty is quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 22 

and HADCM3-A1B) using a delta change approach. The approach is tested for 262 basins in 23 

Austria.  24 

The results indicate that the seasonality of the low-flow regime is an important factor 25 

affecting the performance of model calibration in the reference period and the uncertainty of 26 

Q95 low-flow projections in the future period. In Austria, the range of simulated Q95 in the 27 

reference period is larger in basins with summer low-flow regime than in basins with winter 28 
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low-flow regime. The accuracy of simulated Q95 may result in a range of up to 60% 1 

depending on the decade used for calibration.  2 

The low-flow projections of Q95 show an increase of low flows in the Alps, typically in the 3 

range of 10-30% and a decrease in the south-eastern part of Austria mostly in the range -5 to -4 

20% for the climate change projected for future period 2021-2050 relative the reference 5 

period 1978-2007. The change in seasonality varies between scenarios, but there is a tendency 6 

for earlier low flows in the Northern Alps and later low flows in Eastern Austria. The total 7 

uncertainty of Q95 projections is the largest in basins with winter low-flow regime and, in 8 

some basins the range of Q95 projections exceeds 60%. In basins with summer low flows, the 9 

total uncertainty is mostly less than 20%. The ANOVA assessment of the relative contribution 10 

of the three main variance components (i.e. climate scenario, decade used for model 11 

calibration and calibration variant representing different objective function) to the low-flow 12 

projection uncertainty shows that in basins with summer low-flows the climate scenarios 13 

contribute more than 75% to the total projection uncertainty. In basins with winter low flow 14 

regime, the median contribution of climate scenario, decade and objective function is 29%, 15 

13% and 13%, respectively. The implications of the uncertainties identified in this paper for 16 

water resources management are discussed. 17 

 18 

1 Introduction 19 

Understanding climate impacts on hydrologic water balance in general and extreme flows in 20 

particular is one of the main scientific interests in hydrology. Stream flow estimation during 21 

low-flow conditions is important also for a wide range of practical applications, including 22 

estimation of environmental flows, effluent water quality, hydropower operations, water 23 

supply or navigation. Projections of low flows in future climate conditions are thus essential 24 

for planning and development of adaptation strategies in water resources management. 25 

However it is rarely clear how the uncertainties in assumptions used in the projections 26 

translate into uncertainty of estimated future low flows. 27 

There are numerous regional and national studies that have analyzed the effects of climate 28 

change on the stream flow regime, including low flows (e.g. Feyen and Dankers, 2009, 29 

Prudhomme and Davies, 2009, Chauveau et al., 2013 among others). Most of them apply 30 

outputs from different global or regional climate circulation models, which are based on 31 

different emission scenarios. The projections of low flows are then typically simulated by 32 
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hydrologic models of various complexity. There is an increasing number of studies evaluating 1 

different sources of uncertainty in river flow projections resulting from different GCMs, 2 

downscaling methods or hydrologic model parametrization (e.g. Dobler et al., 2012, Finger et 3 

al., 2012, Coron et al., 2012, Addor et al., 2014, Chiew et al., 2015). Only few studies, 4 

however, evaluate the uncertainty of low-flow projections and the relative contribution of its 5 

different sources (i.e. climate projection, hydrologic model structure and/or model 6 

parameterizations). Such studies include assessment of the impact of different climate 7 

projections on low flows evaluated e.g. in Huang et al. (2013) and Forzieri et al. (2014). 8 

While Huang et al. (2013) assessed the low-flow changes and uncertainty in the five largest 9 

river basins in Germany, Forzieri et al. (2014) evaluated the uncertainty of an ensemble of 12 10 

bias corrected climate projections in the whole of Europe. Both studies quantified uncertainty 11 

in terms of the number of low-flow projections that suggest the same change direction. Their 12 

results indicated a consistent pattern of low-flow changes across different regions in Europe. 13 

A common feature of such ensemble climate scenarios is an increase in the agreement 14 

between ensemble members with increasing future time horizon of climate projections. The 15 

impact of hydrologic model structure and climate projections was evaluated in Dams et al. 16 

(2015). They applied four hydrologic models calibrated with four objective functions to 17 

simulate the impact of three climate projections on low flows for a basin in Belgium. They 18 

found that besides the uncertainty introduced by climate change scenarios, hydrologic model 19 

selection introduces an additional considerable source of uncertainty in low-flow projections. 20 

The model structure uncertainty was particularly important under more extreme climate 21 

change scenarios. A similar study was performed by Najafi et al. (2011) who investigated the 22 

uncertainty stemming from four hydrologic models calibrated by three objective functions 23 

and applied on eight Global Climate Model (GCM) simulations in a basin in Oregon. Their 24 

results showed that although in general the uncertainties from the hydrologic models are 25 

smaller than from GCM, in the summer low-flow season, is the impact of hydrologic model 26 

parametrization on overall uncertainty considerably larger than of the GCM.  27 

The quantification of the relative contribution of different sources to the overall uncertainty of 28 

stream flow projections is recently evaluated by using analyses of variance (ANOVA) (Storch 29 

and Zwiers, 1999). Bosshard et al. (2013) synthetized previous studies that investigate 30 

hydrological climate-impact projections and their sensitivity to different uncertainty sources. 31 

They propose an ANOVA framework to separate the uncertainty from climate models, 32 

statistical post-processing (bias correction and delta change approach) and hydrological 33 
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models. Addor et al. (2014) used the ANOVA framework to quantify the uncertainty of 1 

stream flow projections resulting from the combination of emission scenarios, regional 2 

climate models, post-processing methods, and hydrological models of different complexity. 3 

They reported that the main source of uncertainty stems from the climate models and natural 4 

climate variability, and the impact of emission scenario increases with increasing future time 5 

horizon of climate projections. Hingray and Said (2014) proposed a quasi-ergodic two-way 6 

ANOVA framework for the partitioning of the total uncertainty of climate projections. This 7 

framework is recently tested for the estimation of climate and hydrological uncertainties of 8 

transient low flow projections in two basins in the southern French Alps (Vidal et al., 2015). 9 

The results showed that a large part of the total uncertainty arises from the hydrological 10 

modelling and it can be even larger than the contribution from the GCMs. 11 

The objective of this paper is to understand the relative contribution of the impact of 12 

hydrologic model calibration and ensemble climate scenarios to the overall uncertainty of 13 

low-flow projections in Austria. Here, the uncertainty and variability of low-flow projections 14 

is assessed for four climate scenarios, 11 variants of objective functions and three decades 15 

used for model calibration. Austria is chosen as a case study since it is an ideal test bed for 16 

such analysis, as it allows to disentangle the uncertainties separately in regions with summer 17 

and winter low-flow regimes. The assessment of uncertainties for winter and summer regimes 18 

allows to make generalisation for a similar spectrum of physiographic conditions around the 19 

world. 20 

 21 

2 Methodology 22 

2.1 Low-flow projections 23 

In this study, low-flow projections of future climate scenarios are analysed by comparing 24 

future to past flows by using model forcing from a delta change approach. This concept 25 

allows to remove biases resulted from simulations when regional climate model (RCM) 26 

outputs are used as an input in hydrologic modelling. Instead of using RCM simulations of 27 

daily air temperature and precipitation for hydrologic model calibration, the model is first 28 

calibrated by using observed climate characteristics in the reference period. In a next step, 29 

RCM outputs are used to estimate monthly differences between simulations in the reference 30 

(control) and future periods. These differences (delta changes) are then added to the observed 31 
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model inputs and used for simulating future hydrologic changes. The daily precipitation is 1 

scaled by the relative monthly delta changes, with no change in the frequency of rainy days. 2 

The daily air temperature is changed by the absolute value of monthly delta changes. The 3 

differences between daily simulations of a hydrologic model in the reference and future 4 

periods are then used to interpret potential impacts of changing climate on future river flows. 5 

The future low-flow changes are quantified by the Q95 low-flow quantile and seasonality 6 

index SI. The Q95 represents river flow that is exceeded on 95% of the days of the entire 7 

reference or future period. This characteristic is one of the low-flow reference characteristic 8 

which is widely used in Europe (Laaha and Blöschl, 2006). Seasonality index SI represents 9 

the average timing of low flows within a year (Laaha and Blöschl, 2006, 2007). It is estimated 10 

from the Julian dates Dj of all days when river flows are equal or below Q95 in the reference 11 

or future periods. Dj represents a cyclic variable. Its directional angle, in radians, is given by:  12 
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Finally, the mean day of occurrence is obtained from re-transformation to Julian Date:  21 

π
θ

2
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⋅=SI           (5) 22 

and the variability of the date of occurrence about the mean date (i.e. seasonality strength) is 23 

characterized by the length parameter r. The parameter r is estimated as (Burn, 1997): 24 
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 nyxr 22 +=    (6) 1 

and ranges from r=0 (low strength, uniform distribution around the year) to r=1 (maximum 2 

strength, all extreme events of low flows occur on the same day). 3 

The SI index is estimated for observed and simulated low flows. The differences between 4 

model simulations (i.e. Q95 and SI estimates) in the reference and future periods are then used 5 

to quantify potential impacts of climate change on low flows. Both Q95 and SI measures are 6 

estimated independently for the reference and future periods by the lfstat package in R 7 

software (Kofler and Laaha, 2014). 8 

 9 

2.2 Hydrologic model 10 

Low-flow projections are estimated by a conceptual semi-distributed rainfall-runoff model 11 

(TUWmodel, Viglione and Parajka, 2014). The model simulates water balance components 12 

on a daily time step by using precipitation, air temperature and potential evapotranspiration 13 

data as an input. The model consists of three modules which allow simulating changes in 14 

snow, soil storages and groundwater storages. The calibrated model parameters are presented 15 

in Table 1. More details about the model structure and examples of application in the past are 16 

given e.g. in Parajka et al. (2007, 2008), Viglione et al. (2013) and Ceola et al. (2015).  17 

In this study, the TUWmodel is calibrated by using the SCE-UA automatic calibration 18 

procedure (Duan et al., 1992). The objective function (ZQ) used in calibration is selected on 19 

the basis of prior analyses performed in different calibration studies in the study region (see 20 

e.g. Parajka and Blöschl, 2008, Merz et al., 2011). It consists of weighted average of two 21 

variants of Nash–Sutcliffe model efficiency, ME and ME
log. While the ME efficiency 22 

emphasize the high flows, the ME
log efficiency accentuates more the low flows. The 23 

maximized objective function ZQ is defined then as 24 

log)1( EQEQQ MwMwZ ⋅−+⋅=        (7) 25 

where wQ represents the weight on high or low flows. If wQ equals 1 then the model is 26 

calibrated to high flows, if it equals to 0 then to low flows only. ME and ME
log are estimated as 27 
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where isimQ ,  is the simulated discharge on day i, iobsQ ,  is the observed discharge, obsQ  is the 3 

average of the observed discharge over the calibration (or verification) period of n days. 4 
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2.3 Uncertainty estimation 6 

The uncertainty, defined as the range of simulated low-flow indices, is evaluated for two 7 

contributions. The first analyses the uncertainty (i.e. the range of Q95 and SI) estimated for 8 

different variants of hydrologic model calibration. Here, two cases are evaluated. In order to 9 

assess the impact of time stability of model parameters (Merz et al., 2011), TUWmodel is 10 

calibrated separately for three different decades (1976-1986, 1987-1997, 1998-2008). The 11 

effect of objective functions used for the TUWmodel calibration is evaluated by comparing 12 

11 variants of weights (wQ) used in ZQ. Following wQ are tested: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 13 

0.6, 0.7, 0.8, 0.9 and 1.0. The hydrologic model is calibrated for all 11 variants in each 14 

selected decade. Calibrated models are then used for flow simulations and hence Q95 and SI 15 

estimation in the reference and future periods. 16 

The second contribution evaluates the uncertainty of Q95 and SI changes simulated for 17 

different climate scenarios. The effect of calibration uncertainty (case 1) is compared for four 18 

selected climate scenarios (more details are given in Data section). The delta change approach 19 

is used to derive model forcing for selected future period and simulated future river flows are 20 

compared to model simulations in the reference period 1976-2008. The relative changes of 21 

Q95 and SI values between reference and future periods are estimated for four selected climate 22 

scenarios, 11 variants of model calibration and three selected decades. The relative 23 

contribution of the impact of model calibration (i.e. time stability and objective function 24 
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selection) and climate scenario is evaluated for two low flow regimes and for individual 1 

stations over Austria. 2 

The uncertainty of low flow projections is then compared to the range of low-flow indices 3 

obtained by different calibration variants in the reference period. In addition, the total 4 

uncertainty of future low flow projections is decomposed to individual components by means 5 

of analysis of variance (ANOVA; e.g. von Storch and Zwiers, 1999, chap. 9 for a general 6 

introduction to ANOVA). The 3-way ANOVA approach is employed to decompose total 7 

uncertainty of the projected low-flow changes into three main variance components. These 8 

variance components represent uncertainty contributions of 3 main effects: climate scenario 9 

(factor A with  levels), decade used for model calibration (factor B with  , levels) 10 

and calibration variant representing different objective functions (factor C with  11 

levels). The ANOVA model is defined as follows: 12 

 (10) 13 
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In this linear equation (Eq.10),  denotes the ensemble projected changes in Q95 for the 15 

future horizon at a gauge. It is modelled by a global mean  and the mean effects (deviations 16 

of factor-means from the global mean) of climate scenario ( ), decade 17 

( ), and calibration variant ( ), and  are the residual errors of 18 

the model. In an ANOVA framework, the total variance of  is characterised by the 19 

total sum of squares , and is decomposed into additive variance components of individual 20 

effects: 21 
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The variance components of the main effects A, B, C are computed as follows:  23 
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Based on the SSE, an estimate of the variance contributions of each effect A, B, C is computed 9 

as: 10 
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The measure eta-square is also termed the coefficient of determination R² (Von Storch and 13 

Zwiers, 1999). Eta-square tends to overestimate the variance explained by one factor and is 14 

therefore a biased estimate of the effect size. A less biased estimator is given by the measure 15 

: 16 
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where  denotes the degrees of freedom of a factor (e.g. for factor A with I levels,  1 

), and MSE is the residual mean square error. Similar equations to Eq. 17 may be 2 

written for factors B and C. The quantity MSE denotes the mean residual sum of squares. It is 3 

computed by  4 

E

E
E df

SSMS =           (18) 5 

 6 

The measure omega-square is also termed the adjusted R², in analogy to the adjusted 7 

coefficient of determination of multiple regression. Note that the degrees of freedom of the 8 

error term dfE depend on the total number of effects in the ANOVA design. For 3-way 9 

ANOVA without interactions dfE is obtained by: 10 

2+−−−=−−−= KJIIJKdfdfdfdfdf CBATE      (19) 11 

Clearly, the adjustment of effect size increases if the residual degrees of freedom are small, 12 

what is the case when overall sample size is small. Hence the difference between both 13 

measures of effect size will be negligible for designs with large dfE, as it is the case for our 14 

study. In our assessment, we will therefore only present  which is the more general 15 

measure of effect size at each catchment. A spatial synthesis of uncertainty contributions for 16 

basins with summer and winter low-flow regime is finally obtained from the distribution of 17 

variance components across basins falling into each low-flow regime group. 18 

 19 

3 Data 20 

Study region is Austria (Fig.1). Austria represents diverse climate and physiographic 21 

conditions of Central Europe, which are reflected in different hydrologic regimes (Gaál et al., 22 

2012). The topography varies from 115 m a.s.l. in the lowlands to more than 3700 m a.s.l. in 23 

the Alps. Austria is located in a temperate climate zone influenced by the Atlantic, meridional 24 

south circulation and the continental weather systems of Europe. Mean annual air temperature 25 

varies between -8°C to 10°C. The mean annual precipitation ranges from 550mm/year in the 26 

Danube lowlands, to more than 3000mm/year on the windward slopes of the Alps. 27 
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The analysis is based on daily river flow measurements at 262 gauges (Fig. 1). This dataset 1 

represents a subset of data used in Laaha and Blöschl (2006), which consists of gauges for 2 

which hydrographs are not seriously affected by abstractions and karst effects during the low-3 

flow periods. Fig.1 shows two main low-flow regimes in Austria. While yellow circles 4 

indicate 130 stations with dominant summer (June-November) low-flow occurrence, blue 5 

circles indicates 132 gauges with winter (December-May) flow minima. These two groups 6 

represent basins with distinct low-flow seasons, which are controlled by different hydrologic 7 

processes. While the winter flow minima in the mountains are controlled by freezing 8 

processes and snow storage, summer low flows occur during long-term persistent dry periods 9 

when evapotranspiration exceeds precipitation. The different low-flow generating processes, 10 

together with the hydro-climatic variety of the study area, gives rise to an enormous spatial 11 

complexity of low flows in Austria. The largest values occur in the Alps, with typical values 12 

ranging from 6 to 20 l s-1 km-2. The lowest values occur in the east ranging from 0.02 to 8 l s-1 13 

km-2, although the spatial pattern is much more intricate. 14 

Climate data used in hydrologic modeling consists of mean daily precipitation and air 15 

temperature measurements at 1091 and 212 climate stations in the period 1976-2008, 16 

respectively. Model inputs have been prepared by spatial interpolation and zonal averaging 17 

described in detail in previous modeling studies (please see e.g. Merz et al., 2011 or Parajka et 18 

al, 2007). These data serve as a basis for hydrologic model calibration and as a reference for 19 

future change simulations. Fig. 2 shows basin averages of mean annual air temperature, 20 

precipitation and runoff in the period 1976-2008. The two groups of basins (winter vs. 21 

summer low flow regimes) clearly differ in the climate regime. Basins with summer low 22 

flows are characterized by higher air temperatures, less precipitation and less runoff. The 23 

comparison of three different decades indicates that mean annual air temperatures have 24 

increased by 1oC in the period 1976-2008. This increase is similar for both groups of basins. 25 

Interestingly, the mean annual precipitation has increased over the last three decades, which is 26 

likely compensated by increased evapotranspiration, as the mean annual runoff remains rather 27 

constant. 28 

The regional climate model (RCM) scenarios used in this study are based on the results of the 29 

reclip.century project (Loibl et al., 2011). The ensemble climate projections are represented 30 

by COSMO-CLM RCM runs forced by the ECHAM5 and HADCM3 global circulation 31 

models for three different IPCC emission scenarios (A1B, B1 and A2, Nakicenovic et al., 32 
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2000). These represent a large spread of different emission pathways from a “business as 1 

usual” scenario with prolonged greenhouse gas emissions (A2), a scenario with moderate 2 

decline of emissions after 2050 (A1B) and a scenario indicating considerably reduced 3 

emissions from now on (B1).  4 

 5 

Table 2 summarizes the annual and seasonal differences (delta changes) of mean basin 6 

precipitation and air temperature between the future (2021-2050) and reference (1978-2007) 7 

periods. Table 2 indicates that the largest warming is obtained by simulations driven by 8 

HADCM3. The median of air temperature increase in summer exceeds 2oC. In numerous 9 

basins, a small decrease in air temperature in winter is simulated by ECHAM5 A2 and B1 10 

simulations. The changes in mean annual precipitation are within the range ±9 % in all 11 

selected basins. The increase tends to be larger in winter than in the summer period. 12 

 13 

4 Results 14 

4.1 Low-flow simulations and uncertainty in the reference period 15 

The runoff model efficiency (ZQ) in the three calibration periods obtained for different 16 

variants of the objective function is presented in Fig. 3. The results show that ZQ is larger and 17 

thus runoff simulations are more accurate in basins with winter (blue colour) than summer 18 

low-flow minimum (red colour). Most of the basins with winter low-flow regime are situated 19 

in the alpine western and central part of Austria, where the runoff regime is snow dominated. 20 

Such a regime has stronger runoff seasonality (see e.g. Fig. 5 in Laaha et al, this issue) and 21 

less difference in rainfall regime, which allows to model rainfall–runoff process easier than in 22 

basins with rainfall-dominated runoff regime. ZQ increases with decreasing weight wQ, which 23 

indicates that the runoff model performance likely tends to be better for low than high flows. 24 

The comparison of ZQ in the three calibration periods indicates that the difference in model 25 

performance between basins with winter and summer low-flow regime is the largest in the 26 

period 1976-1986. While ZQ for basins with winter low-flow regime is very similar in all 27 

three calibration periods, ZQ has an increasing tendency in basins with summer low-flow 28 

regime. For example, the median of ZQ for wQ=1.0 increases from 0.64 in the period 1976-29 

1986 to 0.71 in the period 1998-2008. This increase is likely related to increasing number of 30 

climate stations and data quality (Merz et al., 2009). 31 
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How the different calibration variants and periods translate into low-flow 95%- quantile Q95 1 

and seasonality SI is examined in Fig. 4. The model calibrated for 11 year period is used to 2 

simulate daily flows in the entire reference period 1976-2008. The results show that the model 3 

calibrated in the period 1976-1986 significantly overestimates Q95 of the reference period 4 

particularly in basins with summer low-flow regime. The period 1976–1986 is characterized 5 

by lower air temperatures with less evapotranspiration and relatively higher runoff generation 6 

rates which translates into different soil moisture storage (FC model parameter) and runoff 7 

generation (BETA) model parameters. Such effects are consistent with findings of Merz et al., 8 

(2011). The hydrologic model applied to the entire reference period hence produces larger 9 

runoff contribution which tends to overestimate Q95 particularly in the warmer and drier parts 10 

of the reference period and drier and warmer parts of Austria. The overestimation is consistent 11 

for large range of wQ (wQ in the range 0.0-0.9) and the median of Q95 difference exceeds 20%. 12 

Also the scatter around the median is rather large, where 25% of the basins with the summer 13 

low-flow regime have Q95 differences larger than 35%. The simulated Q95 in basins with 14 

winter low flows fit closer to the observed estimates. The median is less than 10% for variants 15 

wQ<1. Interestingly, the model simulations based on calibration periods 1987-1997 and 1998-16 

2008 are much closer to the observed values. The results for both groups of basins are very 17 

similar and essentially unbiased in terms of 95% low-flow quantile. The exception is the 18 

calibration variant wQ=1 that tends to underestimate Q95. There are any significant differences 19 

between calibration to low-flow only (wQ=0.0) and other weights, with exception of wQ=1, 20 

which represents a typical calibration of using classical Nash-Sutcliffe coefficient. 21 

The results of the seasonality estimation are presented in the bottom panels of Fig. 4. It is 22 

clear that this hydrologic model tends to estimate the low-flow period later. This shift is larger 23 

in basins with summer low-flow regimes. While the median of SI difference in basins with 24 

winter low flows is around 10-12 days in the period 1976-1986 and increases to 12-19 days in 25 

the period 1998-2008, the median of SI difference in basins with summer low flows is in the 26 

range of 18-32 days. The scatter is, however, much larger for basins with summer low-flow 27 

regime. Here the model simulates the season of low-flow occurrence with more than 2 months 28 

shift (earlier or later) in almost 50% of the basins. A typical example of such shift is provided 29 

in Fig. 5. The periods with flows below 95% quantile are often very short and the timing of 30 

simulated low flows does not fit well with these periods. In some cases there is also a 31 

difference in the length of observed and simulated low-flow periods. Some small rainfall-32 

runoff events in the summer or autumn cause an interruption of the observed low-flow 33 
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periods, but the model simulates a complete absorption of the precipitation event by the soil 1 

storage and hence a longer low-flow period.  2 

The spatial pattern of the variability of Q95 estimation in the reference period 1976-2008 is 3 

presented in Fig. 6. Fig. 6 shows the range of differences between simulated and observed Q95 4 

for the different calibration variants. The results indicate that the Q95 differences vary more 5 

between the different objective functions (right panels), however in many basins the range 6 

exceeds 60% even if the model is calibrated by one objective function but in the different 7 

calibration periods. As already indicated in Fig.4, the differences are larger in basins with 8 

summer low flows, particularly for variants calibrated in the period 1976-1986. For particular 9 

basins, the differences are not strongly related to the weight wQ used in the calibration, with 10 

an exception of wQ=1, which tends to have the largest difference to observed Q95. Some 11 

examples of the model performance for individual basins are given in companion paper of 12 

Laaha et al. (this issue). 13 

Spatial variability of the model variability in terms of low-flow seasonality is presented in 14 

Fig. 7. The results clearly indicate that basins with winter low-flow regime (i.e. situated in the 15 

Alps) vary significantly less for different calibration settings than the basins with summer 16 

low-flow regime. The range of differences is typically less than 14 days in the mountains, 17 

compared to more than 90 days in many basins with the summer low-flow regime.  18 

The comparison of SI and Q95 ranges indicates that large SI variability does not systematically 19 

mean large variability in terms of Q95. For example, a cluster of basins situated in the south-20 

eastern part of Austria (Styria) has a large SI range of difference (i.e. more than 90 days) for 21 

11 calibration variants in the period 1976-1986, but the variability in Q95 is in many basins 22 

less than 20% for this case. The same applies for the opposite case of small SI and large Q95 23 

variability in the alpine basins. 24 

 25 

4.2 Low-flow projections and uncertainty in the future period 26 

Low-flow projections for selected climate scenarios and different calibration weights wQ are 27 

presented in Fig. 8. Rather than to evaluate in detail the projections in terms of absolute 28 

values of low-flow changes, the main focus is to assess the range of possible changes caused 29 

by different scenarios and objective function used for model calibration. The results show 30 

projections based on model calibration in 1998-2008, but the results are almost identical with 31 
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results for the other two calibration periods (i.e. the average difference is around 1%). Fig. 8 1 

clearly shows the difference in projections for basins with summer and winter low-flow 2 

regime, particularly for Q95 changes. It is hence important to evaluate the projections and their 3 

variability separately for different regimes. The comparison of different scenarios indicates 4 

that they are similar in terms of projecting an increase of winter low flows and a tendency for 5 

no change or decreasing low flows in the summer period. The increase of winter Q95 slightly 6 

varies between climate scenarios and tends to increase for calibration variants with larger wQ. 7 

The difference in median between wQ<0.4 and wQ>0.8 is approximately 9%. The projections 8 

of Q95 changes in basins with summer low flows have significantly smaller variability and do 9 

not depend on wQ. The change in low-flow seasonality (Fig. 8, bottom panels) is less 10 

pronounced. The median of projections is around 5 and 10 days earlier than in the reference 11 

period for basins with summer and winter low-flow regime, respectively. Interestingly, the 12 

variability between basins and wQ is significantly smaller than obtained for different 13 

calibration variants in the reference period (Fig. 4). 14 

Examples of spatial patterns of low-flow projections are presented in Fig. 9 and 10. The 15 

projections of Q95 changes (Fig. 9) indicate an increase of low flows in the Alps, typically in 16 

the range of 10-30%. A decrease is simulated in south-eastern part of Austria (Styria) mostly 17 

in the range of -5 - -20%. The most spatially different projection is provided by the HADCM3 18 

A1B climate scenario which simulates the strongest gradient between an increase of Q95 in the 19 

Alps in winter and a decrease in south-eastern part in summer. The change in the seasonality 20 

varies between the scenarios, but there is a tendency for earlier low flows in the Northern 21 

Alps and a shift to later occurrence of low flows in the Eastern Austria (Fig. 10). As already 22 

indicated in Fig. 8, the shift in seasonality is larger than one month only in a few basins. 23 

Figure 9 and 10 show projections of low flows for four climate scenarios, but only one set of 24 

hydrologic model parameters. The evaluation of the impacts of different calibration variants 25 

on the variability of low-flow projections is presented in Fig. 11 and 12. These figures 26 

indicate the range of Q95 (Fig. 11) and the seasonality occurrence (Fig. 12) changes obtained 27 

by 11 calibration variants and three calibration periods. The range of Q95 changes is 28 

interestingly the largest in basins with the winter low-flow regime. In the Alps, the increase of 29 

Q95 is often in the range of 15% to more than 60%. On the other hand, the future Q95 30 

estimates vary only slightly between the calibration variants in basins with the summer low 31 

flows. The change is less than 20% in most of the basins. The impact of the selection of 32 
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objective function is, however, much larger for the estimation of the seasonality changes. 1 

Depending on the calibration variant, the change in seasonality can vary within more than 3 2 

months, e.g. in the south-eastern part of Austria. 3 

The total uncertainty of low-flow projections of Q95 and SI is presented in Fig. 13. While the 4 

top panels show the range of low-flow characteristics for all climate scenarios, calibration 5 

variants and periods, the bottom panels show the ratio between the uncertainty of future 6 

low-flow projections to the range of low-flow indices simulated in the reference period. The 7 

results show that the Q95 range is less than 25% in approximately one third of analyzed 8 

basins. On the other hand, 20% of basins have a range larger than 50%. These are the basins 9 

with the winter low-flow regime. The variability in the date of low-flow occurrence is less 10 

than three months in 40% of the basins. In almost 20% of the basins, however, it is larger than 11 

five months. The ratio between the range of projections to the range of calibration differences 12 

(bottom panels in Fig. 13 and Fig. 14) indicates that only in 15% of the cases the climate 13 

projection uncertainty of Q95 is larger than the range obtained in the calibration period. Most 14 

of these basins are situated in the mountains (mean basin elevation above 1000m a.s.l.) and 15 

have winter low-flow regime. The range of calibrated Q95 is larger in almost all basins with 16 

the summer low-flow regime, which are characterized by lower mean basin elevation and 17 

larger aridity (i.e. ratio of mean annual potential evaporation to mean annual precipitation). 18 

On the other hand, the climate projection uncertainty dominates for the low-flow seasonality 19 

and is more than three times larger in 50% of basins, particularly in the Alps. The SI 20 

projection uncertainty is only in 15% of the basins lower than the SI range obtained in the 21 

calibration period. The SI uncertainty ratio tends to be lower with increasing mean basin 22 

elevation and the basin area, but there is no apparent relationship with the aridity of the 23 

basins.  24 

The relative contribution of the three main variance components (i.e. climate scenario, decade 25 

used for model calibration and calibration variant representing different objective function) to 26 

the overall uncertainty of future low-flow projections is evaluated in Fig. 15. Left and right 27 

panels show the distribution of ANOVA variance components for basins with winter (left 28 

panel) and summer (right panel) low-flow regime, respectively. The results indicate that the 29 

variability from climate scenarios has a dominant contribution to the overall projection 30 

uncertainty in basins with summer low-flow regime. While in basins with winter low flows 31 

the median contribution of the three variance components is 29% (climate scenario), 13% 32 
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(calibration decade) and 13% (objective function), in basins with summer low-flow regime is 1 

the median contribution from climate scenario larger than 76%.  2 

 3 

5 Discussion and conclusions 4 

The objective of the study is to explore the relative role of hydrologic model calibration and 5 

climate scenarios in the uncertainty of low-flow projections. While many previous studies 6 

simulate only the change in hydrologic regime or extreme characteristics due to changes in 7 

climate, in this study we focus on the quantification of the range of low-flow projections (i.e. 8 

uncertainty) due to differences in the objective function used in model calibration, temporal 9 

stability of model parameters and an ensemble of climate projections.  10 

There are a number of studies that compare the uncertainty of projected runoff changes due to 11 

different model structure, objective function or GCM and emission scenarios. These studies 12 

found that the hydrologic model uncertainty tends to be considerably smaller than that from 13 

GCM or emission scenarios (Najafi et al., 2011, Prudhomme and Davies, 2009). Such results, 14 

however, refer to the seasonal or monthly runoff and are based on only a limited number of 15 

basins. The quantification of the uncertainty in low flows is still rather rare. Some studies 16 

(e.g. Huang et al., 2013 and Forzieri et al., 2014) evaluate the low-flow uncertainty in terms 17 

of the number of projections with the same change direction. They showed that the 18 

uncertainty is controlled mainly by the differences in emission scenarios and it decreases with 19 

increasing projection horizon. Our results indicate that, although the uncertainty from 20 

different climate scenarios is larger than 40% in many basins, the range of low-flow indices 21 

from model calibration can exceed 60%. This result particularly relates to the assessment of 22 

low-flow quantile changes.  23 

Some recent low-flow studies suggest to more explicitly distinguish between the processes 24 

leading to low-flow situations (see e.g. Fleig et al., 2006, Laaha et al., 2006, Van Loon et al., 25 

2015, Forzieri et al., 2014). Following this recommendation, we analyzed the effects of model 26 

calibration and climate scenarios separately for basins with dominant winter and summer low-27 

flow regimes. Our results indicate that the calibration runoff efficiency in basins with winter 28 

low-flow regime is larger (more accurate), and varies between basins less than in basins with 29 

summer low-flow regime. The calibration uncertainty in basins with summer low flows 30 

exceeds in many basins 60% even if the model is calibrated by the same objective function 31 

but in different calibration periods. This finding confirms and quantifies the potential impact 32 
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of time stability of model parameters reported by Merz et al. (2011). The model parameters 1 

calibrated in colder periods with relatively larger runoff generation rates tend to overestimate 2 

low flows, particularly in basins with summer low-flow regime and in warmer and drier parts 3 

of the simulation period. The results indicate that the time stability of model parameters is not 4 

sensitive to the weighting of normal (ME) and logarithmic transformed (ME
log) Nash-Sutcliffe 5 

efficiency in the objective function used for calibration. The exception is the case of using 6 

only ME with no weight on ME
log, which does not allow accurate low-flow simulations. This 7 

finding partly supports the studies that propose logarithmically transformed discharge values 8 

for calibrating hydrologic models with a focus on low flows (please see review in Pushpalatha 9 

et al., 2012). Our results show that the impact of the objective function is larger for SI 10 

estimation in basins with summer low-flow regime in the reference period and for future 11 

projections of Q95 in basins with winter low-flow regime. Depending on the calibration 12 

variant, the change in seasonality can vary within more than three months, which clearly 13 

indicates a shift in the main hydrologic processes causing the low flows. 14 

The climate change signals captured in selected scenarios are well within the range of the 15 

projections of the ENSEMBLES regional climate simulations for Europe (van der Linden and 16 

Mitchell, 2009; Heinrich and Gobiet, 2011). Jacob et al. (2015) showed that the most recent 17 

regional climate simulations over Europe, accomplished by the EURO-CORDEX initiative 18 

(RCPs, Moss et al., 2010), are rather similar to the older ENSEMBLES simulations with 19 

respect to the climate change signal and the spatial patterns of change. Although this 20 

ensemble of four scenario runs seems rather small, the selection accomplished by the 21 

reclip:century consortium was not arbitrary, but based on quantitative metrics. Prein et al. 22 

(2011) investigated the performance of all GCMs in CMIP3 for Central Europe based on a 23 

performance index including various parameters. They found that for the given domain the 24 

ECHAM5 and the HADCM3 showed highest scores, which justified the selection of these 25 

GCMs for driving the RCM. In addition, these two models show different climate sensitivity, 26 

where the warming over the course of the 21st century is lower in ECHAM5 and higher in 27 

HADCM3. This feature in combination with the utilization of three different scenarios for 28 

ECHAM5 provides broad ensemble bounds, although the climate change signal of the 29 

different scenarios for the given investigation period (2021-2050) is rather similar, 30 

particularly for air temperature (cf. Table 1). The projected future decrease of Q95 is most 31 

pronounced in the AIT_HADCM3_A1B run, particularly in basins with summer low-flow 32 

regime in the low lands. As indicated in Heinrich and Gobiet (2011), the climate sensitivity of 33 
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HADCM3 is higher than that of ECHAM5, which translates into a higher warming rate of 2.1 1 

°C in summer (c.f. Table 1) compared to 1.2 °C in the ECHAM5 driven run. The higher 2 

evaporative demand due to the increased air temperature signal translates into the strongest 3 

change of the summer low-flow signal. 4 

The comparison of the ranges of low-flow indices projected for different climate scenarios 5 

and simulated by different calibration settings (i.e. objective function and calibration decade) 6 

in the reference period indicates that the variability of low-flow magnitudes is larger for 7 

simulations in the reference period, while the range of seasonality is larger for future 8 

projections. Previous ENSEMBLES and CORDEX studies showed that RCM uncertainty is 9 

far from being negligible for hydrology-related variables. Even if only one RCM is tested 10 

here and the variability and uncertainty of GCM and emission scenarios can be large, the 11 

results clearly indicate the importance of selecting objective functions in hydrologic model 12 

calibration for simulating low-flow projections.  13 

In our study, we use a 3-way ANOVA approach to decompose the contribution of climate 14 

scenarios and hydrologic model settings to the total uncertainty of low-flow projections. 15 

While previous studies (e.g. Hingray and Said 2014; Lafaysse et al., 2014, Vidal et al, 2015) 16 

assessed the variance components of a temporal change from the multi-member ensemble 17 

runs in individual basins, in our study, we lumped the temporal change to one time slice 18 

(future horizon) and assessed the variance components in a spatial context of 262 basins. The 19 

spatial synthesis of the uncertainty contribution is evaluated for two groups of basins, 20 

representing to main (summer and winter) low-flow regimes in Austria. We found that the 21 

relative contribution of three variance components - climate scenarios, calibration decade and 22 

calibration objective function differs for basins with different low-flow regimes. The 23 

uncertainty from climate scenarios dominates in basins with summer low flows, however in 24 

basins with winter low flows is the relative contribution from hydrological modelling 25 

significantly larger. This is consistent with previous studies that show a substantial 26 

uncertainty contribution of hydrological models in basins dominated by snow and ice melt 27 

(Addor et al.,2014, Vidal et al., 2015). 28 

The assessment in Austria enabled us to account for one conceptual hydrologic model and 29 

two different low-flow regimes. In the future we plan to extend such comparative assessment 30 

to more types of low flows (e.g. as classified in Van Loon and Van Lanen, 2012), their 31 

combinations linked with changes in land use and management at the wider, European scale, 32 
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as well as to account for hydrologic models of different complexity, wider range of climate 1 

scenarios and different downscaling techniques. This will allow us to shed more light on the 2 

factors controlling the possible scenarios of low-flow and water resources changes in the 3 

future. 4 

From the practical point of view, the projections of Q95 changes and related uncertainties are 5 

an essential input to water quality modelling. The exceedance of environmental quality 6 

standards (BGBl II Nr. 99/2010; Zessner, 2008) in case of emissions from point sources (e.g. 7 

waste water treatment plants) increases the vulnerability of water resources, particularly 8 

during low-flow conditions. We therefore also plan to evaluate the impact of climate 9 

projection and hydrologic model uncertainties on the assessment of water quality and its 10 

changes.  11 

 12 

Acknowledgements 13 

We would like to thank the Austrian Climate and Energy Fund (Project B060362-CILFAD, 14 

Project Nr KR13AC6K11034-AQUASTRESS) for financial support. At the same time, we 15 

would like to thank the Hydrographical Service of Austria (HZB) and the Central Institute for 16 

Meteorology and Geodynamics (ZAMG) for providing hydrologic and climate data. 17 

18 



 21 

References 1 

Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust 2 

changes and sources of uncertainty in the projected hydrological regimes of Swiss 3 

catchments, Water Resour. Res., 50, 7541–7562, doi:10.1002/2014WR015549, 2014. 4 

BGBl II Nr. 99/2010: Bundesgesetzblatt für die Republik Österreich, Qualitätszielverordnung 5 

Ökologie Oberflächengewässer – QZV Ökologie OG, Jahrgang 2010. 6 

Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M., and Schär, C.:  7 

Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections, 8 

Water Resour. Res., 49, 1523–1536, doi:10.1029/2011WR011533, 2013. 9 

Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D., 10 

Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., 11 

Parajka, J., Toth, E., Viglione, A., and Wagener, T.: Virtual laboratories: new opportunities 12 

for collaborative water science, Hydrol. Earth Syst. Sci., 19, 2101-2117, doi:10.5194/hess-19-13 

2101-2015, 2015. 14 

Coron L., Andréassian V., Perrin C., Lerat J., Vaze J., Bourqui M., and Hendrickx F.: Crash 15 

testing hydrological models in contrasted climate conditions: An experiment on 216 16 

Australian catchments, Water Resources Research, 48 (5), doi: 10.1029/2011WR011721, 17 

2012. 18 

Dams, J., Nossent, J., Senbeta, T.B., Willems, P., and Batelaan, O.: Multi-model approach to 19 

assess the impact of climate change on runoff, Journal of Hydrology, 529(3),1601–1616 20 

doi:10.1016/j.jhydrol.2015.08.023, 2015. 21 

Dobler, C., Hagemann, S., Wilby, R. L., and Stötter, J.: Quantifying different sources of 22 

uncertainty in hydrological projections in an Alpine watershed, Hydrol. Earth Syst. Sci., 16, 23 

4343–4360, doi:10.5194/hess-16-4343-2012, 2012.  24 

Duan, Q., Sorooshian, S., and Gupta, V.K.: Effective and efficient global optimization for 25 

conceptual rainfall-runoff models, Water Resources Research, 28, 1015–1031, 1992. 26 

Feyen, L., and Dankers, R.: Impact of global warming on streamflow drought in Europe, J. 27 

Geophys. Res., 114, D17116, doi:10.1029/2008JD011438, 2009. 28 

Finger, D., Heinrich, G., Gobiet, A., and Bauder, A.: Projections of future water resources and 29 

their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on 30 



 22 

hydropower production during the 21st century, Water Resour. Res., 48, W02521, 1 

doi:10.1029/2011WR010733, 2012. 2 

Fleig, A.K., Tallaksen, L.M., Hisdal, H., and Demuth, S.: A global evaluation of streamflow 3 

drought characteristics, Hydrol. Earth Syst. Sci., 10, 535–552, 2006. 4 

Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., and Bianchi, A.: Ensemble  5 

projections of future streamflow droughts in Europe, Hydrol.  Earth  Syst.  Sci.,  18,  85–108, 6 

doi: 10.5194/hess-18-85-2014, 2014. 7 

Gaál, L., Szolgay, J., Kohnová, S., Parajka, J., Merz, R., Viglione, A., and Blöschl, G.: Flood 8 

timescales: Understanding the interplay of climate and catchment processes through 9 

comparative hydrology, Water Resources Research, 48(4), W04511, doi: 10 

10.1029/2011WR011509, 2012. 11 

Hingray, B., and Said, M.: Partitioning internal variability and model uncertainty components 12 

in a multimember multimodel ensemble of climate projections, Journal of Climate, 27, 17, 13 

6779, doi: http://dx.doi.org/10.1175/JCLI-D-13-00629.1, 2014. 14 

Huang, S., Krysanova, V., and Hattermann, F. F.: Projection of low flow conditions in 15 

Germany under climate change by combining three RCMs and a regional hydrological model, 16 

Acta Geophysica, 61 (1), 151-193, 2013. 17 

Chauveau, M., Chazot, S., Perrin, C., Bourgin, P., Sauquet, E., Vidal, J., Rouchy, N., Martin, 18 

E., David, J., Norotte, T., Maugis, P., and de Lacaze, X.: What impacts of climate change on 19 

surface hydrology in France by 2070?, La Houille Blanche, (4), 5-15, 2013. 20 

Chiew, F. H. S., Zheng, H., and Vaze, J.: Implication of calibration period on modelling 21 

climate change impact on future runoff, Proc. IAHS, 371, 3-6, doi:10.5194/piahs-371-3-2015, 22 

2015. 23 

Heinrich, G. and Gobiet, A.: reclip:century 1 Research for Climate Protection: Century 24 

Climate Simulations: Expected Climate Change and its Uncertainty in the Alpine Region, 25 

ACRP final report reclip:century part D, Graz, Austria, 48 pp, 2011. 26 

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L., Braun, A., 27 

Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, 28 

G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, 29 

S., Kriegsmann, A., Martin, E., Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., 30 

Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., 31 

http://dx.doi.org/10.1175/JCLI-D-13-00629.1


 23 

Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B. and Yiou, P.: EURO-1 

CORDEX: new high-resolution climate change projections for European impact research 2 

Regional Environmental Change, Springer, Berlin, Heidelberg, Germany, 1-16, 2013. 3 

Koffler, D., and Laaha, G.: lfstat: Calculation of Low  Flow Statistics for daily stream flow 4 

data. R package version 0.5.  http://CRAN.R-project.org/package=lfstat, (last access: 20 5 

November 2015), 2014. 6 

Laaha, G., and Blöschl, G.: Seasonality indices for regionalizing low flows, Hydrolog. 7 

Process., 20, 3851–3878, doi: 10.1002/hyp.6161, 2006. 8 

Laaha, G. and Blöschl, G.: A national low flow estimation procedure for Austria, 9 

Hydrological Sciences Journal, 52(4), 625–644, 2007. 10 

Laaha, G., Parajka, J., Viglione, A., Koffler, D., Haslinger, K., Schöner, W., Zehetgruber, J., 11 

and Blöschl, G.: A three-pillar approach to assess climate impacts on low flows, submitted to 12 

HESSD, 2015. 13 

Lafaysse, M., Hingray, B., Mezghani, A., Gailhard, J., and Terray, L.: Internal variability and 14 

model uncertainty components in future hydrometeorological projections: The Alpine 15 

Durance basin, Water Resour. Res., 50, 3317–3341, doi:10.1002/ 2013WR014897, 2014. 16 

Loibl, W., Formayer, H., Schöner, W., Truhetz, H., Anders, I., Gobiet, A., Heinrich, G., 17 

Köstl, M., Nadeem, I., Peters Anders, J., Schicker, I., Suklitsch, M., and Züger, H.: 18 

reclip:century 1 Research for Climate Protection: Century Climate Simulations: Models, Data 19 

and GHG Scenarios, Simulations, ACRP final report reclip:century part A, Vienna, 22 pp, 20 

2011. 21 

Merz, R., Parajka, J., and Blöschl, G.: Time stability of catchment model parameters: 22 

Implications for climate impact analyses, Water Resour. Res., 47, W02531, 23 

doi:10.1029/2010WR009505, 2011. 24 

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. 25 

P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., 26 

Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and 27 

Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, 28 

Nature, 463, 747-756, 2010. 29 



 24 

Najafi, M.R., Moradkhani, H., and Jung, I.W.: Assessing the uncertainties of hydrologic 1 

model selection in climate change impact studies, Hydrol. Process. 25, 2814–2826, DOI: 2 

10.1002/hyp.8043, 2011. 3 

Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K.,  4 

Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T.,  5 

Pepper, W., Pitcher, H., Price, L., Raihi, K., Roehrl, A., Rogner, H.-H., Sankovski, A.,  6 

Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N. and Dadi, Z.: 7 

IPCC Special Report on Emissions Scenarios.  Cambridge University Press: Cambridge, 8 

United Kingdom and New York, 599 pp, 2000. 9 

Parajka, J., Merz, R., and Blöschl, G.: Uncertainty and multiple objective calibration in 10 

regional water balance modelling: case study in 320 Austrian catchments, Hydrol. Process., 11 

21, 435–446, doi:10.1002/hyp.6253, 2007. 12 

Parajka, J., and Blöschl, G.: The value of MODIS snow cover data in validating and 13 

calibrating conceptual hydrologic models, Journal of Hydrology, 358, 240–258, 2008. 14 

Parajka, J., Merz, R., Skøien, J.O., and Viglione, A.: The role of station density for predicting 15 

daily runoff by TOP-KRIGING interpolation in Austria, Journal of Hydrology and 16 

Hydromechanics, 63, 1 - 7, 2015, doi: 10.1515/johh-2015-0024. 17 

Prein, A. F., Gobiet, A. and Truhetz, H.: Analysis of uncertainty in large scale climate change 18 

projections over Europe, Met. Zet., 20 (4), 383-395, 2011. 19 

Prudhomme, Ch., and Davies, H.: Assessing uncertainties in climate change impact analyses 20 

on the river flow regimes in the UK. Part 2: future climate, Climatic Change, 93, 177–195, 21 

DOI 10.1007/s10584-008-9464-3, 2009. 22 

Skoien, J.O., Blöschl, G., Laaha, G., Pebesma, E., Parajka, J., and Viglione, A.: rtop: An R 23 

package for interpolation of data with a variable spatial support, with an example from river 24 

networks, Computers & Geosciences, Volume 67, Pages 180-190, 25 

http://dx.doi.org/10.1016/j.cageo.2014.02.009, 2014. 26 

Van der Linden, P., and Mitchell, J. F. B. (eds.): ENSEMBLES: Climate Change and its 27 

Impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley 28 

Centre, Exeter, United Kingdom, 160pp, 2009.  29 



 25 

Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, 1 

Hydrol. Earth Syst. Sci., 16, 1915–1946, doi:10.5194/hess-16-1915-2012, 2012. 2 

Van Loon, A.F., Ploum, S.W., Parajka, J., Fleig, A.K., Garnier, E., Laaha, G., and Van Lanen, 3 

H.A.J.: Hydrological drought types in cold climates: quantitative analysis of causing factors 4 

and qualitative survey of impacts, Hydrol. Earth Syst. Sci., 19, 1993–2016, 2015. 5 

Vidal, J.-P., Hingray, B., Magand, C., Sauquet, E., and Ducharne, A.: Hierarchy of climate 6 

and hydrological uncertainties in transient low flow projections, Hydrol. Earth Syst. Sci. 7 

Discuss., 12, 12649-12701, doi:10.5194/hessd-12-12649-2015, 2015. 8 

Viglione, A., Parajka, J., Rogger, M., Salinas, J.L., Laaha, G., Sivapalan, M., and Blöschl, G.: 9 

Comparative assessment of predictions in ungauged basins; Part 3: Runoff signatures in 10 

Austria. Hydrology and Earth System Sciences, 17, 2263-2279, 2013. 11 

Viglione, A., and Parajka, J.: TUWmodel: Lumped Hydrological Model for Education 12 

Purposes. R package version 0.1-4.  http://CRAN.R-project.org/package=TUWmodel, (last 13 

access: 20 November 2015), 2014. 14 

von Storch, H., and Zwiers, F.W.: Statistical analysis in climate research, Cambridge 15 

University press, ISBN 0 521 45071 3, 484pp, 1999. 16 

Zessner M.: Transboundary pollution and water quality policies in Austria, Water Science & 17 

Technology, 58.10, 2008. 18 

 19 

 20 

 21 

22 



 26 

 1 

Table 1. TUWmodel parameters. Calibration range is given for parameters calibrated by an 2 

automatic routine. Parameters with fixed value are not calibrated. 3 

Model 

parameter 

Definition Model 

component 
Calibration range 

SCF Snow correction factor (dimensionless) Snow 1.0-1.5 

DDF Degree-day factor (mm/°C day) Snow 0.0-5.0 

TR  Threshold temperature for rain (°C) Snow 2.0 

TS  Threshold temperature for snow (°C) Snow 0.0 

TM  Melt temperature (°C) Snow -1.0-3.0 

LP/FC 
Ratio of limit for potential 

evapotranspiration and FC (dimensionless) 
Soil 0.0-1.0 

FC Maximum soil moisture storage (mm) Soil 0.0-600.0 

BETA 
Nonlinearity parameter of runoff generation 

(dimensionless) 
Soil 0.0-20.0 

K0  
Storage coefficient of additional outlet 

(days) 
Runoff 0.0-2.0 

K1  Fast storage coefficient (days) Runoff 2.0-30.0 

K2  Slow storage coefficient (days) Runoff 30.0-250. 

CP  Percolation rate (mm/d) Runoff 0.0-8.0 

CR  Free routing coefficient (days2/mm) Runoff 25.0 

LSUZ Storage capacity threshold (mm) Runoff 1.0-100.0 

Bmax Routing parameter (days) Runoff 10.0 

 4 

 5 

 6 
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Table 2. Summary of seasonal and annual changes in the mean basin precipitation and air 2 

temperature as simulated by four selected RCM runs. The first value and values in the 3 

brackets are the median and range (min/max) of differences between the future (2021-2050) 4 

and reference (1978-2007) periods in 262 basins. Winter and summer seasons are defined as 5 

December-May and June-November, respectively. 6 

Delta change WEGC* 

ECHAM5 A1B 

ZAMG** 

ECHAM5  

A2 

 

AIT*** HADCM3 

A1B 

 

ZAMG ECHAM5 

B1 

 

Air temperature 

winter (oC) +1.5 (0.9/1.7) +0.7 (-1.1/2.1) +1.3 (0.8/1.5) +1.0 (-0.8/2.5) 

Air temperature 

summer (oC) +1.2 (0.8/1.7) +0.9 (-0.1/2.2) +2.1 (1.4/2.4) +1.3 (0.4/2.5) 

Air temperature 

year (oC) +1.3 (0.9/1.5) +0.8 (-0.4/2.2) +1.7 (1.2/1.9) +1.2 (0.0/2.5) 

Precipitation 

winter (%) +8.2 (-0.7/16.2) -1.5 (-5.8/6.4) +1.3 (-9.6/6.8) 0.0 (-8.5/3.3) 

Precipitation 

summer (%) -6.2 (-9.9/3.7) +0.2 (-8.9/5.7) -5.0 (-13.5/0.2) -2.3 (-6.3/2.5) 

Precipitation 

year (%) +0.9 (-4.6/8.7) -0.9 (-4.1/3.4) -2.0 (-9.3/1.8) -1.2 (-5.5/2.8) 

*WEGC= Wegener Center for Climate and Global Change  7 

**ZAMG= Zentralanstalt für Meteorologie und Geodynamik 8 

***AIT= Austrian Institute of Technology 9 

 10 

11 
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Figure captions: 2 

Figure 1. Topography of Austria and location of 262 river flow gauges. Colour and symbol 3 

size of the gauges represent seasonality of low flows SI and its strength (r) in the period 1976-4 

2008, respectively. The SI and its strength are estimated by R lfstat package (Koffler and 5 

Laaha, 2014). 6 

Figure 2. Mean annual air temperature (MAT, top), precipitation (MAP, middle) and runoff 7 

(MAR, bottom) for basins with summer (yellow/red) and winter (blue) low-flow minima 8 

(Fig.1). Thin lines represent the median of mean annual values of MAT, MAP and MAR. 9 

Thick lines indicate the average for each of the three periods: 1976-86, 1987-97 and 1998-08. 10 

Scatter (i.e. 75% and 25%- percentiles) indicates the variability between the basins. 11 

Figure 3. Runoff model efficiency (ZQ) for different calibration weights wQ in three different 12 

calibration periods. Lines represent the medians, scatter (i.e. 75%-25% percentiles) shows the 13 

ZQ variability over basins with dominant winter (blue) and summer (orange) low-flow regime. 14 

Figure 4. Difference between simulated and observed low-flow characteristics (top panels 15 

low-flow quantile Q95, bottom panels seasonality index SI) for different calibration variants 16 

(wQ) and calibration periods. Lines represent the median, scatter (i.e. 75%-25% percentiles) 17 

show the variability over basins with dominant winter (blue) and summer (orange) low flow 18 

regime. The differences are estimated between model simulations and observations in the 19 

entire reference period 1976-2008. 20 

Figure 5. Comparison of observed (blue) and simulated (red) flow for 21 

Hoheneich/Braunaubach, 291.5 km2). Thick lines show flows below low-flow quantile Q95. 22 

Model simulations are based on calibration variant wQ=0.5 in the period 1998-2008. The 23 

relative difference between Q95 estimated from simulated and observed flows is 8%. 24 

Figure 6. Uncertainty of Q95 model simulations estimated from 11 calibration variants 25 

calibrated in the same calibration period (right panels, top - calibration period 1976-1986, 26 

bottom - calibration period 1998-2008) and from three calibration periods calibrated by the 27 

same calibration variant (left panels, top wQ=0.5, bottom wQ=0.0). The uncertainty is 28 

expressed as the range of relative differences (%) between simulated and observed Q95 29 

obtained by particular calibration variants in the period 1976-2008. Colour patterns in the 30 



 29 

background show the interpolated ranges by using top-kriging method (Skoien et al., 2014, 1 

Parajka et al., 2015). 2 

Figure 7. Uncertainty of simulations of low-flow seasonality (SI) estimated from 11 3 

calibration variants calibrated in the same calibration period (right panels, top - calibration 4 

period 1976-1986, bottom - calibration period 1998-2008) and from three calibration periods 5 

calibrated by the same calibration variant (left panels, top wQ=0.5, bottom wQ=0.0). The 6 

uncertainty is expressed as the range of differences (days) between simulated and observed SI 7 

in the period 1976-2008. Colour patterns in the background show the interpolated ranges by 8 

using top-kriging. 9 

Figure 8. Projections of low flows for selected climate scenarios and calibration variants. Line 10 

represents the medians, scatter (i.e. 75%-25% percentiles) shows the variability over 262 11 

basins. Top and bottom panels show projected changes of low-flow quantiles Q95 and 12 

seasonality index SI in basins with winter (blue) and summer (orange) low-flow regimes, 13 

respectively. Projections indicate future changes with respect to the reference period 1976-14 

2008. Calibration variants are calibrated in the period 1998-2008. 15 

Figure 9. Projections of low-flow quantiles Q95 changes for four climate scenarios in 262 16 

Austrian basins. Model simulations are based on variant wQ=0.5 calibrated in the period 1998-17 

2008. Colour patterns in the background show the interpolated projections by using top-18 

kriging. 19 

Figure 10. Projections of changes in low-flow seasonality (SI) for four climate scenarios in 20 

262 Austrian basins. Model simulations are based on variant wQ=0.5 calibrated in the period 21 

1998-2008. Colour patterns in the background show the interpolated projections by using top-22 

kriging. 23 

Figure 11. Uncertainty of Q95 model projections of low flows for four different climate 24 

scenarios. The uncertainty is expressed as the range of relative differences (%) between Q95 25 

simulated in the future and reference period obtained for 11 calibration variants calibrated in 26 

three calibration periods. Colour patterns in the background show the interpolated ranges by 27 

using top-kriging. 28 

Figure 12. Uncertainty of model projections of low-flow seasonality for four different climate 29 

scenarios. The uncertainty is expressed as the range of relative differences (%) between 30 

seasonality occurrence (SI) simulated in the future and reference period obtained for 11 31 



 30 

calibration variants calibrated in three calibration periods. Colour patterns in the background 1 

show the interpolated ranges by using top-kriging. 2 

Figure 13. Total uncertainty of model projections of low flows for four different climate 3 

scenarios, 11 calibration variants and three calibration periods. The uncertainty is expressed 4 

as the range of Q95 (left panel) and seasonality (right panel) of differences between model 5 

simulations in the future and reference periods. Bottom panels show the ratio between the 6 

range of climate projections to the range of differences in the reference period. Colour 7 

patterns in the background show the interpolated ranges by using top-kriging. 8 

Figure 14. Relationship between the uncertainty ratio between calibration and projection 9 

uncertainty and basin area (left panels), mean basin elevation (middle panels) and aridity 10 

index (right panels). Top and bottom panels show the uncertainty ratio for the low-flow 11 

quantile (Q95) and seasonality index (SI), respectively. Basins with winter low-flow 12 

seasonality are plotted in blue, basins with summer low-flow seasonality are in yellow. 13 

Figure 15. Relative contribution of the three variance components (i.e. climate scenario, 14 

calibration decade and objective function) to the overall uncertainty of future low flow 15 

projection in basins with winter (left panel) and summer (right panel) low-flow regime. The 16 

boxes and whiskers show 25%- and 75%- percentiles and 5%- and 95%- percentiles of the 17 

uncertainty contributions in 130 (summer low-flow regime) and 132 (winter low-flow regime) 18 

basins, respectively. 19 
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