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Abstract

Since its origins as an engineering discipline, with its widespread use of ‘black box’ (empirical)
modelling approaches, hydrology has evolved into a scientific discipline that seeks a more ‘white
box’ (physics-based) modelling approach to solving problems such as the description and
simulation of the rainfall-runoff responses of a watershed. There has been much recent debate
regarding the future of the hydrological sciences, and several publications have voiced opinions
on this subject. This opinion paper seeks to comment and expand upon some recent publications
that have advocated an increased focus on process-based modelling while de-emphasizing the
focus on detailed attention to parameter estimation. In particular, it offers a perspective that
emphasizes a more hydraulic (more physics-based and less Lampirical) ‘[AB2] approach to

development and implementation of hydrological models.

1 Introduction

There has been a recent call in several notable publications for a new focus to be brought to the
hydrological sciences. As an example, Montanari et al. (2015) stressed the need for new vision,
to help drive new theories, new methods and “new thinking”. This comes at a time when
enhanced computational power and sophisticated monitoring techniques now enable hydrologists
to pursue deeper investigations of hydrologic processes, and to thereby simulate watershed

hydrology in ever more detail.
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It is my opinion that we need to take a broader look at the practices we bring to hydrological
modelling. My experience suggests that we too often allow ourselves to become mired in
relatively minor problems, and thereby fail to notice some of the more major ones. For example,
do we not tend to become over-focused on estimating parameter values by “optimization”, and
should we not instead devote more of our focus to improve the models that represent the
underlying system processes? Is it not possible to conduct model evaluation (as a support for
model building) in a much more intellectually satisfying manner? This paper, while commenting
on and referring to some related publications, seeks to promote discussion of such questions and
advocates the need for enhanced focus on understanding and representing hydrological processes
accurately, so as to improve our conceptual understanding and even our hydrological

perceptions.

2 On model parameterization and the need for parameter optimization

In a recent debate on the future of hydrological sciences, and in the context of a discussion of
modeled process parameterization and parameter estimation, Gupta and Nearing (2014) state
that "we suggest that much can be gained by focusing more directly on the a priori role of
Process Modeling (particularly System Architecture) while de-emphasizing detailed System
Parameterizations". Soon after, Gharari et al. (2014) presented a practical and methodical
demonstration that the need for model calibration (optimization of parameter values) can be
dramatically reduced (and even avoided) by the judicious imposition of (both general and site-
specific) relational parameter and process constraints onto our models. They report that doing so

can significantly improve the results while reducing simulation uncertainty.

The arguments and demonstration mentioned above are recent contributions to a long-standing
perspective held by others in the hydrological community. Bergstrom (2006), for example, based
on his experience with the HBV model as a solution for prediction in ungauged basins, mentions
three possible ways that runoff in rivers can be estimated in the absence of directly available
data. "The first was to simply use information from neighboring rivers through statistical
methods. The second option was to get so much experience with a conceptual model that we can

map the optimum values of its parameters, or relate them to catchment characteristics. The third
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was to use a model that is so physically correct that it does not need calibration at all"

(Bergstrom, 2000).

My own experience, based on working with a physics- and GIS-based fully distributed
hydrologic model called WetSpa, is similar to the second aforementioned option proposed by
Bergstrom (2006), and resonates with the “limited need for calibration” shown so nicely by
Gharari et al. (2014) (see also Hrachowitz et al. 2014). 1 have found that the need for parameter
calibration can be dramatically reduced simply by avoiding the now-common “trial and error”
strategy of search by optimization, and proceeding instead by a) beginning with some reasonable
initial values derived based on known catchment characteristics, ’b)][AB3] some trial and error to
refine the reasonable initial values, and c) proceeding to imposing some meaningful and sensible
constraints and parameter relational rules. I find that, much of the time, excellent parameter
values (and hence model performance) can be obtained in only a few attempts and without
considerable effort. With some degree of practice, and after gaining some understanding about
how the hydrological processes are represented in the model and how the parameters relate to
observable or conceptual catchment characteristics, the process of model calibration is eased to
such an extent that it would imply that the model needs no parameter calibration but only a kind
of parameter “allocation” (i.e., a logic-based specification); I will discuss parameter allocation in

detail later in this paper.

According to Beven (2000, 2006, 2011) and McDonnell and Beven (2014) the importance of
uniqueness of place and the limitations of hydrological data can, in most cases, make parameter
allocation rather difficult, and so we should consider the limitations of current concepts. LAS\[AB4]
mentioned by Beven in his referee comment, in practice we are both model and data limited, and
even a perfect model will be limited by inconsistencies in the calibration and prediction data (e.g.
Beven and Smith, 2014) — so that the success or failure of a model run with a priori parameter
estimates might depend more on the (unknown) errors in the data than on whether the model is a

realistic representation of the processes.

However, the work of Bergstrom with the HBV model, and more recently L?emenova and Beven \
[AB5](2015) seems to suggest otherwise (although note that Beven has a different opinion in this
regards, as discussed briefly in their paper; see also Beven’s equifinality thesis in Beven, 2006b).

’The work of the St. Petersburg \[AB6]modeling team on a deterministic distributed process-based
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It seems, in fact, that it may often be possible to arrive at parameter values through a process of

reasoning and white box modeling, rather than by the inefficient and poorly informed search
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available. Other examples of limited calibration (parameter adjustment) and hydrologic
reasoning for parameters estimation of physically based distributed models can be found in
Feyen et al. (2000) using MIKE SHE, Zehe and Bloschl (2004) for parameter adjustments of
CATFLOW, and Bahremand et al. (2005, 2007), Liu et al. (2003, 2005) with the WetSpa model,
and Salvadore (2015) with the WetSpa-Python model.

Some recent publications regarding conceptual hydrologic models have also drawn attention to
the use of expert knowledge in parameter estimation and constraining parameter calibration; see
for example Antonetti et al. (2015), Hrachowitz et al. (2014), Gharari et al. (2014), Hellebrand
et al. (2011) and Viviroli et al. (2009). Overall, the examples mentioned above lend support to
the author’s conviction that by gaining some understanding about hydrologic processes, and by
trying to relate the parameters to observable (or conceptual) watershed characteristics, it is

possible to infer reasonable values for the parameters of a hydrological model.

In support of this viewpoint, let us look at some examples using the WetSpa model, which has 11
parameters that must be specified (Liu and De Smedt, 2004). As a trivial case, consider the
parameter Kgm that represents the maximum active groundwater storage (in mm) and controls
the amount of evaporation possible from the water table. This parameter has typically been
considered to be “insensitive” (see Bahremand and De Smedt, 2008), which makes sense of
course if the catchment is mountainous and in an upstream area (e.g., catchment order 2),
because logic dictates that since the depth to groundwater is so deep, there will be little or no
direct evaporation from the water table. In such a case we can save time by fixing this parameter
to a large value, and directing our attention to other aspects of the model. Similar reasoning can

be applied to several other parameters (Bahremand et al. 2007, Liu et al. 2003).

Alternatively, if the practitioner prefers to proceed with an automatic calibration approach
(although I prefer the manual calibration approach due to its ability to enhance hydrologic
knowledge), much is to be gained by advising her/him to implement some logical relativity
restrictions. For example, in the WetSpa model it makes sense to always restrict the value for
parameter Kg; (initial active groundwater storage, in mm) to be less than the value for Kgm.
Doing so helps to restrict the calibration search space, so that the “best” parameter values are
achieved with the least effort, and the parameter values remain relatively consistent with their

conceptual meaning. A nice example of this is provided by De Smedt et al. (2000) who
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implement such reasoning in regards to the parameter values (based on an understanding of the

physical structure of the model) and obtain quite good model simulation results without resorting

to any “calibration”. [In support of this\[AB7], note that Safari et al (2012) reported satisfactory
results using an uncalibrated WetSpa, with only minor improvements obtained through
calibration (see also Smith et al. 2012). Zeinivand and De Smedt (2009, 2010) reported results of

the snow modules of the WetSpa model using preset values with no calibration.

Other “no-calibration” modeling studies using physically-based distributed hydrologic models
have reported mixed success (e.g., Semenova et al. 2015, Venogradov et al. 2011, Refsgaard and
Knudsen 1996, and Refsgaard et al. 1999). Here, “no-calibration” refers to the use of preset
parameter values, and “limited-calibration” is taken to mean “manual adjustment ... applied to a
small group of specially chosen parameters ... ... carried out as a priori defined narrow ranges of

parameter variation...” (Vinogradov et al. 2011).

Examples of limited calibration of the WetSpa model are given by Liu (2003, 2005) and
Bahremand (2007, 2005). 1 think of such an approach as being a kind of "white box calibration",
and my experiences with the WetSpa model (Bahremand et. al 2005 and 2007, Bahremand and
De Smedt, 2008 and 2010) suggest that it can help to ensure a considerable degree of consistency
in both the parameter values and the model behavior. As discussed later in this paper, other no-
calibration attempts for physical modeling have been reported using the novel approach of
optimality (Schymanski et. al. 2009), maximum entropy production (Westhoff and Zehe, 2013),

and behavioral modeling under organizing principles (Schaefli et al. 2011).

Of course, when a user selects reasonable initial values for the automated local parameter search,
this is akin to bringing some kind of informed prior information to bear on the calibration
process, in a manner similar to Bayesian inference, or the expert opinion in decision-making.
Accordingly, it helps to improve calibration efficiency, results in enhanced parameter
consistency, and reduces uncertainty, thereby improving the overall result. Similarly, in a
regionalization process, we bring to bear our prior knowledge about the nature of the catchment
and the dominant processes within it to minimize (and if possible, avoid) the need for model
calibration and parameter estimation tasks. Via a process of generalization, we find ways to
apply our models in ungauged basins based on parameter maps that relate catchment

characteristics to parameter values via a combination of expert knowledge and empirical
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evidence (Bergstrom, 2006, Bardossy, 2007). And, in the case of expert opinion used to guide

decision-making we employ a similar practice

The point is, that in all of the cases, there is a greater emphasis on process understanding, and as
such understanding is enhanced, the parameter estimation problem becomes progressively more
trivial. As stated by Hoshin Gupta in a recent email communication (email communication, 31
March 2015), "it is good to give the students a well-organized frame to think about the model
development process because, it can dramatically help to reduce the effort. In my opinion we
(the community) have taken a journey of about 30 years long to “rediscover” this because in the
late 70’s and 80’s we were seduced by the ideas of “optimization” (which came from operations
research) and the ability to play with computers. Hopefully now the field of “systems hydrology”
will focus more on what I like to call the “learning problem” - which is more about architecture
and process parameterization than about parameters. Of course some amount of calibration will

generally help because the model is always a simplification".

3 On the Model development process

The model development process follows a series of several steps. Since these steps have been
discussed variously by Beven (2012), Gupta et al. (2012), and Gupta and Nearing (2014), among
others, the reader may refer to those articles for details. I mention them only briefly here. As
mentioned by Gupta et al. (2012) first stage is informal and involves the formation of
“perceptions” about the system. In the formal steps, we begin with a “conceptual model”, and
then proceed (in the language of Beven) to develop a “procedural model” (but see Gupta et al.,
2012 for considerably more fine-grained detail). Finally we run the model with some initial
parameter guesses, and then proceed with model calibration and evaluation, sensitivity analysis
and uncertainty analysis. These last 4 steps can perhaps be grouped under the general term of

“model optimization”.

The important step that follows is that of model “verification™ (or perhaps we can call this
diagnostic evaluation and improvement; see Gupta et al., 2008). In Beven (2012) is implied by
the word "revise" (in the second illustration of the first chapter of Beven’s book). We advise the
practitioner that if the constructed model “fails” the diagnostic evaluation step we should first

revisit the calibration step (just one step back) to check whether we could do better by calibrating
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our model differently. If everything is found to be “ok” in this step, we should proceed backward
one more step and take a closer look at the “procedural model”, to check the computer code for
errors. And, if this seems fine we can proceed to examine our “conceptual model”, whereby we
check the equations used, the manner in which subsystems are linked to each other, inputs,
outputs, functions, and so on. Finally if everything seems fine, then we may be forced to question

our perceptions, examining in detail how we have defined the processes.

However, the current modeling practice seems to be largely stuck in the model optimization
stages. Gupta and Nearing (2014) correctly suggest that we have given more than enough
attention to the problem of model optimization. And several authors have argued that if we want
to have real improvements in modeling practice and performance, then we need to take a more
serious look at the early steps in the modeling protocol, and in particular focus in on the "process

model" (even being willing to alter our perceptual model).

It is instructive to note that, despite the diversity in hydrological behaviors found in catchments
of different kinds, most current conceptual watershed models are only slightly different
implementations of very similar perceptions and conceptions in regard to watershed behavior,
and involve very similar kinds of simplifications and assumptions. In this context, novel ideas
such as HAND and the topographic index embody interesting revisions in the perceptual and
conceptual model stages of conceptual-hydrologic modeling (Savenije, 2010, Gharari et al.,
2011; Gao et al., 2014). Similarly the REW approach is an example of revisions in early stages
of physical-hydrologic modeling dReggiani et al‘[ABS]. 1998 and 1999). And as suggested by
McDonnell et al. (2007), "New approaches should rely not on calibration, but rather on
systematic learning from observed data, and on increased understanding and search for new
hydrologic theories". 1t is, of course always easier to improve upon an already existing
model/framework. In some cases, however, really significant improvements can only come about
by starting at the very beginning. In my view, the end of optimization can serve as a new

beginning for the hydrological modeling process.

4 On the modeling and evaluation of hydrologic processes

It seems obvious that hydrologists should be ready to investigate our perceptions and be willing

to make dramatic improvements in conceptualizations as needed. Various assumptions,
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expediencies and simplifications may need to be changed or disregarded. As mentioned by Grey
Nearing in a recent email communication (email communication, 31 March 2015), "It is strange
that we know a priori that any model we build will be incorrect, and so the pertinent question in
my mind is in what sense a wrong model can be useful. Since calibration can never fix the fact
that our models are always wrong, we must interpret the calibration procedure as in some sense
reducing the impact of our model’s errors on the utility of that model. Neither calibration nor
iterative model refinement will ever result in a correct model, and error functions, likelihoods,
objective functions, and performance metrics are all attempts to measure model utility, not
model correctness. My opinion is that this utility approach to model building and model
evaluation is misguided. Instead of building a model that we know is wrong and then trying to
estimate how wrong it is, we should try to use our knowledge of physics to constrain the
possibilities of future events. That is, instead of trying to approximately solve complex systems of
equations, use the equations to limit the possibilities of future events. Shervan Gharari takes this
perspective to assigning parameters in his recent paper (Gharari et al., 2014), and for this

reason it is one of my favorite".

While Nearing argues that the *current* paradigm is based fundamentally around a concept of
utility, and that our knowledge of physics should be used to constrain the possibilities of future
events, Gupta refers to such a focus as "prediction and problem solving, and to serve such
purpose while improving our understanding of "physics", so the target becomes the "model" and

this sets up a recursive loop when we try to "support/evaluate" the model."

In practice, I have found a ladder type (tree-like) evaluation and model intercomparison
framework (of flexible length) to be useful for model evaluation. In the short version of this
ladder, the modeler is able to "evaluate/support" a particular model by seeking, for example, an
improved simulation of the total hydrograph. Given a lumped conceptual model “A” and a
physics based distributed model “B”, the short ladder evaluation allows us to compare the
hydrographs simulated by A and B with each other, and with the observed target data. This kind
of evaluation really just serves the model, in the sense that it supports the specific kind of

prediction needed by a target application such as river hydrograph simulation/prediction.

In contrast, the long version of the ladder can take us much deeper. In this type of evaluation, our

goal is not model intercomparison based on target performance, but is instead based on
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consistency or realism. For example, in the first step (stair/stage) we have a descriptive table that
enables comparison between the conceptualizations underlying the models. It enables us to
compare which hydrological processes are represented in the models, and how they are
interlinked (although this latter could perhaps be considered a second step). In such a context, it
does not really make sense to compare an artificial neural network black box type model against
a fully distributed physically-based model, which comparison could mislead a naive practitioner

(being a comparison between two different kinds of things).

Ultimately, we need to develop frameworks for model evaluation and comparison that enable us
to give more weight to ones that better represent the underlying physics (see Clark et al., 2011,
2015a,b; Mendoza et al., 2015). This kind of long ladder evaluation enables us to progressively
deepen our understanding, step by step. Along the way, some models may be left behind, but can
continue to serve our immediate and intermediate needs such as for hydrograph simulation.
However, later steps may require our model to pass additional tests, such as requiring the flow
velocity in streams of order 1 and located in forested terrain to be meaningful in comparison with

the velocities in similar streams passing through high altitude farmland.

In such a context, a simple hydrograph comparison may generally not be sufficient, and simple
model efficiency and performance metrics on streamflow will not guarantee that the system has
been correctly described (Klemes, 1986; Bergestrom, 1991, see also Savenije, 2009 for a
discussion of what constitutes a “good model”). So, for example, the behavioral and non-
behavioral models partitioning within a GLUE framework (Beven and Binley, 1992) should not
be based simply on model output-based performance criteria, but should be meaningful and
correct in an intellectual manner. The use of relational rules (as in Gharari et al., 2014) serves

the function of prior information. ’{here I deleted 6 lines}][AB9]

As has been pointed out in the literature, our approach to model evaluation that is based in
performance criteria also needs improvement. Recent work in this regard includes the Kling-
Gupta efficiency (Gupta et al., 2009), the increasing emphasis on process/signature-based
diagnostics (Gupta et al., 2008, Yilmaz et al., 2008), and the use of multi objective criteria and
evaluation on multiple variables (Gupta et al., 1998; Pechlivanidis and Arheimer, 2015). Equally

important, we need to establish benchmark problems that serve as a set of standard test cases,
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thereby providing the modeling community with a way to perform fair assessments of competing

formulations, parameterizations and algorithms (Maxwell et al., 2014, Paniconi and Putti, 2015).

Ultimately, model optimization can help establish the best possible model performance
compared with input-output data, uncertainty analyses can help to reveal model structural
deficiencies, and comparison against benchmark prediction limits (e.g., Schaefli and Gupta
2007) can provide a possible way of checking the correctness of our understanding of the
hydrological processes at a given time and place (Montanari and Koutsoyiannis, 2012). While
this may be obvious to an experienced modeler, I feel that we should be thinking about building
a structured framework that can help beginners/students to stay on the right track, and not be
deceived by “good” values of summary metrics such as the Nash-Sutcliffe Efficiency. In such a
structured framework, it will be important to take first into account model simplifications,
assumptions, formulations, the code, and the list of processes, before examining the simulation
results. And, an automated model calibration procedure should not be used as a way to justify a
poorly formulated model that is then "camouflaged by uncertainty estimation". As has been
pointed out before many times (see e.g., Semenova and Beven, 2015), expert opinion and
judgment should matter when evaluating the credibility of model performance and predictions.
To this one might add that scientific knowledge and principles of physics should matter even
more, as should practical perceptual and observational knowledge about the system being

modeled.

As examples of the latter, consider the following. Although flow widths change along the stream
network, most hydrological models use a constant width for the stream network; at the very least,
streams of different order should be allocated different widths. Most hydrological models assume
constant flow velocity fields for the entire duration of the simulation; in fact, flow velocities
should be considered together with the sediment and bed loads. Similarly, hydrological flow
routing should take into account transmission losses, the differences between velocities and
celerities, hysteresis with respect to total storage in a landscape element, heterogeneities and the
extremes of their distribution. To quote Semenova and Beven (2015), "These are requirements
for any distributed modeling scheme in hydrology that is going to be intellectually satisfying in
reproducing both flow and travel times of water". Doing so will bring to bear well-known

hydraulic principles. Bringing physics and more detailed attention to process modeling will also
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leads to better integration of surface and subsurface hydrology in models (Paniconi and Putti

2015).

Moreover, alternative theories and approaches, such as representative elementary watershed
concept of Reggiani et al. (1998 and 1999) and the thermodynamic reinterpretation of the HRU
concept of Zehe et al. (2014), help us to limit uncertainty and better deal with equifinality by
improving our understanding of the system. Although even physics based models face
equifinality (see Klaus and Zehe, 2010; Weienhoefer and Zehe, 2014), as this problem simply
arises from the structure of our equations (see Zehe et al., 2014), by explicitly disentangling
driving gradients and resistance terms in flow equations the process-based models offer more
options to exert constraining rules to end up with a rather unique parameter set (Zehe et al.,
2014). Taking more processes into account decreases non-uniqueness, as for example Wienhdfer
and Zehe (2014) reduced "the number of equifinal model set-ups" by the results of solute

transport simulations.

Also, some processes such as subsurface processes and preferential flow need to be better
represented explicitly, and we should consider the limitation of Darcy-Richards equations (being
diffusive and assuming local equilibrium conditions) regarding the fast advective responses and
cell size limitation (Vogel and Ippisch, 2008). Similar to the multi-objective criteria approach in
model optimization, where a set of criteria is involved in the search for a unique parameter set;
accordingly from a different angle, if we take more physical processes into account into our
model structure, it does a similar thing, i.e. it gives us more options to constrain parameter values
and reach a rather unique parameter set. Therefore, the equifinality should be dealt with from

different angles to help us to arrive at a better model.

Another approach to dealing with Lequiﬁnality\[ABlO] is by limiting the parameter values through a
procedure that can be called parameter allocation. In the following section, I express my ideas in

this regard and on the future of hydrological modeling.

5 [On parameter allocation and the future of hydrological modelling\[ABl 1]

In this section, I articulate my opinions regarding parameter allocation and the future of

hydrological modeling, and in particular my opinion in regards to physically-based distributed
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1) A sense of the complete picture; this can be compared with our perceptual and conceptual

model of the hydrologic cycle at the global scale.

2) Information regarding the puzzle edges (borders); this is analogous with large-scale water

balance and its components

3) Information regarding the picture expressed by each piece itself; this is analogous to
regional or catchment scale hydrological models (the representation of local scale

hydrological processes)
4) Information regarding the ways in which the pieces interlock.

It is well known that rapid solution of a jigsaw puzzle can be facilitated by sorting and
categorizing the pieces according to shape, color, edge and corner shapes, and shapes of
interlocking connectors; this may be comparable with concepts such as generalization,
regionalization, and the organizing principles and behavioral modeling of Schaefli et al. (2011).
Comparing the partially constructed puzzle with the complete picture (usually printed on the
front of the box) is similar to what I have described as a mind commute between the top-down
and bottom-up viewpoints (Sivapalan, 2005). The learning process emphasized by Beven (2007)
in his “models of everywhere” and the “learning instead of rejection” view exposed by Gupta
and Nearing (2014) is expressive of this practice. As we continue to work on the puzzle, we try
to build upon already completed sections, and eventually we get to the stage where we can see

the end of the project where the “holes” become the objects of our attention.

6 Conclusions

In conclusion, it is clear that we need to make a determined effort to shift the focus of our
modeling studies away from parameter optimization and towards a deeper attention to process
modeling and revision of our conceptual models. We should even be ready to revise our
perceptual models. Gupta and Nearing (2014) argue that we need robust and rigorous methods to
support such a shift, and Gharari et al. (2014) shows that such an approach can help to liberate
us from the need for model calibration, transforming it into a process of parameter allocation.
Ideally, the calibration and evaluation procedures would act synergistically to drive model

improvement. Hopefully then, we will move past “equifinality” to achieve “equimodellity”,
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reaching at last one fulfilling model that is a "model that is so physically correct that it does not
need calibration at all"(the third aforementioned solution of Bergstrom). Although such a target

might seem unreachable, it could at least act as a beacon for hydrologists.
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Dear Editor Prof. Zehe,

| thank you very much for giving me enough time to rework my paper. | have prepared the

revised version of the opinion paper. This revised version is also refined and enhanced by

Hoshin Gupta. | had comments of 3 referees, your comments as the editor and the comments of

4 other researchers left on the HESS website which | accepted all of them and used them to

improve my work. | must say | could not do this work without the comments and encouraging

emails which | have received during one year being involved with this paper. The paper
received comments and positive remarks of 25 hydrologists, perhaps due to its clear message.

To some scientists like Prof. Hoshin Gupta and Prof. Florimond De Smedt and the three

referees (Prof. Beven, Prof. Montanari, and Prof. Schaefli) and you the editor Prof. Zehe, | owe

a lot. Their comments were highly significant for the improvement of the work.

In my opinion, the main and major comments, which | addressed them in the paper and used

those to improve my work, were these:

1. As it was commented by Montanari and Schaefli, the paper was pessimistic on auto
optimization | moderated my statements and also | wrote about the advantages of auto
calibration. More than 15 lines are discussing the auto calibration now (lines 356-374).

2. The paper had few examples of physical models, | improved this very much by adding many
examples of physics based models. Some of the examples present no calibration in physical
based distributed models, some mention limited calibration or just parameter adjustments,
and some are the examples of expert knowledge in calibration or parameter specification.
For this issue, in addition to the previous citations, | cited and discussed 29 papers as
references. All reviewers and the editor had asked me to mention some examples of physics
based models. So | did my best to fill the gap. Lines from 84 to 120, then from 149 to 165
are new.

3. | wrote a full new text (whatever | could) about parameter allocation. | owe this to the referee
Prof. Schaefli who mentioned several good questions. So while | tried to answer those
questions | found out that | have extended my work several pages more! | am happy that |
could improve the paper in this regard (more than 135 lines are added for parameter
allocation). It was much longer, but fortunately | could decide to delete 3 long paragraphs
upon Hoshin Gupta's suggestion.

4. | had several long email conversations with Prof. Beven which | learned a lot through those
emails and his thoughtful comments. In most of those emails, he asked me "how it works?".
| really did my best to write my paper in this direction to have an answer for his question. |
do not know if | was successful, but | have to say the entire Section 5 (196 lines) might
provide an answer for this question. Trying to answer this question, | improved and
extended the paper very much, it became twice as before. So, | really owe Keith Beven for
making the review procedure so challenging for me.

5. | had the feeling that a modeling based upon a thermodynamic approach is the right track
which | should emphasize it but | was not sure until receiving the editor's comment. So an
important change in my revised version is the emphasis on energy centered hyrological
modeling. Editor comments really helped me a lot to make a much better paper.

6. The first version had nothing about data and measurement. Prof. Beven and Dr. Sheikh
pointed out this gap, so, | wrote a paragraph to feel this gap (lines 506 to 511, also please
see lines 77 to 81)

7. Apart from the comments, some newer approaches like REW modeling, Behavioral
modeling, optimality approach, models of everywhere, and community model were
discussed (they are discussed in different parts of the paper but mainly in section 5, in
particular subsection 5.3, e.g., lines 464-486). | wrote my opinion about the future of
hydrological modeling in an original example which | have explained it as spherical jigsaw
puzzle modeling (subsection 5.3).
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8.

| also wrote more about the wrong physics being used in our modeling (327-346 from the
first version, and 512-516 of the revised version).

| really appreciate the very good choice of appointing the right referees for this work. | have to
say the referees and the editor comments made the work very much better. The mentioned
gaps were filled in, as so the length of the paper increased more than twice. While the previous
submission was 428 lines, the new version is 914 lines (despite being shortened by Hoshin).
The new version has 114 references, while the first submission had only 40 references. | made
a marked-up manuscript too. More detail is written as the marked-up comments.

The changes according to each reviewer, separately:

1.

Prof. Beven: he asked me a revised version after a long email discussion. | tried to use all
his comments in different parts of the paper. But mainly these lines are directly related to
Beven's comments: 77-84, 347-577. In the marked up file, | have commented in different
parts, for example, | deleted the GLUE example which was correctly mentioned as a bad
practice. | gave a special attention to the model of everywhere and learning process in the
jigsaw puzzle example, as well as several other significant opinions of Prof. Beven briefly
mentioned (e.g. equifinality, GLUE, modeling protocol, self-organized dissipation of singular
events, hyper resolution and community model, closure problem, wrong physics,
uniqueness of place, etc.).

Prof. Montanari: he recommended me to consider 3 corrections in my paper, he clearly told
me how to do them (It is appreciated). Lines 64-65 (trial and error for initial values), lines 84-
120 (knowledge based optimization and physics based modeling examples), line 356-374
(advantages of auto calibration) .Prof. Montanari also asked me to clarify my idea about
calibration, which | did this very clear now. | can say one third of the paper now proves how |
think of calibration but please see lines of 356-374, several other sentences talking about
limited calibration, parameter adjustments, and calibration not only according to local data
but also in conformity with the higher level water balances as well as organizing principles,
etc. | also wrote the calibration is unavoidable (line 357).

Prof. Schaefli: she posed several clarifying questions which | tried to address them all. The
entire subsections 5.1 and 5.2 are written in response to her comments. By the way, | built a
close discussion between my opinion and her opinion presented in Schaefli et al. 2011.
Schaefli had also emphasized on comments of Montanari.

Prof. Zehe: | added many examples of physics based modeling to over shadow some
examples of conceptual bucket models. So, almost 80% of the examples are now of physics
based models. These are some of the models: hydrograph model, TOPKAPI, CATFLOW,
MIKE SHE, WetSpa, WetSpa-Python, MARINE, THREW, etc. | had a special emphasize on
new works which consider energy balances too. This can be seen in the entire marked-up
file. Although, while discussing my opinions often | mentioned other opinions too, but
because, | did not see my message something against the common practice in hydrology so
the paper did not become much in dialectic sense, but | am convinced it has clear messages
without disregarding other opinions.

Prof. Sadeghi and Dr. Sheikh: | avoided to use the word "conceptual" in the abstract, the
"empirical" (proposed by Hoshin Gupta) serves better. | wrote a paragraph about data and
measurements (506-511).

At, the end again | thank you very much for all your guidance and support, and | hope this
version suits the high level journal HESS. | also appreciate the referee’s valuable comments. |
am ready to improve the manuscript more as much as it needs.

Best regards,

Abdolreza Bahremand
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