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Abstract 9 
Since its origins as an engineering discipline, with its widespread use of ‘black box’ (empirical) 10 
modelling approaches, hydrology has evolved into a scientific discipline that seeks a more ‘white 11 
box’ (physics-based) modelling approach to solving problems such as the description and 12 
simulation of the rainfall-runoff responses of a watershed. There has been much recent debate 13 
regarding the future of the hydrological sciences, and several publications have voiced opinions 14 
on this subject. This opinion paper seeks to comment and expand upon some recent publications 15 
that have advocated an increased focus on process-based modelling while de-emphasizing the 16 
focus on detailed attention to parameter estimation. In particular, it offers a perspective that 17 
emphasizes a more hydraulic (more physics-based and less empirical) approach to development 18 
and implementation of hydrological models. 19 

 20 
1 Introduction 21 

There has been a recent call in several notable publications for a new focus to be brought to the 22 
hydrological sciences. As an example, Montanari et al. (2015) stressed the need for new vision, 23 
to help drive new theories, new methods and “new thinking”. This comes at a time when 24 
enhanced computational power and sophisticated monitoring techniques now enable hydrologists 25 
to pursue deeper investigations of hydrologic processes, and to thereby simulate watershed 26 
hydrology in ever more detail.         27 



It is my opinion that we need to take a broader look at the practices we bring to hydrological 28 
modelling. My experience suggests that we too often allow ourselves to become mired in 29 
relatively minor problems, and thereby fail to notice some of the more major ones. For example, 30 
do we not tend to become over-focused on estimating parameter values by “optimization”, and 31 
should we not instead devote more of our focus to improve the models that represent the 32 
underlying system processes? Is it not possible to conduct model evaluation (as a support for 33 
model building) in a much more intellectually satisfying manner? This paper, while commenting 34 
on and referring to some related publications, seeks to promote discussion of such questions and 35 
advocates the need for enhanced focus on understanding and representing hydrological processes 36 
accurately, so as to improve our conceptual understanding and even our hydrological 37 
perceptions.  38 
 39 

2 On model parameterization and the need for parameter optimization 40 
In a recent debate on the future of hydrological sciences, and in the context of a discussion of 41 
modeled process parameterization and parameter estimation, Gupta and Nearing (2014) state 42 
that "we suggest that much can be gained by focusing more directly on the a priori role of 43 
Process Modeling (particularly System Architecture) while de-emphasizing detailed System 44 
Parameterizations". Soon after, Gharari et al. (2014) presented a practical and methodical 45 
demonstration that the need for model calibration (optimization of parameter values) can be 46 
dramatically reduced (and even avoided) by the judicious imposition of (both general and site-47 
specific) relational parameter and process constraints onto our models. They report that doing so 48 
can significantly improve the results while reducing simulation uncertainty.  49 
The arguments and demonstration mentioned above are recent contributions to a long-standing 50 
perspective held by others in the hydrological community. Bergstrom (2006), for example, based 51 
on his experience with the HBV model as a solution for prediction in ungauged basins, mentions 52 
three possible ways that runoff in rivers can be estimated in the absence of directly available 53 
data. "The first was to simply use information from neighboring rivers through statistical 54 
methods. The second option was to get so much experience with a conceptual model that we can 55 
map the optimum values of its parameters, or relate them to catchment characteristics. The third 56 



was to use a model that is so physically correct that it does not need calibration at all" 57 
(Bergstrom, 2006). 58 
My own experience, based on working with a physics- and GIS-based fully distributed 59 
hydrologic model called WetSpa, is similar to the second aforementioned option proposed by 60 
Bergstrom (2006), and resonates with the “limited need for calibration” shown so nicely by 61 
Gharari et al. (2014) (see also Hrachowitz et al. 2014). I have found that the need for parameter 62 
calibration can be dramatically reduced simply by avoiding the now-common “trial and error” 63 
strategy of search by optimization, and proceeding instead by a) beginning with some reasonable 64 
initial values derived based on known catchment characteristics, b) some trial and error to refine 65 
the reasonable initial values, and c) proceeding to imposing some meaningful and sensible 66 
constraints and parameter relational rules. I find that, much of the time, excellent parameter 67 
values (and hence model performance) can be obtained in only a few attempts and without 68 
considerable effort. With some degree of practice, and after gaining some understanding about 69 
how the hydrological processes are represented in the model and how the parameters relate to 70 
observable or conceptual catchment characteristics, the process of model calibration is eased to 71 
such an extent that it would imply that the model needs no parameter calibration but only a kind 72 
of parameter “allocation” (i.e., a logic-based specification); I will discuss parameter allocation in 73 
detail later in this paper. 74 
According to Beven (2000, 2006, 2011) and McDonnell and Beven (2014) the importance of 75 
uniqueness of place and the limitations of hydrological data can, in most cases, make parameter 76 
allocation rather difficult, and so we should consider the limitations of current concepts. As 77 
mentioned by Beven in his referee comment, in practice we are both model and data limited, and 78 
even a perfect model will be limited by inconsistencies in the calibration and prediction data (e.g. 79 
Beven and Smith, 2014) – so that the success or failure of a model run with a priori parameter 80 
estimates might depend more on the (unknown) errors in the data than on whether the model is a 81 
realistic representation of the processes.  82 
However, the work of Bergstrom with the HBV model, and more recently Semenova and Beven 83 
(2015) seems to suggest otherwise (although note that Beven has a different opinion in this 84 
regards, as discussed briefly in their paper; see also Beven’s equifinality thesis in Beven, 2006b). 85 
The work of the St. Petersburg modeling team on a deterministic distributed process-based 86 



model of runoff formation processes named “hydrograph model” is closely in line with what is 87 
described for parameter estimation in this opinion paper (Vinogradov, 1990, Vinogradov et al. 88 
2011, Semenova et al. 2013 and 2015, Lebedeva et al. 2014). In their approach, they “do not 89 
accept calibration in the form of automated procedure of parameter estimation”, and “assume its 90 
common application to be one of the main barriers in development of modern hydrological 91 
modeling” (www.hydrograph-model.ru).  92 
It seems, in fact, that it may often be possible to arrive at parameter values through a process of 93 
reasoning and white box modeling, rather than by the inefficient and poorly informed search 94 
procedures involved in trial-and-error or black box efforts. As another example of the use of 95 
knowledge from processes to constrain parameters in a physically based, spatially distributed 96 
model, I note the TOPKAPI modeling work of Ragettli and Pellicciotti (2012) in a glacier-97 
dominated basin; their report includes an evaluation of the transferability of such parameters in 98 
time and space. 99 
To estimate the parameters of a spatially distributed flash flood model, Blosch et al. (2008) have 100 
emphasized understanding the model behavior over formal calibration.  Similarly, Merz and 101 
Blosch (2008a, 2008b) and Viglione et al (2013) provide good examples of the use of 102 
hydrological reasoning to obtain more informed estimates of flood frequencies, and Hingray et 103 
al. (2010) present a signature-based model calibration for hydrological prediction in mesoscale 104 
Alpine catchments. In the latter, the calibration method uses hydrological process knowledge to 105 
extract useful information from very heterogeneous data set available in the region (see also 106 
Schaefli et al., (2005) and Schaefli and Huss (2011).  107 
In other work, Vidal et al. (2007) reviewed the process of calibrating physically-based models 108 
such as river hydraulic models and distributed hydrological models with a special emphasis on 109 
knowledge base calibration. They criticize the fact that calibration is often done without any or 110 
with only minimal physical consideration. They advocate a definition of parameter calibration 111 
“on the basis of heuristic knowledge gained through modeling experience”, and develop a 112 
knowledge based calibration support system for hydraulic modelers. The result is an automatic 113 
knowledge-based trial and error approach that also has the advantages of reliability and 114 
reproducibility. The resulting CaRMA-1 algorithm mimics the way that experts tackle particular 115 
calibration cases to obtain the most reasonable calibrated hydraulic model considering the data 116 



available. Other examples of limited calibration (parameter adjustment) and hydrologic 117 
reasoning for parameters estimation of physically based distributed models can be found in 118 
Feyen et al. (2000) using MIKE SHE, Zehe and Bloschl (2004) for parameter adjustments of 119 
CATFLOW, and Bahremand et al. (2005, 2007), Liu et al. (2003, 2005) with the WetSpa model, 120 
and Salvadore (2015) with the WetSpa-Python model.  121 
Some recent publications regarding conceptual hydrologic models have also drawn attention to 122 
the use of expert knowledge in parameter estimation and constraining parameter calibration; see 123 
for example Antonetti et al. (2015), Hrachowitz et al. (2014), Gharari et al. (2014), Hellebrand 124 
et al. (2011) and Viviroli et al. (2009). Overall, the examples mentioned above lend support to 125 
the author’s conviction that by gaining some understanding about hydrologic processes, and by 126 
trying to relate the parameters to observable (or conceptual) watershed characteristics, it is 127 
possible to infer reasonable values for the parameters of a hydrological model.  128 
In support of this viewpoint, let us look at some examples using the WetSpa model, which has 11 129 
parameters that must be specified (Liu and De Smedt, 2004). As a trivial case, consider the 130 
parameter Kgm that represents the maximum active groundwater storage (in mm) and controls 131 
the amount of evaporation possible from the water table. This parameter has typically been 132 
considered to be “insensitive” (see Bahremand and De Smedt, 2008), which makes sense of 133 
course if the catchment is mountainous and in an upstream area (e.g., catchment order 2), 134 
because logic dictates that since the depth to groundwater is so deep, there will be little or no 135 
direct evaporation from the water table. In such a case we can save time by fixing this parameter 136 
to a large value, and directing our attention to other aspects of the model. Similar reasoning can 137 
be applied to several other parameters (Bahremand et al. 2007, Liu et al. 2003).  138 
Alternatively, if the practitioner prefers to proceed with an automatic calibration approach 139 
(although I prefer the manual calibration approach due to its ability to enhance hydrologic 140 
knowledge), much is to be gained by advising her/him to implement some logical relativity 141 
restrictions. For example, in the WetSpa model it makes sense to always restrict the value for 142 
parameter Kgi (initial active groundwater storage, in mm) to be less than the value for Kgm. 143 
Doing so helps to restrict the calibration search space, so that the “best” parameter values are 144 
achieved with the least effort, and the parameter values remain relatively consistent with their 145 
conceptual meaning. A nice example of this is provided by De Smedt et al. (2000) who 146 



implement such reasoning in regards to the parameter values (based on an understanding of the 147 
physical structure of the model) and obtain quite good model simulation results without resorting 148 
to any “calibration”. In support of this, note that Safari et al (2012) reported satisfactory results 149 
using an uncalibrated WetSpa, with only minor improvements obtained through calibration (see 150 
also Smith et al. 2012). Zeinivand and De Smedt (2009, 2010) reported results of the snow 151 
modules of the WetSpa model using preset values with no calibration.  152 
Other “no-calibration” modeling studies using physically-based distributed hydrologic models 153 
have reported mixed success (e.g., Semenova et al. 2015, Venogradov et al. 2011, Refsgaard and 154 
Knudsen 1996, and Refsgaard et al. 1999). Here, “no-calibration” refers to the use of preset 155 
parameter values, and “limited-calibration” is taken to mean “manual adjustment … applied to a 156 
small group of specially chosen parameters … … carried out as a priori defined narrow ranges of 157 
parameter variation…” (Vinogradov et al. 2011).   158 
Examples of limited calibration of the WetSpa model are given by Liu (2003, 2005) and 159 
Bahremand (2007, 2005). I think of such an approach as being a kind of "white box calibration", 160 
and my experiences with the WetSpa model (Bahremand et. al 2005 and 2007, Bahremand and 161 
De Smedt, 2008 and 2010) suggest that it can help to ensure a considerable degree of consistency 162 
in both the parameter values and the model behavior. As discussed later in this paper, other no-163 
calibration attempts for physical modeling have been reported using the novel approach of 164 
optimality (Schymanski et. al. 2009), maximum entropy production (Westhoff and Zehe, 2013), 165 
and behavioral modeling under organizing principles (Schaefli et al. 2011).   166 
Of course, when a user selects reasonable initial values for the automated local parameter search, 167 
this is akin to bringing some kind of informed prior information to bear on the calibration 168 
process, in a manner similar to Bayesian inference, or the expert opinion in decision-making. 169 
Accordingly, it helps to improve calibration efficiency, results in enhanced parameter 170 
consistency, and reduces uncertainty, thereby improving the overall result. Similarly, in a 171 
regionalization process, we bring to bear our prior knowledge about the nature of the catchment 172 
and the dominant processes within it to minimize (and if possible, avoid) the need for model 173 
calibration and parameter estimation tasks. Via a process of generalization, we find ways to 174 
apply our models in ungauged basins based on parameter maps that relate catchment 175 
characteristics to parameter values via a combination of expert knowledge and empirical 176 



evidence (Bergstrom, 2006; Bardossy, 2007). And, in the case of expert opinion used to guide 177 
decision-making we employ a similar practice  178 
The point is, that in all of the cases, there is a greater emphasis on process understanding, and as 179 
such understanding is enhanced, the parameter estimation problem becomes progressively more 180 
trivial. As stated by Hoshin Gupta in a recent email communication (email communication, 31 181 
March 2015), "it is good to give the students a well-organized frame to think about the model 182 
development process because, it can dramatically help to reduce the effort. In my opinion we 183 
(the community) have taken a journey of about 30 years long to “rediscover” this because in the 184 
late 70’s and 80’s we were seduced by the ideas of “optimization” (which came from operations 185 
research) and the ability to play with computers. Hopefully now the field of “systems hydrology” 186 
will focus more on what I like to call the “learning problem” - which is more about architecture 187 
and process parameterization than about parameters. Of course some amount of calibration will 188 
generally help because the model is always a simplification".  189 
 190 

3 On the Model development process 191 
The model development process follows a series of several steps. Since these steps have been 192 
discussed variously by Beven (2012), Gupta et al. (2012), and Gupta and Nearing (2014), among 193 
others, the reader may refer to those articles for details. I mention them only briefly here. As 194 
mentioned by Gupta et al. (2012) first stage is informal and involves the formation of 195 
“perceptions” about the system. In the formal steps, we begin with a “conceptual model”, and 196 
then proceed (in the language of Beven) to develop a “procedural model” (but see Gupta et al., 197 
2012 for considerably more fine-grained detail). Finally we run the model with some initial 198 
parameter guesses, and then proceed with model calibration and evaluation, sensitivity analysis 199 
and uncertainty analysis. These last 4 steps can perhaps be grouped under the general term of 200 
“model optimization”.  201 
The important step that follows is that of model “verification” (or perhaps we can call this 202 
diagnostic evaluation and improvement; see Gupta et al., 2008). In Beven (2012) is implied by 203 
the word "revise" (in the second illustration of the first chapter of Beven’s book). We advise the 204 
practitioner that if the constructed model “fails” the diagnostic evaluation step we should first 205 
revisit the calibration step (just one step back) to check whether we could do better by calibrating 206 



our model differently. If everything is found to be “ok” in this step, we should proceed backward 207 
one more step and take a closer look at the “procedural model”, to check the computer code for 208 
errors. And, if this seems fine we can proceed to examine our “conceptual model”, whereby we 209 
check the equations used, the manner in which subsystems are linked to each other, inputs, 210 
outputs, functions, and so on. Finally if everything seems fine, then we may be forced to question 211 
our perceptions, examining in detail how we have defined the processes. 212 
However, the current modeling practice seems to be largely stuck in the model optimization 213 
stages. Gupta and Nearing (2014) correctly suggest that we have given more than enough 214 
attention to the problem of model optimization. And several authors have argued that if we want 215 
to have real improvements in modeling practice and performance, then we need to take a more 216 
serious look at the early steps in the modeling protocol, and in particular focus in on the "process 217 
model" (even being willing to alter our perceptual model).  218 
It is instructive to note that, despite the diversity in hydrological behaviors found in catchments 219 
of different kinds, most current conceptual watershed models are only slightly different 220 
implementations of very similar perceptions and conceptions in regard to watershed behavior, 221 
and involve very similar kinds of simplifications and assumptions. In this context, novel ideas 222 
such as HAND and the topographic index embody interesting revisions in the perceptual and 223 
conceptual model stages of conceptual-hydrologic modeling (Savenije, 2010; Gharari et al., 224 
2011; Gao et al., 2014). Similarly the REW approach is an example of revisions in early stages 225 
of physical-hydrologic modeling (Reggiani et al. 1998 and 1999). And as suggested by 226 
McDonnell et al. (2007), "New approaches should rely not on calibration, but rather on 227 
systematic learning from observed data, and on increased understanding and search for new 228 
hydrologic theories". It is, of course always easier to improve upon an already existing 229 
model/framework. In some cases, however, really significant improvements can only come about 230 
by starting at the very beginning. In my view, the end of optimization can serve as a new 231 
beginning for the hydrological modeling process.      232 
 233 

4 On the modeling and evaluation of hydrologic processes 234 
It seems obvious that hydrologists should be ready to investigate our perceptions and be willing 235 
to make dramatic improvements in conceptualizations as needed. Various assumptions, 236 



expediencies and simplifications may need to be changed or disregarded. As mentioned by Grey 237 
Nearing in a recent email communication (email communication, 31 March 2015), "It is strange 238 
that we know a priori that any model we build will be incorrect, and so the pertinent question in 239 
my mind is in what sense a wrong model can be useful. Since calibration can never fix the fact 240 
that our models are always wrong, we must interpret the calibration procedure as in some sense 241 
reducing the impact of our model’s errors on the utility of that model. Neither calibration nor 242 
iterative model refinement will ever result in a correct model, and error functions, likelihoods, 243 
objective functions, and performance metrics are all attempts to measure model utility, not 244 
model correctness. My opinion is that this utility approach to model building and model 245 
evaluation is misguided. Instead of building a model that we know is wrong and then trying to 246 
estimate how wrong it is, we should try to use our knowledge of physics to constrain the 247 
possibilities of future events. That is, instead of trying to approximately solve complex systems of 248 
equations, use the equations to limit the possibilities of future events. Shervan Gharari takes this 249 
perspective to assigning parameters in his recent paper (Gharari et al., 2014), and for this 250 
reason it is one of my favorite". 251 
While Nearing argues that the *current* paradigm is based fundamentally around a concept of 252 
utility, and that our knowledge of physics should be used to constrain the possibilities of future 253 
events, Gupta refers to such a focus as "prediction and problem solving, and to serve such 254 
purpose while improving our understanding of "physics", so the target becomes the "model" and 255 
this sets up a recursive loop when we try to "support/evaluate" the model." 256 
In practice, I have found a ladder type (tree-like) evaluation and model intercomparison 257 
framework (of flexible length) to be useful for model evaluation. In the short version of this 258 
ladder, the modeler is able to "evaluate/support" a particular model by seeking, for example, an 259 
improved simulation of the total hydrograph. Given a lumped conceptual model “A” and a 260 
physics based distributed model “B”, the short ladder evaluation allows us to compare the 261 
hydrographs simulated by A and B with each other, and with the observed target data. This kind 262 
of evaluation really just serves the model, in the sense that it supports the specific kind of 263 
prediction needed by a target application such as river hydrograph simulation/prediction.  264 
In contrast, the long version of the ladder can take us much deeper. In this type of evaluation, our 265 
goal is not model intercomparison based on target performance, but is instead based on 266 



consistency or realism. For example, in the first step (stair/stage) we have a descriptive table that 267 
enables comparison between the conceptualizations underlying the models. It enables us to 268 
compare which hydrological processes are represented in the models, and how they are 269 
interlinked (although this latter could perhaps be considered a second step). In such a context, it 270 
does not really make sense to compare an artificial neural network black box type model against 271 
a fully distributed physically-based model, which comparison could mislead a naïve practitioner 272 
(being a comparison between two different kinds of things).  273 
Ultimately, we need to develop frameworks for model evaluation and comparison that enable us 274 
to give more weight to ones that better represent the underlying physics (see Clark et al., 2011; 275 
2015a,b; Mendoza et al., 2015). This kind of long ladder evaluation enables us to progressively 276 
deepen our understanding, step by step. Along the way, some models may be left behind, but can 277 
continue to serve our immediate and intermediate needs such as for hydrograph simulation. 278 
However, later steps may require our model to pass additional tests, such as requiring the flow 279 
velocity in streams of order 1 and located in forested terrain to be meaningful in comparison with 280 
the velocities in similar streams passing through high altitude farmland.  281 
In such a context, a simple hydrograph comparison may generally not be sufficient, and simple 282 
model efficiency and performance metrics on streamflow will not guarantee that the system has 283 
been correctly described (Klemes, 1986; Bergestrom, 1991; see also Savenije, 2009 for a 284 
discussion of what constitutes a “good model”). So, for example, the behavioral and non-285 
behavioral models partitioning within a GLUE framework (Beven and Binley, 1992) should not 286 
be based simply on model output-based performance criteria, but should be meaningful and 287 
correct in an intellectual manner. The use of relational rules (as in Gharari et al., 2014) serves 288 
the function of prior information.  289 
As has been pointed out in the literature, our approach to model evaluation that is based in 290 
performance criteria also needs improvement. Recent work in this regard includes the Kling-291 
Gupta efficiency (Gupta et al., 2009), the increasing emphasis on process/signature-based 292 
diagnostics (Gupta et al., 2008; Yilmaz et al., 2008), and the use of multi objective criteria and 293 
evaluation on multiple variables (Gupta et al., 1998; Pechlivanidis and Arheimer, 2015). Equally 294 
important, we need to establish benchmark problems that serve as a set of standard test cases, 295 



thereby providing the modeling community with a way to perform fair assessments of competing 296 
formulations, parameterizations and algorithms (Maxwell et al., 2014; Paniconi and Putti, 2015).  297 
Ultimately, model optimization can help establish the best possible model performance 298 
compared with input-output data, uncertainty analyses can help to reveal model structural 299 
deficiencies, and comparison against benchmark prediction limits (e.g., Schaefli and Gupta 300 
2007) can provide a possible way of checking the correctness of our understanding of the 301 
hydrological processes at a given time and place (Montanari and Koutsoyiannis, 2012). While 302 
this may be obvious to an experienced modeler, I feel that we should be thinking about building 303 
a structured framework that can help beginners/students to stay on the right track, and not be 304 
deceived by “good” values of summary metrics such as the Nash-Sutcliffe Efficiency. In such a 305 
structured framework, it will be important to take first into account model simplifications, 306 
assumptions, formulations, the code, and the list of processes, before examining the simulation 307 
results. And, an automated model calibration procedure should not be used as a way to justify a 308 
poorly formulated model that is then "camouflaged by uncertainty estimation". As has been 309 
pointed out before many times (see e.g., Semenova and Beven, 2015), expert opinion and 310 
judgment should matter when evaluating the credibility of model performance and predictions. 311 
To this one might add that scientific knowledge and principles of physics should matter even 312 
more, as should practical perceptual and observational knowledge about the system being 313 
modeled.  314 
As examples of the latter, consider the following. Although flow widths change along the stream 315 
network, most hydrological models use a constant width for the stream network; at the very least, 316 
streams of different order should be allocated different widths. Most hydrological models assume 317 
constant flow velocity fields for the entire duration of the simulation; in fact, flow velocities 318 
should be considered together with the sediment and bed loads. Similarly, hydrological flow 319 
routing should take into account transmission losses, the differences between velocities and 320 
celerities, hysteresis with respect to total storage in a landscape element, heterogeneities and the 321 
extremes of their distribution. To quote Semenova and Beven (2015), "These are requirements 322 
for any distributed modeling scheme in hydrology that is going to be intellectually satisfying in 323 
reproducing both flow and travel times of water". Doing so will bring to bear well-known 324 
hydraulic principles. Bringing physics and more detailed attention to process modeling will also 325 



leads to better integration of surface and subsurface hydrology in models (Paniconi and Putti 326 
2015).  327 
Moreover, alternative theories and approaches, such as representative elementary watershed 328 
concept of Reggiani et al. (1998 and 1999) and the thermodynamic reinterpretation of the HRU 329 
concept of Zehe et al. (2014), help us to limit uncertainty and better deal with equifinality by 330 
improving our understanding of the system. Although even physics based models face 331 
equifinality (see Klaus and Zehe, 2010; Weienhoefer and Zehe, 2014), as this problem simply 332 
arises from the structure of our equations (see Zehe et al., 2014), by explicitly disentangling 333 
driving gradients and resistance terms in flow equations the process-based models offer more 334 
options to exert constraining rules to end up with a rather unique parameter set (Zehe et al., 335 
2014). Taking more processes into account decreases non-uniqueness, as for example Wienhöfer 336 
and Zehe (2014) reduced "the number of equifinal model set-ups" by the results of solute 337 
transport simulations.  338 
Also, some processes such as subsurface processes and preferential flow need to be better 339 
represented explicitly, and we should consider the limitation of Darcy-Richards equations (being 340 
diffusive and assuming local equilibrium conditions) regarding the fast advective responses and 341 
cell size limitation (Vogel and Ippisch, 2008). Similar to the multi-objective criteria approach in 342 
model optimization, where a set of criteria is involved in the search for a unique parameter set; 343 
accordingly from a different angle, if we take more physical processes into account into our 344 
model structure, it does a similar thing, i.e. it gives us more options to constrain parameter values 345 
and reach a rather unique parameter set. Therefore, the equifinality should be dealt with from 346 
different angles to help us to arrive at a better model.  347 
Another approach to dealing with equifinality is by limiting the parameter values through a 348 
procedure that can be called parameter allocation. In the following section, I express my ideas in 349 
this regard and on the future of hydrological modeling.  350 
 351 

5 On parameter allocation and the future of hydrological modelling 352 
In this section, I articulate my opinions regarding parameter allocation and the future of 353 
hydrological modeling, and in particular my opinion in regards to physically-based distributed 354 



models as the right path to model hydrologic processes and to avoid calibration and its related 355 
uncertainties. 356 
5.1 Contrasting parameter calibration and parameter allocation 357 
In the process of model development, calibration seems unavoidable (Beven, 2001; Montanari 358 
and Toth, 2007; Hrachowitz et al. 2013) as a way to compensate for our lack of knowledge of 359 
spatial heterogeneities in watershed properties and our lack of understanding of hydrologic 360 
processes (McDonnell et al. 2007). It can be done either manually or automatically or by some 361 
hybrid approach (Boyle et al 2000, Hogue et al 2000, 2006). Manual calibration applies 362 
hydrologic knowledge and reasoning to obtain the good parameter values in fewer attempts but 363 
involves trial and error and is very time consuming. Automated calibration approaches may not 364 
add much to the hydrologic knowledge of the practitioner, but can be very helpful when there are 365 
many parameters to be determined (overcoming the tedium and time involved in manual 366 
calibration), provides the possibility of quickly checking numerous combinations of plausible 367 
parameter values (that would be impossible to attempt manually), and can provide useful support 368 
to model diagnostic evaluation. Indeed, when the best parameter estimate is physically 369 
unrealistic, one may conclude that the model is not adequate, and such a conclusion can only be 370 
reached if an exhaustive search for the best parameter estimates has been carried out (see 371 
Montanari’s referee comment on this paper; Gupta et al. 1999). Since, automatic calibration is an 372 
iterative procedure, it also provides information useful for parameter sensitivity and uncertainty 373 
analysis (Bahremand and De Smedt, 2008). As explored by Boyle et al (2000) and Hogue et al 374 
(2000, 2006), a hybrid combination of these two types of calibration approaches is also possible. 375 
Meanwhile, what I refer to here as parameter “allocation” does indeed play an important role in 376 
hydrological modeling but has not received sufficient discussion although it is something that 377 
experienced modelers typically do in any modeling study (see Schaefli’s referee comment on this 378 
paper).  I argue that this aspect deserves more attention, since it is in the direction of achieving 379 
more understanding of the hydrological processes, the way they are represented in the model, 380 
and the link between model parameters and catchment characteristics (this understanding can be 381 
extended to conform with the organizing principles mentioned in Schaefli et al., 2011).  382 
Parameter allocation is relevant in the case of process-based models, whose parameters are more 383 
likely to have physical or conceptual meaning and be rationally explainable. With some degree 384 



of practice, and after having gained some understanding of how hydrological processes are 385 
represented in the model and how the parameters relate to observable or conceptual catchment 386 
characteristics, the modeler can specify values for the parameters based on logical reasoning. Of 387 
course, for some of the parameters, a few trial and error adjustments might still prove to be 388 
necessary and useful. It is, therefore, a heuristic technique, a kind of ansatz, in which an educated 389 
guess is made regarding the parameter values, which can later be verified through an evaluation 390 
of the model performance.  391 
So, parameter allocation can be viewed as a part of (or kind of) the parameter calibration 392 
procedure. Whether using a manual or automatic approach, the modeler can use rationality and 393 
logic (based mainly on hydrologic reasoning) to guide parameter improvements. Reasoning can 394 
be used to establish constraints and relational rules between parameters, in accord with relevant 395 
organizing principles (this needs to be elaborated via future modeling research), and in 396 
accordance with a higher level (global or regional) water balance model. These latter two 397 
(conformity with organizing principles and water balance scheme) are particularly relevant when 398 
attempting to develop a community hydrological model (Weiler and Beven, 2015) or a hyper 399 
resolution model of everywhere (Beven, 2007, 2015, Beven and Alcock, 2012). Such constraints 400 
and relational rules can either be applied manually, or by some computer-based procedure (see 401 
Gharari et al. 2014; Vidal et al. 2007).  402 
Essentially, what makes the difference between parameter “allocation” and parameter 403 
“calibration” is the extent of prior knowledge applied by the modeler. In parameter calibration, 404 
prior knowledge is mainly used to set the allowable range of parameter values (to establish the 405 
“feasible” parameter space). In parameter allocation, additional prior knowledge is imposed in 406 
the form of relational rules between parameters, some certain constraints and principles. In this 407 
case, the modeler does attempts to allocate values for as many of the parameters as possible, so 408 
that the need for trial and error adjustments is minimized and limited to only a few parameters.  409 
The point is, of course, to make as much use of prior knowledge as possible, so as to 410 
limit/minimize the uncertainty, while arriving at reasonable (physically or conceptually 411 
defensible) values for the parameter, ones that support our basic conceptual understanding of the 412 
system. In this context, models with the smallest number of “parameters-subjected-to-413 
calibration” will be considered more scientifically interesting, and parameter estimation becomes 414 



part of the learning process (see comment by Hoshin Gupta mentioned above). The primary 415 
motivation and emphasis becomes “understanding” rather than “good results”; i.e., less accurate 416 
results with reasonable parameter values (and model behaviors) are more desirable than more 417 
accurate results with unreasonable parameter values. It brings to the foreground the need to make 418 
a tradeoff between accuracy and reasonability, given the fact that every model is a simplification 419 
of reality.  420 
Below, I outline a few steps that can be followed in the parameter allocation procedure for a 421 
physics based model: 422 
I) Conduct a preliminary rough evaluation of parameter behavior or sensitivity (an optimum 423 

parameter set from a previous study in a different catchment can be a good choice to start 424 
with). The modeler is supposed to understand how the model response relates to the values of 425 
its parameters, and such a test helps to verify the expected behavior for the new study area. 426 

II) Specify (allocate) values for those parameters for which approximate values can be easily  427 
established by following rules of thumb (like parameters Kgi and Kp in the WetSpa model, 428 
see Bahremand and De Smedt, 2008 for the model parameters).  429 

III) Fix any “insensitive” parameters to reasonable nominal values. This step may not generally 430 
be necessary for physically-based distributed models, because their parameters are usually 431 
likely to be sensitive; however, in my work with the WetSpa model, I found it appropriate to 432 
fix one insensitive parameter (parameter Kgm). Similarly Roux et al. (2011) and He et al. 433 
(2015) also report fixing insensitive parameters of their physically based models (MARINE 434 
and THREW). 435 

IV)  Allocate approximate values for parameters that show consistent relational behavior with 436 
catchment characteristics (e.g., parameter Kg in the WetSpa model, see Bahremand et al. 437 
2005, 2007, Liu et al. 2003, 2005). 438 

V) Collect and list all of the relational inequality constraints between parameters (e.g, Kgi < Kgm 439 
in the WetSpa model), the conceptual relations between parameters and catchment 440 
characteristics, (as well as organizing principles and water balance related constraints).  441 

VI)  Apply inequality conditions that may be relevant between some of the parameters. Those 442 
parameters having constraints and relational rules are allocated together. The constraints can 443 



be either implemented manually or using simple computer codes in case of automatic 444 
procedure (see, for example, the tool presented by Vidal, 2007). 445 

VII) In some cases, the model parameters and/or processes will be required to conform with 446 
organizing principles such as optimality, landscape evolution laws, and Horton laws of 447 
stream networks (e.g. Horton number of bifurcation); and a higher level water balance model 448 
(a regional or global model) should be satisfied. As an example of the latter, Schaefli and 449 
Huss (2011) used glacier mass balance data to constrain the parameter uncertainty for their 450 
hydrological model in a glaciered basin (see also He et al. 2015). For the purpose of 451 
developing a community hydrological model, a universal water balance model can be used to 452 
establish constraints on our local model and its parameters. Another way to say this is that 453 
while our models are calibrated locally to observations, they must also obey parameter inter-454 
relationships and constraints, and the organizing principles and components of a universal 455 
water balance model. These three different types of constraints (i.e, constraints between 456 
parameters, organizing principles, and balance related controls) will allow us to pre-set most 457 
of the parameters. However, the idea behind this step still feels somewhat “rough” in my 458 
minds, and needs further elaboration and perhaps revision.  459 

As mentioned above, for some of the parameters the results will be a parameter range rather than 460 
a definite value, and it is likely that some residual manual trial and error adjustments may still be 461 
necessary before the modeler can decide on the final parameter values. Having arrived at this 462 
“allocated” set, one must trust in, and be confident with, the outcome. 463 
5.2 Some further comments regarding parameter allocation 464 
My experience with this kind of parameter allocation is that it has attributes of both the bottom-465 
up and top-down approaches to model development. By this, I mean that the modeler is required 466 
to be able to change her/his viewpoint based on what happens during the parameter allocation 467 
process. The manual-expert and automated approaches each have their advantages and 468 
disadvantages, and an experienced modeler brings both approaches to bear when seeking to 469 
allocate values for the parameters. In this way, the process can act as a link between deductive 470 
physics-based distributed modeling and the behavioral modeling approach (using organizing 471 
principle to constrain models) described by Schaefli et al. (2011).  472 



Whereas parameter allocation can be used to establish relatively narrow ranges on the parameter 473 
values, the application of optimality or organizing principles can help to further restrict these 474 
ranges. Schaefli et al., (2011) express this as “adjusting the model structure and parameters so 475 
as to respect this organizing principle”. Some that have received attention in the literature 476 
include the optimality principle (Schymanski, 2008 and 2009), maximum energy dissipation 477 
(Zehe et al. 2010), maximum entropy production (Kleidon and Schymanski, 2008; Kleidon et al. 478 
2012 and 2013; Westhoff and Zehe, 2013), landscape evolution laws and optimal channel 479 
networks (Rodriguez-Iturbe and Rinaldo, 2001; Rinaldo et al. 2013) or self-organized 480 
dissipation of singular events (Beven 2015). Proper application of such principles can be used to 481 
improve the theoretical underpinnings of hydrologic models (Clark et al 2016) and can provide 482 
constraints that might be useful in making predictions (Schaefli et al. 2011); although see Beven 483 
(2015) who calls them purely theoretical conjectures that are difficult to prove. Schymanski et al. 484 
(2009) presents a good example of how optimality may be a useful way of approaching the 485 
prediction and estimation of some vegetation characteristics and fluxes in ungauged basins 486 
without calibration.  487 
5.3 On the future of hydrological modeling 488 
To reiterate, hydrological modeling has become more and more physics- and process-based. This 489 
opinion paper reflects my passion for process-based models, and my (perhaps) radical belief that 490 
other types of models do not serve us well anymore. When working with process models, we 491 
should spend less time on model optimization and instead focus on our perceptual and 492 
conceptual insights with a view to better understanding and expressing the physical nature of the 493 
system. This implies that:  494 

1) models should typically only contain physically based parameters 495 
2) models having fitting parameters without physical basis are inferior and should be 496 

abandoned 497 
3) spatially-lumped parameters are not physically based and should be avoided 498 
4) models with physically based parameters that are unable to reproduce observations are 499 

incomplete or erroneous and need to be improved, fixed or abandoned 500 



5) models with non-sensitive parameters are basically inadequate to simulate the system 501 
(i.e., over-parameterization is bad) 502 

6) physical models that “fail” need to be improved, and can help us learn something about 503 
what is wrong (impetus for research) 504 

7) in the limit we should strive for “white box models” that do not need any calibration, or 505 
only minor calibration (parameter adjustment).  506 

To reach such a goal we need to apply better measurements and better physics. As stated by 507 
Paniconi and Putti (2015), "no one would disagree that scientific progress requires a constant 508 
dialogue between measurement, analysis, and simulation". The Gupta et al. (2014) paper 509 
advocating large-sample hydrology also implies the necessity of such dialog to improve 510 
hydrologic science, and Hrachowitz et al. (2013) mentions “data” as the backbone of any type of 511 
progress.  512 
Of course, both involve significant challenges. Beven and Germann (2013) provide a thoughtful 513 
discussion on the misuse of physics in simulating flow through porous media, and in particular, 514 
the limitations of Darcy and Richards equations; they suggest the representation of preferential 515 
flows via a Stokes flow for profile scale and multiple interacting pathways model (Davies et al., 516 
2011) at the hillslope scale. Zehe et al. (2013) propose a thermodynamic approach to represent 517 
catchment scale preferential flow. The mass, energy and momentum balance closure problem 518 
presents a significant challenge (Beven, 2006a, see also the editor’s comment on my paper), 519 
although there has been some progress (Reggiani et al. 2000, Reggiani and Schellekens, 2003, 520 
Reggiani and Reintjes, 2005, Tian et al, 2006, Mou et al. 2008). Kleidon and Schymanski (2008) 521 
suggest that the optimality principle can help with the scaling of hydrologic fluxes; knowing the 522 
hydrologic fluxes at a larger scale can provide a “big” picture, and a top-down approach can be 523 
used to infer the boundary fluxes of ungauged basins at smaller scales. 524 
Perhaps we can describe the future of hydrological modeling by means of an analogy with the 525 
problem of solving a spherical jigsaw puzzle, where the puzzle involves assembly of numerous 526 
oddly shaped interlocking and tessellating pieces, each having only a small part of the overall 527 
picture. To solve the puzzle it is helpful to have 4 different kinds of information: 528 



1) A sense of the complete picture; this can be compared with our perceptual and conceptual 529 
model of the hydrologic cycle at the global scale. 530 

2) Information regarding the puzzle edges (borders); this is analogous with large-scale water 531 
balance and its components 532 

3) Information regarding the picture expressed by each piece itself; this is analogous to 533 
regional or catchment scale hydrological models (the representation of local scale 534 
hydrological processes) 535 

4) Information regarding the ways in which the pieces interlock. 536 
It is well known that rapid solution of a jigsaw puzzle can be facilitated by sorting and 537 
categorizing the pieces according to shape, color, edge and corner shapes, and shapes of 538 
interlocking connectors; this may be comparable with concepts such as generalization, 539 
regionalization, and the organizing principles and behavioral modeling of Schaefli et al. (2011). 540 
Comparing the partially constructed puzzle with the complete picture (usually printed on the 541 
front of the box) is similar to what I have described as a mind commute between the top-down 542 
and bottom-up viewpoints (Sivapalan, 2005). The learning process emphasized by Beven (2007) 543 
in his “models of everywhere” and the “learning instead of rejection” view exposed by Gupta 544 
and Nearing (2014) is expressive of this practice. As we continue to work on the puzzle, we try 545 
to build upon already completed sections, and eventually we get to the stage where we can see 546 
the end of the project where the “holes” become the objects of our attention. 547 
 548 
6 Conclusions 549 
In conclusion, it is clear that we need to make a determined effort to shift the focus of our 550 
modeling studies away from parameter optimization and towards a deeper attention to process 551 
modeling and revision of our conceptual models. We should even be ready to revise our 552 
perceptual models. Gupta and Nearing (2014) argue that we need robust and rigorous methods to 553 
support such a shift, and Gharari et al. (2014) shows that such an approach can help to liberate 554 
us from the need for model calibration, transforming it into a process of parameter allocation. 555 
Ideally, the calibration and evaluation procedures would act synergistically to drive model 556 
improvement. Hopefully then, we will move past “equifinality” to achieve “equimodellity”,  557 



reaching at last one fulfilling model that is a "model that is so physically correct that it does not 558 
need calibration at all"(the third aforementioned solution of Bergstrom). Although such a target 559 
might seem unreachable, it could at least act as a beacon for hydrologists.  560 
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