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Response to Anonymous Referee #1 

 

RC 1: “The authors present the application of the Fuzzy Neural Network (originally 

proposed by Alvisi and Franchini, 2011) for the prediction of the dissolved oxygen 

concentration in a river. The topic is of interest and within the scope of the journal. 

The manuscript is well written and technically sound, even though some sections 

could be shortened. As properly pointed out by the authors in the conclusions, “the 

proposed model refines the exiting model by (i) using possibility theory based 

intervals to calibrate the neural network (rather than arbitrarily selecting confidence 

intervals), and (ii) using fuzzy number inputs rather than crisp inputs.” Indeed, the 

first aspect represents a valuable, but rather limited, step forward with respect to the 

existing model. As far as the second aspect concerns, I really appreciate both the idea 

of considering the inputs of the FNN as fuzzy numbers and the approach used to 

define these fuzzy inputs.”  

 

Thank you for these positive comments. We will endeavour to shorten the length of the final 

revised manuscript where possible.  

 

RC 2. “Unfortunately, the manuscript misses to point out the benefits of using the 

fuzzy inputs. A comparison of the performances of the prediction model featuring 

fuzzy inputs with respect to the prediction model using non-fuzzy inputs is completely 

missing. Does the application of fuzzy inputs allows for a more accurate prediction of 

the DO and, most important, for a reduction of the output uncertainty? Indeed, the 

discussion of the result is mainly focused on the benefits of using a FNN with respect 

to a traditional NN in which uncertainty is disregarded, but this should not be the 

main task of the manuscript, given that benefits of FNN have already been pointed out 

in other studies, whereas the attention should be focused on the application of Fuzzy 

inputs.”  

 

We apologise for not including more details of the specific advantages of the fuzzy number 

inputs in the FNN. We have included the following statement in the manuscript:  
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Page 6, Line 26: “The method is adapted to be able to handle fuzzy number inputs to 

produce fuzzy weights and biases, and fuzzy outputs. The advantage is that the 

uncertainties in the input observations are also captured within the model structure.”  

 

Page 21, Line 8: “The impact of this revision is that when there is known variance or 

uncertainty in the input dataset, it should be incorporated into the model structure. In 

Eqns. 13 and 14, this is done through the use of fuzzy rather than crisp inputs.” 

We have also included the advantages of the proposed method to create fuzzy inputs from 

observations: 

Page 12, Line 26: “This updated method requires no assumptions regarding the 

distribution of the underlying data or selection of an arbitrary bin-size, has the flexibility 

to create different shapes of fuzzy numbers depending on the distribution of the 

underlying data, and allows multiple elements to have equal μ = 1.” 

 

A comparison between the existing FNN method with crisp inputs and the proposed FNN with 

fuzzy inputs has been included in the in the revised manuscript. Please see the extensive changes 

and additions in the Section 3.2, particularly page 36 (line 14) and the revision of Figs. 5 and 6, 

as well as the addition of Figs 10. And 11.   

 

For clarification we would like to highlight a few issues related to this comparison: 

 

1. Conceptually, an FNN model with crisp inputs and fuzzy inputs are completely different, 

making a direct comparison difficult (or at least not straightforward). It is not just a case of 

comparing error metrics, or percent of data captured within intervals (e.g. as shown in Tables 

3 and 4 in the initial manuscript). This is because these two approaches are essentially 

modelling the system completely differently. In the crisp input case, the input uncertainty is 

completely ignored even though this data is available. This is essentially making a complex 

problem less complex by limiting the amount of data that is used in the model. Also, there is 

no definitive answer to what the crisp input should be: is it the mean daily value? The median 

value? Or the corresponding value from the fuzzy number at μ = 1? (n.b. this final option is 

what we have selected for our comparison to allow for the closest approximation between the 

two approaches). On the other hand, the fuzzy number based input use all the available 

information (i.e. hourly observations), and condenses it into one fuzzy number. Arguably, in 

this approach the complexity of the system is not being ignored (by reducing the highly 

variable/uncertain inputs into crisp, single-values inputs). Thus, any analysis of the 

performance of these two methods should highlight that the proposed method accomplishes 

something that the existing method cannot.  

 

2. Currently, they are no suitable performance metrics to compare fuzzy number based models 

with each other (or for that matter even with other crisp models). While the Nash-Sutcliffe 

Efficiency (or other similar metrics) can be calculated on an α-cut interval basis, these values 

do not represent the overall model performance nor does calculating the amount of extreme 

values within the fuzzy interval. A suitable alternative may be to use the training method of 

the FNN: to see if the percentage of data captured within each interval is similar (see Table 4 

in the manuscript). However, given that this is an optimisation problem, and both methods 

will have the same tolerances, the result is expected to be the same for both (at least for the 
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training dataset), although the computation time will differ. Thus, the computation time may 

be used as an effective metric, but even this does not account for the fact that in the proposed 

method the uncertainty in the inputs is being included in the model, and hence, the extra 

computational cost is acceptable if the input uncertainty is high (as in the case in this research 

where flowrate and water temperature are used as inputs).  

 

3. With respect to “more accurate predictions”: both the proposed and existing FNN method are 

designed to capture the same amount of data (PCI) in a given α-cut interval, whilst searching 

for the minimum width of that interval. An analysis comparing the widths of the intervals has 

been included in the revised version of the manuscript (Page 37, Line 7). However, it is 

worthwhile to point out that in the proposed FNN method more data (due to the construction 

of fuzzy numbers using hourly observation) was used to train the model, and represents the 

real uncertainty in the inputs. Whereas, selecting a modal value for the crisp FNN method 

(selected as the \mu = 1 value) for this research, but other values (e.g. daily mean or median 

may also be selected) do not capture the input data uncertainty. Thus, the proposed method 

gives similar results (i.e. the training criteria) but using the input uncertainty as well.  

 

4. With respect to a “reduction in output uncertainty”: the uncertainty is reduced because by 

using fuzzy inputs all the observed data is used to calibrate the model, and this gives a full 

spectrum of possible outcomes. In other words, the uncertainty is lower because all 

possibilities of the output value have been mapped out using all available input data. In the 

crisp input case, the uncertainty is by definition higher, since the variability or uncertainty in 

the input data has not been accounted for (only one crisp value is used), as discussed in Point 

3 above. Using this definition of uncertainty means that there is a reduction in output 

uncertainty (since more information is used), while not necessarily meaning that the predicted 

intervals are smaller or more accurate.  

 

5. Based on our experience using fuzzy number based data-driven methods for hydrological and 

environmental applications, there is still a need and demand to compare new methods (like 

the one proposed in this research) with existing non-fuzzy methods to provide a baseline 

reference with other literature (see a brief discussion on page 18, line 3). Thus, we think it is 

important to include this comparison in this manuscript so that readers who may be 

unfamiliar with fuzzy number and possibility theory based methods may be able to directly 

compare results from this research to other NN based results. Secondly, while we agree that 

the benefits of the FNN method has been highlighted in previous studies, we would like to 

highlight that the FNN used in this research uses a different training criteria (i.e. the selection 

of PCI shown in Table 2 in the manuscript) compared to previous work, so there is a benefit in 

showing the results for this comparison.  

 

RC 3. “Furthermore, I have some concerns also on the benefits of using the FNN with 

respect to a deterministic NN. Indeed, the authors state that (page 12351) “the FNN 

method predicts a probability of low DO (even if it is relatively small) on days when 

the crisp ANN does not predict a low DO event. This value can be used as a threshold 

by water resource managers for estimating the risk of low DO. For example, if 

forecasted water temperature and flow rate are used to predict minimum fuzzy DO 
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using the calibrated model, if the risk of low DO reaches 14 %, the event can be 

flagged.” Capability of the FNN of identifying very low DO values is certainly 

appreciable, but on the other hand, by looking at figure 6, it seems that most of the 

predicted fuzzy DO numbers features a support which in some way intersects very 

low (i.e. <5 mg/l) DO values. In other words, according to the criteria proposed by the 

authors how many events would be flagged? And, how many of these flagged events 

were low (i.e. <5 mg/l) observed DO events and how many would have been false 

alarms?” 

 

First, we would like to highlight that the data has been filtered to include only data from the 

April to October period for each year (to remove the ice-free period in the river). This 

means that the entire analysis has been conducted on the time period that is most susceptible 

to low DO (due to high water temperature). In other words, we are focusing on the most 

critical time period already. Thus, it is expected that the majority of the days will have some 

possibility of low DO (this is clarified on (Page 39, Line 18). This phenomenon is correctly 

reproduced in Figure 6 that shows that indeed there is a possibility (though typically at low 

membership levels) to predict “very low DO” (< 5mg/L) values.  

 

Second, it is worth noting that using possibility theory means that “something should be 

possible before it is probable”, i.e. Zadeh’s consistency principle. Thus, the fact the FNN 

model predicts a possibility of very low DO does not necessarily mean that there will be a 

significant or high probability of this event to occur (this is discussed in detail on Page 10, 

Line 25, and Page 39, Line 22). In fact, this can be seen in the trend plots (Figs. 7 and 8 in 

the manuscript) that show that the produced fuzzy number membership functions are highly 

skewed (see Page 34, Line 12 and more examples in Figure 12), i.e. the predictions at the 

lower limit of the α-cut at μ = 0 are much lower than the rest of the membership function. In 

the possibility-probability framework adopted in this research (see Sections 2.2 and 2.4 in 

the manuscript), this means that the highly skewed membership functions translate into very 

low probability events (based on Equation 20 in the manuscript).  

 

Third, we have identified (Page 34, Line 22) that the 2004 data has contributed to the wide 

intervals in the predictions. The rapid decrease in DO in the 2004 data (which are likely due 

to instrument error), along with the optimisation constraints that requires 99.5% of the data 

to be included in the predicted interval at μ = 0, means that the produced output will include 

these outliers at the expense of creating wider intervals. However, we have noted that as 

more data is available and include in the model, the 0.5% of data points that will no longer 

be captured within the μ = 0 interval are likely to be these outliers, resulting in narrower 

predicted intervals (see Page 35, Line 1).  

 

Finally, as requested by the referee, the revised manuscript includes a summary of the 

flagged days using our criteria for low DO as well as those incorrectly identified at the 

given threshold, i.e. "false alarms" (Page 39, Line 28).  

 

We hope that this will satisfy all of the Referee’s comments.  
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Response to Anonymous Referee #2 

 

RC 1. What is the novelty of this study? What do the authors expect international 

readers (who are not interested in the study region) to learn from reading this paper.  

 

There are three novel contributions presented in this research (which are listed in the manuscript). 

In addition to this, the proposed approach for hydrological prediction, uncertainty and risk 

analysis can be extended to many other applications. In more specific detail: 

 a new method to construct fuzzy numbers from observed environmental and hydrological 

data is presented. Many fuzzy number based applications suffer from the fact that there is no 

widely accepted, consistent and objective method to construct fuzzy numbers from 

observations. We have attempted to address this issue by introducing a new two-step 

procedure where we first estimate the underlying, unknown probability mass function using a 

bin-size optimisation procedure, and then use a probability-to-possibility transformation to 

convert this to fuzzy number membership function. A number of different examples are used 

to demonstrate the advantage and suitability of this method.  

 An existing fuzzy neural network (FNN) method is improved in this paper by proposing the 

use of possibility theory-based intervals for training the neural network. This replaces a 

somewhat arbitrary training criteria with a more objective criterion. Specifically, the original 

FNN uses pre-selected confidence intervals to define the amount of data captured within each 

fuzzy interval (i.e. α-cut), for example 100% at μ= 0, 99% at μ = 0.25. We use a relationship 

proposed by Serrurier & Prade (2013) to define the amount of data captured within α-cut. In 

doing so, the full spectrum of possible values are included in these calculations. This is so 

that modellers and end-users who are interested in events not included in the original, pre-

determined criteria can use an objective (i.e. based on possibility theory) method to design 

their FNN.  

 The existing FNN is further refined by allowing the use of fuzzy inputs, along with the fuzzy 

weights, biases and outputs. Current methods only allowed crisp (i.e. non-fuzzy inputs) in the 

FNN. This has significant advantages over current methods, namely that the uncertainty in 

the input data is also accounted for in predicting DO concentration. In other words, the model 

output has accounted for the total uncertainty, in the weights and biases, as well as the inputs.  

 The approach used in this study (data-driven modelling with fuzzy numbers when the 

underlying physical system is complex and poorly understood) can be extended to many other 

applications dealing with water quality in rivers, in flood risk predictions, or hydrological and 

environmental applications that suffer from similar issues, namely a complex system with 

many source of uncertainty. International readers will benefit from potentially applying this 

technique in their own watersheds to improve water quality prediction, and the associated risk 

analysis presented in this research. As mentioned above, this paper also presents a new 

method to construct fuzzy numbers that relies on minimal assumptions of the underlying data. 

This directly addresses a major need in the hydrological community. Lastly, readers will 

benefit from seeing the refinements to an existing FNN model; these refinements create a 

more transparent model structure (i.e. objective criteria for training) and include the use of 

fuzzy inputs (which is necessary in many hydrological cases where input uncertainty is 

present).    
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RC 2. The authors didn’ t define statistical parameters of input and output variables. 

The study will make more sense in interpretation of statistical parameters.  

 

We apologize for these omissions. The revised manuscript includes: 

Page 9, Line 4 : “The mean annual water temperature ranged between 9.23 and 13.2◦C, 

the annual mean flow rate was between 75 and 146 m3s−1, and the mean annual 

minimum daily DO was between 6.89 and 9.54 mgL-1, for the selected period.” 

 

RC 3. How many datas are used in this study? The authors didn’t define to use 

training datas and test datas this study.  

 

We apologize for this omission as well. A total of 9 years of data was used for this research 

(from 2004 to 2012); the data were filtered to include data only from the ice-free period 

(April to October of each year). The total amount of daily data was 1639 days (a yearly 

breakdown is shown in Table R1 and is now included in the revised manuscript in the 

revised Table 1).  

 

Table R1: Summary of amount of data used from each year 

Year 

Number of 

days 

2012 206 

2011 204 

2010 207 

2009 96 

2008 163 

2007 211 

2006 209 

2005 208 

2004 135 

Total 1639 

 

The amount of data used for training, validation and testing followed a 50–25–25% 

Split (randomly divided into each section). This is outlined in Section 2.3.3 (Page 23, Line 

3) of the manuscript.  

 

RC 4. The authors didn’t write key board. What are key board for the manuscript?  

 

The key words associated with this manuscript are listed below, and we will include these in 

the final version  

Page 1, Line: “Keywords: dissolved oxygen; water quality; artificial neural networks; 

fuzzy numbers; fuzzy neural networks; risk analysis; uncertainty”  

 

RC 5. Why is not continuous in Figüre 7, 8, and 9.  
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There are a number of missing data throughout the dataset due to numerous reasons, 

ranging from sampler error or no data recorded (as received from the data providers 

Environment Canada or the City of Calgary), or due to the data filters used for reasons 

highlighted in Section 2.1 (only ice-free period was considered, see Page 7, Line 23). We 

ignored all missing data from our analysis. The data that we used was thus for days where 

error-free data existed for each of the three parameters (flowrate, temperature and DO). 

Thus, Figures 7, 8 and 9 show some gaps in the trends for days when no data was collected, 

and hence no subsequent prediction was made.  

 

RC 6. Fuzzy neural networks method is too large, it should be less the part. 

RC 7. Results and discussion is too large, The authors should reduce the part. 

 

Thank you for these suggestions, we will endeavour to reduce the length of the final 

manuscript.  
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Abstract 12 

A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in 13 

a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic 14 

(non-living, physical and chemical attributes) as inputs to the model, since the physical 15 

mechanisms governing DO in the river are largely unknown. A new two-step method to construct 16 

fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified 17 

to account for fuzzy number inputs and also uses possibility-theory based intervals to train the 18 

network. Results demonstrate that the method is particularly well suited to predict low DO events 19 

in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, 20 

as well as with a traditional neural network. Model output and a defuzzification technique is used 21 

to estimate the risk of low DO so that water resource managers can implement strategies to prevent 22 

the occurrence of low DO.  23 

Keywords: dissolved oxygen; water quality; artificial neural networks; fuzzy numbers; fuzzy 24 

neural networks; risk analysis; uncertainty   25 
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1 Introduction 1 

The City of Calgary is a major economic hub in western Canada. With a rapidly growing 2 

population, currently estimated in excess of 1 million, the City is undergoing expansion and 3 

urbanisation to accommodate the changes. The Bow River is a relatively small river (with an 4 

average annual flow of 90 m3 s-1, with an average width of 100 m, and depth of 1.5 m) that flows 5 

through the City and provides approximately 60% of the residents with potable water (Khan & 6 

Valeo, 2015a; 2015b). In addition to this, water is diverted from within the City for irrigation, is 7 

used as a source for commercial and recreational fisheries, and is the source of drinking water for 8 

communities downstream of Calgary (Robinson et al., 2009; Bow River Basin Council, 2015). This 9 

highlights the importance of the Bow River, not just as a source of potable water, but also as a 10 

major economic resource.  11 

However, urbanisation has the potential to reduce the health of the Bow River, which is fast 12 

approaching its assimilative capacity and is one of the most regulated rivers in Alberta (Bow River 13 

Basin Council, 2015). Three wastewater treatment plants (shown in Fig. 1) and numerous 14 

stormwater outfalls discharge their effluent into the River and are considered to be a major cause 15 

of water quality degradation in the River (He et al., 2015). This highlights some of the major 16 

impacts on the Bow River from the surrounding urban area. A number of municipal and provincial 17 

programs are in place to reduce the loading of nutrients and sediments into the river such as the 18 

Total Loadings Management Plan and the Bow River Phosphorus Management Plan (Neupane et 19 

al., 2014) as well as modelling efforts – namely the Bow River Water Quality Model (Tetra Tech, 20 

2013; Golder, 2004) – to predict the impact of different water management programs on the water 21 

quality.   22 

One of the major concerns is that low dissolved oxygen (DO) concentration has occurred on a 23 

number of occasions over the last decade in the Bow River within the City limits. DO is an indicator 24 

of overall health of the aquatic ecosystem (Dorfman & Jacoby, 1972; Hall, 1984; Canadian Council 25 

of Ministers of the Environment, 1999; Kannel et al., 2007; Khan and Valeo, 2014a; 2015a), and 26 

low DO – which can be caused by a number of different factors (Pogue and Anderson 1995; Hauer 27 

and Hill 2007; He et al., 2011; Wen et al., 2013) – can impact various organisms in the waterbody. 28 

While the impact of long-term effects of low DO are largely unknown, acute events can have 29 

devastating effects on aquatic ecosystems (Adams et al., 2013). Thus, maintaining a suitably high 30 
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DO concentration, and water quality in general, is of utmost importance to the City of Calgary and 1 

downstream stakeholders, particularly as the City is being challenged to meet its water quality 2 

targets (Robinson et al., 2009).  3 

A number of recent studies have examined the DO in the Bow River, and the factors that impact 4 

its concentration. Iwanyshyn et al., (2008) found the diurnal variation in DO and nutrient (nitrate 5 

and phosphate) concentration was highly correlated, suggesting that biogeochemical processes 6 

(photosynthesis and respiration of aquatic vegetation) had a dominant impact on nutrient 7 

concentration rather than wastewater treatment effluent. Further, Robinson et al., (2009) found that 8 

the DO fluctuations in the River were primarily due to periphyton rather macrophyte 9 

biogeochemical processes. In both studies, the seasonality of DO, nutrients, and biological 10 

concentration, and external factors (e.g. flood events) were demonstrative of the complexity in 11 

understanding river processes in an urban area, and that consideration of various inputs, outputs 12 

and their interaction if important to fully understand the system. He et al., (2011) found that 13 

seasonal variations in DO in the Bow River could be explained by a combination of abiotic factors 14 

(such as climatic and hydrometric conditions), as well as biotic factors. The study found that while 15 

photosynthesis and respiration of biota are the main drivers of DO fluctuation, the role of nutrients 16 

(from both point and non-point sources) was ambiguous. Neupane et al. (2014) found that organic 17 

materials and nutrients from point and non-point sources influence DO concentration in the River. 18 

The likelihood of low DO was highest downstream of wastewater treatment plants, and that non-19 

point sources have a significant impact in the open-water season. Using a physically-based model, 20 

Neupane et al. (2014) predicted low DO concentration more frequently in the future in the Bow 21 

River owing to higher phosphorus concentration in the water, as well as impacts of climate change 22 

impacts.  23 

A major issue of modelling DO in the Bow River is that rapid urbanisation within the watershed 24 

has resulted in substantial changes to land-use characteristics, sediment and nutrient loads, and to 25 

other factors that govern DO. Major flood events (like those in 2005 and 2013) completely alter 26 

the aquatic ecosystem, while new wastewater treatment plants (e.g. the Pine Creek wastewater 27 

treatment plant) added in response to the growing population further increases the stress 28 

downstream. These types of changes in a watershed increase the complexity of the system, : making 29 

DO trends and variability more challenging to model. The the interaction of numerous factors, over 30 
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a relatively small area and across different temporal scales means that DO trends and variability in 1 

urban areas are more difficult to predict model and evaluating water quality in urban riverine 2 

environments is a difficult task (Hall, 1984; Niemczynowicz, 1999).   3 

The implication of this is that the simplistic representation described in conceptual, physically-4 

based models is not suitable for complex systems, i.e. where the underlying physical mechanisms 5 

behind the factors that govern DO are still not clearly understood, in a rapidly changing urban 6 

environment. Physically-based models require the parameterisation of a several different variables 7 

which may be unavailable, expensive and time consuming (Antanasijević et al., 2014; Wen et al., 8 

2013; Khan et al., 2013). In addition to this, the increase in complexity in an urban system 9 

proportionally increases the uncertainty in the system. This uncertainty can arise as a result of 10 

vaguely known relationships among all the factors that influence DO, in addition to the inherent 11 

randomness in the system (Deng et al., 2011). The rapid changes in an urban area render the system 12 

dynamic as opposed to stationary, which is what is typically assumed for many probability-based 13 

uncertainty quantification methods. Thus, not only is DO prediction difficult, it is beset with 14 

uncertainty, hindering water resource managers from making objective decisions.  15 

In this research, we propose a new method to predict DO concentration in the Bow River using a 16 

data-driven approach, as opposed to a physically-based method, that uses possibility theory and 17 

fuzzy numbers to represent the uncertainty rather than the more commonly used probability theory. 18 

Data-driven models are a class of numerical models based on generalised relationships, links or 19 

connections between input and output datasets (Solomantine & Ostfeld, 2008). These models can 20 

characterize a system with limited assumptions and are useful in solving practical problems, 21 

especially when there is lack of understanding of the underlying physical process, the time series 22 

are of insufficient length, or when existing models are inadequate (Solomatine et al., 2008; 23 

Napolitano et al., 2011). 24 

1.1 Fuzzy numbers and data-driven modelling  25 

Possibility theory is an information theory that is an extension of fuzzy sets theory for representing 26 

uncertain, vague or imprecise information (Zadeh, 1978). Fuzzy numbers are an extension of fuzzy 27 

set theory, and express an uncertain or imprecise quantity. These types of numbers are particularly 28 

useful for dealing with uncertainties when data are limited or imprecise (Bárdossy et al., 1990; 29 
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Guyonnet et al., 2003; Huang et al., 2010; Zhang & Achari 2010) – in other words when epistemic 1 

uncertainty exists. This type of uncertainty is in contrast to aleatory uncertainty that is typically 2 

handled using probability theory. Possibility theory and fuzzy numbers are thus useful when a 3 

probabilistic representation of parameters may not be possible, since the exact values of parameters 4 

may be unknown, or only partial information is available (Zhang, 2009). Thus, the choice of using 5 

a data-driven approach in combination with possibility theory lends itself well to the constraints 6 

posed by the problem in the Bow River: the difficulty in correctly defining a physically-based 7 

model for a complex urban system and the use of possibility theory to model the uncertainty in the 8 

system when probability theory based methods may be inadequate.  9 

Data-driven models, such as neural networks, regression-based techniques, fuzzy rule–based 10 

systems, and genetic programming, have seen widespread use in hydrology, including DO 11 

prediction in rivers (Shrestha & Solomatine, 2008; Solomatine et al., 2008; Elshorbagy et al., 12 

2010). Wen et al. (2011) used artificial neural networks (ANN) to predict DO in a river in China 13 

using ion concentration as the predictors. Antanasijević et al., (2014) used ANNs to predict DO in 14 

a river in Serbia using a Monte Carlo approach to quantify the uncertainty in model predictions and 15 

temperature as a predictor. Chang et al., (2015) also used ANNs coupled with hydrological factors 16 

(such as precipitation and discharge) to predict DO in a river in Taiwan. Singh et al., (2009) used 17 

water quality parameters to predict DO and BOD in a river in India. Other studies (e.g. Heddam, 18 

2014 and Ay & Kisi. 2012,) have used regression to predict DO in rivers using water temperature, 19 

or electrical conductivity, amongst others, as inputs. In general, these studies have demonstrated 20 

that there is a need and demand for less complex DO models, has led to an increase in the popularity 21 

of data–driven models (Antanasijević et al., 2014), and that the performance of these types of 22 

models is suitable. Recent research into predicting DO concentration in the Bow River in Calgary 23 

using abiotic factors (these are non-living, physical and chemical attributes) as inputs have shown 24 

promising results (He et al., 2011; Khan et al., 2013; Khan & Valeo, 2015a). The advantage of 25 

using readily available data (i.e. the abiotic inputs) in these studies is that if a suitable relationship 26 

between these factors and DO can be found, changing the factors (e.g. increasing the discharge rate 27 

downstream of a treatment plant) can potentially reduce the risk of low DO. 28 

While fuzzy set theory based applications, particularly applications using fuzzy logic in neural 29 

networks, have been widely used in many fields including hydrology (Bárdossy et al., 2006; 30 
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Abrahart et al., 2010), the use of fuzzy numbers and possibility theory based applications has been 1 

limited in comparison (Bárdossy et al., 2006; Jacquin, 2010). Some examples include maps of soil 2 

hydrological properties (Martin-Clouaire et al., 2000), remotely sensed soil moisture data 3 

(Verhoest et al., 2007), climate modelling (Mujumdar and Ghosh, 2008), subsurface contaminant 4 

transport (Zhang et al., 2009), and streamflow forecasting (Alvisi & Franchini, 2011). Khan et al. 5 

(2013) and Khan & Valeo (2015a) have introduced a fuzzy number based regression technique to 6 

model daily DO in the Bow River using abiotic factors with promising results. Similarly, Khan & 7 

Valeo (2014a) used an autoregressive time series based approach combined with fuzzy numbers to 8 

predict DO in the Bow River. In these studies, the use of fuzzy numbers meant that the uncertainty 9 

in the system could be quantified and propagated through the model. However, due to the highly 10 

non-linear nature of DO modelling, the use of an ANN based method is of interest since these types 11 

of models are effective for modelling complex, nonlinear relationships without the explicit 12 

understanding of the physical phenomenon governing the system (Alvisi & Franchini, 2011; 13 

Antanasijević et al., 2014). A fuzzy neural network method proposed by Alvisi & Franchini (2011) 14 

for streamflow prediction that uses fuzzy weights and biases in the network, is further refined in 15 

this research for predicting DO concentration.   16 

1.2 Objectives 17 

Given the importance of DO concentration as an indicator of overall aquatic ecosystem health, 18 

there is a need to accurately model and predict DO in urban riverine environments, like that in 19 

Calgary, Canada. In this research a new data-driven method is proposed that attempts to address 20 

the issues that plague numerical modelling of DO concentration in the Bow River. The FNN 21 

method proposed by Alvisi & Franchini (2011) is adapted and extended in two critical ways. The 22 

existing method uses crisp (i.e. non-fuzzy) inputs and outputs to train the network, producing a set 23 

of fuzzy number weights and biases, and fuzzy outputs. The method is adapted to be able to handle 24 

fuzzy number inputs to produce fuzzy weights and biases, and fuzzy outputs. The advantage is that 25 

the uncertainties in the input observations are also captured within the model structure. To do this, 26 

a new method of creating fuzzy numbers from observations is presented based on a probability-27 

possibility transformation. Second, the existing training algorithm is based on capturing a 28 

predetermined set of observations (e.g. 100%, 95% or 90%) within the fuzzy outputs. The selection 29 
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of the predetermined set of observations in the original study was an arbitrary selection. A new 1 

method that exploits the relationship between possibility theory and probability theory is defined 2 

to create a more objective method of training the FNN. A consequence of this is that the resulting 3 

fuzzy number outputs from the model can then be directly used for risk analysis, specifically to 4 

quantify the risk of low DO concentration. This information is extremely valuable for managing 5 

water resources in the face of uncertainty. The impact of using fuzzy inputs and the new training 6 

criteria is evaluated by comparing results to the existing FNN method (by Alvisi & Franchini, 7 

2011) as well as with a traditional, crisp ANN.  8 

Following previous research for this river, two abiotic inputs (daily mean water temperature, T and 9 

daily mean flow rate, Q) will be used to predict daily minimum DO. An advantage of using these 10 

factors is that they are routinely collected by the City of Calgary, and thus, a large dataset is 11 

available. Also, their use in previous studies has shown that they are good predictors of daily DO 12 

concentration in this river basin (He et al., 2011, Khan et al., 2013, Khan and Valeo, 2015a). The 13 

following sections outline the background of fuzzy numbers and existing probability-possibility 14 

transformations. This is followed by the development of the new method to create fuzzy numbers 15 

from observations. Then, the new FNN method using fuzzy inputs is developed mathematically 16 

using new criteria for training, also based on possibility theory. Lastly, a method to measure the 17 

risk of low DO is described.  18 

2 Methods 19 

2.1 Data collection 20 

The Bow River is 645 km long and averages a 0.4% slope over its length (Bow River Basin 21 

Council, 2015) from its headwaters at Bow Lake in the Rocky Mountains to its confluence with 22 

the Oldman River in Southern Alberta, Canada (Robinson et al., 2009; Environment Canada, 2015). 23 

The river is supplied by snowmelt from the Rocky Mountains, rainfall and discharge from 24 

groundwater. The City of Calgary is located within the Bow River Basin and the river has an 25 

average annual discharge of 90 m3 s-1, an average width and depth of 100 m and 1.5 m, respectively 26 

(Khan & Valeo, 2014b; 2015b).  27 

The City of Calgary routinely samples a variety of water quality parameters along the Bow River 28 

to measure the impacts of urbanisation, particularly from three wastewater treatment plants and 29 
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numerous stormwater runoff outfalls that discharge into the River. DO concentration measured 1 

upstream of the City is generally high throughout the year, with little diurnal variation (He et al., 2 

2011; Khan et al., 2013; Khan & Valeo, 2015a). The DO concentration downstream of the City is 3 

lower and experiences much higher diurnal fluctuation. The three wastewater treatment plants are 4 

located upstream of this monitoring site, and are thought to be responsible, along with other impacts 5 

of urbanisation, for the degradation of water quality (He et al., 2015). 6 

For this research, nine years of DO concentration data was collected from one of the downstream 7 

stations from 2004 to 2012. The monitoring station was located at Pine Creek and sampled water 8 

quality data every 30 minutes (from 2004 to 2005), and every 15 minutes (from 2006 to 2007). The 9 

station was then moved to Stier's Ranch and sampled data every hour (in 2008) and every 15 10 

minutes (2009 to 2011). The monitoring site was moved further downstream to its current location 11 

(at Highwood) in 2012 where it samples every 15 minutes. During this period a number of low DO 12 

events have been observed in the River and are summarised below in Table 1 corresponding to 13 

different water quality guidelines.  14 

Note that even though daily minimum DO was observed to be below 5 mg L-1 on several occasions 15 

in 2004 and 2006 (in Table 1), the minimum DO was below 9.5 mg L-1 only 107 and 164 days, 16 

respectively, for those two years. In contrast, in 2007 and 2010, no observations below 5 mg L-1 17 

are seen yet 182 and 180 days, respectively, below the 9.5 mg L-1 guideline were seen for those 18 

years. The total amount of days below 9.5 mg L-1 constitute approximately 90% of all observations 19 

for those years. This highlights that despite no DO events below 5 mg L-1, generally speaking 20 

minimum DO on a daily basis was quite low in these two years. The implication of this is that only 21 

using one guideline for DO might not be a good indicator of overall aquatic ecosystem health.  22 

A YSI sonde is used to monitor DO and T, and the sonde is not accurate in freezing water, thus 23 

only data from the ice- free period was considered, which is approximately from April to October 24 

for most years (YSI Inc., 2015). Since low DO events usually occur in the summer (corresponding 25 

to high water temperature and lower discharge), the ice-free period dataset contains the dates that 26 

are of interest for low DO modelling.  27 

Daily mean flow rate, Q, was collected from the Water Survey of Canada site “Bow River at 28 

Calgary (ID: 05BH004) for the same period. This data is collected hourly throughout the year, thus, 29 
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data where considerable shift corrections were applied (usually due to ice conditions) were 1 

removed from the analysis. The mean annual water temperature ranged between 9.23 and 13.2 °C, 2 

and the annual mean flow rate was between 75 and 146 m3 s-1, and the mean annual minimum daily 3 

DO was between 6.89 and 9.54 mgL-1, for the selected period.  4 

2.2 Probability-possibility transformations 5 

Fuzzy sets were proposed by Zadeh (1965) in order to express imprecision in complex systems, 6 

and can be described as a generalisation of classical set theory (Khan & Valeo, 2015a). In classical 7 

set theory, an element x either belongs or does not belong to a set A. In contrast, using fuzzy set 8 

theory, the elements x have a degree of membership, μ, between 0 and 1 in the fuzzy set A. If μ 9 

equals 0, then x does not belong in A, and μ = 1 means that it completely belongs in A, while a 10 

value μ = 0.5 means that it is only a partial member of A.  11 

Fuzzy numbers express uncertain or imprecise quantities, and represent the set of all possible 12 

values that define a quantity rather than a single value. A fuzzy number is defined as a specific type 13 

of fuzzy set: a normal and convex fuzzy set. Normal implies that there is at least one element in the 14 

fuzzy set with a membership level equal to 1, while convex means that the membership function 15 

increases monotonically from the lower support (i.e., μ = 0L) to the modal element (i.e. the 16 

element(s) with μ = 1) and then monotonically decreases to the upper support (i.e., μ = 0R) 17 

(Kaufmann & Gupta, 1985).  18 

Traditional representation of a fuzzy numbers has been using symmetrical, linear membership 19 

functions, typically denoted as triangular fuzzy numbers. The reason for selecting this type of 20 

membership function has to do with its simplicity: given that a fuzzy number must, by definition, 21 

be convex and normal, a minimum of three elements are needed to define a fuzzy number (two 22 

elements at μ = 0 and one element at μ = 1). For example, if the most credible value for DO 23 

concentration is 10 mg L-1 (μ = 1), with a support about the modal value between (μ = 0L) and 12 24 

mg L-1 (μ = 0R). This implies that the simplest membership function is triangular, though not 25 

necessarily symmetrical. Also, as we demonstrate below, in some probability-possibility 26 

frameworks, a triangular membership function corresponds to a uniform probability distribution – 27 

the least specific distribution in that any value is equally probable and hence, represents the most 28 

uncertainty (Dubois & Prade, 2015; Dubois et al., 2004).  29 
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However, recent research (Khan et al., 2013; Khan & Valeo, 2014a; 2014b; 2015a; 2015b) has 1 

shown that such a simplistic representation may not be appropriate for hydrological data, which is 2 

often skewed, and non-linear. This issue is further highlighted if the probability-possibility 3 

framework mentioned above is used: it implies that for a triangular membership function, the fuzzy 4 

number bounded by the support [8 12] mg L-1, has a uniform probability distribution bounded 5 

between 8 and 12 mg L-1 with a mean value of 10 mg L-1, suggesting that values between the 6 

support are equally likely to occur. It not difficult to see that this an over-simplification of 7 

hydrological data, which often have skewed, non-symmetrical distributions. In many cases enough 8 

information (i.e. from observations) is available to define the membership function with more 9 

specificity, and this information should be used to define the membership function.  10 

Multiple frameworks exist to transform a probability distribution to a possibility distribution, and 11 

vice versa; a comparison of different conceptual approaches are provided in Klir & Parvais (1992), 12 

Oussalah (2000), Jaquin (2010) Mauris (2013) and Dubois & Prade (2015). However, a major issue 13 

of implementing fuzzy number based methods in hydrology is that there is no consistent, 14 

transparent and objective method to convert observations (e.g. time series data) into fuzzy numbers, 15 

or generally speaking to construct the membership function associated with fuzzy values (Abrahart 16 

et al., 2010; Dubois & Prade, 1993; Civanlar & Trussel, 1986).  17 

A popular method (Dubois et al., 1993; 2004) converts a probability distribution to a possibility 18 

distribution by relating the area under a probability density function to the membership level 19 

(Zhang, 2009). From this point of viewIn this framework, the possibility is viewed as the upper 20 

envelope of the family of probability measures (Jacquin, 2010; Ferrero et al., 2013; Betrie et al., 21 

2014). There are two important considerations for this transformation, first it guarantees that 22 

something must be possible before it is probable; hence, the degree of possibility cannot be less 23 

than the degree or probability – this is known as the consistency principle (Zadeh, 1965). Second 24 

is order preservation, which means if the possibility of xi is greater than the possibility of xj then 25 

the probability of xi must be greater than the probability of xj (Dubois et al., 2004). For a discrete 26 

system, this can be represented as: 27 

if p(x1 )> p(x2) > …. > p(xn), 28 

then the possibility distribution of x (π(x)), follows the same order, that is: 29 
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π(x1) > π(x2)>…. >  π(xn). 1 

The transformation is given by: 2 

For p(x1) > p(x2) >….> p(xn): 3 

𝜋(𝑥1) = 1 4 

𝑓(𝑥) = {
∑ 𝑝𝑗

𝑛
𝑗=𝑖 , 𝑖𝑓 𝑝𝑖−1 > 𝑝𝑖

𝜋(𝑥𝑖−1), 𝑒𝑙𝑠𝑒
    (1) 5 

 6 

where the xi are elements of a fuzzy number A, π(xi) is the possibility of element xi, and p(xi) is the 7 

probability of element xi. The concept of this transformation may be more illustrative when viewed 8 

in the continuous case: for any interval [a, b], the membership level μ (where π(a) = π(b) = μ) is 9 

equal to the sum of the areas under the probability density function curve between (-∞, a) and (b, 10 

∞) (Zhang et al., 2009). It is important to highlight that this particular transformation has an inverse 11 

transformation associated with, where a probability distribution can be estimated from the 12 

possibility distribution.  13 

However, a major drawback of this transformation is that it theoretically requires a full description 14 

of the probability density function, or in the finite case, the probability associated with each element 15 

of the fuzzy number, the probability mass function. For many hydrologicaly and time series based 16 

applications this might not be possible because the hourly time series data (that is typically 17 

collected) may not adequately fit the mould of a known class of probability density functions, or 18 

one distribution amongst many alternatives may have to be selected based on best-fit. This best-fit 19 

function may not be universal, e.g. data from one 24 hour24-hour period may be best described by 20 

one class or family of probability density function, while the next day by a completely different 21 

class of density function. This means working with multiple classes of distribution functions for 22 

one application, which can be cumbersome. Also, given that each day may only have 24 data points 23 

(or fewer on days with missed samples) it is difficult to select one particular function.  24 

In previous research by Khan & Valeo (2015a), a new approach to create a fuzzy number based on 25 

observations was developed. This process used a histogram-based approach to estimate the 26 

probability mass function of the observations, and then Eq. 1 was used to estimate the membership 27 
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function of the fuzzy number. To create the histogram, the bin-size was selected based on the 1 

extrema observations for a given day and the number of the observations. A linear interpolation 2 

scheme was then used to calculate the values of the fuzzy number at five predefined membership 3 

levels. This method has a few short-comings, namely: the bin-size selection was arbitrarily selected 4 

based on the magnitude and number of observations which does not necessarily result in the 5 

optimum bin-size. This lack of optimality means that the resulting histogram may either be too 6 

smooth so as not to capture the variability between membership levels, or too rough and uneven so 7 

that the underlying shape of the membership function is difficult to discern. This is a common issue 8 

with histogram selection in many applications (Shimazaki & Shinomoto, 2007). Secondly, the 9 

aforementioned transformation used by Khan and Valeo (2015a) only allows one element to have 10 

μ = 1 when p(x) is maximum. However, there are a number of cases (e.g. bimodal distributions, or 11 

arrays when all elements are equal) where multiple elements have joint-equal maximum p(x)), and 12 

hence multiple elements with μ = 1. This means that all elements within the α-cut interval [a b]μ=1 13 

(where a and b are the minimum and maximum elements with μ = 1) must by definition also have 14 

a membership level equal to 1. Thus, a method is necessary to be flexible enough to accommodate 15 

these types of issues.  16 

In this research, a two-step procedure is proposed to create fuzzy numbers on the inputs (i.e. Q and 17 

T) using hourly (or sub-hourly) observations. First, a bin-size optimisation method is used (an 18 

extension of an algorithm proposed by Shimazaki & Shinomoto, 2007) to create histograms to 19 

represent the estimate of discretised probability density functions of the observations. This estimate 20 

of the probability distribution is then transformed to the membership function of the fuzzy number 21 

using a new numerical procedure and the transformation principles described in Eq. 1. This updated 22 

method requires no assumptions regarding the distribution of the underlying data or selection of an 23 

arbitrary bin-size, has the flexibility to create different shapes of fuzzy numbers depending on the 24 

distribution of the underlying data, and allows multiple elements to have equal μ = 1. The proposed 25 

algorithm is described in the proceeding section. 26 

2.2.1 A new algorithm to create fuzzy numbers 27 

Shimazaki & Shinomoto (2007) proposed a method to find the optimum bin-size of a histogram 28 

when the underlying distribution of the process data is unknown. The basic premise of the method 29 
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is that the optimum bin-size (Dopt) is one that minimises the error between the theoretical (but 1 

unknown) probability density and the histogram generated using the Dopt. The error metric used by 2 

Shimazaki & Shinomoto (2007) is the mean integrated squared error (EMISE) which is frequently 3 

used for density estimation problems. It is defined as: 4 

 𝐸MISE =  
1

𝑃
∫ E[𝑓𝑛(𝑡) − 𝑓(𝑡)]2𝑑𝑡

𝑃

0
        (2) 5 

where f(t) is the unknown density function, fn(t) is the histogram estimate of the density function, t 6 

denotes time and P is the observation period, and E[·] is the expectation. In practice, EMISE cannot 7 

be directly calculated since the underlying distribution is unknown and thus, an estimate of the 8 

EMISE is used in its place (see CD below). Thus, fn(t) can be found without any assumptions of the 9 

type of distribution (e.g. class, unimodality, etc.); the only assumption is that the number of events 10 

(i.e., the counts ki) in the ith bin of the histogram follow a Poisson point process. This means that 11 

the events in two disjoint bins (e.g., the ith and i+1th bin) are independent, and that mean (k) and 12 

variance (v) of the ki in each bin are equal, due to the assumption of a Poisson process (Shimazaki 13 

& Shinomoto, 2007).  14 

Using this property, the optimum bin-size can be found as follows. Let X be the input data vector 15 

for the observation period (P), e.g., a [24×1] vector corresponding to hourly samples for a given 16 

day. The elements in X are binned into N bins of equal bin-size D. The number of events ki in each 17 

ith bin are then counted and the mean (k) and variance (v) of the ki are calculated as follows: 18 

𝑘 =  
1

𝑁
∑ 𝑘𝑖

𝑁
𝑖=1           (3) 19 

𝑣 =  
1

𝑁
∑ (𝑘𝑖 − 𝑘)2𝑁

𝑖=1          (4) 20 

 21 

The k and v are then used to compute the cost-function CD, which is defined as: 22 

𝐶𝐷 =
2𝑘−𝑣

𝐷2            (5). 23 

This cost-function is a variant of the original EMISE listed in Eq. (2) and is derived by removing the 24 

terms from EMISE that are independent of the bin-size D, and by replacing the unobservable 25 

quantities (i.e. E[f(t)]) with their unbiased estimators (details of this derivation can be found in the 26 

original paper by Shimazaki & Shinomoto, 2007). The objective then is to search for Dopt: the value 27 
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of D that minimises CD. To do this two systematic modification are made: first, CD is recalculated 1 

at different partitioning positions, and secondly, the entire process is repeated for different values 2 

of N and D, until a “reliable” estimate of minimum CD and thus Dopt is found. Using different 3 

partitioning positions means that the variability in ki resulting from the position of the bin (rather 4 

than the size of the bin) can be quantified. Repeating the analysis at different N and D accounts for 5 

the variability due to different bin-sizes. Both these techniques are ways of accounting for the 6 

uncertainty associated with estimating the histogram.  7 

Partitioning positions are defined as the first and last point that define a bin. The most common 8 

way of defining a partitioning position is to centre it on some value a, e.g. the bin defined at [a–9 

D/2, a+D/2] is centred on a and has a bin-size D. Variations of this partitioning position can be 10 

found by using a moving-window technique, where the bin-size D is kept constant, but the first and 11 

last points are perturbed by a small value δ: [a–D/2+δ, a+D/2+δ], where δ ranges incrementally 12 

between 0 and D. Using these different values of δ whilst keeping D constant will result in different 13 

values of ki and hence unique values of CD. Thus, for a single value of D, multiple values of CD are 14 

possible.  15 

For this research this bin-size optimisation algorithm is implemented to determine the optimum 16 

histogram for the two input variables, Q and T. The array of daily data, X, (at hourly or higher 17 

frequency, see Sect. 2.1 for details regarding the sampling frequency of both inputs) for each 18 

variable was collected for the nine yearnine-year period. The bin-size was calculated for each day 19 

as follows: 20 

𝐷 =  
𝑥max−𝑥𝑚𝑖𝑛

𝑁
         (6) 21 

 22 

where the xmax and xmin are the maximum and minimum sampled values for X, respectively, and N 23 

is the number of bins. As described above, a number of different D were considered to find the 24 

optimum CD. This was done by selecting a number of different values of N, ranging from Nmin to 25 

Nmax. The minimum value Nmin, was set equal to at 3 for all days; this is the necessary number of 26 

bins to define a fuzzy number (two elements for μ = 0, and one element for μ = 1). The highest 27 

value, Nmax was calculated as: 28 
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𝑁 =  
𝑥max−𝑥𝑚𝑖𝑛

2𝑟
        (7) 1 

 2 

where 2r is the measurement resolution of the device used to measure either Q or T, set at twice 3 

the accuracy (r) of the device. The rational for this decision is that as N increases D necessarily 4 

decreases (as per Eq. (6)). However, D cannot be less than the measurement resolution; this 5 

constraint (i.e. N ≤ Nmax) ensures that the optimum bin-size is never less than what the measurement 6 

devices can physically measure. For this research, the accuracy for T is listed as ±0.1 °C, and thus, 7 

the resolution (2r) is 0.2°C (YSI Inc., 2015). For Q all measurements below 99 m3 s-1 have an 8 

accuracy of ±0.1 m3 s-1 and thus, a resolution of 0.2 m3 s-1, while measurements above 99 m3 s-1 9 

have an accuracy of ±1 m3 s-1, and thus a resolution of 2 m3 s-1. This is based on the fact that all 10 

data provided by the Water Survey of Canada is accurate to three significant figures. Note that for 11 

the case where xmin equals xmax (i.e. no variance in the daily observed data) then D = 2r, which 12 

means that the only uncertainty considered is due to the measurement. 13 

Once the Nmax is determined, the bin-size D was calculated for each N between Nmin and Nmax. Then, 14 

starting at the largest D (i.e. D = (xmax–xmin)/Nmin)), the cost-function CD is calculated at the first 15 

partitioning positing, where the first bin is centred at xmin, [(xmin–D/2) (xmin+D/2)], and the Nth bin 16 

is centred on xmax, [(xmax–D/2), (xmax+D/2)]. Then, CD is calculated at the next partitioning positing, 17 

where the first bin is [(xmin–D/2+δ) (xmin+D/2+δ)], and the Nth bin is [(xmax–D/2+δ), (xmax+D/2+δ)]. 18 

The value of δ ranged between 0 and D at (D/100) intervals. Thus, for this value of D, 100 values 19 

of CD were calculated since 100 different partitioning positions were used. The mean value of these 20 

CD was used to define the final cost-function value for the given D.  21 

This process is then repeated for the next N between Nmin and Nmax, using the corresponding D at 22 

100 different partitioning positions, and so on until the smallest D (at Nmax). This results in [Nmax–23 

Nmin] values of mean CD: the value of D corresponding to the minimum value of CD is considered 24 

to be the optimum bin-size Dopt. This Dopt is then used to construct the optimum histogram of each 25 

daily observation. This histogram can be used to calculate a discretised probability density function 26 

(p(x)), where for each x (an element of X), the p(x) is calculated by dividing the number of events 27 

in each bin by the total number of elements in X. The x and p(x) can then be used to calculate the 28 

possibility distribution using the transformation described in Eq. (1).  29 
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First, the p(x) are ranked from highest to lowest, and the x corresponding to the highest p(x) is has 1 

a membership level of 1. Then the π(x) values for the remaining x are calculated using Eq. 1. For 2 

cases where multiple elements have equal p(x), the highest π(x) is assigned to each x. For example, 3 

if p(xi) = p(xj), and xi>xj, then π(xj) = π(xi). This means that in some cases, for each calculated 4 

membership level, π(x), there exists an α-cut interval [a, b]μ=π(x) where all the elements between a 5 

and b have equal p(x) and hence equal π(x). By definition of α-cut intervals, all values of x within 6 

the interval [a, b] have at least a possibility of π(x). A special case of this occurs when multiple x 7 

have joint-equal maximum p(x), meaning that multiple elements have a membership level of μ = 8 

1. Thus, an α-cut interval is created for the μ = 1 case, creating a trapezoidal membership function, 9 

where the modal value of the fuzzy number is defined by an interval rather than a single element.  10 

Once all the π(x) are calculated for each element x in X, a discretised empirical membership 11 

function of the fuzzy number X can be constructed using the calculated α-cut intervals. That is, the 12 

fuzzy number is defined by a number of intervals at different membership levels. The upper and 13 

lower limit of the intervals at higher membership levels define the extent of the limits of the 14 

intervals at lower membership levels. This way the constructed fuzzy numbers maintain convexity 15 

(similar to a procedure used by Alvisi & Franchini, 2011), where the widest intervals have the 16 

lowest membership level. For example, the interval at μ = 0.2 will contain the interval μ = 0.4, and 17 

this interval will contain the interval at μ = 0.8. 18 

In creating this discretised empirical membership function this way (rather than assuming a shape 19 

of the function) means that this function best reflects the possibility distribution of the observed 20 

data. However, it also means that all fuzzy numbers created using this method are not guaranteed 21 

to be defined at the same π(x), nor have an equal number of π(x) intervals used to define the fuzzy 22 

number. Thus, direct fuzzy arithmetic between multiple fuzzy numbers using the extension 23 

principle is not possible since it requires each fuzzy number to be defined at the same α-cut intervals 24 

(Kaufmann & Gupta, 1985). Thus, linear interpolation is used to define each fuzzy number at a 25 

pre-set α-cut interval using the empirical π(x) calculated using the transformation. To select the 26 

pre-set α-cut intervals it is illustrative to see the impact of selecting two extreme cases: (i) if only 27 

two levels are selected (specifically μ = 0 and 1) the constructed fuzzy number will reduce to a 28 

triangular fuzzy number. As discussed above there are important implications of using triangular 29 

membership functions that make it undesirable for hydrological data; (ii) if a large number of 30 
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intervals (e.g. 100 intervals between μ = 0 and 1) are selected, there is a risk that the number of 1 

pre-set intervals is much larger than the empirical π(x), which means not enough data (empirical α-2 

cut levels intervals) to conduct interpolation, leading to equal interpolated values at multiple α-cut 3 

levels. For this research, results (discussed in the following section) of the bin-size optimisation 4 

showed that most daily observations for T and Q resulted in 2 to 10 unique p(x) values. Based on 5 

this, six pre-set α-cut intervals were selected: 0, 0.2, 0.4, 0.6, 0.8 and 1. The empirical π(x) can then 6 

be converted to a standardised function at pre-defined membership levels using linear interpolation. 7 

2.3 Fuzzy neural networks 8 

2.3.1 Background on artificial neural networks 9 

Artificial neural networks (ANN) are a type of data-driven model that are defined as a massively 10 

parallel distributed information processing system (Elshorbagy et al., 2010; Wen et al., 2013). As 11 

a predictive model, ANNs can capture complex, nonlinear relationships that may exist between 12 

variables without the explicit understanding of the physical phenomenon (Alvisi & Franchini, 13 

2011; Antanasijević et al., 2014). This has resulted in significant use of ANN models have been 14 

widely used in hydrology when the complexity of the physical systems is high owing partially to 15 

an incomplete understanding of the underlying process, and the lack of availability of necessary 16 

data (He et al., 2011; Kasiviswanathan et al., 2013). Further, ANNs arguably require less data and 17 

do not require an explicit mathematical description of the underlying physical process 18 

(Antanasijević et al., 2014), making it a simpler and practical alternative to traditional modelling 19 

techniques.  20 

Multilayer Perceptron (MLP) is a type of feedforward ANN and is one of the most commonly used 21 

in hydrology (Maier et al., 2010). One of the reasons for the popularity of MLPs is that aA trained 22 

MLP network can be used as a universal approximators with only a singleone hidden layer (Hornik 23 

et al., 1989). This means that models are relatively simple to develop, and theoretically have the 24 

capacity of approximating any linear or nonlinear mapping (ASCE 2000; Elshorbagy et al., 2010; 25 

Napolitano et al., 2011; Kasiviswanathan et al., 2013). Further, the popularity of MLP has meant 26 

that subsequent research has continued to use MLP (He & Valeo 2009; Napolitano et al., 2011) 27 
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and thus, form a reference for the basis of comparing ANN performance (Alvisi & Franchini, 1 

2011).  2 

In the simplest case, an MLP consists of an input layer, a hidden layer, and an output layer as shown 3 

in Fig. 2. Each layer consists of a number of neurons (or nodes) that each receive a signal, and on 4 

the basis of the strength of the signal, emit an output. Thus, the final output layer is the synthesis 5 

and transformation of all the input signals from both the input and the hidden layer (He & Valeo, 6 

2009).  7 

The number of neurons in the input (nI) and output (nO) layers corresponds to the number of 8 

variables used as the input and the output, respectively and the number of neurons in the hidden 9 

layer (nH) are selected based on the relative complexity of the system (Elshorbagy et al., 2010). A 10 

typical MLP is expressed mathematically as follows: 11 

𝒚𝐢 = 𝒇𝐇𝐈𝐃(𝐖𝐈𝐇𝒙i + 𝑩H)       (8) 12 

𝒛𝐢 = 𝒇𝐎𝐔𝐓(𝐖𝐇𝐎𝒚𝐢 + 𝑩O)       (9) 13 

where xi is the ith observation (an nI x 1 vector) from of a total of n observations, WIH is a nH x nI 14 

matrix of weights between the input and hidden-layer, BH is a vector (nH x 1) of biases in the 15 

hidden-layer, and yi is the ith output (an nH x 1 vector) of the input signal through the hidden-layer 16 

transfer function, fHID. Similarly, WHO is an nO x nH matrix of weights between the hidden and 17 

output-layers, BO is an nO x 1 vector of biases in the output-layer, and fOUT the final transfer 18 

function to generate the ith modelled output zi (an nO x 1 vector).  19 

The values of all the weights and biases in the MLP are calculated by training the network by 20 

minimising the error – typically mean squared error (EMSE) (He & Valeo, 2009) – between the 21 

modelled output and the target data (i.e. observations). A number of training algorithms can be 22 

used, and one of the most common methods is theThe Levenberg–Marquardt algorithm (LMA) is 23 

one of the most common training algorithms (Alvisi et al., 2006). In this methodLMA, the error 24 

between the output and target is back-propagated through the model using a gradient method where 25 

the weights and biases are adjusted in the direction of maximum error reduction. The LMA is well-26 

suited for ANN problems that have a relatively small number of neurons. To counteract potential 27 

over-fitting issues, an early-stopping procedure is used (Alvisi et al., 2006; Maier et al., 2010), 28 

which is a form of regularisation where the data is split into three subsets (for training, validation 29 
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and testing). and tThe training is terminated when the error on the validation subset increases from 1 

the previous iteration.  2 

Most ANNs have a deterministic structure without a quantification of the uncertainty 3 

corresponding to the predictions (Alvisi & Franchini, 2012; Kasiviswanathan & Sudheer, 2013). 4 

This means that users of these models may have excessive confidence in the forecasted values, and 5 

misinterpret the applicability of the results (Alvisi & Franchini, 2011). This lack of uncertainty 6 

quantification is one reason for the limited appeal of ANN by water resource managers (Abrahart 7 

et al., 2012; Maier et al., 2010). Without this characterisation, the results produced by these models 8 

have limited value (Kasiviswanathan & Sudheer, 2013).  9 

In this research, two methods are proposed to quantify the uncertainty in MLP modelling to predict 10 

DO in the Bow River. First, the uncertainty in the input data (daily mean water temperature and 11 

daily mean flow rate) is represented through the use of fuzzy numbers. These fuzzy numbers are 12 

created using the probability-possibility transformation discussed in the previous section. Second, 13 

the total uncertainty (as defined by Alvisi & Franchini, 2011) in the weights and biases of an MLP 14 

are quantified using a new possibility theory-based FNN. The total uncertainty represents the 15 

overall uncertainty in the modelling process, and not of the individual components (e.g. 16 

randomness in observed data). The following section describes the proposed FNN method. 17 

2.3.2 FNN with fuzzy inputs and possibility-based intervals 18 

Alvisi & Franchini (2011) proposed a method to create a FNN, where the weights and biases, and 19 

by extension the output, of the neural network are fuzzy numbers rather than crisp (non-fuzzy) 20 

numbers. These fuzzy numbers quantify the total uncertainty of the calibrated parameters. While 21 

Most fuzzy set theory based applications of ANN have been limited in hydrology, most have used 22 

fuzzy logic, e.g. the widely used Adaptive Neuro-Fuzzy Inference System, where automated IF-23 

THEN rules are used to create crisp outputs (Abrahart et al., 2010; Alvisi & Franchini, 2011). Thus, 24 

the advantage of fuzzy outputs (as developed by Alvisi & Franchini, 2011) is that it provides the 25 

uncertainty of the predictions as well, while the fuzzy parameters reflect the uncertainty in the 26 

model structurein addition to the uncertainty of the parameters. This uncertainty quantification can 27 

be used to by end users to assess the value of the model output.  28 
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In their FNN, the MLP model is presented in Eqs. 5 and 6 is modified to predict an interval rather 1 

than a single value for the weights, biases and output, corresponding to an α-cut interval (at a 2 

defined membership level μ). This is repeated for several α-cut levels, thus building a discretised 3 

fuzzy number at a number of membership levels. This is done by using a stepwise, constrained 4 

optimisation approach: 5 

[𝒚𝐢
𝐋 𝒚𝐢

𝐔] = 𝒇𝐇𝐈𝐃([𝐖𝐈𝐇
𝐋  𝐖𝐈𝐇

𝐔 ]𝒙𝐢 + [𝑩𝐇
𝐋  𝑩𝐇

𝐔])       (10) 6 

[𝒛𝐢
𝐋 𝒛𝐢

𝐔] = 𝒇𝐎𝐔𝐓([𝐖𝐇𝐎
𝐋  𝐖𝐇𝐎

𝐔 ] × [𝒚𝐢
𝐋 𝒚𝐢

𝐔] + [𝑩𝐎
𝐋  𝑩𝐎

𝐔])    (11) 7 

 8 

where all the variables are as described as before, and the superscripts U and L represent the upper 9 

and lower limits of the α-cut interval, respectively. The constraints are defined so that the upper 10 

and lower limits of each weight and bias (in both layers) minimise the width of the predicted 11 

interval: 12 

min (∑ (𝒛𝐢
𝐋 − 𝒛𝐢

𝐔)𝑛
𝑖=1 )  13 

1

𝑛
∑ (𝛿i)

𝑛
𝑖=1 ≥ 𝑷𝐂𝐈         (12) 14 

𝛿𝑖 = {
1, 𝑖𝑓 𝒛𝐢

𝐋 < 𝒕𝒊 < 𝒛𝐢
𝐔

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  15 

 16 

where t is that target (observed data) and PCI is a predefined percentage of data. Alvisi & Franchini 17 

(2011) defined PCIP to be 100% at μ = 0, 99% at μ  = 0.25, 95% at μ = 0.5 and 90% at μ = 0.75. 18 

This algorithm was built starting at μ = 0 and moving to higher membership levels to maintain 19 

convex membership functions of the generated fuzzy numbers by using the results of the previous 20 

optimisation as the upper and lower limit constraints for the proceeding optimisation. Lastly, at μ 21 

= 1, the interval collapses to a singleton, represent the crisp results from non-fuzzy ANN. 22 

Therefore, these α-cut intervals of the FNN output quantify the uncertainty around the crisp 23 

prediction, within which is expected to contain PCI percentage of data.  24 

In this research, this method is modified in two ways. First, the inputs x are also fuzzy numbers, 25 

which means that Eqs. 10 and 11 are revised as follows: 26 
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[𝒚𝐢
𝐋 𝒚𝐢

𝐔] = 𝒇𝐇𝐈𝐃([𝐖𝐈𝐇
𝐋  𝐖𝐈𝐇

𝐔 ] × [𝒙𝐢
𝐋 𝒙𝐢

𝐔] + [𝑩𝐇
𝐋  𝑩𝐇

𝐔])      (13) 1 

[𝒛𝐢
𝐋 𝒛𝐢

𝐔] = 𝒇𝐎𝐔𝐓([𝐖𝐇𝐎
𝐋  𝐖𝐇𝐎

𝐔 ] × [𝒚𝐢
𝐋 𝒚𝐢

𝐔] + [𝑩𝐎
𝐋  𝑩𝐎

𝐔])     (14) 2 

 3 

Note that now the input vector is represented by its upper and lower limits. The impact of this 4 

revision is that when there is known variance or uncertainty in the input dataset, it should be 5 

incorporated into the model structure. In Eqns. 13 and 14, this is done through the use of fuzzy 6 

rather than crisp inputs. The major impact on this is that the training algorithm for the FNN needs 7 

to accommodate this fuzzy α-cut interval, which requires the implementation of fuzzy arithmetic 8 

principles (Kaufmann & Gupta, 1985). The cost function for the optimisation remains unchanged.  9 

The second modification of the original algorithm is related to the selection of the percent of data 10 

included in the predicted interval (PCI). In the original, the selection is arbitrary and end-users of 11 

this method may be interested in the events that are not included in the selected PCI. Thus, a full 12 

spectrum of possible values for a given prediction is required. Thus, the Alvisi & Franchini (2011) 13 

approach is further refined by utilising the same relationship between probability and possibility 14 

that was used to define the input fuzzy numbers, giving a more objective means of designing FNNs 15 

with fuzzy weights, biases and output. 16 

In the adopted possibility-probability framework, the interval [a b]α created by the α-cut at a μ = α 17 

implies that: 18 

[𝑝(𝑥 < 𝑎) + 𝑝(𝑥 > 𝑏)] = 𝛼        (15) 19 

This can be used to calculate the probability:  20 

[𝑝(𝑎 < 𝑥 < 𝑏)] = (1 − 𝛼)       (16) 21 

 22 

This means that there is a probability of (1 – α) that the random variable x falls within the interval 23 

[a b]α. In other wordswords, the α-cuts of a possibility distribution (at any μ) correspond to the (1 24 

– α) confidence interval of the probability distribution of the same variable (Serrurier and Prade, 25 

2013).  This principle is used to select the different PCIP for the optimisation constraints rather than 26 

the predetermined PCI selected by Alvisi & Franchini (2011) These are shown in Table 2.  27 
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Note that for practical purposes, PCI was selected as 99.50% at μ = 0 to prevent over-fitting. The 1 

implication of this selection is that at μ = 0, nearly-all the observed data should fall within this 2 

predicted FNN interval, reflecting the highest uncertainty in the prediction. The uncertainty 3 

decreases as μ increases. For the μ = 1 case the values of the weights and biases were determined 4 

to be the mid-point of the interval at μ = 0.8 to maintain convexity of the produced fuzzy numbers, 5 

and the difficulty in finding an interval containing 0% of the data.  6 

2.3.3 Network architecture and implementation 7 

For this research a three layer, feedforward MLP architecture was selected to model minimum daily 8 

DO (the output) using fuzzified daily flowrate (Q) and fuzzified daily water temperature (T) as the 9 

inputs. The three layers consist of an input layer, an output layer, and a hidden layer (with 5 neurons 10 

based on a trial-and-error search procedure). This architecture was selected for three reasons: it is 11 

one of the most commonly used in hydrology (Maier et al., 2010), it can be used as a universal 12 

approximator (Hornik et al., 1989), and as reference for comparing performance with previous 13 

research (He & Valeo 2009; Napolitano et al., 2011). In particular, a previous study modelling 14 

minimum DO in the Bow River used a three-layer MLP feedforward network (see He et al., 2011). 15 

Two transfer functions are required for FNN implementation: the hyperbolic tangent sigmoid 16 

function was selected for fHID, and a pure linear function for fOUT. Both function selections follow 17 

Alvisi & Franchini (2011), Wen et al., (2012) and Elshorbagy et al., (2010), and are described as 18 

follows:. 19 

𝒇𝐇𝐈𝐃 =
e𝒙−e−𝒙

e𝒙+e−𝒙         (17) 20 

𝒇𝐎𝐔𝐓 = 𝒙         (18) 21 

 22 

The LMA method was used to train the network, minimising EMSE. The input and output data was 23 

pre-processed before training, validating and testing: the data was normalised so that all input and 24 

output data fell within the interval [- 1 1]. Further the data were randomly divided into training, 25 

validation and testing subsets, following a 50%-25%-25% split.  26 

This FNN optimisation algorithm was implemented in MATLAB (version 2015a). First, the built-27 

in MATLAB Neural Network Toolbox was used to estimate the value of weights and biases using 28 
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the midpoint of the interval at μ = 1. The results from this were used as the constraints to solve the 1 

FNN optimisation (Eqs. 12 to 14) at subsequent lower membership levels. The Shuffled Complex 2 

Evolution algorithm (commonly known as SCE-UA, Duan et al., 1992) was used to find the 3 

optimisation solution. The optimisation is run such that the intervals at higher membership levels 4 

govern the upper and lower bounds of the predicted interval in order to preserve the convexity of 5 

fuzzy numbers. The same process and network architecture was used to run the original FNN 6 

method (proposed by Alvisi & Franchini, 2011) using crisp inputs for comparison purposes. For 7 

this case, further refinement of the optimised solution was conducted using the built-in MATLAB 8 

minimisation function, fmincon. Note that for the crisp inputs, values of fuzzified daily flowrate 9 

(Q) and fuzzified daily water temperature (T) at μ = 1 were used to enable direct comparison. This 10 

option allows for the closest comparison between the two approaches that have completely distinct 11 

applications. Other options for the crisp inputs (e.g. mean daily value, or maximum daily value) 12 

may also be selected for the existing FNN case.  13 

2.4 Risk analysis using defuzzification 14 

Risk analyses for complex systems is challenging for a number of reasons, including an insufficient 15 

understanding of the failure mechanisms (Deng et al., 2011). The use of imprecise information 16 

(e.g. fuzzy numbers) is an effective method of conducting a risk analysis (Deng et al., 2011). 17 

However, communicating uncertainty is an important, yet difficult task, and many different 18 

frameworks exist to do so; water quality indices (Sadiq et al., 2007; Van Steenbergen et al., 2012) 19 

are one example. Since water resource managers often prefer to use probabilistic measures (rather 20 

than possibilistic ones), it is important to convert the possibility of low DO to a comparable 21 

probability for effective communication of risk analysis. Note that the linguistic parameters (e.g. 22 

“most likely”) that are often used to convey risk or uncertainty (Van Steenbgergen et al., 2012) 23 

have a probability-based meaning – in this case “most likely” is a measure of likelihood.  24 

In this research, a defuzzification procedure is used to convert the possibility of low DO to a 25 

probability measure, to represent the risk of observing low DO (below a given threshold) in the 26 

Bow River. This method uses the inverse of the transformation described in Eq. 1; however, instead 27 

of calculating the probability of one element, p(x), which is of limited value in most applications, 28 

it is generalised to calculated P({X < x}), as follows (from Khan & Valeo, 2014a, 2015b): for any 29 
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x in the support (defined as the α-cut interval at μ = 0) of a fuzzy number [a b] we have the 1 

corresponding μ and the paired value x' which shares the same membership level. The value μ is 2 

the sum of the cumulative probability between [a, x] and [x', b], labelled PL and PR, respectively:  3 

𝜇(𝑥) =  𝑃L + 𝑃R        (19) 4 

where PL represents the cumulative probability between a and x which is assumed to equal the 5 

probability P({X < x}), since the fuzzy number defines any values to less than a to be impossible 6 

(i.e. μ = 0). Given the fact that the fuzzy number is not symmetrical, the lengths of the two intervals 7 

[a, x] and [x', b] can be used to establish a relationship between PL and PR. Then, PL can be 8 

estimated as: 9 

𝑃{𝑋 < 𝑥} = 𝑃L =
𝜇

1+
(𝑏−𝑥′)

(𝑥−𝑎)

       (20) 10 

Thus, Eq. 20 gives the probability that the predicted minimum DO for a given day is below the 11 

threshold value x. For example, if the lowest acceptable DO concentration for the protection of 12 

aquatic life for cold water ecosystems (6.5 mg L-1, Canadian Council of Ministers of the 13 

Environment, 1999) is selected, then this transformation can be used to calculate the probability 14 

that the predicted fuzzy DO will be below 6.5 mg L-1.   15 

3 Results and discussion 16 

3.1 Probability-possibility transformation using bin-size optimisation 17 

The bin-size optimisation and the probability-possibility transformation algorithms were applied 18 

to the collected Q and T data for the nine yearnine-year period. The constructed fuzzy numbers 19 

were then used to calibrate the FNN model. This section compares the results of constructing a 20 

discretised probability distribution with and without the bin-size optimisation algorithm and its 21 

impact on the resulting membership function of the fuzzy number. The comparison is illustrated 22 

through five examples each for Q and T as a means of illustrating the advantages of using the 23 

proposed approach.  24 

Fig. 3 shows sample results of converting hourly Q observations to fuzzy numbers for five cases. 25 

The left most column in the figure shows the raw data, i.e. the observations sampled over the course 26 

of 24 hours. The resulting histogram-based probability functions are shown for both the optimised 27 
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(Dopt, illustrated with circles) and original (Dorig=2r; see Sect. 2.2.1 for the definition, illustrated 1 

with squares) bin-sizes in the second column. The third and fourth columns in Fig. 3 show the 2 

resulting discretised empirical membership function using each of the histograms. The five 3 

examples selected here represent a full spectrum of results for the bin-size optimisation. The first 4 

row shows an example of when the optimum result was equal to the measurement resolution (Dorig 5 

= Dopt = 2), followed by cases where the Dopt was 4, 4.5, 10 and 20 times greater than the initial 6 

bin-size.  7 

The example in the first row illustrates cases where the bin-size optimisation algorithm calculates 8 

an optimum bin-size, corresponding to the minimum cost-function CD, which is equal to the 9 

instrument measurement resolution. Thus, the resulting probability distributions for both cases are 10 

equivalent, as are the membership functions. In most cases, this occurred when the calculated 11 

minimum CD would result in a Dopt smaller than Dorig = 2r, and since this is not physically feasible 12 

(measurable) the algorithm did not consider any bin-sizes below 2r. Of note in this example is that 13 

the transformation of the probability distribution results in five empirical membership levels. Only 14 

one element was found to have a membership level equal to 1 (at Q = 161 m3 s-1). Thus, the α-level 15 

cut at this level is a simple singleton: [161]μ=1. The next membership level was calculated as 0.58; 16 

again the resulting α-cut level only has one element at Q = 149 (which is less than the modal value). 17 

However, at this level the upper and lower limits of α-cuts at higher membership levels define the 18 

upper and lower limits of α-cuts at lower levels. Thus, using the information from the α-level cut 19 

at μ = 1, the level at μ = 0.58 was defined as [149 161]μ=0.58. The next membership level calculated 20 

was 0.46, and four elements had equal membership levels, ranging between 147 and 165. The α-21 

cut interval at this level was defined as: [147 165]μ=0.46. Note that in this case, this interval captures 22 

both the intervals at higher membership levels within its limits, i.e. the lower limit is less than the 23 

lower limits of higher intervals, and the upper limit is greater than then upper limits at higher levels. 24 

The next membership level was calculated to be 0.125, and three elements between 157 and 171 25 

were assigned this value. However, the lower limit at μ = 0.46 (the next higher membership level) 26 

was 147, which is less than 157, and thus, for the α-cut level at this membership, the interval is 27 

then revised to: [147 171]μ=0.125 rather than [157 171]μ=0.125 to maintain convexity. Again, the reason 28 

here is that if something is possible at μ = 0.46, it must be possible (by definition) at μ = 0.125. The 29 

last membership level found for this particular example was μ = 0, with six elements sharing this 30 
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value, ranging from 145 to 173, resulting in an α-cut level of [145 173]μ=0. Together, these five 1 

membership levels define a discretised membership function of the fuzzy number for Q on 27 July 2 

2008. Following this, linear interpolation was conducted to find the elements corresponding to the 3 

six predefined membership levels of μ = 0, 0.2, 0.4, 0.6, 0.8 and 1. The results are not explicitly 4 

shown in the figure for clarity, but can are essentially located on the dashed line in the last column 5 

on the corresponding membership levels.  6 

The second row in Fig. 3 shows the results for 20 August 2009, where the optimum bin-size was 7 

found to be four times higher than the original bin-size (Dopt = 0.8 vs. Dorig = 0.2.). The impact of 8 

this change is clearly evident in the distribution functions in the second column. The original 9 

histogram is multi-modal, and with multiple candidates as the modal value (where μ = 1), whereas 10 

the post-optimisation histogram is considerably smoother, with a definitive modal value at Q = 11 

91.4 m3 s-1. The impact of this increase in bin-size is that the resulting membership function is 12 

defined at four membership levels (0, 0.25, 0.54 and 1), whereas the original function was defined 13 

at six levels, including an interval (rather than singleton) at μ = 1. This decrease in membership 14 

levels in this case has a consequence of smoothing out the membership function, as can be seen by 15 

comparing the shapes of the functions in columns three and four. The overall impact of this 16 

smoothing out of both the distribution and the membership functions is that the heightened 17 

specificity of the original function at μ = 0.54 and above is reduced to a more generalised shape.  18 

Since the objective of the bin-size algorithm was to reduce the error between the histogram created 19 

using the Dopt and the unknown theoretical distribution, then the density function plotted in Fig. 3 20 

represents the closest distribution to the unknown distribution. Hence, the membership function 21 

generated using this optimum distribution better reflects the underlying phenomenon than the 22 

membership function generated using Dorig. Thus, in comparing columns 3 and 4 for the second 23 

row, the smoother membership function representing Dopt is preferred. Linear interpolation is then 24 

performed on this membership function to get values of Q at the six predefined membership levels.  25 

Similar results can be seen in the third row in Fig. 3, where the optimised bin-size is 4.5 times 26 

greater than the original bin-size, (Dopt = 9 vs. Dorig = 2). Again, the original histogram is extremely 27 

uneven, whereas the post-optimisation histogram is considerably smoother with a definitive modal 28 

value at Q = 277 m3 s-1. The overall impact of this smoothing is that the specificity of the function 29 
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at μ = 0.6 and higher of the original function is reduced to a more general shape in the optimised 1 

function. 2 

The fourth row shows a different phenomenon, where instead of smoothing out the original 3 

membership function, the combined bin-size optimisation and transformation algorithm, creates a 4 

membership function with more specificity. In this case Dopt is ten times higher than Dorig, and the 5 

consequence of this increase is the smoother probability density function with one clear modal 6 

value (at Q = 70 m3 s-1). In contrast, the original histogram had six elements with joint-equal p(x), 7 

resulting in a membership function that is shaped similarly to a uniform distribution (column 3) 8 

and defined with only 3 membership levels. This means that all values are considered equally-9 

possible and represents maximum vagueness. However, using the optimised value, this is no longer 10 

the case and the modal value is assigned a membership level of 1, and the remaining elements 11 

defined at three other membership levels. This suggests that this modal value is more possible 12 

(since it has a higher possibility), and this is reflected in the observations. This example illustrates 13 

that the method can not only generalise the data to smoother functions (as shown in the first three 14 

examples) but can also be more specific when the underlying data demonstrates this but this is not 15 

captured by the non-optimised bin-width distribution function.  16 

The last example for Q in Fig. 3 is an example of a case where the number of membership levels 17 

for both the original and optimised membership function are equal (four in this case), however the 18 

bin-size is 20 times greater for the optimised case. In this case, an optimum bin-size was found that 19 

did not change the specificity of the membership function, i.e. it is still defined with the same 20 

number of intervals but at different membership levels. In this case, the probability for Dorig is 21 

extremely uneven, but smoothed out to a unimodal function with the Dopt. The final membership 22 

function for Dopt is defined more generally (smoothly) especially at higher membership levels 23 

compared to the one defined by Dorig. This example again demonstrates the utility of the new 24 

coupled optimisation-transformation method to create fuzzy numbers for data where the underlying 25 

distribution is unknown. 26 

Fig. 4 shows similar results for the five water temperature examples, where the Dopt was equal to 27 

the Dorig (the first example on the top row), or increased by a factor of 1.5, 2.5, 3 or 5. The first 28 

example shows a case with very little T variation over a given day and the water temperature falls 29 

between 5.2 and 6.2 °C for the entire day. This lack of variability is responsible for the minimal 30 
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bin-size selection Dopt: a unimodal distribution is best constructed using smaller bin-sizes for these 1 

cases. The second example shows another case where Dopt is only slightly greater than the original, 2 

resulting in a somewhat smoother probability function, and a slightly smoother membership 3 

function.  4 

A major difference between the T and Q data is that the former is strongly diurnal, increasing after 5 

sunrise in the morning, peaking in late afternoon, and then decreasing through the night. This 6 

temporal trend is seen for all examples in Fig. 4, but most significantly in the bottom three 7 

examples. A major implication for this in developing a probability density function for this data is 8 

that the resulting shape will have a tendency to be bimodal. This means that the resulting 9 

membership functions might be trapezoidal or near-trapezoidal (and hence most vague) in shape, 10 

which is clearly demonstrated in the functions created using Dorig in the bottom three examples. 11 

However, in each case the optimised bin-size creates a smoother probability distribution with a 12 

clearer modal value, resulting in membership functions that are no longer trapezoidal.  13 

Thus, without using the bin-size optimisation algorithm there is a risk that the resulting membership 14 

functions will be too vague and do not represent the information that can be gained from the 15 

observations. It is worth nothing that for these three examples, if linear interpolation is used on the 16 

original membership function, the resulting interpolated fuzzy number will all have equal  intervals 17 

(due to the trapezoidal shape), transferring no useful information to the final fuzzy number. 18 

Overall, the above examples illustrate the advantages of using the couple method of bin-size 19 

optimisation and probability-possibility transformation to create fuzzy numbers for the FNN 20 

application. The applicability of this method is not necessarily restricted to this application and can 21 

be applied whenever there is a need to construct fuzzy numbers from observed data. The utility of 22 

the first component, bin-size optimisation to estimate the density function, is that in cases where 23 

either not enough information is available to define a probability distribution, or if the data do not 24 

follow the mould of a known density function, or if assumptions on the class of distribution cannot 25 

be made, the optimum bin-size can be calculated to define an empirical distribution for the 26 

probability-possibility transformation. The advantage of the second component, the algorithm to 27 

construct the possibility distribution (i.e. the membership function of the fuzzy number) is that it 28 

provides a consistent, transparent and objective method to convert observations (e.g. time series 29 

data) into fuzzy numbers - which has been cited as a major hurdle in implementing fuzzy number 30 
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based applications in the literature (Abrahart et al., 2010; Dubois & Prade, 1993; Civanlar & 1 

Trussel, 1986). A noteworthy component of this algorithm is that the fuzzy numbers do not reduce 2 

to the simple, triangular shaped functions that are widely used, but rather the functions better 3 

represent the information from the observations.  4 

3.2 Training the fuzzy neural network 5 

Once the observations of the abiotic input parameters (Q and T) were converted to fuzzy numbers, 6 

the FNN training algorithm was run using five neurons in the hidden layer, to predict daily 7 

minimum DO in the Bow River. First, the values of the fuzzy numbers at μ = 1 was used to train 8 

the crisp network. This was done to have initial estimates of the 10 WIH (5 for each input), 5 BIH, 9 

5 WHO, and 1 BO. These initial estimates were used to provide the upper and lower limits of the 10 

constraints for the proceeding optimisation algorithm. Once these estimates were calculated, the 11 

optimisation algorithm was used to calculate the fuzzy weights and biases using fuzzy inputs, and 12 

was started from μ = 0 and moving sequentially to higher membership levels until μ = 0.8. The 13 

final level (at μ = 1) was calculated using the midpoint of the intervals estimated at μ = 0.8. The 14 

total optimisation time (using the SCE-UA algorithm) for the selected architecture tookproposed 15 

method was 13 hours, whereas the existing method with crisp inputs was 8 hours, using a 2.40 GHz 16 

Intel® Xeon microprocessor (with 4 GB RAM).  17 

The EMSE and the Nash-Sutcliffe model efficiency coefficient (ENSE; Nash & Sutcliffe, 1970) for 18 

the training, validation and testing scenarios for μ = 1 for both methods are shown in Table 3. The 19 

EMSE for each dataset are low, between 11% and 16% of the mean annual minimum DO seen in the 20 

Bow River for the study period. The ENSE values are approximately equal to 0.5 for each subset, 21 

which is higher than ENSE values in the literature for water quality parameters when modelled daily 22 

(see Moriasi et al., 2007 for a survey of results) and is considered to be “satisfactory” by their 23 

standards. In comparing the two methods, it is obvious that including additional information (in 24 

the form of fuzzy inputs) does not decrease performance, as the metrics are nearly identical for 25 

both methods. This shows that the proposed method has successfully incorporated input data 26 

uncertainty in the model architecture. These two model performance metrics highlight that in 27 

general, predicting minimum DO using abiotic inputs and a data-driven approach is an effective 28 

technique.  29 



 

 30 

The results of the optimisation component of the algorithm are summarised in Table 4, which 1 

shows the percentage of data (PCI) captured within the resulting α-cut intervals for each of the three 2 

data subsets. The performance for each of the datasets (i.e., train, validation and test) for both 3 

methods is nearly identical (on an interval-by-interval basis): the exact amount of data captured 4 

within the intervals, as required by the constraints, except for the μ = 0.8 interval. At this interval, 5 

the  amount of coverage decreases (i.e. lower performance) as the membership level increases, 6 

which is unavoidable when the width of the uncertainty bands decrease. However, as As required 7 

by Eq. 12, the amount of data within the interval has to be greater-than or equal-to the limit defined 8 

by PCI (as per Alvisi & Franchini, 2011) which is true for all training data. This means that a 9 

solution to satisfy the constraints with a lower amount of data (e.g. reducing the 29.91% for the μ 10 

= 0.8 interval for the proposed method) would either result in non-minimal intervals (though this 11 

is unlikely) or that the constraints on the values of the intervals could not be maintained.  (tThis 12 

latter issue will be discussed in detail with Fig. 5 below).  For the validation and testing datasets, 13 

similar performance is seen for both with near perfect PCI captured at μ = 0.6, 0.8 and 1, and more 14 

than PCI at μ = 0.2 and 0.4. Lastly, as mentioned above, the performance of non-training datasets 15 

for both methods decrease as the interval get narrow: this can be seen best by the inability for both 16 

methods to capture the exact amount of data required at the μ = 0.8 interval for the validation and 17 

testing datasets. These results are similar to the testing dataset in Alvisi & Franchini (2011). This 18 

comparison again demonstrates the ability of the proposed method with fuzzy inputs to function in 19 

similar manner to the original algorithm that used crisp inputs. 20 

A sample of the fuzzy weights and biases produced through the optimisation are shown in Fig. 5. 21 

Note that the membership functions are assumed to be piecewise linear (following similar 22 

assumptions made in Alvisi & Franchini, 2011; Khan et al. 2013; Khan & Valeo, 2015a), i.e. that 23 

the intervals at each membership levels can be joined to create a fuzzy number. This can be 24 

confirmed by the fact that each of the weights and biases are convex where intervals at lower levels 25 

are wider than intervals at higher levels, and are normal with at least one element with μ = 1. Note 26 

that each weight and bias has a non-linear membership function, i.e. none of the functions produced 27 

follow the typical triangular functions and are not necessarily symmetric about the modal value. 28 

The shapes of the fuzzy weights and biases for the proposed and existing method are generally the 29 

same for the input-hidden layer, however differences can be seen for the hidden-output layer plots. 30 
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Since the existing method uses crisp inputs, it requires the produced weights and biases to represent 1 

the uncertainty in the data, to produce output intervals wide enough to capture the set amount of 2 

observations. This is reflected in hidden-output layer plots where the lower limit of the membership 3 

function for Weight #5 is highly skewed, which enables this method to capture the low DO events. 4 

Similarly, Bias #1 in the hidden-output layer has been translated to a lower value, to produce fuzzy 5 

DO outputs that capture the low DO observations.  6 

The figure demonstrates that enough α-cut levels (i.e. six levels equally spaced between 0 and 1) 7 

have been selected to completely define the shape of the membership functions. A smaller number 8 

of levels e.g. two levels, one at μ = 0 and one at μ = 1, the fuzzy number collapses to a triangular 9 

fuzzy number, which is not desirable for this research, as discussed in previous sections. When 10 

only two levels are selected, the figures demonstrate that significant differences exist between those 11 

simple functions and the ones generated using six membership levels: the decrease in the width of 12 

the intervals with an increase in membership level is not linear as is in triangular shaped function. 13 

Similarly, a higher number of intervals e.g. 100 intervals, equally spaced between 0 and 1, could 14 

be selected. The risk in selecting many intervals is that as the membership level increases (closer 15 

to 1) the intervals become narrower as a consequence of convexity. This will result in numerous 16 

closely spaced intervals, with essentially equal upper and lower bounds, making the extra 17 

information redundant. This is demonstrated in the sample membership functions in Fig. 5 for WIH 18 

number 5 and BO (for the proposed method), where the intervals at the higher membership levels 19 

collapse to a singleton, or are extremely narrow. Thus, defining more uncertainty bands between 20 

the existing levels would not add more detail but would merely replicate the information already 21 

calculated.  22 

Connecting this back to the results in Table 4, these two particular weights and biases show why 23 

the percentage of data calculated at μ = 0.80.2 (for training) cannot be improved by further 24 

optimisation. At some point, if the intervals at μ = 0.80.2 for the various weights and biases collapse 25 

to a single element, no further refinement in the model is possible (since all the constraints are met) 26 

and the minimum interval width of the predicted DO whilst capturing at least PCI amount of data 27 

has been reached. It is worth emphasizing here that the uncertainty represented by these fuzzy 28 

number weights and biases is not the uncertainty of the particular weight or bias, but is the total 29 

forecasting uncertainty defined by the quantifying bands around the crisp predicted value. 30 
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Table 3 and 4, and Fig. 5 demonstrates the overall success of the proposed approached to calibrate 1 

an FNN model as compared to a crisp ANN, as well as an FNN that uses crisp inputs. The 2 

optimisation algorithm is defined based on the principles of possibility theory (i.e. defining the 3 

amount of data to include in each interval) and is a transparent, repeatable and objective (not 4 

arbitrary) method to create the fuzzy numbers for the FNN model.  5 

The observed versus crisp predictions (black dots) and fuzzy predictions at μ = 0 (grey lines) for 6 

daily minimum DO for the three different data subsets (training, validation and testing) are shown 7 

in Fig. 6. The figure shows that nearly-all (specifically, 99.4%, 98.8% and 99.0% of the training, 8 

validation, and testing subsets, respectively, for the proposed method, with similar results for the 9 

crisp input FNN method) of the observations fall within the μ = 0 interval, since the observed values 10 

(black dots) tend to fall inside the grey lines. This figure also highlights one of the major advantages 11 

of the FNN over a simple non-fuzzy ANN: almost all of the fuzzy results intersect the 1:1: line 12 

whereas many of the crisp results are quite far from that line, especially at low DO values (which 13 

is marked at 6.5 mg L-1 on the figure). In other words, while the fuzzy number prediction may not 14 

predict the observed value exactly, they provide at least some possibility of the observed value 15 

within its various α-cut intervals, but the crisp results do not provide this additional information. 16 

This figure illustrates that ENSE (listed in Table 2 for the μ = 1 case only) is not representative of 17 

the entire fuzzy number predictions, since it does not capture the performance at different 18 

membership levels. Thus, there is a need to develop an equivalent performance metric when 19 

comparing crisp observations to fuzzy number predictions.  20 

Fig. 6 also demonstrates the benefit of the FNN approach as compared to the crisp ANN approach 21 

with respect to predicting low DO (i.e. when DO is less than 6.5 mg L-1). Both theThe FNN 22 

methods predicts more of the low DO events within its intervals as compared to the crisp method. 23 

The figure demonstrates that both the crisp (μ = 1) and fuzzy predictions tend to over predict the 24 

low DO events (since they fall above the 1:1: line), but the fuzzy intervals are closer to the 25 

observations (i.e. they intersect the 1:1 line for the majority of low DO events), and therefore 26 

predict some possibility (even if it is a low probability) the low DO events occur. Thus, generally 27 

speaking the ability of the FNN to capture nearly-all of the data within its predicted intervals 28 

guarantees that most of the low DO events are successfully predicted. This is a major improvement 29 

over conventional methods used to predict low DO. In comparing the two FNN methods, both 30 
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methods give similar results: the average width of predicted low DO intervals for the nine-year 1 

period (at μ = 0) is 8.84 mg L-1 for the proposed method, and 8.60 mg L-1 for the existing method. 2 

The impact of the width of the predicted intervals is discussed later.  3 

Trend plots of observed minimum DO and predicted fuzzy minimum DO for the years 2004, 2006, 4 

2007 and 2010 are illustrated in Figs. 7 and 8. These results are shown only for the proposed method 5 

for clarity; difference between the existing method (using crisp inputs) and the proposed method 6 

(using fuzzy inputs) is discussed later. These years were selected due to the high number of low 7 

DO occurrences in each year (as listed in Table 1), and highlight the utility of the proposed method 8 

to predict minimum DO using abiotic factors in the absence of a complete understanding of the 9 

physical mechanisms that govern DO in the Bow River. Note that for each year, 50% of the data 10 

are training data, 25% are validation and 25% are testing data. However, for clarity this difference 11 

is not individually highlighted for each data point in these figures.  12 

In Figs. 7 and 8, the predicted minimum DO at equivalent membership levels (e.g. 0L or 0R) at 13 

different times steps are joined together creating bands representative of the predicted fuzzy 14 

numbers calculated at each time step. In doing so, it is apparent that all the observed values fall 15 

within the μ = 0 interval for the years 2006, 2007 and 2010, and all but one observation in 2004. 16 

The width of each band represents the amount of uncertainty associated with each membership 17 

level. For example, the bands are the widest at μ = 0, meaning the results have the most vagueness 18 

associated with it. Narrower bands are seen as the membership level increases until μ = 1. This 19 

reflects a decrease in vagueness, increase in credibility, or less uncertainty of the predicted value, 20 

as the membership level increases. Note that the majority of the predictions at μ = 1 are single 21 

elements but some predictions are α-cut intervals (e.g. [a b]μ=1). This means that when not enough 22 

information is available, the fuzzy prediction collapse to trapezoidal membership functions.  23 

In each of the years shown, the majority of the observations tend to fall within the μ = 0.2 interval 24 

or higher, with only the low DO (i.e. < 5 mg L-1) falling within the μ = 0 and μ = 0.2 bands. This 25 

suggests that the low DO events are predicted with less certainty compared to the occasions when 26 

DO concentration is high. Also note that the interval at μ = 0 is highly skewed towards the lower 27 

limit (μ = 0L), i.e. the modal value is not at the centre of the interval. This shows that the FNN has 28 

been trained to capture these low DO events, but predicts them with lower credibility. Compared 29 

to the crisp results (i.e. those at μ = 1), for these low DO events, the proposed method provides 30 
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some possibility of low DO, whereas the crisp results do not predict a possibility of low DO. Thus, 1 

the ability to capture the full array of DO observations within different intervals is an advantaged 2 

of the proposed method over existing methods.  3 

The trend plot for 2004 shows that observed DO decreases rapidly from late June to late July, 4 

followed by a few days of missing data and near-zero observations, before increasing to higher 5 

concentrations. Details of this trend are shown in Fig. 9 which shows magnified versions of 6 

important periods for each year. The reason for this rapid decrease in 2004 is unclear and may be 7 

related to problems with the real-time monitoring device which was in its first year of operation 8 

that year. However, it demonstrates that the efficacy of data-driven methods is dependent on the 9 

quality of the data. Since the proposed method was calibrated to capture nearly-all the observations 10 

(including outliers like those seen in 2004) within the least certain band at μ = 0, the resulting 11 

network predicts results to include these outliers, but at low credibility levels. As the data length 12 

increases (i.e. the addition of more data and the FNN is subsequently updated), the number of these 13 

types of outliers included within the μ = 0 band will decrease because the optimisation algorithm 14 

(Eqs. 12 to 14) searches for the smallest width of the interval whilst including 99.5% of the data. 15 

Thus, with more data, it is expected that these extreme events (i.e. the outliers seen in 2004) will 16 

no longer be captured within the μ = 0 band. 17 

The time series plot for 2006 shows that all the observations fall within the predicted intervals, and 18 

that the predicted trend generally follows the observed trend. The majority of the 25 low DO events 19 

(< 5 mg L-1) occur from mid-July and continue occasionally until mid-September. Details of some 20 

of these low DO events are plotted in Fig. 9. Fig. 7 demonstrates these low DO events are captured 21 

between μ = 0 and 0.2 intervals, similar to the 2004 case, meaning that the credibility of these 22 

predictions is the lowest. However, unlike the 2004 case, Fig. 9 demonstrates that in 2006 the 23 

predicted intervals tend to follow the same trend as the observations for these low DO events, even 24 

if it is predicting them at a low credibility.  25 

In contrast to the results from 2004 and 2006, the majority of observations are captured at higher 26 

membership levels (i.e. greater than μ = 0.2) in 2007 as shown in Fig. 8. That is, only a limited 27 

number of observations are captured within the lowest credibility band. More importantly, 26 out 28 

of the 27 low DO (<6.5 mg L-1) events are captured at a membership level greater than 0.2L. 29 

Meaning that the low DO predictions in 2007 for the 6.5 mg L-1 guideline are predicted with higher 30 
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credibility than the 2004 and 2006 cases. Another difference for the results from this year is that 1 

many of the low DO observations for 2007 are more evenly scattered around the μ = 1 predictions 2 

(as seen in Fig. 9) in contrast to the 2004 and 2006 cases, where the low DO events were always 3 

predicted to be closer to lower bounds of the intervals.  4 

The trend plot for 2010 is shown in Fig. 8 and it is clear that all observations fall within the μ = 0.2 5 

interval or at higher α-level intervals, meaning that the predictions capture the observations with 6 

higher certainty. This is likely due to the lack of DO events below 5 or 6.5 mg L-1 in 2010. Also of 7 

note for this year is that all observations are less than 10 mg L-1, and about 90% of all observations 8 

are below the 9.5 mg L-1 guideline (as listed in Table 1). The trend plot again illustrates that the 9 

FNN generally reproduces the overall trend of observed minimum DO. This can be seen in a period 10 

in early May where DO falls from a high of 10 mg L-1 to a low of 7 mg L-1, and all the predicted 11 

intervals replicate the trend. This is an indication that the two abiotic input parameters are suitable 12 

parameters for predicting minimum DO in this urbanised watershed. 13 

Fig. 9 shows details of a low DO (<9.5 mg L-1) event in 2010 in late July through late August. The 14 

bulk of low DO events are captured between the μ = 0.6R and 0.2R intervals – demonstrating that 15 

these values are predicted with higher credibility than the other low DO cases in 2004 and 2006, 16 

and are predicted closer to the upper end of the interval. All of the low DO (<9.5 mg L-1) 17 

observations in this plot are under predicted by the crisp method (though not with the FNN method 18 

since they are captured within a fuzzy interval). This shows that the crisp ANN results tend to over 19 

predict extremely low DO events (i.e. < 5 mg L-1) while under predicting the DO < 9.5 mg L-1 20 

events. 21 

The analysis of the trend plots for these four sample years show that the proposed FNN method is 22 

extremely versatile in capturing the observed daily minimum DO in the Bow River using Q and T 23 

as inputs. The crisp case (at μ = 1) cannot capture the low DO events (as shown in Figs. 7 and 8), 24 

however the FNN is able to capture these low DO events. Generally speaking, the training method 25 

selected for the FNN has been successful in creating nested-intervals to represent the predicted 26 

fuzzy numbers. The widths of the predicted intervals correspond to the certainty of the predictions 27 

(i.e. larger intervals for more uncertainty). The utility of this method is further demonstrated in the 28 

proceeding section, where the risk of low DO is estimated using a possibility-probability (i.e. 29 

defuzzification) technique. 30 
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Figs. 10 shows a comparison of the predicted minimum DO trends from both the proposed FNN 1 

method (solid black line) and the existing FNN method (dashed black line), along with the observed 2 

data (circles) for each membership level for the 2009 data. These figures show that despite the use 3 

of more data for the inputs (i.e. fuzzy numbers versus crisp numbers), both methods are optimised 4 

to show similar results (due to the optimisation algorithm requiring a specific amount of data being 5 

captured at each level). This shows that the optimisation algorithm developed in this manuscript 6 

for fuzzy inputs successfully mimics the original algorithm developed by Alvisi & Franchini (2011) 7 

that only used crisp inputs. Thus, when modelling a complex system, such as the minimum daily 8 

DO in the Bow River, the uncertainty in the inputs can also be quantified and propagated through 9 

the data-driven model, by using the proposed method. This is a major advantage over the original 10 

model (Alvisi & Franchini, 2011) that only allowed crisp inputs to be used. Note that as per Table 11 

4, both methods approximately capture the same amount of data at each interval, however as Fig. 12 

10 indicates this does not necessarily mean that the predicted intervals are exactly the same for 13 

both methods. Both methods predict unique intervals, with the overall result being that PCI amount 14 

of data is captured within each interval. Note that at the interval μ = 0, the existing method using 15 

crisp inputs by design predicts this interval as a singleton (thus the interval width will always be 16 

zero), whereas the proposed method has an additional feature of predicting an interval for the μ = 17 

1 level. An instance of this can be seen near the end of September where an interval is predicted 18 

rather than a singleton.  19 

Fig 11 compares with width of predicted intervals at four selected membership levels for both 20 

methods, generally showing mixed results. As discussed above the existing method does not predict 21 

an interval for μ = 1, thus, a comparison cannot be made and is not included. At the μ = 0.8 level, 22 

the average width of the intervals for the existing method is close to 0, whereas for the proposed 23 

method is 0.36 mg L-1. This is consistent with the results shown in Table 4 and Fig. 5, that 24 

demonstrates the narrow interval at higher membership levels. Annual comparisons of the 25 

remaining intervals show that the intervals at μ = 0 are larger for the proposed method compared 26 

to the existing method for all but one year (2009). However, at μ = 0.2, 0.4 and 0.6, the width of 27 

the intervals is smaller for the proposed method for a majority of years, however the overall 28 

differences are not statistically significant (p >0.05 using the two-sample Kolmogorov-Smirnov 29 

test). The results demonstrate that while both method can achieve the optimisation objectives whilst 30 



 

 37 

respecting the constraints (i.e. PCI), it is reflected differently in the predicted fuzzy intervals. 1 

Generally, the predicted fuzzy numbers using the proposed method have a larger support (at μ = 0) 2 

signifying that the increased uncertainty due to fuzzy inputs into the model are propagated through 3 

the model. Whereas, the lack of inclusion of uncertain input data in the existing method results in 4 

a slightly narrower average support. In essence, the proposed FNN model is modelling a more 5 

complex system (because of the inclusion of input uncertainty) whereas the existing method models 6 

the system by assuming lower complexity (by ignoring the input uncertainty).  7 

3.3 Risk analysis for low DO events 8 

The utility of the FNN method is illustrated through an analysis of the ability of the proposed model 9 

to predict low DO events, and then a possibility-probability transformation is used to assess the 10 

risk of these low DO events. The number of occasions when observed DO was below any of the 11 

three guidelines used for this research are summarised in Table 1. The FNN model was cable to 12 

capture 100% of all low DO events (i.e. below 5, or 6.5 or 9.5 mg L-1) within the predicted intervals. 13 

In comparison, the crisp ANN network (i.e. at μ = 1) did not predict DO to be less than 5 mg L-1 14 

on any of the 51 occasions. Similarly, it predicted DO to be less than the more conservative limit 15 

of 6.5 mg L-1 in only 53% of the 184 occurrences. For the last case, the 9.5 mg L-1 limit, the ANN 16 

method still trailed the FNN method, by predicting 96% of these low DO events. This illustrates 17 

that not only can the FNN method capture more low DO events within its predicted intervals, it 18 

performs exceptionally better for the highest risk case (DO < 5 mg L-1). In general, more days were 19 

correctly identified when there was a risk of low DO using FNN rather than the typical ANN 20 

approach. This is one of the major advantages of using a fuzzy number based uncertainty analysis 21 

component to low DO prediction. 22 

Once all the low DO events were identified, the inverse transformation (defuzzification) described 23 

in Sect. 2.4 was used to estimate the probability of low DO. The primary reason for converting 24 

from possibility to probability is to improve the communication of the risk of low DO. For each 25 

low DO event (i.e. at 5, or 6 or 9.5 mg L-1), the predicted membership function was used to 26 

determine the possibility of low DO, i.e. identify the membership level where the membership 27 

function intersects either of the low DO guidelines (some examples of low DO events are shown 28 
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in Fig. 1012). Once these were identified, the defuzzification technique was used to predict the 1 

probability of low DO (e.g. P({DO<5 mg L-1})). 2 

For the first case, P({DO< 5 mg L-1}), the probability ranged between 11.5% and 16.6% for the 51 3 

events, with a median value of 14%. This means that on days when DO was observed to be below 4 

5 mg L-1, the FNN results identified the possibility of low DO and the probability of DO to be 5 

below the 5 mg L-1 guideline was ~14%. Thus, the FNN method predicts a probability of low DO 6 

(even if it is relatively small) on days when the crisp ANN does not predict a low DO event. This 7 

value can be used as a threshold by water resource managers for estimating the risk of low DO. For 8 

example, if forecasted water temperature and flow rate are used to predict minimum fuzzy DO 9 

using the calibrated model, if the risk of low DO reaches 14%, the event can be flagged. 10 

Appropriate defence mechanisms can then be implemented to prevent the occurrence of low DO. 11 

For the 184 cases where DO was observed to be less than 6.5 mg L-1, the probability-possibility 12 

transformation estimated the risk of low DO to be between 13.7% and 92.9%, with a median value 13 

of 73.4%. Compared to the first case, the probability of low DO for this threshold is higher and 14 

more variable. The low probabilities are associated with predictions of low DO at lower credibility 15 

levels at the lower limit of the intervals (i.e. L), whereas the higher probabilities are associated with 16 

predictions corresponding to the upper limits of the intervals (R). For 43 out of the 184 low DO 17 

events, the probability of low DO was less than 21% – these events correspond to predictions of 18 

low DO at low credibility levels at the lower limits. For the majority of events (107 out of 184), 19 

the risk was high, more than 65%.  It is worth noting that the crisp network only predicted 53% of 20 

these low DO events, and of those correctly identified, the majority were over-predicted.  21 

For the last, most conservative case, the probability of predicting DO to be less than 9.5 mg L-1 22 

(1179 events) varied between 21.9% and 100%, with a median value of 98.1%. Only 46 out of the 23 

1179 events had a probability of less than 70%; the majority of events had a high risk of low DO:  24 

more than 80% of the events had a risk of low DO of more than 90%. This shows that the FNN can 25 

predict with high probability, the events were minimum daily DO is observed to be below the 9.5 26 

mg L-1 limit.  27 

It is worth noting here that the proposed FNN model was designed to only include data from the 28 

April to October each year, corresponding to the ice-free period (as defined in Sect. 2.1). This 29 
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implies that the analysis has been conducted on the time period that is most critical or susceptible 1 

to low DO. Thus, as the proposed FNN model predicts, there is possibility of low DO on most days 2 

(as shown in the trend plots in Figs. 7 and 8). However, the consistency principle (Zadeh, 1978) 3 

implies that an event must be possible before it is probable. Thus, a possibility to predict low DO 4 

does not imply that it will occur with a high probability. In fact, nearly all the possibility of low 5 

DO events occurs at low membership levels (i.e. μ < 0.2) implying a low possibility – and the 6 

skewed nature of the results deem the probability to be low as well. For example, for the DO < 5 7 

mg L-1 case, the proposed FNN model predicted 1367 days where low DO was predicted but not 8 

observed, however, on average the probability of low DO for 98% of these events was much lower 9 

than the threshold criteria (14%) mentioned above. Thus, the number of “false alarms” predicted 10 

by the proposed method is very low. Similarly, for the DO < 6.5 mg L-1 and 9.5 mg L-1 cases, each 11 

had ~94% of the low DO cases to fall below their respective threshold criteria. This shows that 12 

while FNN model correctly predicts a possibility of low DO for the majority of the days 13 

(corresponding to the typical low DO conditions), the risk of predicting a “false alarm” is low. 14 

Lastly, it should be noted that the wide intervals predicted at μ = 0 are a function of the rapidly 15 

decreasing low DO value seen in 2004 (discussed in Sect. 3.2) that are likely due to instrument 16 

error. With the inclusion of new data as it becomes available, and as the model parameters are 17 

updated, it is expected that these outliers will be part of the 0.5% of PCI not included in the predicted 18 

intervals, resulting in narrower bands of predictions.  19 

The predicted membership functions of minimum DO for nine examples are shown Fig. 1012, 20 

along with the observed minimum DO (the vertical dashed line). Three samples are shown for each 21 

low DO guideline: 5, 6.5, or 9.5 mg L-1; along with the associated risk of low DO calculated using 22 

the defuzzification technique. Note that the membership functions of the predicted fuzzy numbers 23 

show that each is uniquely shaped, convex and normal, highlighting the fact that the proposed 24 

optimisation algorithm successfully produces nested intervals at each membership levels (as it does 25 

for the weights and biases shown in Fig. 5). For the predicted fuzzy DO, the intervals are largest at 26 

μ = 0, which decrease in size as the membership level increases. The shape of the membership 27 

functions are not triangular shaped as assumed in many fuzzy number based applications. This is 28 

of significance because it shows that the amount of uncertainty (or credibility) of the model output 29 
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does not change linearly with the magnitude of DO, which has important implications regarding 1 

the risk of low DO.  2 

For the 5 mg L-1 guideline, the intersection of the membership function and the guideline occurs at 3 

low possibility levels (between μ = 0L and 0.2L), meaning that the corresponding probability will 4 

be low as well, as illustrated by the probability values shown in the figure. This again highlights 5 

that the risk of low DO (< 5 mg L-1) is predicted to be low by the FNN mostly due to the fact that 6 

the observations are captured at low membership levels. Note that the crisp ANN results (at μ = 1) 7 

always over predict low DO, as shown in these three examples. The observed value falls within the 8 

predicted interval for each case, also at low membership levels.  9 

The examples for the 6.5 mg L-1 guideline (second row in Fig. 1012) show that the intersection 10 

between the membership function and the guidelines occurs between μ = 0.4 and 0.6 on 26 July 11 

2006, between μ = 0.6 and 0.8 on 8 August 2007, and at about μ = 0.6 on 29 September 2004. This 12 

illustrates the broader trend with the 6.5 mg L-1 guideline (which was discussed earlier and had a 13 

large range of risk predictions), which is that for the full dataset, the possibility of low DO (< 6.5 14 

mg L-1) occurs at every interval with the majority occurring at higher intervals. This is in contrast 15 

to the 5 mg L-1 guideline where the possibility of low DO only occurs only between μ = 0 and 0.2. 16 

The last row in Fig. 10 12 show sample low DO results for the 9.5 mg L-1 guideline. As discussed 17 

above, more than 80% of these events had a high (more than 90%) risk of low DO. In the first 18 

example, on 23 September 2004, the guideline intersects the membership function at μ = ~0.2R, 19 

corresponding to a ~97% risk of low DO. The 6 August 2008 has a low DO prediction of 100% – 20 

this is because the predicted fuzzy number is entirely below the guideline limit. A similar result 21 

can be seen for the last example. These examples also illustrate that had only a triangular 22 

membership function been used (i.e. the fuzzy numbers defined at two membership levels), the 23 

probability of low DO could not be quantified as specifically as it has been here. The slight changes 24 

in membership function shapes between intervals impact the final probability, and a linear function 25 

would have not captured these changes. 26 

These examples are meant to illustrate the potential utility of the data-driven and abiotic input 27 

parameter DO model, that can be used to assess the risk of low DO. Given that it is a data-driven 28 

approach, the model can be continually updated as more data is available, further refining the 29 
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predictions. Various combinations of input values can be used to predict fuzzy minimum DO and 1 

defuzzification technique can be used to quantify the risk of low DO given the input values. The 2 

utility of this method is that a water-resource manager can use forecasted water temperature data 3 

and expected flow rates to quantify the risk of low DO events in the Bow River, and can plan 4 

accordingly. For example, if the risk of low DO reaches a specific numerical threshold or trigger, 5 

different actions or strategies (e.g. increasing flow rate in the river by controlled release from the 6 

upstream dams) can be implemented. The quantification of the risk to specific probabilities means 7 

that the severity of the response can be tuned to the severity of the calculated risk.   8 

4 Conclusions 9 

A new method to predict DO concentration in an urbanised watershed is proposed. Given the lack 10 

of understanding of the physical system that governs DO concentration in the Bow River (in 11 

Calgary, Canada), a data-driven approach using fuzzy numbers is proposed to account for the 12 

uncertainty. Further, the model uses abiotic (non-living, physical and chemical attributes) factors 13 

as inputs to the model. Specifically, water temperature and flow rate were selected which are 14 

routinely monitored and thus, a large dataset is available.  15 

The data-driven approach proposed is a modification of an existing fuzzy neural network method 16 

that quantifies the total uncertainty in the model by using fuzzy number weights and biases. The 17 

proposed model refines the exiting model by (i) using possibility theory based intervals to calibrate 18 

the neural network (rather than arbitrarily selecting confidence intervals), and (ii) using fuzzy 19 

number inputs rather than crisp inputs. This research also proposes a new two-step method to 20 

construct these fuzzy number inputs using observations. First a bin-size optimising algorithm is 21 

used to find the optimum histogram (as an estimate of the underlying but unknown probably density 22 

function of the observations). Then a probability-possibility transformation is used to determine 23 

the shape of the fuzzy number membership function.  24 

The results demonstrate the network training algorithm proposed can be successfully implemented. 25 

Model results demonstrate that low DO events are better captured by the fuzzy network as 26 

compared to a non-fuzzy network. A defuzzification technique is then used to calculate the risk of 27 

low DO events. Generally speaking, the method demonstrates that a data-driven approach using 28 

abiotic inputs is a feasible method for predicting minimum daily DO. Results from this research 29 
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can be implemented by water resource managers to assess conditions that lead to, and quantify the 1 

risk of low DO.  2 
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Tables 1 

Table 1: A summary of low DO events in the Bow River between 2004 and 2012 and the 2 

corresponding minimum acceptable DO concentration guidelines 3 

Year DO < 5 mg L-1 a DO < 6.5 mg L-1 b DO < 9.5 mg L-1 c 
Total number of 

samples 

2004 25 41 107 135 

2005 1 26 133 208 

2006 25 70 164 209 

2007 0 27 182 211 

2008 0 5 130 163 

2009 0 15 85 96 

2010 0 0 180 207 

2011 0 0 122 204 

2012 0 0 76 206 

Total 51 184 1179 1639 
a for the protection of aquatic life for 1-day (AENV, 1997) 
b for the protection of aquatic life in cold, freshwater for other-life (i.e. not early) stages 

(CCME, 1999) 
c for the protection of aquatic life in cold, freshwater for early-life stages (CCME, 1999) 

  4 



 

 54 

Table 2: Selected values for PCI for the FNN optimisation 1 

μ PCI (%) 

1.00 0.00 

0.80 20.00 

0.60 40.00 

0.40 60.00 

0.20 80.00 

0.00 99.50 

 2 

3 
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Table 3: The EMSE and ENSE for each subset of the fuzzy neural network using the method proposed 1 

(using fuzzy inputs) and using the original method (using crisp inputs) 2 

  EMSE (mg L-1)2 ENSE 

  Proposed Original Proposed Original 

Train 1.52 1.55 0.52 0.51 

Validation 1.19 1.18 0.49 0.49 

Test 1.09 1.10 0.54 0.54 

  3 
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Table 4: Percentage of data captured within each α-cut interval for the three subsets of data 1 

  Percent captured, PCI (%) 

  Proposed method Existing method 

μ Train Validation Test Train Validation Test 

1.00 - - - - - - 

0.80 29.91 28.54 28.78 20.02 14.39 18.05 

0.60 39.93 40.98 40.24 40.05 35.85 40.49 

0.40 59.95 66.10 64.15 60.07 60.73 61.95 

0.20 79.98 80.49 82.93 80.10 79.51 82.44 

0.00 99.39 98.78 99.02 99.51 98.54 99.02 

 2 

 3 

  4 
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Figures Captions  1 

Figure 1: An aerial view of the City of Calgary, Canada showing the locations of (a) the flow 2 

monitoring site Bow River at Calgary (Water Survey of Canada ID: 05BH004), three wastewater 3 

treatment plants at (b) Bonnybrook, (c) Fish Creek, and (d) Pine Creek, and two water quality 4 

sampling sites (e) Stier’s Ranch and (f) Highwood. 5 

Figure 2: An example of a three-layer multilayer perceptron feed-forward ANN, with two input 6 

neurons, the hidden layer neurons, and one output neuron. WIH are the weights between the input 7 

and hidden layer, WHO are the weights between the hidden and output layer, BH are the biases in 8 

the hidden layer, and BO is the bias in the output layer. 9 

Figure 3: Sample results of probability-possibility transformation for flow rate, Q  10 

Figure 4: Sample results of probability-possibility transformation for water temperature, T 11 

Figure 5: Sample plots of the produced membership functions for the weights and biases of the 12 

fuzzy neural network for both the proposed and existing methods 13 

Figure 6: A comparison of the predicted and observed minimum DO at the μ = 0 interval (black 14 

grey line) and at μ =1 (black dots) for the proposed (top row) and existing (bottom row) methods 15 

Figure 7: A comparison of the observed and predicted minimum DO trends for: (top) 2004, and 16 

(bottom) 2006 17 

Figure 8: A comparison of the observed and predicted minimum DO trends for three sample years: 18 

(top) 2007 and (bottom) 2010 19 

Figure 9: Zoomed in views of the trend plots for four sample year corresponding to important 20 

periods with low DO occurrences 21 

Figure 10: Comparison of predicted trends of the proposed (solid black line) and existing (dashed 22 

black line) methods shown for 2009 for each membership level. Observations are shown as black 23 

circles 24 

Figure 11: A comparison of average annual interval widths of predicted fuzzy numbers using the 25 

proposed and existing FNN methods for four selected membership levels 26 
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Figure 1012: Sample plots of low DO events and the corresponding risk of low DO calculated 1 

using a possibility-probability transformation for the (top) 5 mg L-1, (middle) 6.5 mg L-1, and 2 

(bottom) 9.5 mg L-1 guideline 3 
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Figures  1 

 2 

Figure 1: An aerial view of the City of Calgary, Canada showing the locations of (a) the flow 3 

monitoring site Bow River at Calgary (Water Survey of Canada ID: 05BH004), three wastewater 4 

treatment plants at (b) Bonnybrook, (c) Fish Creek, and (d) Pine Creek, and two water quality 5 

sampling sites (e) Stier’s Ranch and (f) Highwood. 6 
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 1 

Figure 2: An example of a three-layer multilayer perceptron feed-forward ANN, with two input 2 

neurons, the hidden layer neurons, and one output neuron. WIH are the weights between the input 3 

and hidden layer, WHO are the weights between the hidden and output layer, BH are the biases in 4 

the hidden layer, and BO is the bias in the output layer. 5 
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Figure 3: Sample results of probability-possibility transformation for flow rate, Q 1 
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Figure 4: Sample results of probability-possibility transformation for water temperature, T 2 

 3 
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 1 

Figure 5: Sample plots of the produced membership functions for the weights and biases of the 2 

fuzzy neural network for both the proposed and existing methods 3 
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 1 

Figure 6: A comparison of the predicted and observed minimum DO at the μ = 0 interval (grey 2 

line) and at μ =1 (black dots) for the proposed (top row) and existing (bottom row) methods 3 
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 1 

Figure 7: A comparison of the observed and predicted minimum DO trends for: (top) 2004, and 2 

(bottom) 2006 3 
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 1 

Figure 8: A comparison of the observed and predicted minimum DO trends for three sample years: 2 

(top) 2007 and (bottom) 2010 3 
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 1 

Figure 9: Zoomed in views of the trend plots for four sample year corresponding to important 2 

periods with low DO occurrences 3 
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 1 

Figure 10: Comparison of predicted trends of the proposed (solid black line) and existing (dashed 2 

black line) methods shown for 2009 for each membership level. Observations are shown as black 3 

circles 4 
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 1 

Figure 11: A comparison of average annual interval widths of predicted fuzzy numbers using the 2 

proposed and existing FNN methods for four selected membership levels 3 
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 1 

Figure 12: Sample plots of low DO events and the corresponding risk of low DO calculated using 2 

a possibility-probability transformation for the (top) 5 mg L-1, (middle) 6.5 mg L-1, and (bottom) 3 

9.5 mg L-1 guideline 4 

 5 


