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Abstract 12 

A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in 13 

a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic 14 

(non-living, physical and chemical attributes) as inputs to the model, since the physical 15 

mechanisms governing DO in the river are largely unknown. A new two-step method to construct 16 

fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified 17 

to account for fuzzy number inputs and also uses possibility-theory based intervals to train the 18 

network. Results demonstrate that the method is particularly well suited to predict low DO events 19 

in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, 20 

as well as with a traditional neural network. Model output and a defuzzification technique is used 21 

to estimate the risk of low DO so that water resource managers can implement strategies to prevent 22 

the occurrence of low DO.  23 

Keywords: dissolved oxygen; water quality; artificial neural networks; fuzzy numbers; fuzzy 24 

neural networks; risk analysis; uncertainty   25 
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1 Introduction 1 

The City of Calgary is a major economic hub in western Canada. With a rapidly growing 2 

population, currently estimated in excess of 1 million, the City is undergoing expansion and 3 

urbanisation to accommodate the changes. The Bow River is a relatively small river that flows 4 

through the City and provides approximately 60% of the residents with potable water (Khan & 5 

Valeo, 2015a; 2015b). In addition to this, water is diverted from within the City for irrigation, is 6 

used as a source for commercial and recreational fisheries, and is the source of drinking water for 7 

communities downstream of Calgary (Robinson et al., 2009; Bow River Basin Council, 2015). This 8 

highlights the importance of the Bow River, not just as a source of potable water, but also as a 9 

major economic resource.  10 

However, urbanisation has the potential to reduce the health of the Bow River, which is fast 11 

approaching its assimilative capacity and is one of the most regulated rivers in Alberta (Bow River 12 

Basin Council, 2015). Three wastewater treatment plants (shown in Fig. 1) and numerous 13 

stormwater outfalls discharge their effluent into the River and are considered to be a major cause 14 

of water quality degradation in the River (He et al., 2015). This highlights some of the major 15 

impacts on the Bow River from the surrounding urban area. A number of municipal and provincial 16 

programs are in place to reduce the loading of nutrients and sediments into the river such as the 17 

Total Loadings Management Plan and the Bow River Phosphorus Management Plan (Neupane et 18 

al., 2014) as well as modelling efforts – namely the Bow River Water Quality Model (Tetra Tech, 19 

2013; Golder, 2004) – to predict the impact of different water management programs on the water 20 

quality.   21 

One of the major concerns is that low dissolved oxygen (DO) concentration has occurred on a 22 

number of occasions over the last decade in the Bow River within the City limits. DO is an indicator 23 

of overall health of the aquatic ecosystem (Dorfman & Jacoby, 1972; Hall, 1984; Canadian Council 24 

of Ministers of the Environment, 1999; Kannel et al., 2007; Khan and Valeo, 2014a; 2015a), and 25 

low DO – which can be caused by a number of different factors (Pogue and Anderson 1995; Hauer 26 

and Hill 2007; He et al., 2011; Wen et al., 2013) – can impact various organisms in the waterbody. 27 

While the impact of long-term effects of low DO are largely unknown, acute events can have 28 

devastating effects on aquatic ecosystems (Adams et al., 2013). Thus, maintaining a suitably high 29 

DO concentration, and water quality in general, is of utmost importance to the City of Calgary and 30 
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downstream stakeholders, particularly as the City is being challenged to meet its water quality 1 

targets (Robinson et al., 2009).  2 

A number of recent studies have examined the DO in the Bow River, and the factors that impact 3 

its concentration. Iwanyshyn et al., (2008) found the diurnal variation in DO and nutrient (nitrate 4 

and phosphate) concentration was highly correlated, suggesting that biogeochemical processes 5 

(photosynthesis and respiration of aquatic vegetation) had a dominant impact on nutrient 6 

concentration rather than wastewater treatment effluent. Further, Robinson et al., (2009) found that 7 

the DO fluctuations in the River were primarily due to periphyton rather macrophyte 8 

biogeochemical processes. In both studies, the seasonality of DO, nutrients, and biological 9 

concentration, and external factors (e.g. flood events) were demonstrative of the complexity in 10 

understanding river processes in an urban area, and that consideration of various inputs, outputs 11 

and their interaction if important to fully understand the system. He et al., (2011) found that 12 

seasonal variations in DO in the Bow River could be explained by a combination of abiotic factors 13 

(such as climatic and hydrometric conditions), as well as biotic factors. The study found that while 14 

photosynthesis and respiration of biota are the main drivers of DO fluctuation, the role of nutrients  15 

was ambiguous. Neupane et al. (2014) found that organic materials and nutrients from point and 16 

non-point sources influence DO concentration in the River. The likelihood of low DO was highest 17 

downstream of wastewater treatment plants, and that non-point sources have a significant impact 18 

in the open-water season. Using a physically-based model, Neupane et al. (2014) predicted low 19 

DO concentration more frequently in the future in the Bow River owing to higher phosphorus 20 

concentration in the water, as well as climate change impacts.  21 

A major issue of modelling DO in the Bow River is that rapid urbanisation within the watershed 22 

has resulted in substantial changes to land-use characteristics, sediment and nutrient loads, and to 23 

other factors that govern DO. Major flood events (like those in 2005 and 2013) completely alter 24 

the aquatic ecosystem, while new wastewater treatment plants (e.g. the Pine Creek wastewater 25 

treatment plant) added in response to the growing population further increases the stress 26 

downstream. These types of changes in a watershed increase the complexity of the system: the 27 

interaction of numerous factors over a relatively small area and across different temporal scales 28 

means that DO trends and variability in urban areas are more difficult to model and evaluating 29 

water quality in urban riverine environments is a difficult task (Hall, 1984; Niemczynowicz, 1999).   30 
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The implication of this is that the simplistic representation described in conceptual, physically-1 

based models is not suitable for complex systems, i.e. where the underlying physical mechanisms 2 

behind the factors that govern DO are still not clearly understood, in a rapidly changing urban 3 

environment. Physically-based models require the parameterisation of a several different variables 4 

which may be unavailable, expensive and time consuming (Antanasijević et al., 2014; Wen et al., 5 

2013; Khan et al., 2013). In addition to this, the increase in complexity in an urban system 6 

proportionally increases the uncertainty in the system. This uncertainty can arise as a result of 7 

vaguely known relationships among all the factors that influence DO, in addition to the inherent 8 

randomness in the system (Deng et al., 2011). The rapid changes in an urban area render the system 9 

dynamic as opposed to stationary, which is what is typically assumed for many probability-based 10 

uncertainty quantification methods. Thus, not only is DO prediction difficult, it is beset with 11 

uncertainty, hindering water resource managers from making objective decisions.  12 

In this research, we propose a new method to predict DO concentration in the Bow River using a 13 

data-driven approach, as opposed to a physically-based method, that uses possibility theory and 14 

fuzzy numbers to represent the uncertainty rather than the more commonly used probability theory. 15 

Data-driven models are a class of numerical models based on generalised relationships, links or 16 

connections between input and output datasets (Solomatine & Ostfeld, 2008). These models can 17 

characterize a system with limited assumptions and are useful in solving practical problems, 18 

especially when there is lack of understanding of the underlying physical process, the time series 19 

are of insufficient length, or when existing models are inadequate (Solomatine et al., 2008; 20 

Napolitano et al., 2011). 21 

1.1 Fuzzy numbers and data-driven modelling  22 

Possibility theory is an information theory that is an extension of fuzzy sets theory for representing 23 

uncertain, vague or imprecise information (Zadeh, 1978). Fuzzy numbers are an extension of fuzzy 24 

set theory, and express an uncertain or imprecise quantity. These types of numbers are particularly 25 

useful for dealing with uncertainties when data are limited or imprecise (Bárdossy et al., 1990; 26 

Guyonnet et al., 2003; Huang et al., 2010; Zhang & Achari 2010) – in other words when epistemic 27 

uncertainty exists. This type of uncertainty is in contrast to aleatory uncertainty that is typically 28 

handled using probability theory. Possibility theory and fuzzy numbers are thus useful when a 29 
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probabilistic representation of parameters may not be possible, since the exact values of parameters 1 

may be unknown, or only partial information is available (Zhang, 2009). Thus, the choice of using 2 

a data-driven approach in combination with possibility theory lends itself well to the constraints 3 

posed by the problem in the Bow River: the difficulty in correctly defining a physically-based 4 

model for a complex urban system and the use of possibility theory to model the uncertainty in the 5 

system when probability theory based methods may be inadequate.  6 

Data-driven models, such as neural networks, regression-based techniques, fuzzy rule–based 7 

systems, and genetic programming, have seen widespread use in hydrology, including DO 8 

prediction in rivers (Shrestha & Solomatine, 2008; Solomatine et al., 2008; Elshorbagy et al., 9 

2010). Wen et al. (2011) used artificial neural networks (ANN) to predict DO in a river in China 10 

using ion concentration as the predictors. Antanasijević et al., (2014) used ANNs to predict DO in 11 

a river in Serbia using a Monte Carlo approach to quantify the uncertainty in model predictions and 12 

temperature as a predictor. Chang et al., (2015) also used ANNs coupled with hydrological factors 13 

(such as precipitation and discharge) to predict DO in a river in Taiwan. Singh et al., (2009) used 14 

water quality parameters to predict DO and BOD in a river in India. Other studies (e.g. Heddam, 15 

2014 and Ay & Kisi. 2012,) have used regression to predict DO in rivers using water temperature, 16 

or electrical conductivity, amongst others, as inputs. In general, these studies have demonstrated 17 

that there is a need and demand for less complex DO models, has led to an increase in the popularity 18 

of data–driven models (Antanasijević et al., 2014), and that the performance of these types of 19 

models is suitable. Recent research into predicting DO concentration in the Bow River in Calgary 20 

using abiotic factors (these are non-living, physical and chemical attributes) as inputs have shown 21 

promising results (He et al., 2011; Khan et al., 2013; Khan & Valeo, 2015a). The advantage of 22 

using readily available data (i.e. the abiotic inputs) in these studies is that if a suitable relationship 23 

between these factors and DO can be found, changing the factors (e.g. increasing the discharge rate 24 

downstream of a treatment plant) can potentially reduce the risk of low DO. 25 

While fuzzy set theory based applications, particularly applications using fuzzy logic in neural 26 

networks, have been widely used in many fields including hydrology (Bárdossy et al., 2006; 27 

Abrahart et al., 2010), the use of fuzzy numbers and possibility theory based applications has been 28 

limited in comparison (Bárdossy et al., 2006; Jacquin, 2010). Some examples include maps of soil 29 

hydrological properties (Martin-Clouaire et al., 2000), remotely sensed soil moisture data 30 
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(Verhoest et al., 2007), climate modelling (Mujumdar and Ghosh, 2008), subsurface contaminant 1 

transport (Zhang et al., 2009), and streamflow forecasting (Alvisi & Franchini, 2011). Khan et al. 2 

(2013) and Khan & Valeo (2015a) have introduced a fuzzy number based regression technique to 3 

model daily DO in the Bow River using abiotic factors with promising results. Similarly, Khan & 4 

Valeo (2014a) used an autoregressive time series based approach combined with fuzzy numbers to 5 

predict DO in the Bow River. In these studies, the use of fuzzy numbers meant that the uncertainty 6 

in the system could be quantified and propagated through the model. However, due to the highly 7 

non-linear nature of DO modelling, the use of an ANN based method is of interest since these types 8 

of models are effective for modelling complex, nonlinear relationships without the explicit 9 

understanding of the physical phenomenon governing the system (Alvisi & Franchini, 2011; 10 

Antanasijević et al., 2014). A fuzzy neural network method proposed by Alvisi & Franchini (2011) 11 

for streamflow prediction that uses fuzzy weights and biases in the network, is further refined in 12 

this research for predicting DO concentration.   13 

1.2 Objectives 14 

Given the importance of DO concentration as an indicator of overall aquatic ecosystem health, 15 

there is a need to accurately model and predict DO in urban riverine environments, like that in 16 

Calgary, Canada. In this research a new data-driven method is proposed that attempts to address 17 

the issues that plague numerical modelling of DO concentration in the Bow River. The FNN 18 

method proposed by Alvisi & Franchini (2011) is adapted and extended in two critical ways. The 19 

existing method uses crisp (i.e. non-fuzzy) inputs and outputs to train the network, producing a set 20 

of fuzzy number weights and biases, and fuzzy outputs. The method is adapted to be able to handle 21 

fuzzy number inputs to produce fuzzy weights and biases, and fuzzy outputs. The advantage is that 22 

the uncertainties in the input observations are also captured within the model structure. To do this, 23 

a new method of creating fuzzy numbers from observations is presented based on a probability-24 

possibility transformation. Second, the existing training algorithm is based on capturing a 25 

predetermined set of observations (e.g. 100%, 95% or 90%) within the fuzzy outputs. The selection 26 

of the predetermined set of observations in the original study was an arbitrary selection. A new 27 

method that exploits the relationship between possibility theory and probability theory is defined 28 

to create a more objective method of training the FNN. A consequence of this is that the resulting 29 
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fuzzy number outputs from the model can then be directly used for risk analysis, specifically to 1 

quantify the risk of low DO concentration. This information is extremely valuable for managing 2 

water resources in the face of uncertainty. The impact of using fuzzy inputs and the new training 3 

criteria is evaluated by comparing results to the existing FNN method (by Alvisi & Franchini, 4 

2011) as well as with a traditional, crisp ANN.  5 

Following previous research for this river, two abiotic inputs (daily mean water temperature, T and 6 

daily mean flow rate, Q) will be used to predict daily minimum DO. An advantage of using these 7 

factors is that they are routinely collected by the City of Calgary, and thus, a large dataset is 8 

available. Also, their use in previous studies has shown that they are good predictors of daily DO 9 

concentration in this river basin (He et al., 2011, Khan et al., 2013, Khan and Valeo, 2015a). The 10 

following sections outline the background of fuzzy numbers and existing probability-possibility 11 

transformations. This is followed by the development of the new method to create fuzzy numbers 12 

from observations. Then, the new FNN method using fuzzy inputs is developed mathematically 13 

using new criteria for training, also based on possibility theory. Lastly, a method to measure the 14 

risk of low DO is described.  15 

2 Methods 16 

2.1 Data collection 17 

The Bow River is 645 km long and averages a 0.4% slope over its length (Bow River Basin 18 

Council, 2015) from its headwaters at Bow Lake in the Rocky Mountains to its confluence with 19 

the Oldman River in Southern Alberta, Canada (Robinson et al., 2009; Environment Canada, 2015). 20 

The river is supplied by snowmelt from the Rocky Mountains, rainfall and discharge from 21 

groundwater. The City of Calgary is located within the Bow River Basin and the river has an 22 

average annual discharge of 90 m3 s-1, an average width and depth of 100 m and 1.5 m, respectively 23 

(Khan & Valeo, 2014b; 2015b).  24 

The City of Calgary routinely samples a variety of water quality parameters along the Bow River 25 

to measure the impacts of urbanisation, particularly from three wastewater treatment plants and 26 

numerous stormwater runoff outfalls that discharge into the River. DO concentration measured 27 

upstream of the City is generally high throughout the year, with little diurnal variation (He et al., 28 

2011; Khan et al., 2013; Khan & Valeo, 2015a). The DO concentration downstream of the City is 29 
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lower and experiences much higher diurnal fluctuation. The three wastewater treatment plants are 1 

located upstream of this monitoring site, and are thought to be responsible, along with other impacts 2 

of urbanisation, for the degradation of water quality (He et al., 2015). 3 

For this research, nine years of DO concentration data was collected from one of the downstream 4 

stations from 2004 to 2012. The monitoring station was located at Pine Creek and sampled water 5 

quality data every 30 minutes (from 2004 to 2005), and every 15 minutes (from 2006 to 2007). The 6 

station was then moved to Stier's Ranch and sampled data every hour (in 2008) and every 15 7 

minutes (2009 to 2011). The monitoring site was moved further downstream to its current location 8 

(at Highwood) in 2012 where it samples every 15 minutes. During this period a number of low DO 9 

events have been observed in the River and are summarised below in Table 1 corresponding to 10 

different water quality guidelines.  11 

Note that even though daily minimum DO was observed to be below 5 mg L-1 on several occasions 12 

in 2004 and 2006 (in Table 1), the minimum DO was below 9.5 mg L-1 only 107 and 164 days, 13 

respectively, for those two years. In contrast, in 2007 and 2010, no observations below 5 mg L-1 14 

are seen yet 182 and 180 days, respectively, below the 9.5 mg L-1 guideline were seen for those 15 

years. The total amount of days below 9.5 mg L-1 constitute approximately 90% of all observations 16 

for those years. This highlights that despite no DO events below 5 mg L-1, generally speaking 17 

minimum DO on a daily basis was quite low in these two years. The implication of this is that only 18 

using one guideline for DO might not be a good indicator of overall aquatic ecosystem health.  19 

A YSI sonde is used to monitor DO and T, and the sonde is not accurate in freezing water, thus 20 

only data from the ice-free period was considered, which is approximately from April to October 21 

for most years (YSI Inc., 2015). Since low DO events usually occur in the summer (corresponding 22 

to high water temperature and lower discharge), the ice-free period dataset contains the dates that 23 

are of interest for low DO modelling.  24 

Daily mean flow rate, Q, was collected from the Water Survey of Canada site “Bow River at 25 

Calgary (ID: 05BH004) for the same period. This data is collected hourly throughout the year, thus, 26 

data where considerable shift corrections were applied (usually due to ice conditions) were 27 

removed from the analysis. The mean annual water temperature ranged between 9.23 and 13.2 °C, 28 
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and the annual mean flow rate was between 75 and 146 m3 s-1,and the mean annual minimum daily 1 

DO was between 6.89 and 9.54 mgL-1, for the selected period.  2 

2.2 Probability-possibility transformations 3 

Fuzzy sets were proposed by Zadeh (1965) in order to express imprecision in complex systems, 4 

and can be described as a generalisation of classical set theory (Khan & Valeo, 2015a). In classical 5 

set theory, an element x either belongs or does not belong to a set A. In contrast, using fuzzy set 6 

theory, the elements x have a degree of membership, μ, between 0 and 1 in the fuzzy set A. If μ 7 

equals 0, then x does not belong in A, and μ = 1 means that it completely belongs in A, while a 8 

value μ = 0.5 means that it is only a partial member of A.  9 

Fuzzy numbers express uncertain or imprecise quantities, and represent the set of all possible 10 

values that define a quantity rather than a single value. A fuzzy number is defined as a specific type 11 

of fuzzy set: a normal and convex fuzzy set. Normal implies that there is at least one element in the 12 

fuzzy set with a membership level equal to 1, while convex means that the membership function 13 

increases monotonically from the lower support (i.e., μ = 0L) to the modal element (i.e. the 14 

element(s) with μ = 1) and then monotonically decreases to the upper support (i.e., μ = 0R) 15 

(Kaufmann & Gupta, 1985).  16 

Traditional representation of a fuzzy numbers has been using symmetrical, linear membership 17 

functions, typically denoted as triangular fuzzy numbers. The reason for selecting this type of 18 

membership function has to do with its simplicity: given that a fuzzy number must, by definition, 19 

be convex and normal, a minimum of three elements are needed to define a fuzzy number (two 20 

elements at μ = 0 and one element at μ = 1). For example, if the most credible value for DO 21 

concentration is 10 mg L-1 (μ = 1), with a support about the modal value between (μ = 0L) and 12 22 

mg L-1 (μ = 0R). This implies that the simplest membership function is triangular, though not 23 

necessarily symmetrical. Also, as we demonstrate below, in some probability-possibility 24 

frameworks, a triangular membership function corresponds to a uniform probability distribution – 25 

the least specific distribution in that any value is equally probable and hence, represents the most 26 

uncertainty (Dubois & Prade, 2015; Dubois et al., 2004).  27 

However, recent research (Khan et al., 2013; Khan & Valeo, 2014a; 2014b; 2015a; 2015b) has 28 

shown that such a simplistic representation may not be appropriate for hydrological data, which is 29 
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often skewed, and non-linear. This issue is further highlighted if the probability-possibility 1 

framework mentioned above is used: it implies that for a triangular membership function, the fuzzy 2 

number bounded by the support [8 12] mg L-1, has a uniform probability distribution bounded 3 

between 8 and 12 mg L-1 with a mean value of 10 mg L-1, suggesting that values between the 4 

support are equally likely to occur. It not difficult to see that this an over-simplification of 5 

hydrological data,. In many cases enough information (i.e. from observations) is available to define 6 

the membership function with more specificity, and this information should be used to define the 7 

membership function.  8 

Multiple frameworks exist to transform a probability distribution to a possibility distribution, and 9 

vice versa; a comparison of different conceptual approaches are provided in Klir & Parvais (1992), 10 

Oussalah (2000), Jaquin (2010) Mauris (2013) and Dubois & Prade (2015). However, a major issue 11 

of implementing fuzzy number based methods in hydrology is that there is no consistent, 12 

transparent and objective method to convert observations (e.g. time series data) into fuzzy numbers, 13 

or generally speaking to construct the membership function associated with fuzzy values (Abrahart 14 

et al., 2010; Dubois & Prade, 1993; Civanlar & Trussel, 1986).  15 

A popular method (Dubois et al., 1993; 2004) converts a probability distribution to a possibility 16 

distribution by relating the area under a probability density function to the membership level 17 

(Zhang, 2009). In this framework, the possibility is viewed as the upper envelope of the family of 18 

probability measures (Jacquin, 2010; Ferrero et al., 2013; Betrie et al., 2014). There are two 19 

important considerations for this transformation, first it guarantees that something must be possible 20 

before it is probable; hence, the degree of possibility cannot be less than the degree or probability 21 

– this is known as the consistency principle (Zadeh, 1965). Second is order preservation, which 22 

means if the possibility of xi is greater than the possibility of xj then the probability of xi must be 23 

greater than the probability of xj (Dubois et al., 2004). For a discrete system, this can be represented 24 

as: 25 

if p(x1 )> p(x2) > …. > p(xn), 26 

then the possibility distribution of x (π(x)), follows the same order, that is: 27 

π(x1) > π(x2)>…. >  π(xn). 28 

The transformation is given by: 29 
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For p(x1) > p(x2) >….> p(xn): 1 

𝜋(𝑥1) = 1 2 

𝑓(𝑥) = {
∑ 𝑝𝑗

𝑛
𝑗=𝑖 , 𝑖𝑓 𝑝𝑖−1 > 𝑝𝑖

𝜋(𝑥𝑖−1), 𝑒𝑙𝑠𝑒
    (1) 3 

 4 

where the xi are elements of a fuzzy number A, π(xi) is the possibility of element xi, and p(xi) is the 5 

probability of element xi. The concept of this transformation may be more illustrative when viewed 6 

in the continuous case: for any interval [a, b], the membership level μ (where π(a) = π(b) = μ) is 7 

equal to the sum of the areas under the probability density function curve between (-∞, a) and (b, 8 

∞) (Zhang et al., 2009). It is important to highlight that this particular transformation has an inverse 9 

transformation associated with, where a probability distribution can be estimated from the 10 

possibility distribution.  11 

However, a major drawback of this transformation is that it theoretically requires a full description 12 

of the probability density function, or in the finite case, the probability associated with each element 13 

of the fuzzy number, the probability mass function. For many hydrological applications this might 14 

not be possible because the hourly time series data  may not adequately fit the mould of a known 15 

class of probability density functions, or one distribution amongst many alternatives may have to 16 

be selected based on best-fit. This best-fit function may not be universal, e.g. data from one 24-17 

hour period may be best described by one class or family of probability density function, while the 18 

next day by a completely different class of density function. This means working with multiple 19 

classes of distribution functions for one application, which can be cumbersome. Also, given that 20 

each day may only have 24 data points (or fewer on days with missed samples) it is difficult to 21 

select one particular function.  22 

In previous research by Khan & Valeo (2015a), a new approach to create a fuzzy number based on 23 

observations was developed. This process used a histogram-based approach to estimate the 24 

probability mass function of the observations, and then Eq. 1 was used to estimate the membership 25 

function of the fuzzy number. To create the histogram, the bin-size was selected based on the 26 

extrema observations for a given day and the number of the observations. A linear interpolation 27 

scheme was then used to calculate the fuzzy number at five predefined membership levels. This 28 
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method has a few short-comings, namely: the bin-size selection was arbitrarily selected based on 1 

the magnitude and number of observations which does not necessarily result in the optimum bin-2 

size. This lack of optimality means that the resulting histogram may either be too smooth so as not 3 

to capture the variability between membership levels, or too rough and uneven so that the 4 

underlying shape of the membership function is difficult to discern. This is a common issue with 5 

histogram selection in many applications (Shimazaki & Shinomoto, 2007). Secondly, the 6 

aforementioned transformation used by Khan and Valeo (2015a) only allows one element to have 7 

μ = 1 when p(x) is maximum. However, there are a number of cases (e.g. bimodal distributions, or 8 

arrays when all elements are equal) where multiple elements have joint-equal maximum p(x), and 9 

hence multiple elements with μ = 1. This means that all elements within the α-cut interval [a b]μ=1 10 

(where a and b are the minimum and maximum elements with μ = 1) must by definition also have 11 

a membership level equal to 1. Thus, a method is necessary to be flexible enough to accommodate 12 

these types of issues.  13 

In this research, a two-step procedure is proposed to create fuzzy numbers on the inputs (i.e. Q and 14 

T) using hourly (or sub-hourly) observations. First, a bin-size optimisation method is used (an 15 

extension of an algorithm proposed by Shimazaki & Shinomoto, 2007) to create histograms to 16 

represent the estimate of discretised probability density functions of the observations. This estimate 17 

of the probability distribution is then transformed to the membership function of the fuzzy number 18 

using a new numerical procedure and the transformation principles described in Eq. 1. This updated 19 

method requires no assumptions regarding the distribution of the underlying data or selection of an 20 

arbitrary bin-size, has the flexibility to create different shapes of fuzzy numbers depending on the 21 

distribution of the underlying data, and allows multiple elements to have equal μ = 1. The proposed 22 

algorithm is described in the proceeding section. 23 

2.2.1 A new algorithm to create fuzzy numbers 24 

Shimazaki & Shinomoto (2007) proposed a method to find the optimum bin-size of a histogram 25 

when the underlying distribution of the data is unknown. The basic premise of the method is that 26 

the optimum bin-size (Dopt) is one that minimises the error between the theoretical (but unknown) 27 

probability density and the histogram generated using the Dopt. The error metric used by Shimazaki 28 
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& Shinomoto (2007) is the mean integrated squared error (EMISE) which is frequently used for 1 

density estimation problems. It is defined as: 2 

 𝐸MISE =  
1

𝑃
∫ E[𝑓𝑛(𝑡) − 𝑓(𝑡)]2𝑑𝑡

𝑃

0
        (2) 3 

where f(t) is the unknown density function, fn(t) is the histogram estimate of the density function, t 4 

denotes time and P is the observation period, and E[·] is the expectation. In practice, EMISE cannot 5 

be directly calculated since the underlying distribution is unknown and thus, an estimate of the 6 

EMISE is used in its place (see CD below). Thus, fn(t) can be found without any assumptions of the 7 

type of distribution (e.g. class, unimodality, etc.); the only assumption is that the number of events 8 

(i.e., the counts ki) in the ith bin of the histogram follow a Poisson point process. This means that 9 

the events in two disjoint bins (e.g., the ith and i+1th bin) are independent, and that mean (k) and 10 

variance (v) of the ki in each bin are equal, due to the assumption of a Poisson process (Shimazaki 11 

& Shinomoto, 2007).  12 

Using this property, the optimum bin-size can be found as follows. Let X be the input data vector 13 

for the observation period (P), e.g., a [24×1] vector corresponding to hourly samples for a given 14 

day. The elements in X are binned into N bins of equal bin-size D. The number of events ki in each 15 

ith bin are then counted and the mean (k) and variance (v) of the ki are calculated as follows: 16 

𝑘 =  
1

𝑁
∑ 𝑘𝑖

𝑁
𝑖=1           (3) 17 

𝑣 =  
1

𝑁
∑ (𝑘𝑖 − 𝑘)2𝑁

𝑖=1          (4) 18 

 19 

The k and v are then used to compute the cost-function CD, which is defined as: 20 

𝐶𝐷 =
2𝑘−𝑣

𝐷2
           (5). 21 

This cost-function is a variant of the original EMISE listed in Eq. (2) and is derived by removing the 22 

terms from EMISE that are independent of the bin-size D, and by replacing the unobservable 23 

quantities (i.e. E[f(t)]) with their unbiased estimators (details of this derivation can be found in the 24 

original paper by Shimazaki & Shinomoto, 2007). The objective then is to search for Dopt: the value 25 

of D that minimises CD. To do this two systematic modification are made: first, CD is recalculated 26 

at different partitioning positions, and secondly, the entire process is repeated for different values 27 
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of N and D, until a “reliable” estimate of minimum CD and thus Dopt is found. Using different 1 

partitioning positions means that the variability in ki resulting from the position of the bin (rather 2 

than the size of the bin) can be quantified. Repeating the analysis at different N and D accounts for 3 

the variability due to different bin-sizes. Both these techniques are ways of accounting for the 4 

uncertainty associated with estimating the histogram.  5 

Partitioning positions are defined as the first and last point that define a bin. The most common 6 

way of defining a partitioning position is to centre it on some value a, e.g. the bin defined at [a–7 

D/2, a+D/2] is centred on a and has a bin-size D. Variations of this partitioning position can be 8 

found by using a moving-window technique, where the bin-size D is kept constant, but the first and 9 

last points are perturbed by a small value δ: [a–D/2+δ, a+D/2+δ], where δ ranges incrementally 10 

between 0 and D. Using these different values of δ whilst keeping D constant will result in different 11 

values of ki and hence unique values of CD. Thus, for a single value of D, multiple values of CD are 12 

possible.  13 

For this research this bin-size optimisation algorithm is implemented to determine the optimum 14 

histogram for the two input variables, Q and T. The array of daily data, X, (at hourly or higher 15 

frequency, see Sect. 2.1 for details regarding the sampling frequency of both inputs) for each 16 

variable was collected for the nine-year period. The bin-size was calculated for each day as follows: 17 

𝐷 =  
𝑥max−𝑥𝑚𝑖𝑛

𝑁
         (6) 18 

 19 

where the xmax and xmin are the maximum and minimum sampled values for X, respectively, and N 20 

is the number of bins. As described above, a number of different D were considered to find the 21 

optimum CD. This was done by selecting a number of different values of N, ranging from Nmin to 22 

Nmax. The minimum value Nmin, was set equal to 3 for all days; this is the necessary number of bins 23 

to define a fuzzy number (two elements for μ = 0, and one element for μ = 1). The highest value, 24 

Nmax was calculated as: 25 

𝑁 =  
𝑥max−𝑥𝑚𝑖𝑛

2𝑟
        (7) 26 

 27 
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where 2r is the measurement resolution of the device used to measure either Q or T, set at twice 1 

the accuracy (r) of the device. The rational for this decision is that as N increases D necessarily 2 

decreases (as per Eq. (6)). However, D cannot be less than the measurement resolution; this 3 

constraint (i.e. N ≤ Nmax) ensures that the optimum bin-size is never less than what the measurement 4 

devices can physically measure. For this research, the accuracy for T is listed as ±0.1 °C, and thus, 5 

the resolution (2r) is 0.2°C (YSI Inc., 2015). For Q all measurements below 99 m3 s-1 have an 6 

accuracy of ±0.1 m3 s-1 and thus, a resolution of 0.2 m3 s-1, while measurements above 99 m3 s-1 7 

have an accuracy of ±1 m3 s-1, and thus a resolution of 2 m3 s-1. This is based on the fact that all 8 

data provided by the Water Survey of Canada is accurate to three significant figures. Note that for 9 

the case where xmin equals xmax (i.e. no variance in the daily observed data) then D = 2r, which 10 

means that the only uncertainty considered is due to the measurement. 11 

Once the Nmax is determined, the bin-size D was calculated for each N between Nmin and Nmax. Then, 12 

starting at the largest D (i.e. D = (xmax–xmin)/Nmin)), the cost-function CD is calculated at the first 13 

partitioning positing, where the first bin is centred at xmin, [(xmin–D/2) (xmin+D/2)], and the Nth bin 14 

is centred on xmax, [(xmax–D/2), (xmax+D/2)]. Then, CD is calculated at the next partitioning positing, 15 

where the first bin is [(xmin–D/2+δ) (xmin+D/2+δ)], and the Nth bin is [(xmax–D/2+δ), (xmax+D/2+δ)]. 16 

The value of δ ranged between 0 and D at (D/100) intervals. Thus, for this value of D, 100 values 17 

of CD were calculated since 100 different partitioning positions were used. The mean value of these 18 

CD was used to define the final cost-function value for the given D.  19 

This process is then repeated for the next N between Nmin and Nmax, using the corresponding D at 20 

100 different partitioning positions, and so on until the smallest D (at Nmax). This results in [Nmax–21 

Nmin] values of mean CD: the value of D corresponding to the minimum value of CD is considered 22 

to be the optimum bin-size Dopt. This Dopt is then used to construct the optimum histogram of each 23 

daily observation. This histogram can be used to calculate a discretised probability density function 24 

(p(x)), where for each x (an element of X), the p(x) is calculated by dividing the number of events 25 

in each bin by the total number of elements in X. The x and p(x) can then be used to calculate the 26 

possibility distribution using the transformation described in Eq. (1).  27 

First, the p(x) are ranked from highest to lowest, and the x corresponding to the highest p(x) is has 28 

a membership level of 1. Then the π(x) values for the remaining x are calculated using Eq. 1. For 29 

cases where multiple elements have equal p(x), the highest π(x) is assigned to each x. For example, 30 
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if p(xi) = p(xj), and xi>xj, then π(xj) = π(xi). This means that in some cases, for each calculated 1 

membership level, π(x), there exists an α-cut interval [a, b]μ=π(x) where all the elements between a 2 

and b have equal p(x) and hence equal π(x). By definition of α-cut intervals, all values of x within 3 

the interval [a, b] have at least a possibility of π(x). A special case of this occurs when multiple x 4 

have joint-equal maximum p(x), meaning that multiple elements have a membership level of μ = 5 

1. Thus, an α-cut interval is created for the μ = 1 case, creating a trapezoidal membership function, 6 

where the modal value of the fuzzy number is defined by an interval rather than a single element.  7 

Once all the π(x) are calculated for each element x in X, a discretised empirical membership 8 

function of the fuzzy number X can be constructed using the calculated α-cut intervals. That is, the 9 

fuzzy number is defined by a number of intervals at different membership levels. The upper and 10 

lower limit of the intervals at higher membership levels define the extent of the limits of the 11 

intervals at lower membership levels. This way the constructed fuzzy numbers maintain convexity 12 

(similar to a procedure used by Alvisi & Franchini, 2011), where the widest intervals have the 13 

lowest membership level. For example, the interval at μ = 0.2 will contain the interval μ = 0.4, and 14 

this interval will contain the interval at μ = 0.8. 15 

In creating this discretised empirical membership function this way (rather than assuming a shape 16 

of the function) means that this function best reflects the possibility distribution of the observed 17 

data. However, it also means that all fuzzy numbers created using this method are not guaranteed 18 

to be defined at the same π(x), nor have an equal number of π(x) intervals used to define the fuzzy 19 

number. Thus, direct fuzzy arithmetic between multiple fuzzy numbers using the extension 20 

principle is not possible since it requires each fuzzy number to be defined at the same α-cut intervals 21 

(Kaufmann & Gupta, 1985). Thus, linear interpolation is used to define each fuzzy number at a 22 

pre-set α-cut interval using the empirical π(x) calculated using the transformation. To select the 23 

pre-set α-cut intervals it is illustrative to see the impact of selecting two extreme cases: (i) if only 24 

two levels are selected (specifically μ = 0 and 1) the constructed fuzzy number will reduce to a 25 

triangular fuzzy number. As discussed above there are important implications of using triangular 26 

membership functions that make it undesirable for hydrological data; (ii) if a large number of 27 

intervals (e.g. 100 intervals between μ = 0 and 1) are selected, there is a risk that the number of 28 

pre-set intervals is much larger than the empirical π(x), which means not enough data (empirical α-29 

cut levels intervals) to conduct interpolation, leading to equal interpolated values at multiple α-cut 30 
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levels. For this research, results (discussed in the following section) of the bin-size optimisation 1 

showed that most daily observations for T and Q resulted in 2 to 10 unique p(x) values. Based on 2 

this, six pre-set α-cut intervals were selected: 0, 0.2, 0.4, 0.6, 0.8 and 1. The empirical π(x) can then 3 

be converted to a standardised function at pre-defined membership levels using linear interpolation. 4 

2.3 Fuzzy neural networks 5 

2.3.1 Background on artificial neural networks 6 

Artificial neural networks (ANN) are a type of data-driven model that are defined as a massively 7 

parallel distributed information processing system (Elshorbagy et al., 2010; Wen et al., 2013). ANN 8 

models have been widely used in hydrology when the complexity of the physical systems is high 9 

owing partially to an incomplete understanding of the underlying process, and the lack of 10 

availability of necessary data (He et al., 2011; Kasiviswanathan et al., 2013). Further, ANNs 11 

arguably require less data and do not require an explicit mathematical description of the underlying 12 

physical process (Antanasijević et al., 2014), making it a simpler and practical alternative to 13 

traditional modelling techniques.  14 

Multilayer Perceptron (MLP) is a type of feedforward ANN and is one of the most commonly used 15 

in hydrology (Maier et al., 2010). A trained MLP network can be used as a universal approximator 16 

with only one hidden layer (Hornik et al., 1989). This means that models are relatively simple to 17 

develop, and theoretically have the capacity of approximating any linear or nonlinear mapping 18 

(ASCE 2000; Elshorbagy et al., 2010; Napolitano et al., 2011; Kasiviswanathan et al., 2013). 19 

Further, the popularity of MLP has meant that subsequent research has continued to use MLP (He 20 

& Valeo 2009; Napolitano et al., 2011) and thus, form a reference for the basis of comparing ANN 21 

performance (Alvisi & Franchini, 2011).  22 

In the simplest case, an MLP consists of an input layer, a hidden layer, and an output layer as shown 23 

in Fig. 2. Each layer consists of a number of neurons (or nodes) that each receive a signal, and on 24 

the basis of the strength of the signal, emit an output. Thus, the final output layer is the synthesis 25 

and transformation of all the input signals from both the input and the hidden layer (He & Valeo, 26 

2009).  27 
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The number of neurons in the input (nI) and output (nO) layers corresponds to the number of 1 

variables used as the input and the output, respectively and the number of neurons in the hidden 2 

layer (nH) are selected based on the relative complexity of the system (Elshorbagy et al., 2010). A 3 

typical MLP is expressed mathematically as follows: 4 

𝒚𝐢 = 𝒇𝐇𝐈𝐃(𝐖𝐈𝐇𝒙i + 𝑩H)       (8) 5 

𝒛𝐢 = 𝒇𝐎𝐔𝐓(𝐖𝐇𝐎𝒚𝐢 + 𝑩O)       (9) 6 

where xi is the ith observation (an nI x 1 vector) from of a total of n observations, WIH is a nH x nI 7 

matrix of weights between the input and hidden-layer, BH is a vector (nH x 1) of biases in the 8 

hidden-layer, and yi is the ith output (an nH x 1 vector) of the input signal through the hidden-layer 9 

transfer function, fHID. Similarly, WHO is an nO x nH matrix of weights between the hidden and 10 

output-layers, BO is an nO x 1 vector of biases in the output-layer, and fOUT the final transfer 11 

function to generate the ith modelled output zi (an nO x 1 vector).  12 

The values of all the weights and biases in the MLP are calculated by training the network by 13 

minimising the error – typically mean squared error (EMSE) (He & Valeo, 2009) – between the 14 

modelled output and the target data (i.e. observations). The Levenberg–Marquardt algorithm 15 

(LMA) is one of the most common training algorithms (Alvisi et al., 2006). In LMA, the error 16 

between the output and target is back-propagated through the model using a gradient method where 17 

the weights and biases are adjusted in the direction of maximum error reduction. The LMA is well-18 

suited for problems that have a relatively small number of neurons. To counteract potential over-19 

fitting issues, an early-stopping procedure is used (Alvisi et al., 2006; Maier et al., 2010), which is 20 

a form of regularisation where the data is split into three subsets (for training, validation and 21 

testing). The training is terminated when the error on the validation subset increases from the 22 

previous iteration.  23 

Most ANNs have a deterministic structure without a quantification of the uncertainty 24 

corresponding to the predictions (Alvisi & Franchini, 2012; Kasiviswanathan & Sudheer, 2013). 25 

This means that users of these models may have excessive confidence in the forecasted values, and 26 

misinterpret the applicability of the results (Alvisi & Franchini, 2011). This lack of uncertainty 27 

quantification is one reason for the limited appeal of ANN by water resource managers (Abrahart 28 
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et al., 2012; Maier et al., 2010). Without this characterisation, the results produced by these models 1 

have limited value (Kasiviswanathan & Sudheer, 2013).  2 

In this research, two methods are proposed to quantify the uncertainty in MLP modelling to predict 3 

DO in the Bow River. First, the uncertainty in the input data (daily mean water temperature and 4 

daily mean flow rate) is represented through the use of fuzzy numbers. These fuzzy numbers are 5 

created using the probability-possibility transformation discussed in the previous section. Second, 6 

the total uncertainty (as defined by Alvisi & Franchini, 2011) in the weights and biases of an MLP 7 

are quantified using a new possibility theory-based FNN. The total uncertainty represents the 8 

overall uncertainty in the modelling process, and not of the individual components (e.g. 9 

randomness in observed data). The following section describes the proposed FNN method. 10 

2.3.2 FNN with fuzzy inputs and possibility-based intervals 11 

Alvisi & Franchini (2011) proposed a method to create a FNN, where the weights and biases, and 12 

by extension the output, of the neural network are fuzzy numbers rather than crisp (non-fuzzy) 13 

numbers. These fuzzy numbers quantify the total uncertainty of the calibrated parameters. Most 14 

fuzzy set theory based applications of ANN in hydrology have used fuzzy logic, e.g. the widely 15 

used Adaptive Neuro-Fuzzy Inference System, where automated IF-THEN rules are used to create 16 

crisp outputs (Abrahart et al., 2010; Alvisi & Franchini, 2011). Thus, the advantage of fuzzy 17 

outputs (as developed by Alvisi & Franchini, 2011) is that it provides the uncertainty of the 18 

predictions in addition to the uncertainty of the parameters. This uncertainty quantification can be 19 

used to by end users to assess the value of the model output.  20 

In their FNN, the MLP model is presented in Eqs. 5 and 6 is modified to predict an interval rather 21 

than a single value for the weights, biases and output, corresponding to an α-cut interval (at a 22 

defined membership level μ). This is repeated for several α-cut levels, thus building a discretised 23 

fuzzy number at a number of membership levels. This is done by using a stepwise, constrained 24 

optimisation approach: 25 

[𝒚𝐢
𝐋 𝒚𝐢

𝐔] = 𝒇𝐇𝐈𝐃([𝐖𝐈𝐇
𝐋  𝐖𝐈𝐇

𝐔 ]𝒙𝐢 + [𝑩𝐇
𝐋  𝑩𝐇

𝐔])       (10) 26 

[𝒛𝐢
𝐋 𝒛𝐢

𝐔] = 𝒇𝐎𝐔𝐓([𝐖𝐇𝐎
𝐋  𝐖𝐇𝐎

𝐔 ] × [𝒚𝐢
𝐋 𝒚𝐢

𝐔] + [𝑩𝐎
𝐋  𝑩𝐎

𝐔])    (11) 27 

 28 
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where all the variables are as described as before, and the superscripts U and L represent the upper 1 

and lower limits of the α-cut interval, respectively. The constraints are defined so that the upper 2 

and lower limits of each weight and bias (in both layers) minimise the width of the predicted 3 

interval: 4 

min (∑ (𝒛𝐢
𝐋 − 𝒛𝐢

𝐔)𝑛
𝑖=1 )  5 

1

𝑛
∑ (𝛿i)

𝑛
𝑖=1 ≥ 𝑷𝐂𝐈         (12) 6 

𝛿𝑖 = {
1, 𝑖𝑓 𝒛𝐢

𝐋 < 𝒕𝒊 < 𝒛𝐢
𝐔

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  7 

 8 

where t is that target (observed data) and PCI is a predefined percentage of data. Alvisi & Franchini 9 

(2011) defined PCI to be 100% at μ = 0, 99% at μ  = 0.25, 95% at μ = 0.5 and 90% at μ = 0.75. This 10 

algorithm was built starting at μ = 0 and moving to higher membership levels to maintain convex 11 

membership functions of the generated fuzzy numbers by using the results of the previous 12 

optimisation as the upper and lower limit constraints for the proceeding optimisation. Lastly, at μ 13 

= 1, the interval collapses to a singleton, represent the crisp results from non-fuzzy ANN. 14 

Therefore, these α-cut intervals of the FNN output quantify the uncertainty around the crisp 15 

prediction, within which is expected to contain PCI percentage of data.  16 

In this research, this method is modified in two ways. First, the inputs x are also fuzzy numbers, 17 

which means that Eqs. 10 and 11 are revised as follows: 18 

[𝒚𝐢
𝐋 𝒚𝐢

𝐔] = 𝒇𝐇𝐈𝐃([𝐖𝐈𝐇
𝐋  𝐖𝐈𝐇

𝐔 ] × [𝒙𝐢
𝐋 𝒙𝐢

𝐔] + [𝑩𝐇
𝐋  𝑩𝐇

𝐔])      (13) 19 

[𝒛𝐢
𝐋 𝒛𝐢

𝐔] = 𝒇𝐎𝐔𝐓([𝐖𝐇𝐎
𝐋  𝐖𝐇𝐎

𝐔 ] × [𝒚𝐢
𝐋 𝒚𝐢

𝐔] + [𝑩𝐎
𝐋  𝑩𝐎

𝐔])     (14) 20 

 21 

Note that now the input vector is represented by its upper and lower limits. The impact of this 22 

revision is that when there is known variance or uncertainty in the input dataset, it should be 23 

incorporated into the model structure. In Eqns. 13 and 14, this is done through the use of fuzzy 24 

rather than crisp inputs. The major impact on this is that the training algorithm for the FNN needs 25 
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to accommodate this fuzzy α-cut interval, which requires the implementation of fuzzy arithmetic 1 

principles (Kaufmann & Gupta, 1985). The cost function for the optimisation remains unchanged.  2 

The second modification of the original algorithm is related to the selection of the percent of data 3 

included in the predicted interval (PCI). In the original, the selection is arbitrary and end-users of 4 

this method may be interested in the events that are not included in the selected PCI. Thus, a full 5 

spectrum of possible values for a given prediction is required. Thus, the Alvisi & Franchini (2011) 6 

approach is further refined by utilising the same relationship between probability and possibility 7 

that was used to define the input fuzzy numbers, giving a more objective means of designing FNNs 8 

with fuzzy weights, biases and output. 9 

In the adopted possibility-probability framework, the interval [a b]α created by the α-cut at a μ = α 10 

implies that: 11 

[𝑝(𝑥 < 𝑎) + 𝑝(𝑥 > 𝑏)] = 𝛼        (15) 12 

This can be used to calculate the probability:  13 

[𝑝(𝑎 < 𝑥 < 𝑏)] = (1 − 𝛼)       (16) 14 

 15 

This means that there is a probability of (1 – α) that the random variable x falls within the interval 16 

[a b]α. In other words, the α-cuts of a possibility distribution (at any μ) correspond to the (1 – α) 17 

confidence interval of the probability distribution of the same variable (Serrurier and Prade, 2013).  18 

This principle is used to select the different PCI for the optimisation constraints rather than the 19 

predetermined PCI selected by Alvisi & Franchini (2011) These are shown in Table 2.  20 

Note that for practical purposes, PCI was selected as 99.50% at μ = 0 to prevent over-fitting. The 21 

implication of this selection is that at μ = 0, nearly-all the observed data should fall within this 22 

predicted FNN interval, reflecting the highest uncertainty in the prediction. The uncertainty 23 

decreases as μ increases. For the μ = 1 case the values of the weights and biases were determined 24 

to be the mid-point of the interval at μ = 0.8 to maintain convexity of the produced fuzzy numbers, 25 

and the difficulty in finding an interval containing 0% of the data.  26 
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2.3.3 Network architecture and implementation 1 

For this research a three layer, feedforward MLP architecture was selected to model minimum daily 2 

DO (the output) using fuzzified daily flowrate (Q) and fuzzified daily water temperature (T) as the 3 

inputs. The three layers consist of an input layer, an output layer, and a hidden layer (with 5 neurons 4 

based on a trial-and-error search procedure). This architecture was selected for three reasons: it is 5 

one of the most commonly used in hydrology (Maier et al., 2010), it can be used as a universal 6 

approximator (Hornik et al., 1989), and as reference for comparing performance with previous 7 

research (He & Valeo 2009; Napolitano et al., 2011). In particular, a previous study modelling 8 

minimum DO in the Bow River used a three-layer MLP feedforward network (see He et al., 2011). 9 

Two transfer functions are required for FNN implementation: the hyperbolic tangent sigmoid 10 

function was selected for fHID, and a pure linear function for fOUT. Both function selections follow 11 

Alvisi & Franchini (2011), Wen et al., (2012) and Elshorbagy et al., (2010), and are described as 12 

follows: 13 

𝒇𝐇𝐈𝐃 =
e𝒙−e−𝒙

e𝒙+e−𝒙         (17) 14 

𝒇𝐎𝐔𝐓 = 𝒙         (18) 15 

 16 

The LMA method was used to train the network, minimising EMSE. The input and output data was 17 

pre-processed before training, validating and testing: the data was normalised so that all input and 18 

output data fell within the interval [- 1 1]. Further the data were randomly divided into training, 19 

validation and testing subsets, following a 50%-25%-25% split.  20 

This FNN optimisation algorithm was implemented in MATLAB (version 2015a). First, the built-21 

in MATLAB Neural Network Toolbox was used to estimate the value of weights and biases using 22 

the midpoint of the interval at μ = 1. The results from this were used as the constraints to solve the 23 

FNN optimisation (Eqs. 12 to 14) at subsequent lower membership levels. The Shuffled Complex 24 

Evolution algorithm (commonly known as SCE-UA, Duan et al., 1992) was used to find the 25 

optimisation solution. The optimisation is run such that the intervals at higher membership levels 26 

govern the upper and lower bounds of the predicted interval in order to preserve the convexity of 27 

fuzzy numbers. The same process and network architecture was used to run the original FNN 28 
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method (proposed by Alvisi & Franchini, 2011) using crisp inputs for comparison purposes. For 1 

this case, further refinement of the optimised solution was conducted using the built-in MATLAB 2 

minimisation function, fmincon. Note that for the crisp inputs, values of fuzzified daily flowrate 3 

(Q) and fuzzified daily water temperature (T) at μ = 1 were used to enable direct comparison. This 4 

option allows for the closest comparison between the two approaches that have completely distinct 5 

applications. Other options for the crisp inputs (e.g. mean daily value, or maximum daily value) 6 

may also be selected for the existing FNN case.  7 

2.4 Risk analysis using defuzzification 8 

Risk analyses for complex systems is challenging for a number of reasons, including an insufficient 9 

understanding of the failure mechanisms (Deng et al., 2011). The use of imprecise information 10 

(e.g. fuzzy numbers) is an effective method of conducting a risk analysis (Deng et al., 2011). 11 

However, communicating uncertainty is an important, yet difficult task, and many different 12 

frameworks exist to do so; water quality indices (Sadiq et al., 2007; Van Steenbergen et al., 2012) 13 

are one example. Since water resource managers often prefer to use probabilistic measures (rather 14 

than possibilistic ones), it is important to convert the possibility of low DO to a comparable 15 

probability for effective communication of risk analysis. Note that the linguistic parameters (e.g. 16 

“most likely”) that are often used to convey risk or uncertainty (Van Steenbergen et al., 2012) have 17 

a probability-based meaning – in this case “most likely” is a measure of likelihood.  18 

In this research, a defuzzification procedure is used to convert the possibility of low DO to a 19 

probability measure, to represent the risk of observing low DO (below a given threshold) in the 20 

Bow River. This method uses the inverse of the transformation described in Eq. 1; however, instead 21 

of calculating the probability of one element, p(x), which is of limited value in most applications, 22 

it is generalised to calculated P({X < x}), as follows (from Khan & Valeo, 2014a, 2015b): for any 23 

x in the support (defined as the α-cut interval at μ = 0) of a fuzzy number [a b] we have the 24 

corresponding μ and the paired value x' which shares the same membership level. The value μ is 25 

the sum of the cumulative probability between [a, x] and [x', b], labelled PL and PR, respectively:  26 

𝜇(𝑥) =  𝑃L + 𝑃R        (19) 27 

where PL represents the cumulative probability between a and x which is assumed to equal the 28 

probability P({X < x}), since the fuzzy number defines any values to less than a to be impossible 29 
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(i.e. μ = 0). Given the fact that the fuzzy number is not symmetrical, the lengths of the two intervals 1 

[a, x] and [x', b] can be used to establish a relationship between PL and PR. Then, PL can be 2 

estimated as: 3 

𝑃{𝑋 < 𝑥} = 𝑃L =
𝜇

1+
(𝑏−𝑥′)

(𝑥−𝑎)

       (20) 4 

Thus, Eq. 20 gives the probability that the predicted minimum DO for a given day is below the 5 

threshold value x. For example, if the lowest acceptable DO concentration for the protection of 6 

aquatic life for cold water ecosystems (6.5 mg L-1, Canadian Council of Ministers of the 7 

Environment, 1999) is selected, then this transformation can be used to calculate the probability 8 

that the predicted fuzzy DO will be below 6.5 mg L-1.   9 

3 Results and discussion 10 

3.1 Probability-possibility transformation using bin-size optimisation 11 

The bin-size optimisation and the probability-possibility transformation algorithms were applied 12 

to the collected Q and T data for the nine-year period. The constructed fuzzy numbers were then 13 

used to calibrate the FNN model. This section compares the results of constructing a discretised 14 

probability distribution with and without the bin-size optimisation algorithm and its impact on the 15 

resulting membership function of the fuzzy number. The comparison is illustrated through five 16 

examples each for Q and T as a means of illustrating the advantages of using the proposed 17 

approach.  18 

Fig. 3 shows sample results of converting hourly Q observations to fuzzy numbers for five cases. 19 

The left most column in the figure shows the raw data, i.e. the observations sampled over the course 20 

of 24 hours. The resulting histogram-based probability functions are shown for both the optimised 21 

(Dopt, illustrated with circles) and original (Dorig=2r; see Sect. 2.2.1 for the definition, illustrated 22 

with squares) bin-sizes in the second column. The third and fourth columns in Fig. 3 show the 23 

resulting discretised empirical membership function using each of the histograms. The five 24 

examples selected here represent a full spectrum of results for the bin-size optimisation. The first 25 

row shows an example of when the optimum result was equal to the measurement resolution (Dorig 26 

= Dopt = 2), followed by cases where the Dopt was 4, 4.5, 10 and 20 times greater than the initial 27 

bin-size.  28 
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The example in the first row illustrates cases where the bin-size optimisation algorithm calculates 1 

an optimum bin-size, corresponding to the minimum cost-function CD, which is equal to the 2 

instrument measurement resolution. Thus, the resulting probability distributions for both cases are 3 

equivalent, as are the membership functions. In most cases, this occurred when the calculated 4 

minimum CD would result in a Dopt smaller than Dorig = 2r, and since this is not physically feasible 5 

(measurable) the algorithm did not consider any bin-sizes below 2r. Of note in this example is that 6 

the transformation of the probability distribution results in five empirical membership levels. Only 7 

one element was found to have a membership level equal to 1 (at Q = 161 m3 s-1). Thus, the α-level 8 

cut at this level is a simple singleton: [161]μ=1. The next membership level was calculated as 0.58; 9 

again the resulting α-cut level only has one element at Q = 149 (which is less than the modal value). 10 

However, at this level the upper and lower limits of α-cuts at higher membership levels define the 11 

upper and lower limits of α-cuts at lower levels. Thus, using the information from the α-level cut 12 

at μ = 1, the level at μ = 0.58 was defined as [149 161]μ=0.58. The next membership level calculated 13 

was 0.46, and four elements had equal membership levels, ranging between 147 and 165. The α-14 

cut interval at this level was defined as: [147 165]μ=0.46. Note that in this case, this interval captures 15 

both the intervals at higher membership levels within its limits, i.e. the lower limit is less than the 16 

lower limits of higher intervals, and the upper limit is greater than then upper limits at higher levels. 17 

The next membership level was calculated to be 0.125, and three elements between 157 and 171 18 

were assigned this value. However, the lower limit at μ = 0.46 (the next higher membership level) 19 

was 147, which is less than 157, and thus, for the α-cut level at this membership, the interval is 20 

then revised to: [147 171]μ=0.125 rather than [157 171]μ=0.125 to maintain convexity. Again, the reason 21 

here is that if something is possible at μ = 0.46, it must be possible (by definition) at μ = 0.125. The 22 

last membership level found for this particular example was μ = 0, with six elements sharing this 23 

value, ranging from 145 to 173, resulting in an α-cut level of [145 173]μ=0. Together, these five 24 

membership levels define a discretised membership function of the fuzzy number for Q on 27 July 25 

2008. Following this, linear interpolation was conducted to find the elements corresponding to the 26 

six predefined membership levels of μ = 0, 0.2, 0.4, 0.6, 0.8 and 1. The results are not explicitly 27 

shown in the figure for clarity, but can are essentially located on the dashed line in the last column 28 

on the corresponding membership levels.  29 
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The second row in Fig. 3 shows the results for 20 August 2009, where the optimum bin-size was 1 

found to be four times higher than the original bin-size (Dopt = 0.8 vs. Dorig = 0.2.). The impact of 2 

this change is clearly evident in the distribution functions in the second column. The original 3 

histogram is multi-modal, and with multiple candidates as the modal value (where μ = 1), whereas 4 

the post-optimisation histogram is considerably smoother, with a definitive modal value at Q = 5 

91.4 m3 s-1. The impact of this increase in bin-size is that the resulting membership function is 6 

defined at four membership levels (0, 0.25, 0.54 and 1), whereas the original function was defined 7 

at six levels, including an interval (rather than singleton) at μ = 1. This decrease in membership 8 

levels in this case has a consequence of smoothing out the membership function, as can be seen by 9 

comparing the shapes of the functions in columns three and four. The overall impact of this 10 

smoothing out of both the distribution and the membership functions is that the heightened 11 

specificity of the original function at μ = 0.54 and above is reduced to a more generalised shape.  12 

Since the objective of the bin-size algorithm was to reduce the error between the histogram created 13 

using the Dopt and the unknown theoretical distribution, then the density function plotted in Fig. 3 14 

represents the closest distribution to the unknown distribution. Hence, the membership function 15 

generated using this optimum distribution better reflects the underlying phenomenon than the 16 

membership function generated using Dorig. Thus, in comparing columns 3 and 4 for the second 17 

row, the smoother membership function representing Dopt is preferred. Linear interpolation is then 18 

performed on this membership function to get values of Q at the six predefined membership levels.  19 

Similar results can be seen in the third row in Fig. 3, where the optimised bin-size is 4.5 times 20 

greater than the original bin-size, (Dopt = 9 vs. Dorig = 2). Again, the original histogram is extremely 21 

uneven, whereas the post-optimisation histogram is considerably smoother with a definitive modal 22 

value at Q = 277 m3 s-1. The overall impact of this smoothing is that the specificity of the function 23 

at μ = 0.6 and higher of the original function is reduced to a more general shape in the optimised 24 

function. 25 

The fourth row shows a different phenomenon, where instead of smoothing out the original 26 

membership function, the combined bin-size optimisation and transformation algorithm, creates a 27 

membership function with more specificity. In this case Dopt is ten times higher than Dorig, and the 28 

consequence of this increase is the smoother probability density function with one clear modal 29 

value (at Q = 70 m3 s-1). In contrast, the original histogram had six elements with joint-equal p(x), 30 
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resulting in a membership function that is shaped similarly to a uniform distribution (column 3) 1 

and defined with only 3 membership levels. This means that all values are considered equally-2 

possible and represents maximum vagueness. However, using the optimised value, this is no longer 3 

the case and the modal value is assigned a membership level of 1, and the remaining elements 4 

defined at three other membership levels. This suggests that this modal value is more possible 5 

(since it has a higher possibility), and this is reflected in the observations. This example illustrates 6 

that the method can not only generalise the data to smoother functions (as shown in the first three 7 

examples) but can also be more specific when the underlying data demonstrates this but this is not 8 

captured by the non-optimised bin-width distribution function.  9 

The last example for Q in Fig. 3 is an example of a case where the number of membership levels 10 

for both the original and optimised membership function are equal (four in this case), however the 11 

bin-size is 20 times greater for the optimised case. In this case, an optimum bin-size was found that 12 

did not change the specificity of the membership function, i.e. it is still defined with the same 13 

number of intervals but at different membership levels. In this case, the probability for Dorig is 14 

extremely uneven, but smoothed out to a unimodal function with the Dopt. The final membership 15 

function for Dopt is defined more generally (smoothly) especially at higher membership levels 16 

compared to the one defined by Dorig. This example again demonstrates the utility of the new 17 

coupled optimisation-transformation method to create fuzzy numbers for data where the underlying 18 

distribution is unknown. 19 

Fig. 4 shows similar results for the five water temperature examples, where the Dopt was equal to 20 

the Dorig (the first example on the top row), or increased by a factor of 1.5, 2.5, 3 or 5. The first 21 

example shows a case with very little T variation over a given day and the water temperature falls 22 

between 5.2 and 6.2 °C for the entire day. This lack of variability is responsible for the minimal 23 

bin-size selection Dopt: a unimodal distribution is best constructed using smaller bin-sizes for these 24 

cases. The second example shows another case where Dopt is only slightly greater than the original, 25 

resulting in a somewhat smoother probability function, and a slightly smoother membership 26 

function.  27 

A major difference between the T and Q data is that the former is strongly diurnal, increasing after 28 

sunrise in the morning, peaking in late afternoon, and then decreasing through the night. This 29 

temporal trend is seen for all examples in Fig. 4, but most significantly in the bottom three 30 



 28 

examples. A major implication for this in developing a probability density function for this data is 1 

that the resulting shape will have a tendency to be bimodal. This means that the resulting 2 

membership functions might be trapezoidal or near-trapezoidal (and hence most vague) in shape, 3 

which is clearly demonstrated in the functions created using Dorig in the bottom three examples. 4 

However, in each case the optimised bin-size creates a smoother probability distribution with a 5 

clearer modal value, resulting in membership functions that are no longer trapezoidal.  6 

Thus, without using the bin-size optimisation algorithm there is a risk that the resulting membership 7 

functions will be too vague and do not represent the information that can be gained from the 8 

observations. It is worth nothing that for these three examples, if linear interpolation is used on the 9 

original membership function, the resulting interpolated fuzzy number will all have equal intervals 10 

(due to the trapezoidal shape), transferring no useful information to the final fuzzy number. 11 

Overall, the above examples illustrate the advantages of using the couple method of bin-size 12 

optimisation and probability-possibility transformation to create fuzzy numbers for the FNN 13 

application. The applicability of this method is not necessarily restricted to this application and can 14 

be applied whenever there is a need to construct fuzzy numbers from observed data. The utility of 15 

the first component, bin-size optimisation to estimate the density function, is that in cases where 16 

either not enough information is available to define a probability distribution, or if the data do not 17 

follow the mould of a known density function, or if assumptions on the class of distribution cannot 18 

be made, the optimum bin-size can be calculated to define an empirical distribution for the 19 

probability-possibility transformation. The advantage of the second component, the algorithm to 20 

construct the possibility distribution (i.e. the membership function of the fuzzy number) is that it 21 

provides a consistent, transparent and objective method to convert observations (e.g. time series 22 

data) into fuzzy numbers - which has been cited as a major hurdle in implementing fuzzy number 23 

based applications in the literature (Abrahart et al., 2010; Dubois & Prade, 1993; Civanlar & 24 

Trussel, 1986). A noteworthy component of this algorithm is that the fuzzy numbers do not reduce 25 

to the simple, triangular shaped functions that are widely used, but rather the functions better 26 

represent the information from the observations.  27 
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3.2 Training the fuzzy neural network 1 

Once the observations of the abiotic input parameters (Q and T) were converted to fuzzy numbers, 2 

the FNN training algorithm was run using five neurons in the hidden layer, to predict daily 3 

minimum DO in the Bow River. First, the values of the fuzzy numbers at μ = 1 was used to train 4 

the crisp network. This was done to have initial estimates of the 10 WIH (5 for each input), 5 BIH, 5 

5 WHO, and 1 BO. These initial estimates were used to provide the upper and lower limits of the 6 

constraints for the proceeding optimisation algorithm. Once these estimates were calculated, the 7 

optimisation algorithm was used to calculate the fuzzy weights and biases using fuzzy inputs, and 8 

was started from μ = 0 and moving sequentially to higher membership levels until μ = 0.8. The 9 

final level (at μ = 1) was calculated using the midpoint of the intervals estimated at μ = 0.8. The 10 

total optimisation time  for the proposed method was 13 hours, whereas the existing method with 11 

crisp inputs was 8 hours, using a 2.40 GHz Intel® Xeon microprocessor (with 4 GB RAM).  12 

The EMSE and the Nash-Sutcliffe model efficiency coefficient (ENSE; Nash & Sutcliffe, 1970) for 13 

the training, validation and testing scenarios for μ = 1 for both methods are shown in Table 3. The 14 

EMSE for each dataset are low, between 11% and 16% of the mean annual minimum DO seen in the 15 

Bow River for the study period. The ENSE values are approximately equal to 0.5 for each subset, 16 

which is higher than ENSE values in the literature for water quality parameters when modelled daily 17 

(see Moriasi et al., 2007 for a survey of results) and is considered to be “satisfactory” by their 18 

standards. In comparing the two methods, it is obvious that including additional information (in 19 

the form of fuzzy inputs) does not decrease performance, as the metrics are nearly identical for 20 

both methods. This shows that the proposed method has successfully incorporated input data 21 

uncertainty in the model architecture. These model performance metrics highlight that in general, 22 

predicting minimum DO using abiotic inputs and a data-driven approach is an effective technique.  23 

The results of the optimisation component of the algorithm are summarised in Table 4, which 24 

shows the percentage of data (PCI) captured within the resulting α-cut intervals for each of the three 25 

data subsets. The performance for each of the datasets (i.e., train, validation and test) for both 26 

methods is nearly identical (on an interval-by-interval basis): the exact amount of data captured 27 

within the intervals, as required by the constraints, except for the μ = 0.8 interval. At this interval, 28 

the amount of coverage decreases (i.e. lower performance) as the membership level increases, 29 

which is unavoidable when the width of the uncertainty bands decrease. As required by Eq. 12, the 30 
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amount of data within the interval has to be greater-than or equal-to the limit defined by PCI (as per 1 

Alvisi & Franchini, 2011) which is true for all training data. This means that a solution to satisfy 2 

the constraints with a lower amount of data (e.g. reducing the 29.91% for the μ = 0.8 interval for 3 

the proposed method) would either result in non-minimal intervals (though this is unlikely) or that 4 

the constraints on the values of the intervals could not be maintained.  This latter issue will be 5 

discussed in detail with Fig. 5 below. Lastly, as mentioned above, the performance of non-training 6 

datasets for both methods decrease as the interval get narrow: this can be seen best by the inability 7 

for both methods to capture the exact amount of data required at the μ = 0.8 interval for the 8 

validation and testing datasets. These results are similar to the testing dataset in Alvisi & Franchini 9 

(2011). This comparison again demonstrates the ability of the proposed method with fuzzy inputs 10 

to function in similar manner to the original algorithm that used crisp inputs. 11 

A sample of the fuzzy weights and biases produced through the optimisation are shown in Fig. 5. 12 

Note that the membership functions are assumed to be piecewise linear (following similar 13 

assumptions made in Alvisi & Franchini, 2011; Khan et al. 2013; Khan & Valeo, 2015a), i.e. that 14 

the intervals at each membership levels can be joined to create a fuzzy number. This can be 15 

confirmed by the fact that each of the weights and biases are convex where intervals at lower levels 16 

are wider than intervals at higher levels, and are normal with at least one element with μ = 1. Note 17 

that each weight and bias has a non-linear membership function, i.e. none of the functions produced 18 

follow the typical triangular functions and are not necessarily symmetric about the modal value. 19 

The shapes of the fuzzy weights and biases for the proposed and existing method are generally the 20 

same for the input-hidden layer, however differences can be seen for the hidden-output layer plots. 21 

Since the existing method uses crisp inputs, it requires the produced weights and biases to represent 22 

the uncertainty in the data, to produce output intervals wide enough to capture the set amount of 23 

observations. This is reflected in hidden-output layer plots where the lower limit of the membership 24 

function for Weight #5 is highly skewed, which enables this method to capture the low DO events. 25 

Similarly, Bias #1 in the hidden-output layer has been translated to a lower value, to produce fuzzy 26 

DO outputs that capture the low DO observations.  27 

The figure demonstrates that enough α-cut levels (i.e. six levels equally spaced between 0 and 1) 28 

have been selected to completely define the shape of the membership functions. A smaller number 29 

of levels e.g. two levels, one at μ = 0 and one at μ = 1, the fuzzy number collapses to a triangular 30 
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fuzzy number, which is not desirable for this research, as discussed in previous sections. When 1 

only two levels are selected, the figures demonstrate that significant differences exist between those 2 

simple functions and the ones generated using six membership levels: the decrease in the width of 3 

the intervals with an increase in membership level is not linear as is in triangular shaped function. 4 

Similarly, a higher number of intervals e.g. 100 intervals, equally spaced between 0 and 1, could 5 

be selected. The risk in selecting many intervals is that as the membership level increases (closer 6 

to 1) the intervals become narrower as a consequence of convexity. This will result in numerous 7 

closely spaced intervals, with essentially equal upper and lower bounds, making the extra 8 

information redundant. This is demonstrated in the sample membership functions in Fig. 5 for WIH 9 

number 5 and BO (for the proposed method) where the intervals at the higher membership levels 10 

collapse to a singleton, or are extremely narrow. Thus, defining more uncertainty bands between 11 

the existing levels would not add more detail but would merely replicate the information already 12 

calculated.  13 

Connecting this back to the results in Table 4, these two particular weights and biases show why 14 

the percentage of data calculated at μ = 0.8 (for training) cannot be improved by further 15 

optimisation. At some point, if the intervals at μ = 0.8 for the various weights and biases collapse 16 

to a single element, no further refinement in the model is possible (since all the constraints are met) 17 

and the minimum interval width of the predicted DO whilst capturing at least PCI amount of data 18 

has been reached. It is worth emphasizing here that the uncertainty represented by these fuzzy 19 

number weights and biases is not the uncertainty of the particular weight or bias, but is the total 20 

forecasting uncertainty defined by the quantifying bands around the crisp predicted value. 21 

Table 3 and 4, and Fig. 5 demonstrates the overall success of the proposed approached to calibrate 22 

an FNN model as compared to a crisp ANN, as well as an FNN that uses crisp inputs. The 23 

optimisation algorithm is defined based on the principles of possibility theory (i.e. defining the 24 

amount of data to include in each interval) and is a transparent, repeatable and objective (not 25 

arbitrary) method to create the fuzzy numbers for the FNN model.  26 

The observed versus crisp predictions (black dots) and fuzzy predictions at μ = 0 (grey lines) for 27 

daily minimum DO for the three different data subsets (training, validation and testing) are shown 28 

in Fig. 6. The figure shows that nearly-all (specifically, 99.4%, 98.8% and 99.0% of the training, 29 

validation, and testing subsets, respectively, for the proposed method, with similar results for the 30 
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crisp input FNN method) of the observations fall within the μ = 0 interval, since the observed values 1 

(black dots) tend to fall inside the grey lines. This figure also highlights one of the major advantages 2 

of the FNN over a simple non-fuzzy ANN: almost all of the fuzzy results intersect the 1:1: line 3 

whereas many of the crisp results are quite far from that line, especially at low DO values (which 4 

is marked at 6.5 mg L-1 on the figure). In other words, while the fuzzy number prediction may not 5 

predict the observed value exactly, they provide at least some possibility of the observed value 6 

within its various α-cut intervals, but the crisp results do not provide this additional information. 7 

This figure illustrates that ENSE (listed in Table 2 for the μ = 1 case only) is not representative of 8 

the entire fuzzy number predictions, since it does not capture the performance at different 9 

membership levels. Thus, there is a need to develop an equivalent performance metric when 10 

comparing crisp observations to fuzzy number predictions.  11 

Fig. 6 also demonstrates the benefit of the FNN approach as compared to the crisp ANN approach 12 

with respect to predicting low DO (i.e. when DO is less than 6.5 mg L-1). Both the FNN methods 13 

predict more of the low DO events within its intervals as compared to the crisp method. The figure 14 

demonstrates that both the crisp (μ = 1) and fuzzy predictions tend to over predict the low DO 15 

events (since they fall above the 1:1: line), but the fuzzy intervals are closer to the observations 16 

(i.e. they intersect the 1:1 line for the majority of low DO events), and therefore predict some 17 

possibility (even if it is a low probability) the low DO events occur. Thus, generally speaking the 18 

ability of the FNN to capture nearly-all of the data within its predicted intervals guarantees that 19 

most of the low DO events are successfully predicted. This is a major improvement over 20 

conventional methods used to predict low DO. In comparing the two FNN methods, both methods 21 

give similar results: the average width of predicted low DO intervals for the nine-year period (at μ 22 

= 0) is 8.84 mg L-1 for the proposed method, and 8.60 mg L-1 for the existing method. The impact 23 

of the width of the predicted intervals is discussed later.  24 

Trend plots of observed minimum DO and predicted fuzzy minimum DO for the years 2004, 2006, 25 

2007 and 2010 are illustrated in Figs. 7 and 8. These results are shown only for the proposed method 26 

for clarity; difference between the existing method (using crisp inputs) and the proposed method 27 

(using fuzzy inputs) is discussed later. These years were selected due to the high number of low 28 

DO occurrences in each year (as listed in Table 1), and highlight the utility of the proposed method 29 

to predict minimum DO using abiotic factors in the absence of a complete understanding of the 30 
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physical mechanisms that govern DO in the Bow River. Note that for each year, 50% of the data 1 

are training data, 25% are validation and 25% are testing data. However, for clarity this difference 2 

is not individually highlighted for each data point in these figures.  3 

In Figs. 7 and 8, the predicted minimum DO at equivalent membership levels (e.g. 0L or 0R) at 4 

different times steps are joined together creating bands representative of the predicted fuzzy 5 

numbers calculated at each time step. In doing so, it is apparent that all the observed values fall 6 

within the μ = 0 interval for the years 2006, 2007 and 2010, and all but one observation in 2004. 7 

The width of each band represents the amount of uncertainty associated with each membership 8 

level. For example, the bands are the widest at μ = 0, meaning the results have the most vagueness 9 

associated with it. Narrower bands are seen as the membership level increases until μ = 1. This 10 

reflects a decrease in vagueness, increase in credibility, or less uncertainty of the predicted value, 11 

as the membership level increases. Note that the majority of the predictions at μ = 1 are single 12 

elements but some predictions are α-cut intervals (e.g. [a b]μ=1). This means that when not enough 13 

information is available, the fuzzy prediction collapse to trapezoidal membership functions.  14 

In each of the years shown, the majority of the observations tend to fall within the μ = 0.2 interval 15 

or higher, with only the low DO (i.e. < 5 mg L-1) falling within the μ = 0 and μ = 0.2 bands. This 16 

suggests that the low DO events are predicted with less certainty compared to the occasions when 17 

DO concentration is high. Also note that the interval at μ = 0 is highly skewed towards the lower 18 

limit (μ = 0L), i.e. the modal value is not at the centre of the interval. This shows that the FNN has 19 

been trained to capture these low DO events, but predicts them with lower credibility. Compared 20 

to the crisp results (i.e. those at μ = 1), for these low DO events, the proposed method provides 21 

some possibility of low DO, whereas the crisp results do not predict a possibility of low DO. Thus, 22 

the ability to capture the full array of DO observations within different intervals is an advantaged 23 

of the proposed method over existing methods.  24 

The trend plot for 2004 shows that observed DO decreases rapidly from late June to late July, 25 

followed by a few days of missing data and near-zero observations, before increasing to higher 26 

concentrations. Details of this trend are shown in Fig. 9 which shows magnified versions of 27 

important periods for each year. The reason for this rapid decrease in 2004 is unclear and may be 28 

related to problems with the real-time monitoring device which was in its first year of operation 29 

that year. However, it demonstrates that the efficacy of data-driven methods is dependent on the 30 
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quality of the data. Since the proposed method was calibrated to capture nearly-all the observations 1 

(including outliers like those seen in 2004) within the least certain band at μ = 0, the resulting 2 

network predicts results to include these outliers, but at low credibility levels. As the data length 3 

increases (i.e. the addition of more data and the FNN is subsequently updated), the number of these 4 

types of outliers included within the μ = 0 band will decrease because the optimisation algorithm 5 

(Eqs. 12 to 14) searches for the smallest width of the interval whilst including 99.5% of the data. 6 

Thus, with more data, it is expected that these extreme events (i.e. the outliers seen in 2004) will 7 

no longer be captured within the μ = 0 band. 8 

The time series plot for 2006 shows that all the observations fall within the predicted intervals, and 9 

that the predicted trend generally follows the observed trend. The majority of the 25 low DO events 10 

(< 5 mg L-1) occur from mid-July and continue occasionally until mid-September. Details of some 11 

of these low DO events are plotted in Fig. 9. Fig. 7 demonstrates these low DO events are captured 12 

between μ = 0 and 0.2 intervals, similar to the 2004 case, meaning that the credibility of these 13 

predictions is the lowest. However, unlike the 2004 case, Fig. 9 demonstrates that in 2006 the 14 

predicted intervals tend to follow the same trend as the observations for these low DO events, even 15 

if it is predicting them at a low credibility.  16 

In contrast to the results from 2004 and 2006, the majority of observations are captured at higher 17 

membership levels (i.e. greater than μ = 0.2) in 2007 as shown in Fig. 8. That is, only a limited 18 

number of observations are captured within the lowest credibility band. More importantly, 26 out 19 

of the 27 low DO (<6.5 mg L-1) events are captured at a membership level greater than 0.2L. 20 

Meaning that the low DO predictions in 2007 for the 6.5 mg L-1 guideline are predicted with higher 21 

credibility than the 2004 and 2006 cases. Another difference for the results from this year is that 22 

many of the low DO observations for 2007 are more evenly scattered around the μ = 1 predictions 23 

(as seen in Fig. 9) in contrast to the 2004 and 2006 cases, where the low DO events were always 24 

predicted to be closer to lower bounds of the intervals.  25 

The trend plot for 2010 is shown in Fig. 8 and it is clear that all observations fall within the μ = 0.2 26 

interval or at higher α-level intervals, meaning that the predictions capture the observations with 27 

higher certainty. This is likely due to the lack of DO events below 5 or 6.5 mg L-1 in 2010. Also of 28 

note for this year is that all observations are less than 10 mg L-1, and about 90% of all observations 29 

are below the 9.5 mg L-1 guideline (as listed in Table 1). The trend plot again illustrates that the 30 
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FNN generally reproduces the overall trend of observed minimum DO. This can be seen in a period 1 

in early May where DO falls from a high of 10 mg L-1 to a low of 7 mg L-1, and all the predicted 2 

intervals replicate the trend. This is an indication that the two abiotic input parameters are suitable 3 

parameters for predicting minimum DO in this urbanised watershed. 4 

Fig. 9 shows details of a low DO (<9.5 mg L-1) event in 2010 in late July through late August. The 5 

bulk of low DO events are captured between the μ = 0.6R and 0.2R intervals – demonstrating that 6 

these values are predicted with higher credibility than the other low DO cases in 2004 and 2006, 7 

and are predicted closer to the upper end of the interval. All of the low DO (<9.5 mg L-1) 8 

observations in this plot are under predicted by the crisp method (though not with the FNN method 9 

since they are captured within a fuzzy interval). This shows that the crisp ANN results tend to over 10 

predict extremely low DO events (i.e. < 5 mg L-1) while under predicting the DO < 9.5 mg L-1 11 

events. 12 

The analysis of the trend plots for these four sample years show that the proposed FNN method is 13 

extremely versatile in capturing the observed daily minimum DO in the Bow River using Q and T 14 

as inputs. The crisp case (at μ = 1) cannot capture the low DO events (as shown in Figs. 7 and 8), 15 

however the FNN is able to capture these low DO events. Generally speaking, the training method 16 

selected for the FNN has been successful in creating nested-intervals to represent the predicted 17 

fuzzy numbers. The widths of the predicted intervals correspond to the certainty of the predictions 18 

(i.e. larger intervals for more uncertainty). The utility of this method is further demonstrated in the 19 

proceeding section, where the risk of low DO is estimated using a possibility-probability (i.e. 20 

defuzzification) technique. 21 

Figs. 10 shows a comparison of the predicted minimum DO trends from both the proposed FNN 22 

method (solid black line) and the existing FNN method (dashed black line), along with the observed 23 

data (circles) for each membership level for the 2009 data. These figures show that despite the use 24 

of more data for the inputs (i.e. fuzzy numbers versus crisp numbers), both methods are optimised 25 

to show similar results (due to the optimisation algorithm requiring a specific amount of data being 26 

captured at each level). This shows that the optimisation algorithm developed in this manuscript 27 

for fuzzy inputs successfully mimics the original algorithm developed by Alvisi & Franchini (2011) 28 

that only used crisp inputs. Thus, when modelling a complex system, such as the minimum daily 29 

DO in the Bow River, the uncertainty in the inputs can also be quantified and propagated through 30 
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the data-driven model, by using the proposed method. This is a major advantage over the original 1 

model (Alvisi & Franchini, 2011) that only allowed crisp inputs to be used. Note that as per Table 2 

4, both methods approximately capture the same amount of data at each interval, however as Fig. 3 

10 indicates this does not necessarily mean that the predicted intervals are exactly the same for 4 

both methods. Both methods predict unique intervals, with the overall result being that PCI amount 5 

of data is captured within each interval. Note that at the interval μ = 0, the existing method using 6 

crisp inputs by design predicts this interval as a singleton (thus the interval width will always be 7 

zero), whereas the proposed method has an additional feature of predicting an interval for the μ = 8 

1 level. An instance of this can be seen near the end of September where an interval is predicted 9 

rather than a singleton.  10 

Fig 11 compares with width of predicted intervals at four selected membership levels for both 11 

methods, generally showing mixed results. As discussed above the existing method does not predict 12 

an interval for μ = 1, thus, a comparison cannot be made and is not included. At the μ = 0.8 level, 13 

the average width of the intervals for the existing method is close to 0, whereas for the proposed 14 

method is 0.36 mg L-1. This is consistent with the results shown in Table 4 and Fig. 5, that 15 

demonstrates the narrow interval at higher membership levels. Annual comparisons of the 16 

remaining intervals show that the intervals at μ = 0 are larger for the proposed method compared 17 

to the existing method for all but one year (2009). However, at μ = 0.2, 0.4 and 0.6, the width of 18 

the intervals is smaller for the proposed method for a majority of years, however the overall 19 

differences are not statistically significant (p >0.05 using the two-sample Kolmogorov-Smirnov 20 

test). The results demonstrate that while both method can achieve the optimisation objectives whilst 21 

respecting the constraints (i.e. PCI), it is reflected differently in the predicted fuzzy intervals. 22 

Generally, the predicted fuzzy numbers using the proposed method have a larger support (at μ = 0) 23 

signifying that the increased uncertainty due to fuzzy inputs into the model are propagated through 24 

the model. Whereas, the lack of inclusion of uncertain input data in the existing method results in 25 

a slightly narrower average support. In essence, the proposed FNN model is modelling a more 26 

complex system (because of the inclusion of input uncertainty) whereas the existing method models 27 

the system by assuming lower complexity (by ignoring the input uncertainty).  28 
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3.3 Risk analysis for low DO events 1 

The utility of the FNN method is illustrated through an analysis of the ability of the proposed model 2 

to predict low DO events, and then a possibility-probability transformation is used to assess the 3 

risk of these low DO events. The number of occasions when observed DO was below any of the 4 

three guidelines used for this research are summarised in Table 1. The FNN model was cable to 5 

capture 100% of all low DO events (i.e. below 5, or 6.5 or 9.5 mg L-1) within the predicted intervals. 6 

In comparison, the crisp ANN network (i.e. at μ = 1) did not predict DO to be less than 5 mg L-1 7 

on any of the 51 occasions. Similarly, it predicted DO to be less than the more conservative limit 8 

of 6.5 mg L-1 in only 53% of the 184 occurrences. For the last case, the 9.5 mg L-1 limit, the ANN 9 

method still trailed the FNN method, by predicting 96% of these low DO events. This illustrates 10 

that not only can the FNN method capture more low DO events within its predicted intervals, it 11 

performs exceptionally better for the highest risk case (DO < 5 mg L-1). In general, more days were 12 

correctly identified when there was a risk of low DO using FNN rather than the typical ANN 13 

approach. This is one of the major advantages of using a fuzzy number based uncertainty analysis 14 

component to low DO prediction. 15 

Once all the low DO events were identified, the inverse transformation (defuzzification) described 16 

in Sect. 2.4 was used to estimate the probability of low DO. The primary reason for converting 17 

from possibility to probability is to improve the communication of the risk of low DO. For each 18 

low DO event (i.e. at 5, or 6 or 9.5 mg L-1), the predicted membership function was used to 19 

determine the possibility of low DO, i.e. identify the membership level where the membership 20 

function intersects either of the low DO guidelines (some examples of low DO events are shown 21 

in Fig. 12). Once these were identified, the defuzzification technique was used to predict the 22 

probability of low DO (e.g. P({DO<5 mg L-1})). 23 

For the first case, P({DO<5 mg L-1}), the probability ranged between 11.5% and 16.6% for the 51 24 

events, with a median value of 14%. This means that on days when DO was observed to be below 25 

5 mg L-1, the FNN results identified the possibility of low DO and the probability of DO to be 26 

below the 5 mg L-1 guideline was ~14%. Thus, the FNN method predicts a probability of low DO 27 

(even if it is relatively small) on days when the crisp ANN does not predict a low DO event. This 28 

value can be used as a threshold by water resource managers for estimating the risk of low DO. For 29 

example, if forecasted water temperature and flow rate are used to predict minimum fuzzy DO 30 
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using the calibrated model, if the risk of low DO reaches 14%, the event can be flagged. 1 

Appropriate defence mechanisms can then be implemented to prevent the occurrence of low DO. 2 

For the 184 cases where DO was observed to be less than 6.5 mg L-1, the probability-possibility 3 

transformation estimated the risk of low DO to be between 13.7% and 92.9%, with a median value 4 

of 73.4%. Compared to the first case, the probability of low DO for this threshold is higher and 5 

more variable. The low probabilities are associated with predictions of low DO at lower credibility 6 

levels at the lower limit of the intervals (i.e. L), whereas the higher probabilities are associated with 7 

predictions corresponding to the upper limits of the intervals (R). For 43 out of the 184 low DO 8 

events, the probability of low DO was less than 21% – these events correspond to predictions of 9 

low DO at low credibility levels at the lower limits. For the majority of events (107 out of 184), 10 

the risk was high, more than 65%.  It is worth noting that the crisp network only predicted 53% of 11 

these low DO events, and of those correctly identified, the majority were over-predicted.  12 

For the last, most conservative case, the probability of predicting DO to be less than 9.5 mg L-1 13 

(1179 events) varied between 21.9% and 100%, with a median value of 98.1%. Only 46 out of the 14 

1179 events had a probability of less than 70%; the majority of events had a high risk of low DO:  15 

more than 80% of the events had a risk of low DO of more than 90%. This shows that the FNN can 16 

predict with high probability, the events were minimum daily DO is observed to be below the 9.5 17 

mg L-1 limit.  18 

It is worth noting here that the proposed FNN model was designed to only include data from the 19 

April to October each year, corresponding to the ice-free period (as defined in Sect. 2.1). This 20 

implies that the analysis has been conducted on the time period that is most critical or susceptible 21 

to low DO. Thus, as the proposed FNN model predicts, there is possibility of low DO on most days 22 

(as shown in the trend plots in Figs. 7 and 8). However, the consistency principle (Zadeh, 1978) 23 

implies that an event must be possible before it is probable. Thus, a possibility to predict low DO 24 

does not imply that it will occur with a high probability. In fact, nearly all the possibility of low 25 

DO events occurs at low membership levels (i.e. μ < 0.2) implying a low possibility – and the 26 

skewed nature of the results deem the probability to be low as well. For example, for the DO < 5 27 

mg L-1 case, the proposed FNN model predicted 1367 days where low DO was predicted but not 28 

observed, however, on average the probability of low DO for 98% of these events was much lower 29 

than the threshold criteria (14%) mentioned above. Thus, the number of “false alarms” predicted 30 
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by the proposed method is very low. Similarly, for the DO < 6.5 mg L-1 and 9.5 mg L-1 cases, each 1 

had ~94% of the low DO cases to fall below their respective threshold criteria. This shows that 2 

while FNN model correctly predicts a possibility of low DO for the majority of the days 3 

(corresponding to the typical low DO conditions), the risk of predicting a “false alarm” is low. 4 

Lastly, it should be noted that the wide intervals predicted at μ = 0 are a function of the rapidly 5 

decreasing low DO value seen in 2004 (discussed in Sect. 3.2) that are likely due to instrument 6 

error. With the inclusion of new data as it becomes available, and as the model parameters are 7 

updated, it is expected that these outliers will be part of the 0.5% of PCI not included in the predicted 8 

intervals, resulting in narrower bands of predictions.  9 

The predicted membership functions of minimum DO for nine examples are shown Fig. 12, along 10 

with the observed minimum DO (the vertical dashed line). Three samples are shown for each low 11 

DO guideline: 5, 6.5, or 9.5 mg L-1; along with the associated risk of low DO calculated using the 12 

defuzzification technique. Note that the membership functions of the predicted fuzzy numbers 13 

show that each is uniquely shaped, convex and normal, highlighting the fact that the proposed 14 

optimisation algorithm successfully produces nested intervals at each membership levels (as it does 15 

for the weights and biases shown in Fig. 5). For the predicted fuzzy DO, the intervals are largest at 16 

μ = 0, which decrease in size as the membership level increases. The shape of the membership 17 

functions are not triangular shaped as assumed in many fuzzy number based applications. This is 18 

of significance because it shows that the amount of uncertainty (or credibility) of the model output 19 

does not change linearly with the magnitude of DO, which has important implications regarding 20 

the risk of low DO.  21 

For the 5 mg L-1 guideline, the intersection of the membership function and the guideline occurs at 22 

low possibility levels (between μ = 0L and 0.2L), meaning that the corresponding probability will 23 

be low as well, as illustrated by the probability values shown in the figure. This again highlights 24 

that the risk of low DO (< 5 mg L-1) is predicted to be low by the FNN mostly due to the fact that 25 

the observations are captured at low membership levels. Note that the crisp ANN results (at μ = 1) 26 

always over predict low DO, as shown in these three examples. The observed value falls within the 27 

predicted interval for each case, also at low membership levels.  28 

The examples for the 6.5 mg L-1 guideline (second row in Fig. 12) show that the intersection 29 

between the membership function and the guidelines occurs between μ = 0.4 and 0.6 on 26 July 30 



 40 

2006, between μ = 0.6 and 0.8 on 8 August 2007, and at about μ = 0.6 on 29 September 2004. This 1 

illustrates the broader trend with the 6.5 mg L-1 guideline (which was discussed earlier and had a 2 

large range of risk predictions), which is that for the full dataset, the possibility of low DO (< 6.5 3 

mg L-1) occurs at every interval with the majority occurring at higher intervals. This is in contrast 4 

to the 5 mg L-1 guideline where the possibility of low DO only occurs only between μ = 0 and 0.2. 5 

The last row in Fig. 12 show sample low DO results for the 9.5 mg L-1 guideline. As discussed 6 

above, more than 80% of these events had a high (more than 90%) risk of low DO. In the first 7 

example, on 23 September 2004, the guideline intersects the membership function at μ = ~0.2R, 8 

corresponding to a ~97% risk of low DO. The 6 August 2008 has a low DO prediction of 100% – 9 

this is because the predicted fuzzy number is entirely below the guideline limit. A similar result 10 

can be seen for the last example. These examples also illustrate that had only a triangular 11 

membership function been used (i.e. the fuzzy numbers defined at two membership levels), the 12 

probability of low DO could not be quantified as specifically as it has been here. The slight changes 13 

in membership function shapes between intervals impact the final probability, and a linear function 14 

would have not captured these changes. 15 

These examples illustrate the potential utility of the data-driven and abiotic input parameter DO 16 

model, that can be used to assess the risk of low DO. Given that it is a data-driven approach, the 17 

model can be continually updated as more data is available, further refining the predictions. Various 18 

combinations of input values can be used to predict fuzzy minimum DO and defuzzification 19 

technique can be used to quantify the risk of low DO given the input values. The utility of this 20 

method is that a water-resource manager can use forecasted water temperature data and expected 21 

flow rates to quantify the risk of low DO events in the Bow River, and can plan accordingly. For 22 

example, if the risk of low DO reaches a specific numerical threshold or trigger, different actions 23 

or strategies (e.g. increasing flow rate in the river by controlled release from the upstream dams) 24 

can be implemented. The quantification of the risk to specific probabilities means that the severity 25 

of the response can be tuned to the severity of the calculated risk.   26 

4 Conclusions 27 

A new method to predict DO concentration in an urbanised watershed is proposed. Given the lack 28 

of understanding of the physical system that governs DO concentration in the Bow River (in 29 
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Calgary, Canada), a data-driven approach using fuzzy numbers is proposed to account for the 1 

uncertainty. Further, the model uses abiotic (non-living, physical and chemical attributes) factors 2 

as inputs to the model. Specifically, water temperature and flow rate were selected which are 3 

routinely monitored and thus, a large dataset is available.  4 

The data-driven approach proposed is a modification of an existing fuzzy neural network method 5 

that quantifies the total uncertainty in the model by using fuzzy number weights and biases. The 6 

proposed model refines the exiting model by (i) using possibility theory based intervals to calibrate 7 

the neural network (rather than arbitrarily selecting confidence intervals), and (ii) using fuzzy 8 

number inputs rather than crisp inputs. This research also proposes a new two-step method to 9 

construct these fuzzy number inputs using observations. First a bin-size optimising algorithm is 10 

used to find the optimum histogram (as an estimate of the underlying but unknown probably density 11 

function of the observations). Then a probability-possibility transformation is used to determine 12 

the shape of the fuzzy number membership function.  13 

The results demonstrate the network training algorithm proposed can be successfully implemented. 14 

Model results demonstrate that low DO events are better captured by the fuzzy network as 15 

compared to a non-fuzzy network. A defuzzification technique is then used to calculate the risk of 16 

low DO events. Generally speaking, the method demonstrates that a data-driven approach using 17 

abiotic inputs is a feasible method for predicting minimum daily DO. Results from this research 18 

can be implemented by water resource managers to assess conditions that lead to, and quantify the 19 

risk of low DO.  20 
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Table Captions  1 

Table 1: A summary of low DO events in the Bow River between 2004 and 2012 and the 2 

corresponding minimum acceptable DO concentration guidelines 3 

Table 2: Selected values for PCI for the FNN optimisation 4 

Table 3: The EMSE and ENSE for each subset of the fuzzy neural network using the method proposed 5 

(using fuzzy inputs) and using the original method (using crisp inputs) 6 

Table 4: Percentage of data captured within each α-cut interval for the three subsets of data  7 
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Tables 1 

Table 1: A summary of low DO events in the Bow River between 2004 and 2012 and the 2 

corresponding minimum acceptable DO concentration guidelines 3 

Year DO < 5 mg L-1 a DO < 6.5 mg L-1 b DO < 9.5 mg L-1 c 
Total number of 

samples 

2004 25 41 107 135 

2005 1 26 133 208 

2006 25 70 164 209 

2007 0 27 182 211 

2008 0 5 130 163 

2009 0 15 85 96 

2010 0 0 180 207 

2011 0 0 122 204 

2012 0 0 76 206 

Total 51 184 1179 1639 
a for the protection of aquatic life for 1-day (AENV, 1997) 
b for the protection of aquatic life in cold, freshwater for other-life (i.e. not early) stages 

(CCME, 1999) 
c for the protection of aquatic life in cold, freshwater for early-life stages (CCME, 1999) 

  4 
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Table 2: Selected values for PCI for the FNN optimisation 1 

μ PCI (%) 

1.00 0.00 

0.80 20.00 

0.60 40.00 

0.40 60.00 

0.20 80.00 

0.00 99.50 

 2 

3 
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Table 3: The EMSE and ENSE for each subset of the fuzzy neural network using the method proposed 1 

(using fuzzy inputs) and using the original method (using crisp inputs) 2 

  EMSE (mg L-1)2 ENSE 

  Proposed Original Proposed Original 

Train 1.52 1.55 0.52 0.51 

Validation 1.19 1.18 0.49 0.49 

Test 1.09 1.10 0.54 0.54 

  3 
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Table 4: Percentage of data captured within each α-cut interval for the three subsets of data 1 

  Percent captured, PCI (%) 

  Proposed method Existing method 

μ Train Validation Test Train Validation Test 

1.00 - - - - - - 

0.80 29.91 28.54 28.78 20.02 14.39 18.05 

0.60 39.93 40.98 40.24 40.05 35.85 40.49 

0.40 59.95 66.10 64.15 60.07 60.73 61.95 

0.20 79.98 80.49 82.93 80.10 79.51 82.44 

0.00 99.39 98.78 99.02 99.51 98.54 99.02 

 2 

 3 

  4 
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Figures Captions  1 

Figure 1: An aerial view of the City of Calgary, Canada showing the locations of (a) the flow 2 

monitoring site Bow River at Calgary (Water Survey of Canada ID: 05BH004), three wastewater 3 

treatment plants at (b) Bonnybrook, (c) Fish Creek, and (d) Pine Creek, and two water quality 4 

sampling sites (e) Stier’s Ranch and (f) Highwood. 5 

Figure 2: An example of a three-layer multilayer perceptron feed-forward ANN, with two input 6 

neurons, the hidden layer neurons, and one output neuron. WIH are the weights between the input 7 

and hidden layer, WHO are the weights between the hidden and output layer, BH are the biases in 8 

the hidden layer, and BO is the bias in the output layer. 9 

Figure 3: Sample results of probability-possibility transformation for flow rate, Q  10 

Figure 4: Sample results of probability-possibility transformation for water temperature, T 11 

Figure 5: Sample plots of the produced membership functions for the weights and biases of the 12 

fuzzy neural network for both the proposed and existing methods 13 

Figure 6: A comparison of the predicted and observed minimum DO at the μ = 0 interval (grey 14 

line) and at μ =1 (black dots) for the proposed (top row) and existing (bottom row) methods 15 

Figure 7: A comparison of the observed and predicted minimum DO trends for: (top) 2004, and 16 

(bottom) 2006 17 

Figure 8: A comparison of the observed and predicted minimum DO trends for three sample years: 18 

(top) 2007 and (bottom) 2010 19 

Figure 9: Zoomed in views of the trend plots for four sample year corresponding to important 20 

periods with low DO occurrences 21 

Figure 10: Comparison of predicted trends of the proposed (solid black line) and existing (dashed 22 

black line) methods shown for 2009 for each membership level. Observations are shown as black 23 

circles 24 

Figure 11: A comparison of average annual interval widths of predicted fuzzy numbers using the 25 

proposed and existing FNN methods for four selected membership levels 26 

 27 



 57 

Figure 12: Sample plots of low DO events and the corresponding risk of low DO calculated using 1 

a possibility-probability transformation for the (top) 5 mg L-1, (middle) 6.5 mg L-1, and (bottom) 2 

9.5 mg L-1 guideline 3 

  4 
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Figures  1 

 2 

Figure 1: An aerial view of the City of Calgary, Canada showing the locations of (a) the flow 3 

monitoring site Bow River at Calgary (Water Survey of Canada ID: 05BH004), three wastewater 4 

treatment plants at (b) Bonnybrook, (c) Fish Creek, and (d) Pine Creek, and two water quality 5 

sampling sites (e) Stier’s Ranch and (f) Highwood. 6 
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 1 

Figure 2: An example of a three-layer multilayer perceptron feed-forward ANN, with two input 2 

neurons, the hidden layer neurons, and one output neuron. WIH are the weights between the input 3 

and hidden layer, WHO are the weights between the hidden and output layer, BH are the biases in 4 

the hidden layer, and BO is the bias in the output layer. 5 
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Figure 3: Sample results of probability-possibility transformation for flow rate, Q 1 



 61 

  1 

 

 

 

 

 

Figure 4: Sample results of probability-possibility transformation for water temperature, T 2 
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 1 

Figure 5: Sample plots of the produced membership functions for the weights and biases of the 2 

fuzzy neural network for both the proposed and existing methods 3 
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 1 

Figure 6: A comparison of the predicted and observed minimum DO at the μ = 0 interval (grey 2 

line) and at μ =1 (black dots) for the proposed (top row) and existing (bottom row) methods 3 
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 1 

Figure 7: A comparison of the observed and predicted minimum DO trends for: (top) 2004, and 2 

(bottom) 2006 3 
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 1 

Figure 8: A comparison of the observed and predicted minimum DO trends for three sample years: 2 

(top) 2007 and (bottom) 2010 3 
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 1 

Figure 9: Zoomed in views of the trend plots for four sample year corresponding to important 2 

periods with low DO occurrences 3 
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 1 

Figure 10: Comparison of predicted trends of the proposed (solid black line) and existing (dashed 2 

black line) methods shown for 2009 for each membership level. Observations are shown as black 3 

circles 4 
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 1 

Figure 11: A comparison of average annual interval widths of predicted fuzzy numbers using the 2 

proposed and existing FNN methods for four selected membership levels 3 
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 1 

Figure 12: Sample plots of low DO events and the corresponding risk of low DO calculated using 2 

a possibility-probability transformation for the (top) 5 mg L-1, (middle) 6.5 mg L-1, and (bottom) 3 

9.5 mg L-1 guideline 4 
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