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Abstract

Geological heterogeneity enhances spreading ofesyland causes transport to be anomalous
(i.e., non-Fickian), with much less mixing than gagted by dispersion. This implies that
modeling transport requires adopting either stahagpproaches that model heterogeneity
explicitly or effective transport formulations thatknowledge the effects of heterogeneity. A
number of such formulations have been developedtestdd as upscaled representations of
enhanced spreading. However, their ability to re@mé mixing has not been formally tested,
which is required for proper reproduction of chemhiceactions and which motivates our
work. We propose that, for an effective transpannfulation to be considered a valid
representation of transport through Heterogeneausud Media (HPM), it should honor
mean advection, mixing and spreading. It should aks flexible enough to be applicable to
real problems. We test the capacity of the MultteRslass Transfer (MRMT) to reproduce
mixing observed in HPM, as represented by the idalssulti-Gaussian log-permeability
field with a Gaussian correlation pattern. Non-disjve mixing comes from heterogeneity
structures in the concentration fields that are cagitured by macrodispersion. These fine
structures limit mixing initially, but eventuallyneance it. Numerical results show that,
relative to HPM, MRMT models display a much strangeemory of initial conditions on
mixing than on dispersion because of the sengitofithe mixing state to the actual values of
concentration. Because MRMT does not restitutddbal concentration structures, it induces
smaller non-dispersive mixing than HPM. Howevergdived trapping in the immobile zones
may sustain the deviation from dispersive mixing@romuch longer times. While spreading

can be well captured by MRMT models, in general-dmpersive mixing cannot.
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1 Introduction

Transport is anomalous in heterogeneous porousanédiomalous transport observations
include tailing in concentration breakthrough cerasmd plumes, or the strong increase in the
rate of spreading of plumes. Several frameworksehdeen developed to generalize the
Advection Dispersion Equation (ADE) and overconsdlifnitations Frippiat and Holeyman
2008]. All these alternative frameworks share tloalgio model complex permeability,
velocity and concentration patterns in unified pamious effective equations. The limited
number of parameters makes them efficient for itlhhé@dd quantity of data usually available.
In fact, they can be parameterized from breakthnotgrves. They comply with the broad
residence time distributions and non-local transpoocesses observed in realityj¢tvaj et
al., 2015; Le Borgne and Gouze2008; Willmann et al. 2008]. They represent the
consequences of complex concentration patternsinafltaneous concentration trapping and
fast progress on residence times while averagincalbuhe fine concentration structures in
the upscaling process. These anomalous transportefvorks have proven to be highly
effective for residence times, transport time dstion and effective spreading both
phenomenologically and practicallggrkowitz et al.2006;Neuman and Tartakovsk009].
However, their ability to reproduce mixing, which required for properly reproducing

chemical reactions, has not been tested.

We argue that an effective transport formulatioousth honor not only the mean advection,
and spreading observed in Heterogeneous PorousaMEHM), but also the evolution of

mixing. This should not be understood as limitingpmalous transport frameworks but at
extending them to handle broader ranges of physiedlchemical processes, and at further
promoting the approach of effective equations thiadcale out the fine scale structures to
retain only their main consequences in terms aisjart, reactivity and reactive transport

couplings.

Here, we investigate the relevance of Multi-RatesMdransfer (MRMT) framework to
model not only spreading but also mixing. MRMT akeén as a typical anomalous transport
framework. Its advantage lies in providing local ncentrations, which can be
straightforwardly used to evaluate concentratiomiavee, mixing and mixing induced
reactivity [Babey et al. 2014;Carrera et al, 1998;de Dreuzy et al.2013;Haggerty and
Gorelick 1995], as well as the apparent reduction in #te of kinetic reactiondlentz et al.

2011]. The question is whether its validity as agresentation of transport through
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heterogeneous porous media (HPM) can be extendegtoduce the effects of the evolution
of mixing rates resulting from the stretching amiding associated to complex velocity
structuresde Anna et aJ.2014b;Jimenez-Martinez et al2015;Le Borgne et a).2015].

This comparison is especially appropriate as anomsatransport processes are currently
extended to simulate reactive transport processiesa and Valocchi2007;Clement 2001;

de Barros et al.2012;Donado et al. 2009;Hochstetler et a).2013;Luo et al, 2008;Luo
and Cirpka 2011;0rgogozo et a).2013;Schneider et al.2013]. They deal with chemical
reactivity either in a stochastic manner, repraagmeactivity with molecular analogies, or in
classical approaches by means of concentratiBotster et al. 2010; Cirpka et al, 2012;
Ding et al, 2013;Hayek et al.2012;Knutson et a].2007;Zhang et al.2013]. Extensions are
both required for applications purposes and attractor capturing the consequences of
anomalous transport to potential "anomalous” arftheced reactivityBattiato et al, 2009;
Sadhukhan et gl2014;Scheibe et al2015;Tartakovsky et al2009].

Some assessment of MRMT to model reactivity in HR& been made in former works
[Willmann et al. 2010]. Equivalent reactivity has been evaluatesbane well-defined travel
distances on MRMT calibrated on residence timeridigtions. Here we follow a different
avenue by analyzing the temporal development oéagping and mixing. We extend the
integrated assessment of mixing-induced reactizitgiven travel distances to its temporal
development.

Our contribution concerns the comparison of différ@odels much more than the HPM and
MRMT model themselves. For the sake of completenessrecall model equations and
simulation methods in section 2 (models and methadd measures of spreading and mixing
in section 3. We use these measures to proposmtititions that should be met by effective
(upscaled) transport formulations to be considetadl representations of transport through
heterogeneous porous media (Section 4). We théwtether MRMT formulations meet the
proposed conditions (Section 5). While this lastise depends on the specific choice of the
MRMT framework as an equivalent transport modek ttomparison methodology is
independent of it and can be used to assess trarezp@tions respecting both spreading and

mixing.
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2 Model and Methods

We present sequentially the Multi-Rate Mass Tran@#RMT) and Heterogeneous Porous
Media (HPM) models. As they are both well known, pvesent only the main equations and

highlight the critical assumptions of importancehis study.

2.1 Multi-Rate Mass Transfer model (MRMT)

Multi-Rate Mass Transfer models express anomalaassport by the interaction between
transport in a mobile zone and a series of immatnlees Carrera et al, 1998;Haggerty and
Gorelick 1995]. Transport in the mobile zone is advectind dispersive with a mean solute
velocity v (water flux divided by mobile porosity) and a dispersion coefficient Each
immobile zonei is parameterized by a characteristic rate(inverse of a characteristic
exchange time) and an immobile porosigy The concentrations and ¢ (i=1.N) in the

mobile and immobile zones, respectively, are detethby the following set of equations:

ac 9%
—+ +d—. 1
(p Z(Q at ax ox? (1)

%_T:ai(c—q)fori =1.,N 2

The ratio of immobile to mobile water volumes istedh by the total capacity ratio
,G:qu/qo. The term capacity derives from the fact that MRNOrmulations were
originally devised to represent trapping by somptia hard-to-reach sorption sites, which
were characterized by capacity (including both alissd and sorbed solute mass) [see, e.g.,

Haggerty and Gorelick1995]. We use here an equivalent MRMT formulatfon non-
sorbing solutes, so as to facilitate comparisomh Wi M.

Initial and boundary conditions will be describedel for both MRMT and HPM models.
MRMT models differ by the distributions of charatséc ratesai and immobile porosities

@. Among the available model<yetkovi¢ 2012; Haggerty et al. 2000], we choose a

uniform distribution for characteristic times ¢iy bounded by the two extreme rates1/4;

andan=1/n (t2<tn) and a power-law distribution fap:

Q- a’im_3 ' 3
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The power-law distribution is consistent with obvser breakthrough curves in Heterogeneous
Porous Media, which often display long tails thapear linear in log(c) versus log(fspuze
et al, 2008;Haggerty et al. 2004;Li et al,, 2011;Silva et al, 2009;Willmann et al, 2008].
This tailing is well modeled by a power law, sudfattthe breakthrough concentration
evolves as~t™. Haggerty et al(2000) showed that the sloperelates to the exponent of the
power-law distribution of the MRMT rates (equati(8)). m is generally found to be in the
interval [1.5;2.5] but litte is known about its a&ébnship to the geological heterogeneity.
Willmann et al(2008) found some correlation between the degfesoonectivity and the
slope. The more connected the field, the smallerdlope. In this context, fracture/matrix
exchanges in fractured media represent the lowashd (m=1.5), which is controlled by
diffusion into immobile regionsHaggerty and Gorelick1995]. On the contrary, a slopeof
2.5 may represent a heterogeneous but poorly ctethéydraulic conductivity field, where

late time arrival is controlled by slow advection.

We simulate MRMT models with a standard time- ammhce-adaptative method that
preserves massl¢ Dreuzy et al.2013] and always complies with the CFL conditippaus

et al, 1985]. The advective and the diffusive processethe mobile zone as well as the
exchange with the immobile zones are treated witeequential non-iterative coupling
method. These methods lead to efficient simulatioinkrge spatial domains and extended
times with initial refined resolutions. We have sessfully compared them with a more
classical fixed-time Galerkin finite element methadtegrated with the"order Runge-Kutta
method (ode45 function of Matlab) and found rekatidifferences less than 306.
Simulations have been performed over the time reduor transport to reach its asymptotic

regime.

2.2 Heterogeneous Porous Media (HPM)

For reference purposes, we restrict the analysieterogeneity of hydraulic conductivitik)
as represented by the classical 2D Gaussian ctadetaulti-Gaussian log-fields. These are

characterized by their isotropic correlation fuonti

c(r)=asex{—[gjz] @
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with r the distance) the correlation length, which is used to scaldéagises, anay? the
variance of the logarithm af=log-K. We use simulation results performed in previdudiss
[de Dreuzy et al.2012] obtained on 2D domains of sizesandLt in the direction parallel
and orthogonal, respectively, to the mean flux.is large enough to avoid any finite-size
effects (from 18to 1G correlation lengtha). Boundary conditions for flow and transport are
periodic in the transverse direction to minimizeubdary effectsLt is of the order of 100
timesA to ensure initially ergodic transport conditiobder such uniform extended injection
conditions, transport in HPM can be considered digand can be fundamentally compared
with a 1D MRMT model. The immobile zones of MRMTnche viewed as representing the
low velocity zones of HPM, so that the mobile zomey represent the high velocity channels.

Flow is solved with a finite volume scheme withrpeameter-like boundary conditions under
a unit head gradient. Transport is simulated ugiegADE, with heterogeneous advection and
homogeneous diffusion. Therefore, it is characgeriby the Peclet numb@e equal to the
mean velocity times the correlation length dividgdthe diffusion coefficient. Transport is
simulated with a random walk Lagrangian method. Hucal methods are exhaustively
described in several previous papddedudoin et a).2006;Beaudoin et a).2007;Beaudoin

et al, 2011].

2.3 Injection and boundary conditions

The same type of injection and boundary conditiares used for both models. Flow has a
major flow direction imposed in HPM by a head gesdiin the longitudinal direction and
periodic boundary direction in the transverse dioec For transport, reflecting and absorbing
boundary conditions are used respectively upstreach downstreamBeaudoin and de
Dreuzy 2013]. Injection is performed downstream to tmdeti boundary to minimize

boundary effects.

Extended injection conditions are used for the H&&M MRMT models. Concentrations are
homogeneous orthogonally to the main flow directathin a square wave of longitudinal

and transverse widthAL, and AT,, respectively. In the HPM case, concentration sla

function of the coordinate. along the flow direction:
c(x,t =0)=cy(x ) (5)

with ¢, given by:
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G(X) =4 AATAL,
0 otherwise

if X, <X<X, +AL, ©)

@ is the total porosity. To ensure that the samesmmass injected in the HPM and MRMT

cases, we adapt the initial state of the MRMT maalel
o(x,t =0)=¢(x,t =0)=c,(x)fori =1.N. (7)

Spreading becomes independent of the injectionthemdnen the longitudinal plume size

becomes significantly larger thaklL,. Mixing depends more critically than spreadingtioa
injection conditions, as the initial concentratiealue depends on the injection widfkl,
(equation (6)).

3 Measures of spreading and mixing

3.1 Spreading

For an extended plume, spreading is generally meddoy the square root of the second

centered moment of the spatial distribution of @mrationa :

o.(t)=ym®(t)-m? (t) (8)

where m® (t) is the k-th order moment of the concentrationritigtion

MY (t)= th olx, ) x / j ol t)d ©)

with x_ the coordinate ox in the direction parallel to the main flow direxti (longitudinal

direction) andQ the flow domain . With this definitiony, can be viewed as the longitudinal

extent of the plume (i.e., how far it spreads).p@rsion is the rate of spreading (i.e., time

derivative ofg), usually characterized by the longitudinal dispéty ai :

_1dd?

= ) 10
SOV (10)

wherev is the plume velocity equal to the time derivatdféhe mean position plume® (t)

a. increases until it converges to an asymptotic eatua, thus defining in turn the

asymptotic regimel)agan 1990;Gelhar, 1993].
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In MRMT, spreading comes from the exchanges tarthbile zone. That is, spreading results
from trapping. Solutes are slowed down and disjgelsethe exchanges with the immobile

zones. The resulting dispersivity is a monotonoustyeasing function of the residence times

in immobile zones (both their medn,,,;) and ranggt, -t,)). The dispersivity induced by

the dispersive and diffusive processes in the reobdne is comparatively negligible and

could be disregarded.

In HPM, spreading comes both from diffusive exclemwith low velocity zones and from
spatial fluctuations of the velocity field¢ Dreuzy et al.2007;Salandin and Fiorottp1998].
The asymptotic dispersivity increases both with ¢berelation lengtih and with the log-K

varianceoy?:
a,,(HPM) =1 g(o?) h(o?, Pe) (11)

whereg is either a linear function for small valuesaf (ov?<1) and a quadratic function at
larger valuesde Dreuzy et al.2007]. h(af Pe) is a correction factor accounting for diffusion
[Beaudoin et aJ. 2010]. Local diffusion reduces the effective aispvity in the high

heterogeneity cases by releasing solutes from ake Melocity zone and truncating the

trapping times induced by slow advection.

Any concentration plume can be approximated by as§an concentration profile(x,t),
defined by the two first momentsm(Ll)(t) as mean andff(t) as variance. It is the smoothest

equivalent profile. Both MRMT and HPM converge agyatically to this profile. However,

it is far away from the full concentration profitéx,t) at any time as shown by the comparison
of Figure 1. At early times (left snapshots on ggd), the concentration profile remains
heterogeneous especially in the transverse directrath both higher and lower
concentrations. Around the advection time, defiasdhe correlation length divided by the
plume velocity v, the deviation reaches its maximum .At this poitiie Gaussian
concentration profile has become much more diltivad the real concentration field (second
from the left snapshot of Figure 1). Concentraiildmomogeneities decrease very slowly and
remain over very long times even though the rarfgeoacentration values decreases (two
right-most snapshots of Figure e[ Anna et a).2014a;Jimenez-Martinez et al2015;Le
Borgne et al.2011].
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In summary, in HPM, dispersivity comes primarilyrfothe velocity structure, which drives
the generation of gradients in concentration ang tmixing. Instead, in MRMT, effective
dispersivity is controlled by mobile-immobile exciges and delays the actual mixing

between the immobile and mobile solute concentnatio

3.2 Mixing

The Gaussian profile only gives a crude approxiomanf the concentration field with a
strong deviation on the distribution of concentrativalues, especially at early times when
diffusion has not homogenized the concentratiold fie the transverse direction (Figure 1).
Actual concentrations remain much higher and claséhne initial concentration value than in
the Gaussian profile prediction. That is the ihitancentrations are much less diluted (i.e.,
mixed) than in the maximum entropy Gaussian digtidm. The Gaussian profile(x,t) thus
sets a lower bound to the effective concentratianability. Therefore, it is most natural to
compare the actual distribution of concentratiolues to that of the Gaussian profile in order
to describe the mixing state. Notice that, contraryspreading, we are not concerned here
with the spatial distribution, but only with the lwas of concentration and their time
evolution, which are most simply characterized by second moment. We quantified the
deviation from the Gaussian mixing regime as thim raf the actual concentration second
momentM(t) to the second momeMp(t) of the Gaussian profile concentratiag(x,t) minus

1 [de Dreuzy et al.2012]:

W)= M(Et))—l. (12

with
M (t) = [c*d“x (13)

and the second moment of the reference Gaussiaecwation:
2

Mo (t) ===

= 14
2 AT o, (14)

Mp is directly the square of the injected mass$ divided by an effective area occupied by
the plume2\/7_TATOJL. As M(t) is always larger thaNp(t), yis always positiveyis initially

and asymptotically very close to zero. It is howesgynificantly positive while the
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concentration distribution is far from the Gausspanofile. M(t), which we have introduced
here as a measure of global concentration varigbi§ a widely used measure, as its time
derivative, dissipation rate, determines the phlatstmonstrains of chemical reactivityld
Simoni et al. 2005;Le Borgne et a).2010]. The dissipation is also closely relatedhe
dilution index, which is another measure of mixitgtanidis, 1994;Rolle et al, 2009]. It

should be finally noticed thgtandMp fully characterize the mixing state given My
M=Mp (1+)). (15)

In HPM models, resistance to dispersive mixing,was can also cally; is enhanced by
heterogeneity and reduced by large diffusion régesaller Peclet numberji¢ Dreuzy et al.
2012]. ysharply increases at initial times to a maximunu®amax, at a timetymax close to the
advection time, and slowly decreases back to Ou(Ei@). The time range over whighis
significantly non zero can be characterizedriywhich is the ratio of the upper and lower
times at whichy is equal to a quarter of its maximal valpex. While the amplitude of
depends on the variability of the velocities andlonrate of advection to diffusion, the shape
of the functiony remains unchanged by tKefield heterogeneitydy?), the ratio of advection
to diffusion Pe), and the width of the initial conditionAl(o). The time rangey over whichy

is non-negligible also remains constant (FigureT2jerefore,tynax can be used for scaling

time, so thay can be written as:

t

ymax

) = Vi f [LJ (16)

where f is the characteristic scaling function (Figureirsert). A similar constant shape
behavior has been noted for viscous fingering itetogeneous velocity fieldslia et al,
2011a; b].

4 Conditions for effective formalisms of transport through HPM

We propose four conditions for any effective trasrsfiormulation to be considered as a valid
representation of transport through heterogenecedianin essence, an effective transport
equation should yield the same mean advectionadprg and mixing as the HPM and be
sufficiently flexible to represent real problems.aliation of these conditions can be done as

follows:

10
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(1) Mean advection simply requires mean water velocity (i.e., meamp# velocity for non-
reactive solutes) to equal=q/@ . This condition can be met by all published upsdal

transport equations, by imposing some simple caimstron their parameters. In MRMT, it is
sufficient to imposeg = p+> g =¢(1+ )

(2) Spreading is characterized by dispersivity, which measuhesrate of growth of plume
size (equation (10)). In cases where asymptosipatsion is reached, this condition implies
that dispersivity of the effective equation shotgédd to the asymptotic dispersivity of the
HPM. Otherwise, dispersion (or directly, spreadm&sasured by, ) can be compared for a
spatial scale comparable to the problem dimens&ég.,(size of the aquifer, or distance
covered by the plume).

In addition, the time required to reach the abowgpetsion value should also be honored by
the effective formulation to ensure that the rdtgrowth of the plume is reproduced. In our
case, where asymptotic dispersion is reached, weope to define this criterion in terms of

re, mean distance covered by the plume at the timg where dispersivity reaches half of

its asymptotic value normalized by the asymptoispersivityaa:

vt

fp = e (17)
aLA
wheret, ,, is implicitly defined by
a
a(taulz):f- (18)

ra can also be interpreted as the ratio of adveetne dispersive scales like in the definition

of the Peclet number.

(3) Mixing is required for properly reproducing fast reactiqgw reactions should be

properly reproduced if the resident time distribatis honored, which is assured if mean
advection and dispersion are reproduced). As désclsabove, mixing is essentially
dispersive and well characterized Bl (equation (14)) for late times. Therefore, assgmin
dispersion to be well reproduced, an effectivedpant formulation only needs to reproduce
the deviation from dispersive mixing, characteribgdy (equation (12)). In a first stage, the

comparison can be restricted to the amplitude efdéviationymax and the time range over

11
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which it extendsty. In a more advanced stage, the characteristicesbiggme )y function,f, can

be used for comparison.

To compare the timings of spreading and mixingde®ne the additional criterionst as the

raio of the characteristic spreading time ,, to the characteristic mixing timgnax

Mt :t_- (19)
aal2
rmt compares the timing of the development of thestasce to mixing and of spreading and
rates the lag between the timing of mixing and apirey.

(4) Flexibility. Most of the work on effective transport is of leadretical nature, but the
ultimate goal should be application to real proldenfihis implies that a valid transport
formulation should be able to accommodate diffetgpés of boundary conditions and flow
regimes (i.e., transient flow) and dimensions. Mosportantly, it should accommodate
characterization. Dispersion usually includes tffeces of heterogeneity and uncertainty.
Whereas the latter is reduced by aquifer charaetigon, the former is not. Specifically,
hydrologists use geology, hydraulics, geophysigdgrdchemistry and isotopes to figure out,
among other things, the patterns of spatial vartglmf hydraulic conductivity. The resulting
models display variability not only in the mean Hdddgout also on their correlation distance

and variance. An effective transport formulationwd be able to honor this variability.
5 Results and discussion

We consider well established that MRMT, and othen-lfocal in time formulations, can
reproduce mean advection and spreading, as distussge introduction. Mean advection in
the MRMT approach is equivalent to that of the Hpidvided that flux and total porosity are
equivalent. And the distribution of residence tinmesémmobile zones can be adapted so that
the asymptotic dispersivity of the MRMT model beualgto that of the HPM model in
equation (11). It is always possible as dispengiidtan increasing function of the residence

times. This imposes a condition on the temporajjeaofts,.. tn or equivalently on their mean

residence timer, ;). As trapping in the immobile zones is the mairpdisive mechanism,

the mean residence time is logically adapted tibi@e the asymptotic dispersivity. With the
total flow imposed to be set by the HPM, the chiamastic spatial scale is the typical plume

position at(r,,: ). As the characteristic spatial and temporal scalesnterrelated to ensure

12
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consistent asymptotic behaviors, comparison ofliesan be performed on dimensionless
terms and should ensure consistent preasymptgimes. In fact, MRMT are calibrated on
tracer tests and breakthrough information, but ties not ensure a good reproduction of
mixing [Luo and Cirpka 2011]. Therefore, we restrict our comparison igimg criteria and

sensitivity to initial conditions.

5.1 Comparison of mixing in HPM and MRMT

In Heterogeneous Porous Media (HPM), the tempaxnsion of the deviation from the
dispersive mixing regimey does not depend significantly on the permeablidgterogeneity,
as also expressed by the constancy of the shap@-wjure 2). We thus compare the shape of
y obtained for the HPM witlov?=9 (f function of equation (16)) to shapes jobbtained for
various MRMT models obtained under consistent iipacconditions (equations (6) and (7)).
For MRMT, extreme values have been investigategetdhe possible range of behaviors. For
slopesm, we adopted the range observed in nature as disgus section 2.1 witm varying
betweenm=1.5 (typical fracture/matrix case) amd=2.5. The Single Rate Mass Transfer
(SRMT) is also shown for comparison. The porosityor3 does not have an upper bound. In
fact, ideally, the mobile porosity could be zeroe \&dopted3=150 as a large upper value.
Larger upper values would not affect results anghincause numerical difficulties. The same
can be said fotn/t: for which we tookin/ti=1C° as the upper bound. The analysis presented
hereafter has been made for different combinatfopavamters within these bounds. As all

models lead to consistent conclusions, we onlygoriethe most characteristic results.

All MRMT models capture the sharp rise joat times smaller thaigmax (Figure 3). The sharp
rise comes from a strong initial divergence frone thquivalent Gaussian concentration
profile. Initial behavior is dominated by the cadt of the quickly progressing concentrations
in the mobile zones and trailing concentrationshi@ low flow or immobile zones. On one
hand, dispersion induces a sharp decreasMmfwhich is inversely proportional top
(equation (14)). On the other hand, trapping maisthigh concentrations in the immobile
zone and high values for the second moment of déheentration distributioM. Divergence

of M from Mp increases until it reaches its maximuntyaix.

At larger times, progressive release of solute nfrass the immobile zone and equilibration
with the concentration values in the mobile zoneflelecrease. The insert of Figure 3
highlights in a lin-lin graph the differences ottbecrease stage. The MRMT model that best

13
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matches the scaling functidns obtained fom=2.25. For power law slopes larger than 2,
the decrease dfis qualitatively similar to that of the single-eatnass transfer model. Faor
values closer to 2, the deviation is more sustamedlisplays the same decreasing trend. The
behavior changes significantly whembecomes smaller than 2, with a very slow decreage
coming directly from the effect of the slow draieagf the immobile zones having the
smallest rates (long exchange times). At least RIMM models withm lower than 2, trapping
displays a much longer memory effect in MRMT thardPM.

While similar to HPM for the extension of the noisggkrsive mixing regime, MRMT models
with slopesm larger than 2 converge to less anomalous Singte Rass Transfer. In terms

of mixing, this translates in small amplitudes jn(small ymax values). Form=2.25 and

AL,/ a , = 0075, we have computeghax for a large variety ofn/t; and S values, the only

two remaining parameters of the MRMT modghax first increases withn/t1 and S and
quickly saturates to a maximal value of 2.85 (Tablgmax varies between 0.57 and 2.85 by a
maximum factor of 5. In the HPM case, howevekyx is always larger than 3, reaches values
of 15 for a Peclet numbé&¥e of 100, scales like the square rooPafand is thus not limited in

amplitude.

MRMT models cannot match both the amplitude andithang of . For MRMT models with
meslopes larger than 2, mixing is far more dispexrsis MRMT than in HPM (smaller
deviation valuesy in the MRMT models). MRMT models witin-slopes smaller than 2
induce larger but much too sustainable deviatifssa result, MRMT models have a stronger
memory of trapping or display less non dispersiveimg, without excluding to display both
differences simultaneously. The difficulties of MRMnodels to capture mixing might be
linked to the existence of the structure of conmns in lamellas where stretching and
folding extends the concentration front and enhdheesventual mixing by diffusion (Figure
1) [de Anna et a).2014b;Le Borgne et aJ.2015].

Concerning the non-dispersive mixing shapes oftated functiorf, MRMT models display

a much broader range of shapes than HPM. The anashape property of HPM is not

recovered in MRMT. On the contrary, MRMT shapeseat@pstrongly on the distribution of

transfer rates. This is an advantage to match arwahge of cases issuing possibly different

functions. But it is a drawback to fit just one eass it restricts the MRMT models that can

match HPM simulations with broad rangesPefandoy? values.
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5.2 Influence of initial injection size

To qualify the memory effect in MRMT and HPM, weadyze their sensitivity to the initial
injection widthALo. Spreading as defined by the characteristic lodgial plume extension
(equations (8), (9) and (10)) does not depend enritial concentratioro (equation (6))oL

is initially of the order ofALo and quickly becomes larger. Spreading loses quiekly
memory of the initial conditions. We note that tlighe case because sampling effects do not
intervene as the transverse injection scale isnasduarge enough to ensure by itself ergodic
sampling. Like spreading, the second moment ofréfierence Gaussian concentrathp(t)
does not depend either on the initial concentrationonly on the injected mass divided by

the characteristic area occupied by the pludiedi) (equation (14)).

The concentration second momevift) (equation (13)) however depends critically on the
injection width through the relation between inggtimass and concentration (equation (6)).
At initial times, the concentration second momemprioportional to the injected concentration
value. At late times, the concentration second nminhas lost the memory of the initial
concentration and is only function of the injectedssno. As a result, we expect that the
concentration second moment and the deviation tsvéine dispersive mixing regime
depends on the injection conditions, here represeny the injection widtllLo. On the basis
of numerical simulations, we compare the evolutadny with ALo for HPM and MRMT

models.

Results of they function for both MRMT and HPM models are displdyan Figure 4a and
Figure 4b, respectively, for different injectioress. We have performed simulations for
comparable ranges dl o/aia values (0.005-0.1 for HPM and 0.02-0.4 for MRMWJe have
checked numerically that the results displayedther two specific displayed MRMT and
HPM cases display generic tendencies. In both nspdgéction width has a critical influence
ony (Figure 4). Smaller injection windows let the iaitconcentration increase and enhance
the deviation towards the dispersive mixing regiée use the maximum deviatighax to
characterize the overall influence dlo. In the MRMT and HPM models, maximum

deviationsymax have different scaling (Figure 4a and b, inserts):

Vi ~ (AL, )™ for MRMT

. 20
Vo ~ (AL, )% for HPM (20)
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For MRMT, ymax €volves like the initial concentration level (etjoas (6) and (7)). For HPM,

ymax has the same scaling for the initial conditiops,, ~1/\/AL, and for the diffusion

coefficient asy, ., ~+Pe [de Dreuzy et al.2012]. Doubling the injection width has a

comparable effect to doubling the diffusion coeéid. Initial dilution overdlLo, and dilution
induced by diffusive/dispersive processes reduee dherall deviation to the dispersive
mixing regimey in the same proportion. The reduction of concéiaman HPM comes from
the diffusive/dispersive processes while, in MRNtTcomes from the progressive release of
solutes with high concentrations closectatrapped in the immobile zone. Because of their
differing signatures, both processes cannot be ao@op and the dispersive/diffusive
processes of HPM cannot be modeled as trappinggelmechanisms.

6 Conclusion

We propose conditions to test anomalous transpanmdworks not only on spreading, but
also on mixing. We define a minimum set of 6 egaénbnstrains that they should respect in
order to retain the main transport, reactivity agalctive transport couplings. These constrains
involve the conservation of (1) the mean advect{@hdispersivity amplitude and (3) timing
generally imposed. Beyond these flow and spreasteatyics, (4) amplitude and (5) timing of
the deviation towards the dispersive mixing regsheuld be respected. The last condition
concerns (6) the respective timings for mixing asmlteading. Under ergodic injection
conditions, spreading is characterized by the stahdispersivity describing the evolution of
the plume size along the main flow direction. Mixiis characterized by the deviation from
the dispersive mixing regimedefined as the second moment of the concentrdiginbution

of a conservative tracer divided by the one of assen concentration pattern with the same
spread minus 1 (equation (12)). Zero initially asymptotically,y’traduces the macroscopic

effect on mixing of the concentration structurethw the solute plume.

We use these criteria to evaluate Multi-Rate Masan3fer models by comparison to
advective-diffusive transport simulations throughetétogeneous Porous Media (HPM)
represented by the classical isotropic 2D Gaussiarelated multi-Gaussian log-permeability
fields characterized by variances between 1 adioad range of Multi-Rate Mass Transfer
models (MRMT) are considered. We conclude that MRM®dels cannot match both the
amplitude and the timing of MRMT models can reproduce observed spreading ratel

some non-dispersive mixing. But they tend to indiacger and too sustained deviations from
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dispersive mixing. As a result, MRMT models displaylonger memory but less non
dispersive-mixing than HPM. We attribute this dyemce to the fact that MRMT represent
non-dispersive mixing through trapping mechanismisereas it is controlled by stretching
and folding in HPM. Divergent sensitivities to imit conditions confirm that dispersive-

diffusive induced mixing in HPM cannot be modelgdnobile/immobile models.

Our study does not preclude however the existeheffective transport equations consistent
with spreading and mixing of HPM. But we argue tha proposed criteria and existing
results of HPM should be used as guidelines tougpeeffective transport equations that

respect spreading, mixing, and eventually readtaesport.
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Tables

tn/t1=100 | (=100

ﬂ Jnax tn/ta Jnax

1 0.57| 1 1.47

10 | 1.96{ 10 | 2.72

100| 2.84| 100 | 2.84

300| 2.85| 694 | 2.74

Table 1: Values of the maximum deviation to thedrisive mixing regimgmax for MRMT

models with a power-law exponent of the rate distionm=2.25 andAL,/a,, = 0075.
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Figure 1: Concentration fields normalized by thaaximal valuec(x,t)/max(ck,t)) and their
related Gaussian profile concentratiamgx,t)/max(ck,t)) in the bar over them at the four
evolving times indicated on Figure 2. In this cade time at which the non-dispersive

mixing reaches its maximuiynaxis of the same order of the advection time.
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Figure 2. Time evolution of the deviation from déspive mixing {t) defined by equation
(12) in HPM for evolving log-K variancesgy?, under a small width injection window
(AL, /a,, = 0075), flux weighted injection conditions arRe=100 (adapted frorde Dreuzy
et al. [2012]). The similarity of function shapes is Highted in the insert by the scaling
functionf of equation (16) where the thick black line is #werage of the displayed functions.
Note that the time of maximum deviatidimax, is hardly affected bgv? and falls around the
characteristic advection timdv. The four dashed lines indicate the times disglage~igure

1.
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