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Abstract 1 

Prediction and modeling of localized flow processes in macropores is of crucial importance for 2 

sustaining both soil and water quality. However, currently there are no reliable means to predict 3 

preferential flow due to its inherently large spatial variability. The aim of this study was to 4 

investigate the predictive performance of previously developed empirical models for both 5 

water and air flow and to explore the potential applicability of X-ray Computed Tomography 6 

(CT) derived macropore network characteristics. For this purpose, 65 cylindrical soil columns 7 

(6 cm diameter and 3.5 cm height) were extracted from the topsoil (5 cm to 8.5 cm depth) in a 8 

15 m × 15 m grid from an agricultural field located in Silstrup, Denmark. All soil columns were 9 

scanned with an industrial X-Ray CT scanner (129 µm resolution) and later employed for 10 

measurement of saturated hydraulic conductivity, air permeability at -30 cm and -100 cm 11 

matric potential, and gas diffusivity at -30 cm and -100 cm matric potential. Distribution maps 12 

for saturated hydraulic conductivity, air permeability and gas diffusivity reflected no 13 

autocorrelation irrespective of soil texture and organic matter content. Existing empirical 14 

predictive models for saturated hydraulic conductivity and air permeability showed poor 15 

performance, as they were not able to realistically capture macropore flow. The tested empirical 16 

model for gas diffusivity predicted measurements at -100 cm matric potential reasonably well, 17 

but failed at -30 cm matric potential, particularly for soil columns with biopore-dominated 18 

flow. X-ray CT derived macroporosity matched the measured air-filled porosity at -30 cm 19 

matric potential well. Many of the CT derived macropore network characteristics were strongly 20 

interrelated. Most of the macropore network characteristics were also significantly correlated 21 

with saturated hydraulic conductivity, air permeability, and gas diffusivity. The predictive 22 

Ahuja et al. (1984) model for saturated hydraulic conductivity, air permeability, and gas 23 

diffusivity performed reasonably well when parameterized with novel, X-ray CT derived 24 

parameters such as effective percolating macroporosity for biopore-dominated flow and total 25 
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macroporosity for matrix-dominated flow. The obtained results further indicate that it is 1 

crucially important to discern between matrix-dominated and biopore-dominated flow for 2 

accurate prediction of macropore flow from macropore network characteristics.  3 

1. Introduction 4 

The importance of macropore flow for the partitioning of precipitation between runoff and 5 

infiltration, for plant water uptake and plant growth, for biogeochemical cycling rates, and for 6 

potential risks of ground water contamination is widely recognized (Iversen et al., 2011; de 7 

Jonge et al., 2004; Fox et al., 2004; Moustafa, 2000). Thus, over the last decade, major research 8 

efforts have been devoted to improve the understanding of macropore flow and associated 9 

governing parameters, and to develop predictive macropore flow models (Jarvis, 2007). 10 

Macropore flow and transport refers to the localized and commonly very rapid movement of 11 

water and solutes through the soil profile. Macropores resulting from biological activity (root 12 

channels, worm holes etc.), geological forces (subsurface erosion, shrinkage and swelling etc.), 13 

and agricultural management (e.g., plowing) serve as the main channels for this rapid and long-14 

distance flow and transport of water, air, and contaminants. Macropore flow is largely 15 

determined by soil structure and is generally a dominating process in loamy and clayey soils 16 

(Jarvis et al., 2009) where large inter-aggregate pores and biopores often act as pathways for 17 

rapid flow and transport. The transition from matrix to macropore flow (equilibrium to non-18 

equilibrium) depends on the pore size distribution and pore continuity, and the degree of soil 19 

saturation (Bouma, 1981). Macropore flow often occurs in pores with equivalent effective 20 

cylindrical diameters larger than 0.3 mm, which indicates that the matric potential needs to be 21 

close to zero and the water content close to saturation for these pores to be activated (Jarvis, 22 

2007).  23 

Soil and crop management practices strongly modify soil structure and thus the 24 

extent of macropore flow and transport. Wang et al. (2013) and Gonzalez-Sosa et al. (2010) 25 
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studied the impact of land use on the hydraulic properties of the topsoil of the Loess Plateau of 1 

China and for a suburban catchment in France, respectively. Both studies have reported greater 2 

saturated hydraulic conductivities for forested land, intermediate for permanent pasture, and 3 

lower for farmland soils. This is primarily due to the abundance of biota and less disturbance 4 

in forests and permanent pastures when compared to cultivated lands (Naveed et al., 2014a; 5 

Norgaard et al., 2013; Pérèsa et al., 2012). Application of animal manure and fertilizers can 6 

also influence macropore flow, first by altering soil structure and second by promoting the 7 

density of earthworms, particularly deep penetrating anecic worms (Naveed et al., 2014b). 8 

Climatic conditions (seasonal temperature and precipitation variations) might also affect soil 9 

structure and macropore flow through interactions with physical processes such as cyclic 10 

freezing/thawing and wetting/drying (Hu et al., 2012). Due to the complex interactions and the 11 

significant number of influencing factors, a large spatial variability of saturated hydraulic 12 

conductivity has been reported by several authors (Wang et al., 2013; Raczkowski et al., 2012; 13 

Iversen et al., 2011). Therefore, the predictive capabilities of empirical models/pedotransfer 14 

functions for saturated hydraulic conductivity are limited because they ignore the effects of key 15 

site factors and underestimate the significance of soil structure (Vereecken et al., 2010). 16 

Recently, pedotransfer functions for saturated hydraulic conductivity that account for soil 17 

structure have been developed, but they are rarely applied due to the complexity of input 18 

parameters and the still significant prediction inaccuracies (Jarvis et al., 2013; Iversen et al., 19 

2011; Lilly et al., 2008).  20 

Along with the prediction of macropore water flow (i.e. saturated hydraulic 21 

conductivity), prediction of macropore airflow (i.e. air permeability and diffusivity) is also of 22 

essence. Air permeability is a key parameter for the design of soil vapor extraction remediation 23 

methods. Air diffusivity is of importance because the availability of oxygen to plant roots via 24 

diffusion is a basic factor for plant productivity. Various empirical models have been proposed 25 
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in the past for the prediction of air permeability (Chamindu Deepagoda et al., 2011; Kawamoto 1 

et al., 2006) and air diffusivity (Chamindu Deepagoda et al., 2011; Moldrup et al., 2000). 2 

However, none of the above studies have evaluated their applicability after discerning between 3 

biopore- and matrix-dominated flow domains.  4 

Recent developments in soil imaging techniques not only allow visual observations 5 

but also quantification of pore network complexity. Application of X-ray CT provides 6 

emerging alternative means for estimating subsurface macropore flow and transport 7 

(Wildenschild and Sheppard, 2013). Over the last decade, numerous studies about the 8 

characterization of macropore structure (i.e. macroporosity, macropore size distribution, 9 

volume, surface area, tortuosity, etc.) were conducted with X-Ray CT for different land use 10 

and management systems (Katuwal et al., 2015; Larsbo et al., 2014; Hu et al., 2014; Naveed 11 

et al., 2013; Vogel et al., 2010; Luo et al., 2010). However, to date there are only a very few 12 

published studies on quantitatively relating macropore network characteristics to the 13 

observations of macropore flow. Katuwal et al. (2015) found that CT derived macroporosity 14 

for the limiting section of a soil column was strongly correlated with air permeability and 5% 15 

tracer arrival time. Larsbo et al. (2014) reported significant correlations between X-ray CT 16 

derived macropore network characteristics and flow and transport parameters. Paradelo et al. 17 

(2013) found that CT derived macroporosity was strongly correlated with saturated hydraulic 18 

conductivity, solute dispersivity, and contaminant breakthrough. Luo et al. (2010) reported that 19 

macroporosity, path number, hydraulic radius, and macropore angle were the most useful X-ray 20 

CT derived parameters for predicting macropore flow and transport under saturated conditions.  21 

In this study we first evaluate the predictive performance of existing pedotransfer 22 

functions/models for saturated hydraulic conductivity, air permeability, and gas diffusivity. 23 

While it has been previously demonstrated that water flow in macropores cannot be accurately 24 

predicted with empirical models from basic soil properties (Weynants et al., 2009; Vereecken 25 
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et al., 2010), there is only little published work related to gas diffusivity. Furthermore, existing 1 

pedotransfer functions/empirical models do not discern between matrix- and biopore-2 

dominated flow domains, which is of significance for understanding and accurate prediction of 3 

preferential flow as demonstrated in the results section. In the second part of this study we 4 

derive novel macropore network characteristics from X-ray CT observations for the prediction 5 

of saturated hydraulic conductivity, air permeability, and gas diffusivity, which demonstrated 6 

their utility for improving accuracy of gas and water flow predictions. The simplest form of the 7 

Kozeny-Carman equation proposed by Ahuja et al. (1984) is parameterized with novel CT 8 

derived parameters such as percolating macroporosity for biopore-dominated flow and total 9 

macroporosity for matrix-dominated flow, and improvement of prediction accuracy is 10 

discussed. 11 

2. Materials and Methods 12 

2.1  Study site and soil sampling 13 

The 1.69-hectare study site located in Silstrup in northwestern Denmark (56° 55′ 56′′ N, 14 

8°38′44′′ E) is composed of glacial till, a dominant geological formation covering about 43% 15 

of all farmland in Denmark (Geological Survey of Denmark and Greenland, 1999). The top 16 

meter of the soil is highly fractured and bioturbated, containing 100 to 1000 biopores per m2. 17 

The field has not been tilled for about 3 years prior to soil sampling. It has been plowed in 18 

December 2008 to 23-cm depth and harrowed twice to 5-cm depth in March 2009. Since then 19 

the soil was only disturbed when slurry was injected in 10-cm depth in April 2009 and in 5-cm 20 

depth in September 2009. A thorough overview of management practices at the study site 21 

between 2006 and 2010 is provided in Norgaard et al. (2013). 22 

Sixty-five undisturbed cylindrical soil cores (6-cm inner diameter and 3.5-cm 23 

height) were extracted from the topsoil (5 cm to 8.5 cm depth) in summer 2012. At the time of 24 

sampling the field was cultivated with red fescue (Festuca rubra L.). The soil columns were 25 
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sampled on a 15 m x 15 m grid with additional 5 sampling locations between grid points (Figure 1 

2). All soil columns were extracted by pushing a customized core sampler with aluminum 2 

sampling cylinders into the soil and removing the surrounding material step by step. Extracted 3 

soil columns were immediately covered with tight plastic lids, placed in plastic bags, and 4 

carefully transported to the laboratory to avoid smearing and compaction effects. The soil 5 

columns were stored in an environmentally controlled room at 2 °C until the start of the 6 

measurements. In addition, bulk soil samples were collected from each point at the same soil 7 

depth for texture and organic carbon analysis.  8 

2.2 X-ray Computed Tomography scanning and analysis 9 

An industrial X-Ray CT scanner (X-Tek HMX225) at the Helmholtz Center for Environmental 10 

Research in Halle in Germany was used to scan the intact soil columns at a voltage of 180 kV 11 

and a current of 400 µA. A copper filter was placed between the X-ray source and the soil 12 

columns to alleviate beam hardening. The shadow projections (radiographs) were 13 

reconstructed with a Feldkamp cone-beam algorithm (Feldkamp et al., 1984) to obtain 16-bit 14 

grayscale 3-D data comprised of (500×500×300) voxels at a resolution of 129 μm (Fig. 1a). 15 

For subsequent analysis, the 3-D grayscale volumes were cropped to remove the container wall 16 

and disturbed regions on the top and bottom of the sample, numerically corrected for intensity 17 

differences caused by beam hardening and other scanning artifacts with a sequential algorithm 18 

developed by Iassonov and Tuller (2010), and a 3-D median filter (Jassogne et al., 2007) with 19 

a radius of 6 voxels was applied to the grayscale volumes to remove noise (Fig. 1b). Though, 20 

median filtering is computationally more demanding than conventional smoothing filters, it is 21 

less sensitive to outlier values and thus preserve edges. A locally adaptive Bayesian Markov 22 

random field (MRF) algorithm (Iassonov et al., 2009; Kulkarni et al., 2012) that was seeded 23 

with adaptive K-means clustering (Chen et al., 1998) was used to segment the intensity-24 

corrected and filtered data to distinguish macropores from the soil matrix (Fig. 1c). The 25 
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homogeneity parameter  in the MRF model was set to 2. For details of the applied MRF 1 

segmentation algorithm, see Kulkarni et al. (2012) and Tuller et al. (2013).  2 

 The segmented CT-data for each soil column were further analyzed with the 3 

Image-J software package (Rasband, 2011) to obtain macroporosity, percolating 4 

macroporosity, effective percolating macroporosity, macropore specific surface area, 5 

macropore hydraulic radius, macropore mean diameter, macropore fractal dimension, 6 

macropore global connectivity, and macropore local connectivity (see flowchart depicted in 7 

Fig. 1). Three-dimensional pore visualization was conducted with the Image-J plugin 3D 8 

viewer. Based on 3D visual observations, soil columns containing percolating biopores (round 9 

shaped either formed by roots or earthworms) were separated and labeled as biopore-dominated 10 

flow columns; the remaining were labeled as matrix-dominated flow columns (Fig. 1d). The 11 

number of pore voxels was determined from the segmented data, and macroporosity (MP) was 12 

then calculated as the ratio of the number of pore voxels to the number of total sample voxels 13 

(Fig. 1d). The percolating macroporosity (PMP) was calculated based on only the pores that 14 

were connected from sample top to bottom by removing all isolated pores (Fig. 1e). All isolated 15 

pores were removed with the Image-J plugin “Find Connected Regions”. Effective percolating 16 

macroporosity (EPMP) was defined and calculated as the ratio of minimum cross-sectional 17 

area of percolating macropores (while moving voxel layer by voxel layer from the top to the 18 

bottom of the core) and the cross-sectional area of the soil column (Fig. 1f). Macropore specific 19 

surface (MPSSA) area was calculated as the ratio of surface area of macropores and the volume 20 

of the soil column (Fig. 1g). This was accomplished with the Image-J plugin “Analyze 21 

Particles”. Macropore hydraulic radius (MPHR) was defined as the ratio of macropore volume 22 

and macropore surface area (Fig. 1h) applying the Image-J plugin “Analyze Particles”. The 23 

macropore mean diameter (MPMD) was estimated with a local 3D thickness algorithm 24 

proposed by Dougherty and Kunzelmann (2007) and embedded in the Image-J plugin “Bone-25 
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J”. This algorithm defines the pore diameter as the diameter of the largest sphere that fits within 1 

the pore. The histogram of the thickness map was used for estimating macropore size 2 

distribution and macropore mean diameter (Fig. 1i). Macropore fractal dimension (MPFD) was 3 

calculated as a measure of the heterogeneity of the spatial distribution of macroporosity with 4 

the Image-J plugin “Bone-J” (Fig. 1j). Macropore global connectivity (MPGC) was defined 5 

and calculated as the ratio of percolating macroporosity to the total macroporosity of the soil 6 

column (Fig. 1k). The macropore local connectivity (MPLC) was estimated with the Image J 7 

plugin “Bone-J” (Fig. 1l). MPLC equals 1 if all pores are connected in one percolating cluster 8 

and 0 if porosity is fragmented into many clusters of similar size. X-Ray CT derived pore 9 

network characteristics for all scanned and analyzed core samples are provided in 10 

supplementary Table S1. 11 

Insert Figure 1 12 

2.3 Soil physical measurements 13 

Soil texture was determined from disturbed soil samples using a combination of wet sieving 14 

and the hydrometer method, after passing the sample through a 2-mm sieve. Soil organic 15 

carbon was determined with a LECO carbon analyzer (St. Joseph, MI, USA) coupled with an 16 

infrared CO2 detector. A multiplication factor of 1.72 was used to convert soil organic carbon 17 

to soil organic matter. The sand, silt, clay and organic matter contents for the 65 investigated 18 

samples are listed in supplementary Table S2. 19 

After X-ray CT scanning, air permeability and gas diffusivity at -30 cm and -100 20 

cm matric potentials, and saturated hydraulic conductivity (Ksat) were measured on the same 21 

columns. The soil columns were placed in a sand box and saturated from the bottom with tap 22 

water. After saturation, tension was successively applied to establish matric potentials of -30 23 

cm and -100 cm, respectively. Air permeability (Ka) was then measured with the steady state 24 
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method described in Iversen et al. (2001) both at -30 cm and -100 cm matric potentials. A 1 

pressure of 5 hPa was applied to assure laminar flow during the measurements. The Ka was 2 

calculated based on the Darcy equation considering the pressure difference across the soil 3 

cores: 4 

Q =  
Ka𝛥pas

ηa Ls
   (1) 5 

where Q (L3 T-1) is the volumetric flow rate, Ka (L
2) is air permeability, p (M L-1T-2) is the 6 

pressure difference across the column, η (M L-1 T-1) is dynamic viscosity of air, as (L
2) is the 7 

cross-sectional area and Ls (L) is the length of the column. Gas diffusivities (DP/D0) at -30 cm 8 

and -100 cm matric potentials were measured with the one-chamber method developed by 9 

Schjønning et al. (2013).  10 

After DP/D0 measurements, the soil columns were resaturated, and the saturated 11 

hydraulic conductivity (Ksat) was measured with the constant head method (Klute and Dirksen, 12 

1986). All measured flow parameters are provided in supplementary Table S3. 13 

 14 

2.4 Modelling 15 

Ahuja et al. (1984) developed a relationship (EPM, effective porosity model) between saturated 16 

hydraulic conductivity (Ksat) and effective porosity (ϕe) based on the generalized Kozeny-17 

Carman equation:  18 

Ksat or Ka or 
DP

D0
⁄ = Aϕe

B
   (3) 19 

where Ksat is saturated hydraulic conductivity, Ka is air permeability, DP/D0 is gas diffusivity, 20 

and A and B are empirical constants. Ahuja et al. (1984) defined ϕe as the total porosity minus 21 

the soil volumetric water content at field capacity assumed at a matric potential of -33 kPa. 22 

Based on a simple calculation applying the capillary rise equation, this means that ϕe is the 23 

porosity contributed by pores larger than about 9 μm in diameter. We first parameterized the 24 



11 

 

original Ahuja et al. (1984) model with ϕe equivalent to the air-filled porosity at -30 kPa. Then, 1 

X-ray CT derived macroporosity (MP) was used for ϕe for matrix-dominated flow, and X-ray 2 

CT derived effective percolating macroporosity (EPMP) was applied for ϕe for biopore-3 

dominated flow. Note that because of the 129 µm resolution of the CT scans, the CT derived 4 

parameters MP and EPMP represent significantly larger pores than originally suggested in 5 

Ahuja et al. (1984). This seems quite reasonable and interesting to test as macropore flow often 6 

occurs in pores with equivalent effective cylindrical diameters larger than 300 μm (Jarvis, 7 

2007). Rawls et al. (1998) reported that several researchers found the slope A to vary between 8 

1.59 and 3.98 and the intercept to vary between 440 cm d–1 and 34,000 cm d–1. 9 

2.5 Statistics 10 

Data collected for soil textural properties and macropore flow parameters were first subjected 11 

to classical statistical analysis to obtain descriptive statistics, including minimum, maximum, 12 

mean, median, standard deviation, skewness, and coefficient of variation (CV). The degree of 13 

spatial variability of soil textural properties and macropore flow parameters was determined 14 

with ordinary kriging. The ArcMap 10.1 software (Esri Inc., Redlands, CA, USA) was used to 15 

generate contour maps for each measured soil property. Spearman rank order correlation 16 

coefficients between macropore network characteristics and macropore flow parameters were 17 

calculated with the commercial SigmaPlot 11.0 software package (Systat Software, Inc., San 18 

Jose, CA, USA). Selected correlations were also graphically displayed and analyzed with 19 

linear, power, or exponential regression models. While the applicability of linear models was 20 

evaluated, power or exponential models yielded significantly better results in most cases. The 21 

models were only fitted if they were significant at p < 0.01.  22 

3. Results and Discussion 23 

3.1. Spatial variability of soil texture, organic matter, and macropore flow parameters 24 
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The soil of the study site was classified as sandy loam (USDA-NRCS Web Soil Survey, 2010) 1 

with clay contents ranging from 14 % to 19 %, and organic matter contents varying from 2.9 % 2 

to 3.8 %. Descriptive statistics for all soil textural properties are depicted in Table 1. Clay and 3 

sand contents were positively skewed, whereas silt and organic matter contents were negatively 4 

skewed. All soil textural properties were slightly variable across the field with coefficients of 5 

variation (CV) below 10 %. It has been previously reported that the CV for soil textural 6 

properties generally depends on the extent of the study area. For example, Sharma et al. (2011) 7 

reported a CV for soil textural properties within the range of 20 % to 30 % for a 40 ha 8 

agricultural field in New Mexico, while Wang et al. (2013) reported a CV within the range of 9 

19 % to 156 % across the Loess Plateau of China (620 × 103 km2). Kriged maps indicated that 10 

soils with high clay contents (Fig. 2a) were on the north side of the field, whereas soils with 11 

high organic matter contents occupied the south side (Fig. 2d). Thus, clay and organic matter 12 

gradients run in opposite directions at the study site. Soils with high silt contents (Fig. 2b) were 13 

on the western part of the field, whereas soils with high sand contents were on the eastern part 14 

(Fig. 2c). Relevant information about the semivariograms for each interpolated map is provided 15 

in Table 2.  16 

Insert Figure 2 17 

 Descriptive statistics for saturated hydraulic conductivity (Ksat), air permeability 18 

(Ka), and gas diffusivity (DP/D0) at -30 cm and -100 cm matric potentials are provided in Table 19 

1. Large positive skewness and quite different mean and median values were observed for all 20 

five macropore flow parameters. The Ksat, Ka, and DP/D0 at -30 cm and -100 cm matric 21 

potentials showed the largest variations across the study site with a CV ranging from 92 % to 22 

218 %. High CV values were observed due to the presence of biopores in some of the soil 23 

columns, while not in others. Renderings of the samples marked as I, II, III, and IV in Fig. 2 24 

are depicted in Fig. 3. Samples I and II are matrix-flow dominated and samples III and IV are 25 
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biopore-flow dominated. Irrespective of the extent of the study area, large variations in Ksat 1 

were also reported in other studies (e.g., Wang et al., 2013; Sharma et al., 2011; and Iqbal et 2 

al., 2005). Kriged maps for Ksat, Ka, and DP/D0 (Figs. 2e-g) look quite similar with some areas 3 

randomly exhibiting a high level of macropore flow while matrix flow dominated in other 4 

regions irrespective of soil texture and organic matter content.  5 

Insert Figure 3 6 

Insert Table 1 7 

Insert Table 2 8 

3.2. Predictive performance of empirical models 9 

For many hydrological applications, saturated hydraulic conductivity (Ksat) is estimated from 10 

more readily available proxy variables such as texture and bulk density. Various empirical 11 

models/pedotransfer functions (e.g. Iversen et al., 2011; Jarvis et al., 2009; Schaap et al., 2001; 12 

Wösten et al., 1999; Revil and Cathles, 1999) have been previously proposed for predicting 13 

saturated hydraulic conductivity. We have observed poor predictive performance of empirical 14 

Ksat models such as proposed by Revil and Cathles (1999) and Schaap et al. (2001) (Fig. 4) 15 

and for models proposed by Wösten et al. (1999), Vereecken et al. (1989), and Cosby et al. 16 

(1984) (not shown). While the measured saturated hydraulic conductivities span over five 17 

orders of magnitude due to the presence of a wide range of macro- and biopores in the core 18 

samples, model predictions yielded a very narrow Ksat range (Fig. 4). The primary reason for 19 

the failure of existing empirical models/pedotransfer functions is that they only consider soil 20 

texture and bulk density, and thus are not able to realistically capture macropore flow, 21 

particularly for highly structured and bioturbated soils. In general, empirical models over-22 

predicted Ksat in case of matrix flow (empty symbols), while they under-predicted Ksat for soil 23 

columns with biopore flow (filled symbols). Because results were obtained for samples of 24 
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limited size from the A-horizon, it should be noted that for larger scales the structural 1 

characteristics and associated flow parameters, especially the parameters related to pore 2 

connectivity, might change.    3 

Insert Figure 4 4 

Over the last two decades, efforts have also been devoted to the development of 5 

empirical models for the prediction of air permeability (Ka) (Moldrup et al., 1998; Kawamoto 6 

et al., 2006; Chamindu Deepagoda et al., 2011). We have tested the predictive performance of 7 

the recently developed density-corrected Ka model (Chamindu Deepagoda et al., 2011) as 8 

shown in Figures 5a and 5b. The density-corrected Ka model performed reasonably well for 9 

soils with low Ka values (some of the columns with matrix-dominated flow), but completely 10 

failed for soils with greater Ka values, especially in the presence of continuous structural cracks 11 

or biopores. Starting with Buckingham (1904) a more rigorous effort has been made in the 12 

previous century to develop empirical models for the prediction of gas diffusivity (Chamindu 13 

Deepagoda et al., 2011). The tested WLR-Marshall model (Moldrup et al., 2000) predicted gas 14 

diffusivity reasonably well for soil samples associated with matrix flow and underestimated 15 

gas diffusivity for soil samples with biopore flow at -30 cm matric potential (Fig. 5c). This 16 

indicates that preferential diffusive flow occurs at greater matric potentials close to saturation 17 

even though gas diffusivity is a concentration-driven gas transport parameter. However, at -18 

100 cm matric potential, the WLR-Marshall model (Moldrup et al., 2000) predicted gas 19 

diffusivity well for all soil samples irrespective of matrix or biopore flow (Fig. 5d).  20 

Insert Figure 5 21 

 22 

 23 



15 

 

3.3. Correlations between macropore flow parameters and macropore network 1 

characteristics 2 

The CT-derived macroporosity and the physically measured air-filled porosity at -30 cm matric 3 

potential are in good agreement as shown in Fig. 6. At -30 cm matric potential, all pores with 4 

diameters larger than 100 µm should have drained according to the capillary-rise equation. This 5 

indicates that the physically measured air-filled porosity at -30 cm matric potential (pore 6 

diameter > 100 µm) should be greater than the X-ray CT derived macroporosity (resolution = 7 

129 µm). However, this is only true when assuming a parallel bundle of capillary tubes, which 8 

is not a realistic assumption for natural soils. Due to the ink-bottle effect a considerable volume 9 

of pores with diameters > 100 µm are expected to be water filled after drainage at a matric 10 

potential of -30 cm. Hence, no perfect match between the CT-measured morphological pore 11 

size and the hydraulic pore size estimated with the capillary-rise equation should be expected 12 

(Vogel, 2000). The observed agreement between the two measures is reasonable and confirms 13 

the applicability of the applied image segmentation method (Fig. 6). However, it must be noted 14 

that different image segmentation methods can result in quite different macroporosity values if 15 

the CT image quality is bad, i.e. there is a lot of noise and partial volume effect as shown in 16 

Naveed (2014). 17 

Insert Figure 6 18 

Spearman rank order correlation analysis for macropore flow parameters and 19 

macropore network characteristics was performed for all soil columns (Fig. 7a), for soil 20 

columns with biopore(s) connected from the top to the bottom (Fig. 7b), and for soil columns 21 

with inter-aggregate macropores or disconnected biopores (Fig. 7c). Many of the CT-derived 22 

macropore network characteristics were strongly correlated (Fig. 7). This is because large 23 

macroporosity is associated with large macropore surface area and better connectivity of 24 

macropores. This is in agreement with other recent studies (e.g., Katuwal et al., 2015 and 25 
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Larsbo et al., 2014). The macropore mean diameter and hydraulic radius were however poorly 1 

correlated with other macropore network characteristics. Significant spearman rank order 2 

correlations were also observed between macropore flow parameters and most of the CT-3 

derived macropore network characteristics (Fig. 7). X-ray CT derived macroporosity was 4 

strongly correlated with macropore flow parameters for all three categories of soil samples 5 

(Figs. 7a, 7b, and 7c). Very strong correlations were observed between effective percolating 6 

macroporosity (EPMP) and macropore flow parameters for the soil columns with biopores 7 

connected from the top to the bottom (Fig. 7b). Macropore hydraulic radius and macropore 8 

mean diameter were significantly correlated with macropore flow parameters for the soil 9 

columns associated with biopore-dominated flow (Fig. 7b), whereas poorly correlated for soil 10 

columns associated with matrix-dominated flow (Fig. 7c). These findings are in agreement with 11 

Elliot et al. (2010) and Quinton et al. (2008). Both macropore global and local connectivity 12 

were poorly correlated with macropore flow parameters for the soil columns associated with 13 

biopore-dominated flow (Fig. 7b), whereas significantly correlated for the soil columns 14 

associated with matrix-dominated flow (Fig. 7c). This makes sense as biopore flow is mainly 15 

governed by the largest biopore present in the soil column, whereas matrix flow is mainly 16 

controlled by the pore size distribution and connectivity of pores.  17 

Insert Figure 7 18 

Selected correlations were graphically displayed and analyzed with linear, power, and 19 

exponential regression models. The later were superior to linear models in most cases as shown 20 

in Figure 8. The saturated hydraulic conductivity (Ksat) was plotted as a function of CT-derived 21 

macroporosity (8a). Two distinct branches were observed for lower macroporosity values, 22 

which approach towards a single branch with increasing CT derived macroporosity. The upper 23 

branch with greater conductivities comprises core samples with one or more biopores 24 
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connected from top to bottom that mainly govern fluid flow (filled symbols). Samples III and 1 

IV marked in Figure 8a and shown in Figure 3 are members of this branch. The lower branch 2 

consists of core samples with fluid mainly flowing through inter-aggregate and textural pores 3 

(empty symbols). Samples I and II marked in Figure 8a and shown in Figure 3 are members of 4 

this branch. Distinct significant power regressions were observed between Ksat and 5 

macroporosity for these two categories of the soil columns (Fig. 8a). This suggests that biopore-6 

dominated and matrix-dominated flow columns should be discerned as an initial step prior to 7 

studying the relationships between macropore flow and CT-derived macroporosity. Both 8 

Paradelo et al. (2013) and Luo et al. (2010) found similar relationships between saturated 9 

hydraulic conductivity and CT derived macroporosity with R2 ranging from 0.50 to 0.60. A 10 

stronger power regression was observed when Ksat was plotted as a function of the effective 11 

percolating macroporosity (R2 increased from 0.43 to 0.76), for the soil columns associated 12 

with biopore-dominated flow (Fig. 8b, filled symbols), but this is not the case for the soil 13 

columns with matrix-dominated flow (Fig. 8b, empty symbols). Significant power regressions 14 

were observed between Ksat and macropore mean diameter (Fig. 8c). Weak, but significant 15 

power regression was observed between Ksat and macropore local connectivity for only those 16 

soil columns associated with matrix-dominated flow as shown in Figure 8d. No significant 17 

regression was observed between Ksat and macropore local connectivity for the soil samples 18 

associated with biopore-dominated flow (Fig. 8d, filled symbols). A potential explanation for 19 

this observation is that the Euler number that is the basis for macropore local connectivity 20 

calculations does not account for continuity of the pores from top to bottom.  21 

Air permeability at -30 cm matric potential, Ka (-30), was plotted as a function of 22 

macroporosity as shown in Figure 8e. Distinct significant power regressions were observed for 23 

the two categories of soil columns, i.e. columns with biopore-dominated flow and with matrix-24 

dominated flow (Fig. 8e). Similar to Ksat, the power regression was significantly improved (R2 25 
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increased from 0.49 to 0.80) when Ka (-30) was plotted as a function of effective percolating 1 

macroporosity instead of total macroporosity for the soil columns associated with biopore-2 

dominated flow (Fig. 8f, filled symbols). A significant power regression was observed between 3 

Ka (-30) and macropore mean diameter for the soil columns with biopore-dominated flow while 4 

no significant regression was observed between Ka (-30) and macropore mean diameter for the 5 

soil columns with matrix-dominated flow (Fig. 8g). In contrary, significant power regressions 6 

were observed between Ka (-30) and macropore local connectivity for soil columns associated 7 

with matrix-dominated flow while no significant regression was observed for soil samples 8 

associated with biopore-dominated flow (Fig. 8h). Similar power regressions were also 9 

observed for Ka (-100) as a function of macroporosity, effective percolating macroporosity, 10 

macropore mean diameter, and macropore local connectivity as shown in Figures 8i, 8j, 8k, 11 

and 8l, respectively.  12 

Figures 8m and 8n showed significant power regressions when gas diffusivity at -30 cm 13 

matric potential, DP/D0 (-30), was plotted against macroporosity and effective percolating 14 

macroporosity, respectively. Distinct significant power regressions observed for soil columns 15 

associated with biopore-dominated flow and matrix-dominated flow reflect that preferential 16 

diffusive flow occurred at -30 cm matric potential. However, at -100 cm matric potential, a 17 

single regression significantly described both types of data associated with biopore flow and 18 

matrix flow as shown in Figures 8q and 8r. This indicates that no preferential diffusive flow 19 

occurred at and below -100 cm matric potentials. Both DP/D0 (-30) and DP/D0 (-100) showed 20 

insignificant regressions when plotted as a function of macropore mean diameter for both 21 

categories of soil samples (Figs. 8o and 8s). Significant power regressions were observed when 22 

DP/D0 (-30) and DP/D0 (-100) were plotted as a function of macropore local connectivity for 23 

both sets of soil columns associated with matrix flow and biopore flow (Figs 8p and 8t). This 24 
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is expected as DP/D0 is a concentration-driven gas transport parameter mainly controlled by 1 

total air-filled pore space and its connectivity, and not by the pore size (Moldrup et al., 2000). 2 

Insert Figure 8 3 

3.4. Modeling saturated hydraulic conductivity, air permeability and diffusivity 4 

Saturated hydraulic conductivity, air permeability at -30 cm and -100 cm matric potentials, and 5 

gas diffusivity at -30 cm and -100 cm matric potentials were modelled with the simplified form 6 

of the Kozeny-Carman equation presented in Ahuja et al. (1984). First, we have tested the 7 

predictive performance of the original Ahuja et al. (1984) model with air-filled porosity at -30 8 

kPa as the effective porosity (Fig. 9, red empty symbols). Then, we have modified the original 9 

equation with novel CT derived input parameters. The effective porosity in the original model 10 

was replaced with the CT derived total macroporosity (MP) in case of matrix-dominated flow 11 

(Fig. 9, black empty symbols), and with the effective percolating macroporosity (EPMP) in 12 

case of biopore-dominated flow (Fig. 9, black filled symbols). The empirical fitting parameters 13 

(A and B) for saturated hydraulic conductivity, air permeability at -30 cm and -100 cm matric 14 

potentials, and gas diffusivity at -30 cm and -100 cm matric potentials are provided in Table 3. 15 

The 1:1 plots of measured and predicted saturated hydraulic conductivity, air permeability, and 16 

gas diffusivity are shown in Figure 9. From Figure 9 it is obvious that predictions with the 17 

Ahuja et al. (1984) model with novel input data from X-ray CT analysis are very reasonable 18 

and yielded better results than the conventionally parameterized Ahuja et al. (1984) model. 19 

This indicates that X-ray CT derived macropore characteristics (MP and EPMP) at 129-μm 20 

resolution are quite useful for predicting macropore flow. However, discerning between 21 

biopore- and matrix-dominated flows are prerequisite. The predictive capability of the 22 

proposed modelling framework requires further independent validation for different soil types 23 
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to confirm the values/ranges for empirical constants A and B for saturated hydraulic 1 

conductivity, air permeability, and gas diffusivity.  2 

Insert Figure 9 3 

Insert Table 3 4 

4. Conclusions and Perspective 5 

1. While soil textural properties exhibited small spatial variability across the study site with a 6 

CV < 10%, the macropore flow parameters saturated hydraulic conductivity, air 7 

permeability, and gas diffusivity, showed large spatial variability across the field with a 8 

CV > 100%. 9 

2. Predictive performance of existing empirical models/pedotransfer functions for saturated 10 

hydraulic conductivity and air permeability at -30 cm and -100 cm matric potentials was 11 

unsatisfactory. For saturated hydraulic conductivity, existing empirical models over 12 

predicted for cases with matrix-dominated flow and under predicted for cases with biopore-13 

dominated flow. With regard to air permeability, empirical models predicted matrix-14 

dominated flow reasonably well, whereas significant under predictions were observed for 15 

cases with biopore-dominated flow. The tested empirical model for the prediction of gas 16 

diffusivity performed well at -100 cm matric potential, while it failed at -30 cm matric 17 

potential, particularly for the soil columns that contained biopores that were connected from 18 

the sample top to the sample bottom (i.e. biopore flow dominated samples). 19 

3. Significant Spearman's Rank correlations were observed between CT-derived macropore 20 

network characteristics and macropore flow parameters. These correlations were further 21 

improved when the soil columns were separated into matrix-dominated and biopore-22 

dominated flow columns. The predictive performance of the Ahuja et al. (1984) model with 23 

novel input parameters, namely X-ray CT derived effective percolating macroporosity 24 
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(EPMP) for biopore-dominated flow and total macroporosity (MP) for matrix-dominated 1 

flow, was significantly improved. However, further studies for different soil textures are 2 

required to confirm the values/ranges of the empirical Ahuja et al. (1984) A and B model 3 

parameters for accurate predictions of saturated hydraulic conductivity, air permeability, 4 

and gas diffusivity. 5 

The rapid development of advanced CT-image segmentation and analysis tools in conjunction 6 

with computational fluid dynamics provide promising future means to simulate the dynamics 7 

of flow and transport directly with CT derived macropore networks as boundaries. One method 8 

particularly suitable for simulating macropore flow and transport based on X-ray CT data is 9 

the lattice Boltzmann method (LBM). Most of the studies to date that applied the LBM for 10 

simulating flow and transport based on CT-data were for granular porous media (glass 11 

beads/sand) and fractured rocks, and not for natural field soil samples. The strong correlations 12 

between macropore flow parameters and X-ray CT derived macropore network characteristics 13 

observed in this study suggest that lattice Boltzmann flow and transport simulations based on 14 

X-ray CT images is a promising avenue for future research.  15 

 16 
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Table 1: Descriptive statistics for selected soil physical properties (no. of samples = 65) 1 

Variable Minimum Maximum Mean Median 
Standard 

deviation 
Skewness 

CV 

% 

Clay (g 100g-1) 14.18 18.93 15.82 15.54 1.36 0.65 9 

Silt (g 100g-1) 23.30 33.32 30.12 30.10 1.66 -1.21 6 

Sand (g 100g-1) 44.89 59.00 50.71 50.72 2.14 0.32 4 

Organic matter (g 100g-1) 2.90 3.75 3.35 3.38 0.20 -0.42 6 

Saturated hydraulic conductivity (cm hr-1) 0.02 418.2 40.15 1.38 89.48 2.84 218 

Air permeability at -30 cm, Ka-30, (µm2) 0.03 109.19 10.87 3.21 22.33 3.03 205 

Air permeability at -100 cm, Ka-100, (µm2) 0.19 151.10 14.72 5.42 27.13 3.26 184 

Gas diffusivity at -30 cm, DP/D0-30  1.0 × 10-4 1.8 × 10-2 2.6 × 10-3 1.7 × 10-3 3.0 × 10-3 2.74 123 

Gas diffusivity at -100 cm, DP/D0-100 4.0 × 10-4 2.5 × 10-2 5.2 × 10-3 4.0 × 10-3 5.0 × 10-3 2.31 92 
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Table 2: Partial sill, nugget, range, kriging interpolation model, and root mean square error 1 

(RMSE) for semivariograms for each interpolated map. All interpolations were 2 

performed with ESRI ArcMap 10.1. 3 

Variable 
Partial 

Sill 
Nugget Range (m) Model RMSE 

Clay (g 100g-1) 3.1 × 10-4 3.6 × 10-5 179 Gaussian 7.0 × 10-3 

Silt (g 100g-1) 1.6 × 10-4 2.2 × 10-4 200 Gaussian 1.5 × 10-2 

Sand (g 100g-1) 2.9 × 10-4 1.8 × 10-4 61 Spherical 1.7 × 10-2 

Organic matter (g 100g-1) 3.8 × 10-6 6.8 × 10-7 89 Spherical 1.2 × 10-3 

Saturated hydraulic conductivity, Ksat (cm hr-1) 6080 3827 24 Spherical 97.23 

Air permeability at -30 cm, Ka-30, (µm2) 80 459 24 Circular 23.45 

Air permeability at -100 cm, Ka-100, (µm2) 0 753 0 Spherical 27.54 

Gas diffusivity at -30 cm, DP/D0-30 2.7 × 10-6 1.0 × 10-5 24 Spherical 3.5 × 10-3 

Gas diffusivity at -100 cm, DP/D0-100 6.3 × 10-6 2.1 × 10-5 30 Circular 5.3 × 10-3 
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Table 3:  Empirical constants for the Ahuja (1984) model with air-filled porosity at -30 kPa, 1 

X-ray CT derived effective percolating macroporosity (EPMP), and total 2 

macroporosity (MP) as effective porosity ϕe, respectively. 3 

Variable A B 

ϕe = air-filled porosity at -30kPa in the Ahuja (1984) model 

Saturated hydraulic conductivity, Ksat (cm hr-1) 5000 3.2 

Air permeability at -30 cm, Ka-30, (µm2) 5000 3.4 

Air permeability at -100 cm, Ka-100, (µm2) 5000 3.2 

Gas diffusivity at -30 cm, DP/D0-30 0.27 2.3 

Gas diffusivity at -100 cm, DP/D0-100 0.27 2.0 

ϕe = effective percolating macroporosity (EPMP) in the Ahuja (1984) model 

for biopore-dominated flow 

Saturated hydraulic conductivity, Ksat (cm hr-1) 5000 1.15 

Air permeability at -30 cm, Ka-30, (µm2) 5000 1.5 

Air permeability at -100 cm, Ka-100, (µm2) 5000 1.4 

Gas diffusivity at -30 cm, DP/D0-30 0.27 1.12 

Gas diffusivity at -100 cm, DP/D0-100 0.27 0.98 

ϕe = total macroporosity (MP) in the Ahuja (1984) model 

for matrix-dominated flow 

Saturated hydraulic conductivity, Ksat (cm hr-1) 5000 3.2 

Air permeability at -30 cm, Ka-30, (µm2) 5000 3.0 

Air permeability at -100 cm, Ka-100, (µm2) 5000 2.7 

Gas diffusivity at -30 cm, DP/D0-30 0.27 1.90 

Gas diffusivity at -100 cm, DP/D0-100 0.27 1.55 
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Figures Captions: 1 

Figure 1: Flowchart illustrating all performed CT-data enhancement, segmentation, and 2 

analysis steps. 3 

Figure 2:  Contour maps depicting the spatial distribution of soil textural properties and 4 

macropore flow parameters; (a) clay (< 2 µm), (b) silt (2 µm -50 µm), (c) sand 5 

(50 µm -2000 µm), (d) organic matter content, (e) saturated hydraulic 6 

conductivity (cm hr-1), (f) air permeability (µm2) at -100 cm matric potential, and 7 

(g) gas diffusivity at -100 cm matric potential. Visualizations of samples marked 8 

as I, II, III, and IV, are depicted in Figure 3.  9 

Figure 3:  Three-dimensional visualizations of sample soil columns and associated 10 

measured macropore flow parameters. Ksat is saturated hydraulic conductivity, 11 

and Ka-100 and DP/D0-100 are air permeability and gas diffusivity at -100 cm 12 

matric potential, respectively. 13 

Figure 4:  Predictive performance of empirical saturated hydraulic conductivity (Ksat) 14 

models. Filled symbols represent samples with biopore-dominated flow and 15 

empty symbols represent samples with matrix-dominated flow. Visualizations of 16 

samples marked as I, II, III, and IV, are depicted in Figure 3.  17 

Figure 5:  Predictive performance of empirical models for air permeability (Ka) and gas 18 

diffusivity (DP/D0) at -30 cm and -100 cm matric potentials. (a, b) Chamindu 19 

Deepagoda et al. (2011) model; (c, d) WLR-Marshall model (Moldrup et al., 20 

2000). Filled symbols represent samples with biopore-dominated flow and empty 21 

symbols represent samples with matrix-dominated flow. Visualizations of 22 

samples marked as I, II, III, and IV, are depicted in Figure 3. 23 
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Figure 6:  CT-derived macroporosity plotted as a function of physically measured air-filled 1 

porosity at -30 cm matric potential. 2 

Figure 7:  Spearman rank order correlation analysis for (a) all samples (n = 65), (b) samples 3 

with biopore flow (n = 16), and (c) samples with matrix flow (n = 49); stars 4 

indicate significant correlations at p value < 0.01. MP is macroporosity, PMP is 5 

percolating macroporosity, EPMP is effective percolating macroporosity, 6 

MPSSA is macropore specific surface area, MPHR is macropore hydraulic radius, 7 

MPMD is macropore mean diameter, MPFD is macropore fractal dimension, 8 

MPGC is macropore global connectivity, MPLC is macropore local connectivity, 9 

Ksat is saturated hydraulic conductivity (cm hr-1), Ka-30 is air permeability (μm2) 10 

at -30 cm matric potential, Ka-100 is air permeability (μm2) at -100 cm matric 11 

potential, DP/D0-30 is gas diffusivity at -30 cm matric potential, and DP/D0-100 is 12 

gas diffusivity at -100 cm matric potential. Strong correlation (r > 0.70), moderate 13 

correlation (r = 0.5 - 0.7), and weak correlation (r < 0.5).  14 

Figure 8:  Saturated hydraulic conductivity (Ksat), air permeability at -30 cm matric potential 15 

(Ka-30), air permeability at -100 cm matric potential (Ka-100), gas diffusivity at -16 

30 cm matric potential (DP/D0-30), and gas diffusivity at -100 cm matric potential 17 

(DP/D0-100) were plotted as a function of selected CT-derived macropore network 18 

characteristics; filled symbols represent samples with biopore-dominated flow 19 

and empty symbols represent samples with matrix-dominated flow. Fitting linear 20 

regression models has been attempted; a power model was always superior where 21 

a significant correlation was present. Two separate regressions were fitted for 22 

samples with biopore flow and matrix flow if they were significantly different. 23 

Plots g, k, l, and p only show one curve because the other was not significant, 24 
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while plots q, r, and t have only one model because the two models did not differ 1 

significantly from each other. 2 

Figure 9:  Predictive performance of the Ahuja et al. (1984) model parameterized with air-3 

filled porosity at -30 kPa (red empty symbols), X-ray CT derived effective 4 

percolating macroporosity (EPMP) (black filled symbols), and total 5 

macroporosity (MP) (black empty symbols), respectively. Predicted (a) saturated 6 

hydraulic conductivity, (b) air permeability at -30 cm matric potential, (c) air 7 

permeability at -100 cm matric potential, (d) gas diffusivity at -30 cm matric 8 

potential, and (e) gas diffusivity at -100 cm matric potential. 9 
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