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Abstract 1 

Prediction and modeling of localized flow processes in macropores is of crucial importance 2 

for sustaining both soil and water quality. However, currently there are no reliable means to 3 

predict preferential flow due to its inherently large spatial variability. The aim of this study 4 

was to investigate the predictive performance of previously developed empirical models for 5 

both water and air flow and to explore the potential applicability of X-ray Computed 6 

Tomography (CT) derived macropore network characteristics. For this purpose, 65 7 

cylindrical soil columns (6 cm diameter and 3.5 cm height) were extracted from the topsoil (5 8 

cm to 8.5 cm depth) in a 15 m × 15 m grid from an agricultural field located in Silstrup, 9 

Denmark. All soil columns were scanned with an industrial X-Ray CT scanner (129 µm 10 

resolution) and later employed for measurements of saturated permeability, air permeability 11 

at -30 cm and -100 cm matric potentials, and gas diffusivity at -30 cm and -100 cm matric 12 

potentials. Distribution maps for both permeabilities and gas diffusivities reflected no 13 

autocorrelation irrespective of the soil texture and organic matter contents. Existing empirical 14 

predictive models for permeabilities showed poor performance, as they were not able to 15 

realistically capture macropore flow. The tested empirical model for gas diffusivity predicted 16 

measurements at -100 cm matric potential reasonably well, but failed at -30 cm matric 17 

potential, particularly for soil columns with biopore-dominated flow. X-ray CT derived 18 

macroporosity matched the measured air-filled porosity at -30 cm matric potential well. 19 

Many of the CT derived macropore network characteristics were strongly interrelated. Most 20 

of the macropore network characteristics were also significantly correlated with saturated 21 

permeability, air permeability, and gas diffusivity. The predictive Ahuja et al. (1984) model 22 

for saturated permeability, air permeability, and gas diffusivity performed reasonably well 23 

when parameterized with novel, X-ray CT derived parameters such as effective percolating 24 

macroporosity for biopore-dominated flow and total macroporosity for matrix-dominated 25 
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flow. The obtained results further indicate that it is crucially important to discern between 1 

matrix-dominated and biopore-dominated flow for accurate prediction of macropore flow 2 

from macropore network characteristics.  3 
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1. Introduction 1 

The importance of macropore flow for the partitioning of precipitation between runoff and 2 

infiltration, for plant water uptake and plant growth, for biogeochemical cycling rates, and for 3 

potential risks of ground water contamination is widely recognized (Iversen et al., 2011; de 4 

Jonge et al., 2004; Fox et al., 2004; Moustafa, 2000). Thus, over the last decade, major 5 

research efforts have been devoted to improve the understanding of macropore flow and 6 

associated governing parameters, and to develop predictive macropore flow models (Jarvis, 7 

2007). Macropore flow and transport refers to the localized and commonly very rapid 8 

movement of water and solutes through the soil profile. Macropores resulting from biological 9 

activity (root channels, worm holes etc.), geological forces (subsurface erosion, shrinkage 10 

and swelling etc.), and agricultural management (e.g., plowing) serve as the main channels 11 

for this rapid and long-distance flow and transport of water, air, and contaminants. Macropore 12 

flow is largely determined by soil structure and is generally a dominating process in loamy 13 

and clayey soils (Jarvis et al., 2009) where large inter-aggregate pores and biopores often act 14 

as pathways for rapid flow and transport. The transition from matrix to macropore flow 15 

(equilibrium to non-equilibrium) depends on the pore size distribution and pore continuity, 16 

and the degree of soil saturation (Bouma, 1981). Macropore flow often occurs in pores with 17 

equivalent effective cylindrical diameters larger than 0.3 mm, which indicates that the matric 18 

potential needs to be close to zero and the water content close to saturation for these pores to 19 

be activated (Jarvis, 2007).  20 

Soil and crop management practices strongly modify soil structure and thus the 21 

extent of macropore flow and transport. Wang et al. (2013) and Gonzalez-Sosa et al. (2010) 22 

studied the impact of land use on the hydraulic properties of the topsoil of the Loess Plateau 23 

of China and for a suburban catchment in France, respectively. Both studies have reported 24 

greater saturated hydraulic conductivities for forested land, intermediate for permanent 25 
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pasture, and lower for farmland soils. This is primarily due to the abundance of biota and less 1 

disturbance in forests and permanent pastures when compared to cultivated lands (Naveed et 2 

al., 2014a; Norgaard et al., 2013; Pérèsa et al., 2012). Application of animal manure and 3 

fertilizers can also influence macropore flow, first by altering soil structure and second by 4 

promoting the density of earthworms, particularly deep penetrating anecic worms (Naveed et 5 

al., 2014b). Climatic conditions (seasonal temperature and precipitation variations) might 6 

also affect soil structure and macropore flow through interactions with physical processes 7 

such as cyclic freezing/thawing and wetting/drying (Hu et al., 2012). Due to the complex 8 

interactions and the significant number of influencing factors, a large spatial variability of 9 

saturated hydraulic conductivity has been reported by several authors (Wang et al., 2013; 10 

Raczkowski et al., 2012; Iversen et al., 2011). Therefore, the predictive capabilities of 11 

empirical models/pedotransfer functions for saturated hydraulic conductivity are limited 12 

because they ignore the effects of key site factors and underestimate the significance of soil 13 

structure (Vereecken et al., 2010). Recently, pedotransfer functions for saturated hydraulic 14 

conductivity that account for soil structure have been developed, but they are rarely applied 15 

due to the complexity of input parameters and the still significant prediction inaccuracies 16 

(Jarvis et al., 2013; Iversen et al., 2011; Lilly et al., 2008).  17 

Along with the prediction of macropore water flow (i.e. saturated hydraulic 18 

conductivity), prediction of macropore airflow (i.e. air permeability and diffusivity) is also of 19 

essence. Air permeability is a key parameter for the design of soil vapor extraction 20 

remediation processes. Air diffusivity is of importance because the availability of oxygen to 21 

plant roots via diffusion is a basic factor of soil productivity. Various empirical models have 22 

been proposed in the past for the prediction of air permeability (Deepagoda et al., 2011; 23 

Kawamoto et al., 2006) and air diffusivity (Deepagoda et al., 2011; Moldrup et al., 2000). 24 
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However, none of the above studies have evaluated their applicability after discerning 1 

between biopore- and matrix-dominated flow domains.  2 

Recent developments in soil imaging techniques not only allow visual 3 

observations but also quantification of pore network complexity. Application of X-ray CT 4 

provides emerging alternative means for estimating subsurface macropore flow and transport 5 

(Wildenschild and Sheppard, 2013). Over the last decade, numerous studies about the 6 

characterization of macropore structure (i.e. macroporosity, macropore size distribution, 7 

volume, surface area, tortuosity, etc.) were conducted with X-Ray CT for different land use 8 

and management systems (Katuwal et al., 2015; Larsbo et al., 2014; Hu et al., 2014; Naveed 9 

et al., 2013; Vogel et al., 2010; Luo et al., 2010). However, to date there are only a very few 10 

published studies on quantitatively relating macropore network characteristics to the 11 

observations of macropore flow. Katuwal et al. (2015) found that CT derived macroporosity 12 

for the limiting section of the soil column was strongly correlated with air permeability and 13 

5% tracer arrival time. Larsbo et al. (2014) reported significant correlations between X-ray 14 

CT derived macropore network characteristics and flow and transport parameters. Paradelo et 15 

al. (2013) found that CT derived macroporosity was strongly correlated with saturated 16 

hydraulic conductivity, solute dispersivity, and contaminant breakthrough. Luo et al. (2010) 17 

reported that macroporosity, path number, hydraulic radius, and macropore angle were the 18 

most useful X-ray CT derived parameters for predicting macropore flow and transport under 19 

saturated conditions.  20 

In this study we first evaluate the predictive performance of existing pedotransfer 21 

functions/models for saturated permeability, air permeability, and gas diffusivity. While it has 22 

been previously demonstrated that water flow in macropores cannot be accurately predicted 23 

with empirical models from basic soil properties (Vereecken and Javaux, 2009; Vereecken et 24 

al., 2010), there is only little published work related to gas diffusivity. Furthermore, existing 25 
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pedotransfer functions/empirical models do not discern between matrix- and biopore-1 

dominated flow domains, which is of significance for accurate prediction of preferential flow 2 

as demonstrated in the results section. In the second part of this study we derive novel 3 

macropore network characteristics for saturated permeability, air permeability, and gas 4 

diffusivity from X-ray CT observations and demonstrate their utility for improving accuracy 5 

of gas and water flow predictions. The simplest form of the Kozeny-Carman equation 6 

proposed by Ahuja et al. (1984) is parameterized with novel CT derived parameters such as 7 

percolating macroporosity for biopore-dominated flow and total macroporosity for matrix-8 

dominated flow and improvement of prediction accuracy is discussed. 9 
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2. Materials and Methods 1 

2.1  Study site and soil sampling 2 

The 1.69-hectars study site located in Silstrup in northwestern Denmark (56° 55′ 56′′ N, 3 

8°38′44′′ E) is composed of glacial till, a dominant geological formation covering about 43% 4 

of all farmland in Denmark (Geological Survey of Denmark and Greenland, 1999). The top 5 

meter of the soil is highly fractured and bioturbated, containing 100 biopores per m
2 

to 1000 6 

biopores per m
2
. The field has not been tilled for about 3 years prior to soil sampling. It has 7 

been plowed in December 2008 to 23-cm depth and harrowed twice to 5-cm depth in March 8 

2009. Since then the soil was only disturbed when slurry was injected in 10-cm depth in April 9 

2009 and in 5-cm depth in September 2009. A thorough overview of management practices at 10 

the study site between 2006 and 2010 is provided in Norgaard et al. (2013). 11 

Sixty-five undisturbed cylindrical soil cores (6-cm internal diameter and 3.5-cm 12 

height) were extracted from the topsoil (5 cm to 8.5 cm depth) in the summer 2012. At the 13 

time of sampling the field was cultivated with red fescue (Festuca rubra L.). The soil 14 

columns were sampled on a 15 m x 15 m grid with additional 5 sampling locations between 15 

grid points (Figure 2). All soil columns were extracted by pushing a customized core sampler 16 

with aluminum sampling cylinders into the soil and removing the surrounding material step 17 

by step. Extracted soil columns were immediately covered with tight plastic lids, placed in 18 

plastic bags, and carefully transported to the laboratory to avoid smearing and compaction 19 

effects. The soil columns were stored in an environmentally controlled room at 2 °C until the 20 

start of measurements. In addition, bulk soil samples were collected from each point at the 21 

same soil depth for texture and organic carbon analysis.   22 

 23 

2.2 X-ray Computed Tomography scanning and analysis 24 
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An industrial X-Ray CT scanner (X-Tek HMX225) at the Helmholtz Center for 1 

Environmental Research in Halle in Germany was used to scan the intact soil columns at a 2 

voltage of 180 kV and a current of 400 µA. A copper filter was placed between the X-ray 3 

source and the soil columns to alleviate beam hardening. The shadow projections 4 

(radiographs) were reconstructed with a Feldkamp cone-beam algorithm (Feldkamp et al., 5 

1984) to obtain 16-bit grayscale 3-D data comprised of (500×500×300) voxels at a resolution 6 

of 129 μm (Fig. 1a). For subsequent analysis, the 3-D grayscale volumes were cropped to 7 

remove the container wall and disturbed regions on the top and bottom of the sample, 8 

numerically corrected for intensity differences caused by beam hardening and other scanning 9 

artifacts with a sequential algorithm developed by Iassonov and Tuller (2010), and a 3-D 10 

median filter (Jassogne et al., 2007) with a radius of 6 voxels was applied to the grayscale 11 

volumes to remove noise (Fig. 1b). Though, median filtering is computationally more 12 

demanding than conventional smoothing filters, it is less sensitive to outlier values and thus 13 

preserve edges. A locally adaptive Bayesian Markov random field (MRF) algorithm 14 

(Iassonov et al., 2009; Kulkarni et al., 2012) that was seeded with adaptive K-means 15 

clustering (Chen et al., 1998) was used to segment the intensity-corrected and filtered data to 16 

distinguish macropores from the soil matrix (Fig. 1c). The homogeneity parameter  in the 17 

MRF model was set to 2.0. For details of the applied MRF segmentation algorithm, see 18 

Kulkarni et al. (2012) and Tuller et al. (2013).  19 

 The segmented CT-data for each soil column were further analyzed to obtain 20 

macroporosity, percolating macroporosity, effective percolating macroporosity, macropore 21 

specific surface area, macropore hydraulic radius, macropore mean diameter, macropore 22 

fractal dimension, macropore global connectivity, and macropore local connectivity (see 23 

flowchart depicted in Fig. 1) with the Image-J software package (Rasband, 2011). Three-24 

dimensional pore visualization was conducted with the Image-J plugin 3D viewer. Based on 25 
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3D visual observations, soil columns containing percolating biopores (round shaped either 1 

formed by roots or earthworms) were separated and labeled as biopore-dominated flow 2 

columns; the remaining were labeled as matrix-dominated flow columns (Fig. 1d). The 3 

number of pore voxels was determined from the segmented data, and macroporosity (MP) 4 

was then calculated as the ratio of the number of pore voxels to the number of total sample 5 

voxels (Fig. 1d). The percolating macroporosity (PMP) was calculated based on only the 6 

pores that were connected from core sample top to bottom by removing all isolated pores 7 

(Fig. 1e). All isolated pores were removed with the Image-J plugin “Find Connected 8 

Regions”. Effective percolating macroporosity (EPMP) was defined and calculated as the 9 

ratio of minimum cross-sectional area of percolating macropores (while moving voxel layer 10 

by voxel layer from the top to the bottom of the core) to the cross-sectional area of the soil 11 

column (Fig. 1f). Macropore specific surface (MPSSA) area was calculated as the ratio of 12 

surface area of macropores to the volume of soil column (Fig. 1g). It was calculated with the 13 

Image-J plugin “Analyze Particles”. Macropore hydraulic radius (MPHR) was defined as the 14 

ratio of macropore volume to the macropore surface area (Fig. 1h). It was also calculated 15 

with the Image-J plugin “Analyze Particles”. The macropore mean diameter (MPMD) was 16 

estimated with a local 3D thickness algorithm proposed by Dougherty and Kunzelmann 17 

(2007) and embedded in the Image-J plugin “Bone-J”. This algorithm defines the pore 18 

diameter as the diameter of the largest sphere that fits within the pore. The histogram of the 19 

thickness map was used for estimating macropore size distribution and macropore mean 20 

diameter (Fig. 1i). Macropore fractal dimension  (MPFD) was calculated as a measure of the 21 

heterogeneity of the spatial distribution of macroporosity with the Image-J plugin “Bone-J” 22 

(Fig. 1j). Macropore global connectivity (MPGC) was defined and calculated as the ratio of 23 

percolating macroporosity to the total macroporosity of the soil column (Fig. 1k). The 24 
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macropore local connectivity (MPLC) was estimated with the Image J plugin “Bone-J” (Fig. 1 

1l)  2 

 3 

2.3 Soil physical measurements 4 

Soil texture was determined from disturbed soil samples using a combination of wet sieving 5 

and the hydrometer method, after passing the sample through a 2-mm sieve. Soil organic 6 

carbon was determined with a LECO carbon analyzer (St. Joseph, MI, USA) coupled with an 7 

infrared CO2 detector. A multiplication factor of 1.72 was used to convert soil organic carbon 8 

to soil organic matter. 9 

After X-ray CT scanning, air permeability and gas diffusivity at -30 cm and -10 

100 cm matric potentials, and saturated hydraulic conductivity were measured on the same 11 

columns. The soil columns were placed in a sand box and saturated from the bottom with tap 12 

water. After saturation, suction was successively applied to establish matric potentials of -30 13 

cm and -100 cm. Air permeability (ka) was then measured with the steady state method 14 

described in Iversen et al. (2001) both at -30 cm and -100 cm matric potentials. The pressure 15 

of 5 hPa was applied to assure laminar flow during the measurements. The ka was calculated 16 

from Darcy's equation based on the pressure difference across the core: 17 � =  �������� ��    (1) 18 

where Q (L
3
 T

-1
) is the volumetric flow rate, ka (L

2
) is air permeability, p (M L

-1
T

-2
) is the 19 

pressure difference across the column, η (M L
-1

 T
-1

) is dynamic viscosity of air, as (L
2
) is the 20 

cross-sectional area and Ls (L) is the length of the column. Gas diffusivities (DP/D0) at -30 cm 21 

and -100 cm matric potentials were measured with the one-chamber method described in 22 

Schjønning et al. (2013).  23 

After DP/D0 measurements, the soil columns were resaturated, and the saturated 24 

hydraulic conductivity was measured with the constant head method (Klute and Dirksen, 25 
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1986). The laboratory measured saturated hydraulic conductivities were then converted to 1 

intrinsic permeabilities considering water at 20 °C: 2 �௦�௧ = �௦�௧ ���� ଵ�                                        (2) 3 

where ksat (L
2
) is saturated permeability, Ksat (L T

-1
) is saturated hydraulic conductivity, ηw 4 

(M L
-1

 T
-1

) is dynamic viscosity of water, ρw (M L
-3

) is density of water and g (L T
-2

) is 5 

gravitational acceleration. Intrinsic permeability was used for better comparison with air 6 

permeability measurements. All measured flow parameters are provided in supplementary 7 

Table S1. 8 

 9 

2.4 Modelling 10 

Ahuja et al., (1984) developed a relationship (EPM, effective porosity model) between 11 

saturated hydraulic permeability (ksat) and effective porosity (ϕe) based on the generalized 12 

Kozeny-Carman equation:  13 �௦�௧  �� �� �଴⁄ = �ϕ��
   (3) 14 

where DP/D0 is gas diffusivity, and A and B are empirical constants. Ahuja et al. (1984) 15 

defined ϕe as the total porosity minus the soil volumetric water content at field capacity, 16 

assumed as the water content at a matric potential of -33 kPa. Rawls et al. (1998) reported 17 

that several researchers found the slope A to vary between 1.59 and 3.98 and the intercept to 18 

vary between 440 cm d
–1 

and 34,000 cm d
–1

. We have modified equation (3) by using X-ray 19 

CT derived macroporosity (MP) as ϕe for matrix-dominated flow, and X-ray CT derived 20 

effective percolating macroporosity (EPMP) as ϕe for biopore-dominated flow.  21 

 22 

2.5 Statistics 23 
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Data collected for soil textural properties and macropore flow parameters were first subjected 1 

to classical statistical analysis to obtain descriptive statistics, including minimum, maximum, 2 

mean, median, standard deviation, skewness, and coefficient of variation (CV). The degree of 3 

spatial variability of soil textural properties and macropore flow parameters was determined 4 

with ordinary kriging. The ArcMap 10.1 (Esri, Inc.) software was used to generate contour 5 

maps for each measured soil property. Spearman rank order correlation coefficients between 6 

macropore network characteristics and macropore flow parameters were calculated with the 7 

commercial SigmaPlot 11.0 software package. The correlations were considered significant if 8 

p values were below 0.01. Selected correlations were also graphically displayed and analyzed 9 

with linear or power regressions. The form of regression relationship was chosen based on 10 

the achievable coefficients of determination (R
2
). The power function was preferred over 11 

simple linear regression if it resulted in larger R
2
. The linear and power models were only 12 

fitted if they were significant at p < 0.01.   13 
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3. Results and Discussion 1 

3.1. Spatial variability of soil texture, organic matter, and macropore flow parameters 2 

The soil of the study site was classified as sandy loam (USDA-NRCS Web Soil Survey, 3 

2010) with clay contents ranging from 14 % to 19 %, and organic matter content varying 4 

from 2.9 % to 3.8 %. Descriptive statistics for all soil textural properties are depicted in Table 5 

1. Clay and sand contents were positively skewed, whereas silt and organic matter contents 6 

were negatively skewed. All soil textural properties were slightly variable across the field 7 

with coefficients of variation (CV) below 10 %. It has been previously reported that the CV 8 

for soil textural properties generally depends on the extent of the study area. For example, 9 

Sharma et al. (2011) reported a CV for soil textural properties within the range of 20 % to 10 

30 % for a 40 ha agricultural field in New Mexico, while Wang et al. (2013) reported a CV 11 

within the range of 19 % to 156 % across the Loess Plateau of China (620 × 10
3
 km

2
). 12 

Krigged maps indicated that soils with high clay contents (Fig. 2a) were on the north side of 13 

the field, whereas soils with high organic matter contents occupied the south side (Fig. 2d). 14 

Thus, clay and organic matter gradients run in opposite directions at the study site. Soils with 15 

high silt contents (Fig. 2b) were on the western side of the field, whereas soils with high sand 16 

contents were on the eastern side (Fig. 2c).  17 

 Descriptive statistics for saturated permeability (ksat), air permeability (ka), and 18 

gas diffusivity (DP/D0) at -30 cm and -100 cm matric potentials are provided in Table 1. 19 

Large positive skewness and quite different mean and median values were observed for all 20 

five macropore flow parameters. The ksat, ka, and DP/D0 at -30 cm and -100 cm matric 21 

potentials showed the largest variations across the study site with a CV ranging from 92 % to 22 

218 % (up to 5 orders of magnitude). High CV values were observed due to the presence of 23 

biopores in some of the soil columns, while not in others (samples marked as I, II, III, and IV 24 

in Fig. 2 are shown in Fig. 3; out of the 4 marked samples I and II are matrix-flow dominated 25 
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and III and IV are biopore-flow dominated). Irrespective of the extent of the study area, large 1 

variations in ksat were also reported in other studies (e.g., Wang et al., 2013; Sharma et al., 2 

2011; and Iqbal et al., 2005). Krigged maps for ksat, ka, and DP/D0 (Figs. 2e-g) look quite 3 

similar with some areas randomly exhibiting a high level of macropore flow while matrix 4 

flow dominated in other regions irrespective of soil texture and organic matter content.  5 

 6 

3.2. Predictive performance of empirical models 7 

For many hydrological applications, saturated permeability (ksat) is estimated from more 8 

readily available proxy variables such as texture and bulk density. Various empirical 9 

models/pedotransfer functions (e.g. Iversen et al., 2011; Jarvis et al., 2009; Schaap et al., 10 

2001; Wösten et al., 1999; Revil and Cathles, 1999) have been previously proposed for 11 

predicting saturated hydraulic conductivity. We have observed poor predictive performance 12 

of empirical ksat models such as proposed by Revil and Cathles (1999) and Schaap et al. 13 

(2001) (Fig. 4) and for models proposed by Wösten et al. (1999), Vereecken et al. (1989), and 14 

Cosby et al. (1984) (not shown). While the measured saturated permeabilities spanned five 15 

orders of magnitude, model predictions were within a narrow range (Fig. 4). This reflected 16 

the presence of a wide range of macropores and biopores in the soil columns. The primary 17 

reason for the failure of the existing empirical models/pedotransfer functions is that they are 18 

based on soil texture and bulk density, and thus are not able to realistically capture macropore 19 

flow, particularly for highly structured and bioturbated soils. In general, empirical models 20 

over-predicted ksat in case of matrix flow (empty symbols), while they under-predicted ksat for 21 

soil columns with biopore flow (filled symbols). Because results were obtained for samples 22 

of limited size from the A-horizon, it should be noted that for larger scales the structural 23 

characteristics, especially that related to pore connectivity, might change and herewith also 24 

the flow parameters.    25 
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Over the last 2 decades, some efforts were also devoted to the development of 1 

empirical models for the prediction of air permeability (ka) (Moldrup et al., 1998; Kawamoto 2 

et al., 2006; Deepagoda et al., 2011). Here, we have tested the predictive performance of the 3 

recently developed density-corrected ka model (Deepagoda et al., 2011) as shown in Figures 4 

5a and 5b. The density-corrected ka model performed reasonably well for soils with lower ka 5 

values (some of the columns with matrix-dominated flow), but completely failed for soils 6 

with greater ka values for example in the presence of continuous structural cracks or biopores. 7 

Starting with Buckingham (1904) a more rigorous effort has been made in the previous 8 

century to develop empirical models for the prediction of gas diffusivity (Deepagoda et al., 9 

2011). The tested WLR-Marshall model (Moldrup et al., 2000) predicted gas diffusivity 10 

reasonably well for soil samples associated with matrix flow and underestimated gas 11 

diffusivity for soil samples with biopore flow at -30 cm matric potential (Fig. 5c). This 12 

reflects that preferential diffusive flow could occur at greater matric potentials close to 13 

saturation even though gas diffusivity is a concentration-driven gas transport parameter. 14 

However at -100 cm matric potential, the WLR-Marshall model (Moldrup et al., 2000) 15 

predicted gas diffusivity well for all soil samples irrespective of matrix or biopore flow (Fig. 16 

5d).  17 

 18 

3.3. Correlations between macropore flow parameters and macropore network 19 

characteristics 20 

The CT-derived macroporosity was plotted as a function of physically measured air-filled 21 

porosity at -30 cm matric potential (Fig. 6). The physically measured air-filled porosity at -30 22 

cm matric potential agreed well with the X-ray CT analyzed macroporosity at 129-µm 23 

resolution. At -30 cm matric potential, all pores of diameter larger than 100 µm should have 24 

drained according to the Young Laplace capillary-rise equation. Referring to this, physically 25 
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measured air-filled porosity at -30 cm matric potential (pore diameter > 100 µm) should be 1 

greater than the X-ray CT derived macroporosity (resolution = 129 µm). However, this is 2 

only true when assuming a parallel bundle of capillary tubes, which is clearly not realistic for 3 

natural soils. Due to the ink-bottle effect a considerable volume of pores of diameter > 100 4 

µm are expected to be water filled after drainage at a water potential of -30 cm. Hence, no 5 

perfect match between the morphological pore size measured with CT and the hydraulic pore 6 

size estimated from the Young-Laplace equation can be expected (Vogel, 2000). Hence, the 7 

observed agreement between the two measures is absolutely reasonable and confirms the 8 

accuracy of the employed image segmentation method (Fig. 6). However, it must be noted 9 

that different image segmentation methods can result in quite different macroporosity values 10 

if the image quality is bad, i.e. there is a lot of noise and partial volume effect as shown in 11 

Naveed et al. (2014c). 12 

Spearman rank order correlation analysis between macropore flow parameters 13 

and macropore network characteristics was carried out first for all soil columns (Fig. 7a), 14 

second for soil columns containing biopores(s) connected from top to bottom (Fig. 7b), and 15 

third for soil columns containing inter-aggregate macropores or disconnected biopores (Fig. 16 

7c). Many of the CT-derived macropore network characteristics were strongly inter-related 17 

(Fig. 7). This is because large macroporosities were associated with larger macropore surface 18 

area and better connectivity of macropores. This is in agreement with other recent studies 19 

(e.g., Katuwal et al., 2015; and Larsbo et al., 2014). Macropore mean diameter and hydraulic 20 

radius were however poorly correlated with other macropore network characteristics because 21 

of inherently different measures of macropores. Significant spearman rank order correlations 22 

were also observed between macropore flow parameters and most of the CT-derived 23 

macropore network characteristics (Fig. 7). X-ray CT macroporosity was strongly correlated 24 

with macropore flow parameters for all three categories of soil samples (Figs. 7a, b, and c). 25 



18 

 

Very strong correlations were observed between effective percolating macroporosity (EPMP) 1 

and macropore flow parameters for the soil columns consisting of biopores(s) connected from 2 

top to bottom (Fig. 7b). Macropore hydraulic radius and macropore mean diameter were 3 

significantly correlated with macropore flow parameters for the soil columns associated with 4 

biopore-dominated flow (Fig. 7b), whereas poorly correlated in case of soil columns 5 

associated with matrix-dominated flow (Fig. 7c). Elliot et al. (2010) and Quinton et al. (2008) 6 

support this. Both macropore global and local connectivities were poorly correlated with 7 

macropore flow parameters for the soil columns associated with biopore-dominated flow 8 

(Fig. 7b), whereas significantly correlated for the soil columns associated with matrix-9 

dominated flow (Fig. 7c). This makes sense as biopore flow is mainly controlled by the size 10 

of the largest biopore present in the soil columns, whereas matrix flow is mainly controlled 11 

by the pore size distribution and connectivity of pores.      12 

Selected correlations were graphically displayed and analyzed with linear and power 13 

regressions (which best described the data) as shown in Figure 8. The saturated permeability 14 

(ksat) was plotted as a function of CT-derived macroporosity (8a). A two-branch data trend 15 

was observed at lower CT derived macroporosity, which merges into a single branch with the 16 

increase of macroporosity. The upper branch with greater permeabilities consists of soil 17 

columns with one or more biopores connected from top to bottom that mainly governs fluid 18 

flow (filled symbols). Samples III and IV marked in Figure 8a and shown in Figure 3 are 19 

members of this branch. The lower branch consists of soil samples in which fluid mainly 20 

flows through inter-aggregate and textural pores (unfilled symbols). Samples I and II marked 21 

in Figure 8a and shown in Figure 3 are members of this branch. Significant distinct power 22 

regressions were observed between ksat and macroporosity for these two categories of the soil 23 

columns (Fig. 8a). This suggests that distinction between biopore-dominated flow and 24 

matrix-dominated flow should be carried out as a first step in studying the relationships 25 
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between macropore flow and CT-derived macroporosity. Both Paradelo et al. (2013) and Luo 1 

et al. (2010) found similar relationships between saturated hydraulic conductivity and CT 2 

derived macroporosity with R
2
 ranging from 0.50 to 0.60. A stronger power regression was 3 

observed, R
2
 increased from 0.43 to 0.76, when ksat was plotted as a function of the effective 4 

percolating macroporosity for the soil columns associated with biopore-dominated flow (Fig. 5 

8b, filled symbols), but this is not the case for the soil columns with matrix-dominated flow 6 

(Fig. 8b, empty symbols). Significant power regressions were observed between ksat and 7 

macropore mean diameter (Fig. 8c). Weak, but significant power regression was observed 8 

between ksat and macropore local connectivity for only those soil columns associated with 9 

matrix-dominated flow as shown in Figure 8d. No significant regression was observed 10 

between ksat and macropore local connectivity for the soil samples associated with biopore-11 

dominated flow (Fig. 8d, filled symbols). A potential explanation is that the Euler number 12 

that is the basis for macropore local connectivity calculations does not account for continuity 13 

of the pores from top to bottom.  14 

Air permeability at -30 cm matric potential, ka (-30), was plotted as a function of 15 

macroporosity as shown in Figure 8e. Significant distinct power regressions were observed 16 

for the two categories of soil columns i.e. biopore-dominated flow and matrix-dominated 17 

flow (Fig. 8e). Similarly to ksat, power regression was significantly improved (R
2
 increased 18 

from 0.49 to 0.80) when ka (-30) was plotted as a function of effective percolating 19 

macroporosity instead of total macroporosity for the soil columns associated with biopore-20 

dominated flow (Fig. 8f, filled symbols). A significant power regression was observed 21 

between ka (-30) and macropore mean diameter for the soil columns with biopore-dominated 22 

flow while no significant regression was observed between ka (-30) and macropore mean 23 

diameter for the soil columns with matrix-dominated flow (Fig. 8g). Contrary to this, 24 

significant power regression was observed between ka (-30) and macropore local connectivity 25 
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for soil columns associated with matrix-dominated flow while no significant regression was 1 

observed for soil samples associated with biopore-dominated flow (Fig. 8h). Similar power 2 

regressions were also observed for ka (-100) as a function of macroporosity, effective 3 

percolating macroporosity, macropore mean diameter, and macropore local connectivity as 4 

shown in Figures 8i, 8j, 8k, and 8l, respectively.  5 

Figures 8m and 8n showed significant power regressions when gas diffusivity at -30 cm 6 

matric potential, DP/D0 (-30), was plotted against macroporosity and effective percolating 7 

macroporosity, respectively. Distinct significant power regressions observed for soil columns 8 

associated with biopore-dominated flow and matrix-dominated flow reflects that preferential 9 

diffusive flow occurred at -30 cm matric potential. However at -100 cm matric potential, a 10 

single regression significantly described both types of data associated with biopore flow and 11 

matrix flow as shown in Figures 8q and 8r. This reflects that no preferential diffusive flow 12 

occurred at and below -100 cm matric potentials. Both DP/D0 (-30) and DP/D0 (-100) showed 13 

insignificant regressions when plotted as a function of macropore mean diameter for both 14 

categories of soil samples (Figs. 8o and 8s). Significant power regressions were observed 15 

when DP/D0 (-30) and DP/D0 (-100) were plotted as a function of macropore local 16 

connectivity for both set of soil columns associated with matrix flow and biopore flow (Figs 17 

8p and 8t). This is logical as DP/D0 is a concentration-driven gas transport parameter and is 18 

mainly controlled by total air-filled pore space and its connectivity, and not by the pore size 19 

(Moldrup et al., 2000). 20 

 21 

3.4. Modelling saturated permeability, air permeability and diffusivity 22 

Saturated permeability, air permeability at -30 cm and -100 cm matric potentials, and gas 23 

diffusivity at -30 cm and -100 cm matric potentials were modelled using the simplified form 24 

of Kozeny-Carman equation presented by Ahuja et al. (1984). We have modified this 25 
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equation by providing novel input parameters. The effective porosity in the original model 1 

was replaced with the CT derived total macroporosity (MP) in case of matrix-dominated 2 

flow, and with the effective percolating macroporosity (EPMP) in case of biopore-dominated 3 

flow. The empirical fitting parameters (A and B) for saturated permeability, air permeability 4 

at -30 cm and -100 cm matric potentials, and gas diffusivity at -30 cm and -100 cm matric 5 

potentials are given in Table 3. The 1:1 plots between measured and predicted saturated 6 

permeability, air permeability, and gas diffusivity are shown in Figure 9. From figure 9 it is 7 

obvious that predictions with the simplified Kozeny-Carman equation with novel input data 8 

from X-ray CT analysis are very reasonable. However, the predictive capability of the 9 

proposed modelling framework requires further independent validation for different soil types 10 

to confirm the values/ranges for empirical constants A and B for saturated permeability, air 11 

permeability, and gas diffusivity.  12 

 Rapid development of advanced CT-image segmentation and 13 

analysis tools in conjunction with computational fluid dynamics provide promising future 14 

means to simulate the dynamics of flow and transport directly with CT derived macropore 15 

networks as boundaries. One method particularly suitable for simulating macropore flow and 16 

transport based on X-ray CT data is the lattice Boltzmann method (LBM). Most of the studies 17 

to date that applied the LBM for simulating flow and transport based on CT-data were for 18 

granular porous media (glass beads/sand) and fractured rocks, and not for natural field soil 19 

samples. Strong correlations between macropore flow parameters and X-ray CT derived 20 

macropore network characteristics suggest that lattice Boltzmann flow and transport 21 

simulations based on X-ray CT images could be a potential topic for future research and pave 22 

the way for the establishment of a digital soil physics laboratory. 23 

 24 

 25 
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4. Conclusions and Perspective 1 

1. Soil textural properties showed small spatial variability across the study site with a CV < 2 

10%. Despite this, macropore flow parameters i.e. saturated permeability, air 3 

permeability, and gas diffusivity, showed large spatial variability across the field with a 4 

CV > 100%. 5 

2. Predictive performance of existing empirical models/pedotransfer functions for saturated 6 

permeability and air permeability at -30 cm and -100 cm matric potentials was quite poor. 7 

For saturated permeability, existing empirical models over predicted in case of matrix-8 

dominated flow and under predicted in case of biopore-dominated flow. For air 9 

permeabilities, empirical models predicted matrix-dominated flow reasonably, whereas 10 

under predictions were observed in cases of biopore-dominated flow. The tested empirical 11 

model for the prediction of gas diffusivity performed well at -100 cm matric potential, 12 

while it failed at -30 cm matric potential particularly for the soil columns that contained 13 

top-to-bottom connected biopores i.e. biopore dominated flow. 14 

3. Significant Spearman's Rank correlations were observed between CT-derived macropore 15 

network characteristics and macropore flow parameters. These correlations were further 16 

improved by splitting soil columns into matrix-dominated flow columns and biopore-17 

dominated flow columns. The predictive performance of Ahuja et al. (1984) model with 18 

novel input parameters, X-ray CT derived effective percolating macroporosity (EPMP) 19 

for biopore-dominated flow and total macroporosity (MP) for matrix-dominated flow, 20 

was very good. However, further studies for different soil types are needed to confirm the 21 

values/ranges of empirical constants A and B of Ahuja et al., (1984) model for robust 22 

predictions of saturated permeability, air permeability, and gas diffusivity. 23 

 24 

 25 
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Table 1: Descriptive statistics for selected soil physical properties (n = 65) 1 

Variable Minimum Maximum Mean Median 
Standard 

deviation 
Skewness 

CV 

% 

Clay (g 100g
-1

) 14.18 18.93 15.82 15.54 1.36 0.65 9 

Silt (g 100g
-1

) 23.30 33.32 30.12 30.10 1.66 -1.21 6 

Sand (g 100g
-1

) 44.89 59.00 50.71 50.72 2.14 0.32 4 

Organic matter (g 100g
-1

) 2.90 3.75 3.35 3.38 0.20 -0.42 6 

Saturated hydraulic. conductivity (cm hr
-1

) 0.02 418.2 40.15 1.38 89.48 2.84 218 

Saturated permeability, ksat (µm
2
) 0.01 118.1 12.04 0.39 26.30 2.73 218 

Air permeability at -30 cm, ka -30, (µm
2
) 0.03 109.19 10.87 3.21 22.33 3.03 205 

Air permeability at -100 cm, ka -100, (µm
2
) 0.19 151.10 14.72 5.42 27.13 3.26 184 

Gas diffusivity at -30 cm, DP/D0-30  1.0 × 10
-4

 1.8 × 10
-2

 2.6 × 10
-3

 1.7 × 10
-3

 3.0 × 10
-3

 2.74 123 

Gas diffusivity at -100 cm, DP/D0-100 4.0 × 10
-4

 2.5 × 10
-2

 5.2 × 10
-3

 4.0 × 10
-3

 5.0 × 10
-3

 2.31 92 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Table 2: Partial sill, nugget, range, kriging interpolation model, and root mean square error 1 

(RMSE) for semivariograms for each interpolated map. All interpolations were carried out in 2 

ESRI ArcMap 10.1. 3 

Variable Partial Sill Nugget Range (m) Model RMSE 

Clay (g 100g
-1

) 3.1 × 10
-4

 3.6 × 10
-5

 179 Gaussian 7.0 × 10
-3

 

Silt (g 100g
-1

) 1.6 × 10
-4

 2.2 × 10
-4

 200 Gaussian 1.5 × 10
-2

 

Sand (g 100g
-1

) 2.9 × 10
-4

 1.8 × 10
-4

 61 Spherical 1.7 × 10
-2

 

Organic matter (g 100g
-1

) 3.8 × 10
-6

 6.8 × 10
-7

 89 Spherical 1.2 × 10
-3

 

Saturated permeability, ksat (µm
2
) 214 538 24 Spherical 27.67 

Air permeability at -30 cm, ka -30, (µm
2
) 80 459 24 Circular 23.45 

Air permeability at -100 cm, ka -100, (µm
2
) 0 753 0 Spherical 27.54 

Gas diffusivity at -30 cm, DP/D0-30 2.7 × 10
-6

 1.0 × 10
-5

 24 Spherical 3.5 × 10
-3

 

Gas diffusivity at -100 cm, DP/D0-100 6.3 × 10
-6

 2.1 × 10
-5

 30 Circular 5.3 × 10
-3

 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Table 3: Fitted empirical constants for the Ahuja (1984) model with X-ray CT derived 1 

effective percolating macroporosity (EPMP) and total macroporosity (MP) as input 2 

parameters for biopore- and matrix-dominated flow, respectively. 3 

Variable A B 

Biopore-dominated flow 

Saturated permeability, ksat (µm
2
) 5000 1.4 

Air permeability at -30 cm, ka -30, (µm
2
) 5000 1.5 

Air permeability at -100 cm, ka -100, (µm
2
) 5000 1.4 

Gas diffusivity at -30 cm, DP/D0-30 0.27 1.12 

Gas diffusivity at -100 cm, DP/D0-100 0.27 0.98 

Matrix-dominated flow 

Saturated permeability, ksat (µm
2
) 5000 3.6 

Air permeability at -30 cm, ka -30, (µm
2
) 5000 3.0 

Air permeability at -100 cm, ka -100, (µm
2
) 5000 2.7 

Gas diffusivity at -30 cm, DP/D0-30 0.27 1.90 

Gas diffusivity at -100 cm, DP/D0-100 0.27 1.55 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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Figures Captions: 1 

Figure 1: Flowchart illustrating all performed CT-data enhancement, segmentation, and 2 

analysis steps. 3 

Figure 2: Contour maps depicting the spatial distribution of soil textural properties and 4 

macropore flow parameters, (a) clay (< 2 µm), (b) silt (2 µm -50 µm), (c) sand (50 µm -2000 5 

µm), (d) organic matter content, (e) saturated permeability (µm
2
), (f) air permeability (µm

2
) 6 

at -100 cm matric potential, and (g) gas diffusivity at -100 cm matric potential. Visualizations 7 

of samples marked as I, II, III, and IV, are depicted in Figure 3.  8 

Figure 3: Three-dimensional visualizations of sample soil columns and associated measured 9 

macropore flow parameters (ksat is saturated permeability, and ka-100 and DP/D0-100 are air 10 

permeability and gas diffusivity at -100 cm matric potentials, respectively). 11 

Figure 4: Predictive performance of empirical models for saturated permeability (ksat); filled 12 

symbols represent samples with biopore-dominated flow and empty symbols represent 13 

samples with matrix-dominated flow; samples marked as I, II, III, and IV are depicted in 14 

Figure 3.  15 

Figure 5: Predictive performance of empirical models for air permeability (ka) and gas 16 

diffusivity (DP/D0) at -30 cm and -100 cm matric potentials. (a) Deepagoda et al. (2011), (b) 17 

Deepagoda et al., (2011), (c) WLR-Marshall model (Moldrup et al., 2000), and  (d) WLR-18 

Marshall model (Moldrup et al., 2000); filled symbols represent samples with biopore-19 

dominated flow and empty symbols represent samples with matrix-dominated flow; samples 20 

marked as I, II, III, and IV are depicted in Figure 3.   21 

Figure 6: CT-derived macroporosity plotted as a function of physically measured air-filled 22 

porosity at -30 cm matric potential. 23 

Figure 7: Spearman rank order correlation analysis for (a) all samples (N = 65), (b) samples 24 

with biopore flow (N = 16), and (c) samples with matrix flow (N = 49); stars indicate 25 
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significant correlations at p value < 0.01; where MP is macroporosity, PMP is percolating 1 

macroporosity, EPMP is effective percolating macroporosity, MPSSA is macropore specific 2 

surface area, MPHR is macropore hydraulic radius, MPMD is macropore mean diameter, 3 

MPFD is macropore fractal dimension, MPGC is macropore global connectivity, MPLC is 4 

macropore local connectivity, ksat is saturated permeability, ka-30 is air permeability at -30 cm 5 

matric potential, ka-100 is air permeability at -100 cm matric potential, DP/D0-30 is gas 6 

diffusivity at -30 cm matric potential, and DP/D0-100 is gas diffusivity at -100 cm matric 7 

potential, strong correlation (r > 0.70), moderate correlation (r = 0.5 - 0.7), and weak 8 

correlation (r < 0.5).  9 

Figure 8: Saturated permeability (ksat), air permeability at -30 cm matric potential (ka-30), air 10 

permeability at -100 cm matric potential (ka-100), gas diffusivity at -30 cm matric potential 11 

(DP/D0-30), and gas diffusivity at -100 cm matric potential (DP/D0-100) were plotted as a 12 

function of selected CT-derived macropore network characteristics; filled symbols represent 13 

samples with biopore-dominated flow and empty symbols represent samples with matrix-14 

dominated flow. Either linear or power regressions that best describe data (greater R
2
) were 15 

fitted if found significant at p < 0.01, two separate regressions were fitted for samples with 16 

biopore flow and matrix flow if they were significantly different. 17 

Figure 9: Predictive performance of Ahuja et al. (1984) model using novel input parameters, 18 

effective porosity in the original model was replaced with the CT derived total macroporosity 19 

(MP) in case of matrix-dominated flow, and with the effective percolating macroporosity 20 

(EPMP) in case of biopore-dominated flow, for (a) saturated permeability, (b) air 21 

permeability at -30 cm matric potential, (c) air permeability at -100 cm matric potential, (d) 22 

gas diffusivity at -30 cm matric potential, and (e) gas diffusivity at -100 cm matric potential. 23 

 24 
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