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S1 Remote sensing methods to extract the imperviousness maps

A considerable amount of remote sensing research has been devoted to the problem of mapping
impervious surfaces. Here, we review some of the previous studies and evaluate them in respect of
the datasets and classification methods. Furthermore, we focus on the studies which use the classified
land-use to predict urban rainfall runoff.

Whereas few studies have used low-resolution (GSD > 100m) satellite sensors, such as MODIS
(Lu et all 2008}, Boegh et al.,[2009), AVHRR (Carlson and Arthur [2000) and DMSP-OLS
let all 2007 [Lu et al.l 2008)), the large part of the research in this area focused on medium and high
spatial resolution satellite data. Because of its exceptional temporal resolution, Landsat is still the
most popular satellite platform. A large number of authors used Landsat 5 TM (Civco et al} 2002}
[CarIsonl 2004} [Bauer et al., 2008}, [Yuan and Bauer} 2006} [Li et al.}, 2011} [Parece and Campbell, 2013}

[Dougherty et al., [2004) and Landsat 7 ETM+ data (Civco et all, 2002} [Yang et al. 2003} Wu and

[Murray}, 2003} [Lu and Weng, 2006; [Lee and Lathrop}, 2006} [Powell et al, 2007; [Chormanski et al.}
[2008}, [Chabaeva et al., 2009 [Van de Voorde et al., [2009) for analysing impervious surface cover.

Other examples of using images acquired by high resolution platforms include SPOT (Yang et al.|
[2009; [Li et al} 2011} [Tan et al., 2009) and ASTER (Weng and Hul 2008 [Hu and Weng [2009; [Weng
2009).

However, recent developments of remote sensing imaging sensors and platforms gave access to

VHR imagery. Examples of VHR satellite sensors application to impervious surfaces mapping in-

clude Ikonos (Cablk and Minor| 2003; [Lu and Weng| [2009; Mohapatra et al., 2008 (Chormanski
[et all 2008}, [Van de Voorde et al., 2009} Mathieu et al,2007), and QuickBird (Cu et al.| 2008}, [Yuan|
[and Bauer], [2006}; [Zhou and Wang}, [2008). Except of satellite imagery, aerial images are also an im-

portant source of information. Many studies used aerial orthophotos only as a reference check to
satellite imagery (Yang et al., 2003} [DeBusk et all, 2010} [Parece and Campbell, 2013)). However
few attempts to automatically map imperviousness using such data were made (Nielsen et al., 2011}
[Dougherty et al}, 2004} [Hodgson et all, 2003}, [Zhou and Wang| 2008}, [Fankhauser} [1999} [Lee and|
Heaney) 2003)

One possible way to extract imperviousness from images is to interpret them manually. Even
though this is the most reliable method, and has been used in few studies (e.g.
(2003)), it is very costly in terms of time and money. Therefore it is common to automate the pro-

cess by using image classification. Maybe the simplest method is to assume that only vegetation
is pervious and rely on the normalized differential vegetation index (NDVI) (Nielsen et al.| 2011}
[Carlson and Arthur} [2000). Many of the studies use more advanced classification methods, such as

object based image analysis (OBIA) (Zhou and Wang] [2008; [Hodgson et al.} 2003}, [Nielsen et al.,
2011} Mathieu et al.| 2007). Other examples include maximum likelihood classifier (Fankhauser]
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1999; Hodgson et al., |2003)), spectral mixture analysis (SMA) (Small, 2003} [Van de Voorde et al.|
2009; |Weng et al.| [2009), artificial neural networks (ANN) (Chormanski et al.| [2008; [Van de Vo-
orde et al} |2009; |[Lee and Lathropl [2006), classification and regression trees (CART) (Yang et al.|
2003; Li et al., 2011; |Dougherty et al., 2004) and rule-based classifiers (Hodgson et al., 2003). Some
of the mentioned methods also use the perviousness maps for urban drainage modelling like we
do (Nielsen et al.| 2011 Melesse and Wang|, |2008; |Chormanski et al., 2008}, |Dougherty et al.,2004;
Lee and Heaney, [2003}; |[Fankhauser, |1999). However, to our best knowledge no studies exist, that
used UAV-based imagery to extract imperviousness information, and to use it in the field of urban

drainage modelling.
S2  UAV platform

The UAV platform used in this study is an autonomous fixed-wing drone produced by senseFly SA

(cf- http://www.senseFly.com). Table[S| includes detailed information about the platform.

Weight (incl. camera) ca. 0.69 kg

Wingspan 96 cm

Material EPP foam, carbon structure and composite parts
Propulsion Electric pusher propeller, 160 W brushless DC motor
Battery 11.1V, 2150 mAh

Camera (supplied) 16 MP IXUS/ELPH

Cameras (oprional) S110 RGB, thermoMAP

Max. flight time 50 min

Nominal speed 40-90 km/h

Wind resistance Up to 45 km/h (12 m/s)

Radio link range Up to 3 km

Max. coverage (single flight) Up to 12 km?

Cost

ca. 20’000 CHF (Drone + Software)

Table S1.

The imaging unit mounted on a UAV was a customized version of Canon IXUS 127 HS compact

Specifications of the UAV used in the study (source: http://www.senseFly.com)

camera. Table [ includes its specifications.
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Camera effective pixels ca. 16.1 million

Lens’ focal length 4.3 -21.5 mm (35 mm equivalent: 24 - 120 mm)

Interfaces Hi-speed USB, HDMI Output, Analog audio
output, Analog video output (NTSC/PAL)

Dimensions 93.2 x 57.0 x 20.0 mm

Weight ca. 135 g (incl. battery and memory card)

Table S2. Specifications of the Canon IXUS 127 HS Camera

S3 Exploratory data analysis of the importance of image source and processing method for

the surface runoff
S3.1 Regression

Imperviousness

Please refer to Table[SB3and Figurd S3.
Here we try to answer a following question: Which has the greater influence/is stronger correlate
with a change in imperviousness and surface runoff characteristics, the image source or the process-

ing method?

Model and results
Here we present logit-transformation of imperviousness. This was done to constrain the model out-
put to the range between 0 and 1 and not to improve the statistical assumptions regarding the errors

of the data generating process.

Description/Interpretation

UAV images seem to be negatively correlated with the imperviousness. The effect is not really strong.
Regarding the methods, there seems to be no influence, because the estimated linear relation is prac-
tically negligible. In addition, there is no evidence for interactions between the image source and the

processing method.
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Peak runoff

Model and results
Please refer to Table [S4 and Figurp S4

Description/Interpretation
UAVdata generally seem to produce slightly smaller peaks, whereas the RQE method is positively
correlated to peak hight. However both effects are not significant by any means. There are no inter-

actions of these two. Statistical assumptions are not fulfilled.

Runoff volume

Model and results
Please refer to Table[S)5 and Figurf S5

Description/Interpretation
UAV data generally seem to produce slightly runoff volumes, whereas the RQE method is positively
correlated to runoff volume. However both effects are not significant by any means. There are no

interactions of these two. Statistical assumptions are not fulfilled.

Time to peak

Analysis was not performed, because exploratory analysis suggest that the differences between the

different image sources are negligibly small.

S4 Pipe flow predictions

Please refer to Figure[Sq
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Figure S1. Scatterplot of surface runoff characterstics for the 307 individual subcatchments of the Wartegg

SWMM model. Black = Ortho fotos, Red= UAV images. A_eff: effective area, Imp: imperviousness
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Figure S2. Scatterplot of surface runoff characterstics for the 307 individual subcatchments of the Wartegg

SWMM model. Green= ML, Blue = RQE. A_eft: effective area, Imp: imperviousness



Table S3. Summary results of the regression analysis. The negative sign of the estimated slope parameter suggests
that the UAV images generally go together with a lower imperviousness. In addition, the influence of the image
source seems to be larger than that of the classification method, although the high p-values for all parameters

suggest that it is not very likely that the observed values of imperviousness were to have occurred under the

given statistical model.

Dependent variable:

Volume
DataUAV —301.699
(331.033)
MethodRQE 298.671
(331.033)
DataUAV:MethodRQE 199.362
(468.151)
Constant 3,893.406" "
(234.075)
Observations 1,228
R? 0.003
Adjusted R? 0.001

Residual Std. Error
F Statistic

4,101.333 (df = 1224)
1.274 (df = 3; 1224)

Note:

*p<0.1; **p<0.05; ***p<0.01
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Figure S3. Diagnostic plots of the regression analysis. It is obvious that the statistical assumptions are not

fulfilled very well and that the observe imperviousness is not well explained.



Table S4. Summary results of the regression analysis for peak runoff. The negative sign of the estimated slope
parameter suggests that the UAV images generally go together with a lower stormwater peak flow. Here, the
influence of the image source seems to be in the same order of magnitude than that of the classification method,
although the former is negatively correlated and the latter has a positive correlation with peak runoff. Again,
the high p-values for all parameters suggest that it is not very likely that the observed peak runoff values were

to have occurred under the given statistical model.

Dependent variable:

Peak
DataUAV —0.065
(0.067)
MethodRQE 0.068
(0.067)
DataUAV:MethodRQE 0.038
(0.094)
Constant 0.826™**
(0.047)
Observations 1,228
R? 0.004
Adjusted R? 0.001
Residual Std. Error 0.827 (df = 1224)
F Statistic 1.507 (df = 3; 1224)
Note: *p<0.1; **p<0.05; ***p<0.01
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Figure S4. Diagnostic plots of the regression analysis. It is obvious that the statistical assumptions are not

fulfilled very well and that the observe imperviousness is not well explained.
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Table S5. Summary results of the regression analysis for runoff volume.

Dependent variable:

Volume
DataUAV —301.699
(331.033)
MethodRQE 298.671
(331.033)
DataUAV:MethodRQE 199.362
(468.151)
Constant 3,893.406" "
(234.075)
Observations 1,228
R? 0.003
Adjusted R? 0.001

Residual Std. Error
F Statistic

4,101.333 (df = 1224)
1.274 (df = 3; 1224)

Note:

*p<0.1; **p<0.05; ***p<0.01
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Figure S5. Diagnostic plots of the regression analysis. It is obvious that the statistical assumptions are not

fulfilled very well and that the observe imperviousness is not well explained.
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Figure S6. Distribution of calibration parameter (Decay K: infiltration decay rate after HORTON; MaxRate:
maximum infiltration rate after HORTON; width: conceptual parameter describing the width of a sub-
catchment; Add.area: conceptual parameter describing event-based sewer infiltration) values identified during
the auto-calibration process. Grey rhombs represent the optimum parameter set identified for each population;

the red rhomb represents the final parameter set.
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