
The authors would like to thank the reviewer#1 for his valuable comments. 

 

We address the comments in the same order as the reviewer. 

 

1) Thank you for pointing out this issue. In the revised version of the manuscript we expanded 

the state-of-the art section and added references concerning applications of UAVs in 

different contexts. 

2) We deliberately did not include too many detailed information on operational UAV data and 

further specifications, because we rather want to focus on the use of UAV ‘products’ for 

urban drainage applications. However, we include details on image processing in the revised 

version of the manuscript. Details regarding the flight platform are available in the 

Supplementary Material.  

3) We agree that the description of the urban drainage model in Chapter 2 should be improved. 

A more precise and explicit terminology is used in the revised version of the manuscript. This 

should resolve the potential confusion regarding surface runoff (hydrological) and channel 

flow (hydraulic) model. Regarding the recommendation to straightly use and discuss 2D 

model applications (two-dimensional dynamic overland flood model coupled with a one-

dimensional sewer network model) we would re-comment as follows:  

1. We decided to use and discuss just a 1D sewer model (EPA SWMM) since it is - to date - 

the state-of-the-art approach for sewer network modelling, plus SWMM is one of the most 

established tools used. We do not want to retract to this, but due to the fact that a large 

community in practice is dealing with particular this application, we thought it would be most 

valuable to discuss the use of UAV data for a widely used state-of-the-art 1-D model 

application.  

2. Including the 2D modelling approaches would impose several other, partly relevant, issues 

apart from land cover data (input data accuracy, i.e. spatial resolution of DSM, discussion on 

preferential flow pathways depending on the overland flow model used). It would extend the 

scope of the paper significantly and, most likely shift the focus of the discussion. However, 

we do acknowledge that opening the discussion regarding 2D modelling approaches, 

becoming more and more popular, would clearly make sense. Hence, in the revised version 

we extend the already included section in the discussion chapter (line 498-505) to address 

the issue in more detail.   

4) Fig. 2: we enhanced the quality of this figure. 

Fig. 3: Thank you for pointing out this issue. We decided to remove this figure in order to 

keep the final manuscript clearer. Fig. 4: similarly to Fig. 2, we enhanced the quality of this 

figure. The purpose of this figure was to give an overview of the catchment in relation to the 

topographic situation; moreover, the goal was to show the reader how relatively small area 

of the catchment was used to train the classifier. Therefore, we believe that the scale-bar is 

not necessary and will blur the image; Fig. 5 and 6: The purpose of this figure was (similarly 

to Fig. 3) to show the results of the classification in regard to different classification settings 

(datasets, classification methods, number of target classes). We deliberately showed a 

building and its surroundings so that the reader can see how does our method cope with all 

kinds of objects on the image (building, trees, grass, roads). We think that the scale-bar is not 

necessary and will blur the figure. In addition to this, we believe that the colors used in this 

figure are well contrastive; Fig. 7 and 8: we added the units in captions of the figures. We 

believe that the colors used in these figures are well contrastive. 



The authors would like to thank the reviewer#2 for his valuable comments. 

 

We address the comments in the same order as the reviewer. 

 

1) Indeed, the different impervious maps we use as input into the urban drainage model result 

in negligible variations in the hydraulic output variables. We explain the small model output 

deviations by spatial aggregation and the applied auto-calibration. 1. We do see only small 

differences in the impervious maps we extract from the different [data sources x 

classification routines]. This is shown in Fig. 6a, illustrating the distribution of imperviousness 

among sub-catchments with very similar median and interquartile values. These (already) 

small differences propagate through the UD model but produce even smaller deviations 

which are compensated through calibration and the degree of spatial aggregation -> cf. Fig. 

6b,c, whereas it is not differentiated whether compensation is based on auto-calibration or 

the degree of spatial aggregation. 2. We agree that the issue of spatial aggregation is 

interesting and should be more than just verbally discussed. Originally, results from test 

simulations with a model that contains only 30 (instead of 307) sub-catchments have been 

carried out, but had not been included (sensitivity analysis). These results reveal that even 

less deviations regarding overland runoff and in-sewer flow occur. Addressing the comment 

of the reviewer#2 we originally included these results in the paper. But then we took them 

out since we wanted to reduce the variety of issues discussed in the paper. Thank you for 

making us thinking about it again! 

2) The exploratory analysis is criticized i) regarding its information it contributes to the problem 

under discussion and ii) regarding its methodological design. We certainly agree that one 

could argue about the statistical significance of the results (Table 5,6 in the Appendix). But 

therefore we placed them less prominently in the Appendix and clearly state the high p-

values (cf. line 409). On the other hand we still believe the exploratory part of the analysis, 

e.g. the variability shown in the box plots in Fig. 6 is expressive enough to show relation 

between the similarity of combinations of data sources and processing methods regarding 

surface characteristics and resulting drainage model outputs. The regression analysis on the 

other hand leaves indeed room for speculations, particularly due to the little statistical 

significance. In the revised version of the manuscript we changed the paragraph “Regression 

Analysis” in Section 3.2 by underlining the limited significance of the results. We shortened 

the paragraph to address the reduced relevance. We still would like to keep the results of the 

regression analysis to show that we made the effort to investigate potential correlations. 

Finally a clear comment to carefully interpret these results is given. 

3) Thank you for this valuable comment. To our knowledge, no studies on application of UAVs 

in urban drainage existed at the time we prepared the manuscript. In the revised version of 

the manuscript we expand the state-of-the art section and add references concerning 

applications of UAVs in different contexts. 

4) We deliberately did not include too many detailed information, because we did not want to 

shift the focus of the paper more on the UAVs. Technical specifications of the flight platform 

are available in the Supplementary Material. We include details on image processing in the 

revised version of the manuscript. 

5) Concerning the features used, please refer to the line 13-15 of “Boosting” paragraph of 2.3.1 

subsection. In the cited paper (Tokarczyk et al., 2015) all the details regarding applied 

features can be found. We did not include detailed information (and refer readers to the 

above mentioned paper), because we did not want to shift the focus of the paper away from 

the hydrological aspects. 

6) Thank you for pointing this out. We include a discussion concerning the costs of the approach 

in the reviewed version of our manuscript.  

7) Thank you for this valuable comment. In the revised version of the manuscript we cut back 

redundant text, removed figures (Fig. 3), streamlined the manuscript to address key research 



questions (e.g. beginning of section 2.2.2 and 2.2.3). We also reduced the links to the 

supplementary material 



Page 1205. “high-quality” referred to UAV imagery in title and rest 

of the manuscript. I suggest changing to “high-resolution”, more appropriate in this 

context. You did not demonstrate that UAV imagery is a higher quality product. 

 

Thank you for your suggestion. We believe we do in fact demonstrate that UAV imagery is of a high-

quality (but not highER) 

 

Page 1206 Abstract: I believe should be written in a more concise way, especially in 

relations to the first 13 lines. Too many information are reported that are not really relevant 

here.  

 

In the revised version of the manuscript we rewrote the abstract. 

 

Line 10 “detailed image data is unavailable”, not truth. Thanks to repeated 

and global VHR satellite acquisitions any part of the globe is finely mapped.  

 

Thank you for pointing out this issue. However we believe not all areas of the world are covered with 

VHR data (for example the areas with a constant cloud-cover). Still, we addressed your comment by 

re-phrasing this into “detailed image data is often unavailable”. 

 

Line 16. Please add classification methods.  

 

Thank you for this comment. We believe that this is not relevant at this point of text. Description of 

used classification methods is included in section 2.2.1, and the discussion on the state-of-the-art 

methods is included in the Supplementary Material. 

 

Line 21. Take out swisstopo, not relevant here. 

 

We believe it is necessary to leave it, for it is a first introduction of the abbreviation of Swiss National 

Mapping Agency. 

 

Line 21. Change “correctness” to “overall accuracy” and report values. 

 

Thank you for pointing out this issue. We changed it. 

 

Page 1207 Line 7-9. You did not verify this in your work. Please, take it out.  

 

Thank you for this comment. In the revised version of the manuscript we discuss it.  

 

Line 12. This is even more relevant because flood risk is dramatically increasing in many 

parts of the globe due to the combined effects of socio-economic developments and 

population growth in floodplains, and increases in hydrological extremes induced by climate change. 

I suggest to include the following references: Hirabayashi, Y., Mahendran, 

R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. and Kanae, 

S. (2013). Global flood risk under climate change. Nature Clim. Change, 3,816-821. 

Hall, J., Arheimer, B., Borga, M. et al. (2014). Understanding flood regime changes 

in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772. 

Rojas, R., Feyen, L. and Watkiss, P. (2013). Climate change and river floods in the 

European Union: Socio-economic consequences and the costs and benefits of adaptation. 

Global Environ. Change, 23, 1737-1751. Line 19. I suggest to include the 

following reference: Arrighi et al. (2013). Urban micro-scale flood risk estimation with 

parsimonious hydraulic modelling and census data. NHESS. 

 



Thank you for this valuable comment. We added the mentioned references to the manuscript. 

 

Page 1208 Lines 7-8. Do not refer to manual techniques, they are well established 

mode modern techniques in research. Lines 14-17. References to coarse sensors 

are not appropriate here, I would focus more on works related to VHR data.  

 

Thank you for this valuable comment. We changed it. 

 

Line 21. I suggest to include the following references related to multi-sensor approaches: Forzieri 

et al., ISPRS Journal of Photogrammetry and Remote Sensing 74 (2012) 175–184; 

Forzieri et al., Computers Geosciences 49 (2012) 72–80. Line 21. Given the central 

role you are giving to the classification method proposed in your work you, should 

also include in the state of the art appropriate references on the algorithms used for 

classification of surface imperviousness, with special focus on contextual techniques 

(Moser et al. Proceedings of the IEEE 2013, 101 (3), 6304904, pp. 631-651). 

 

Thank you for this valuable comment. We added the mentioned references to the manuscript. 

 

Page 1209 Line 11. You should better describe the potential criticalities due to the finer 

spatial resolution (e.g., shadow effects) 

 

Thank you for pointing out this issue. However, we think that shadow effects are not caused by finer 

spatial resolution. In our view, by discussing it, we might go into unnecessary details. 

 

Page 1210 Lines 2-3. Not relevant information Line 8. Do not refer to figure here, 

not necessary.  

 

Thank you for pointing out this issue. In the revised version of the manuscript we changed both.  

 

Lines 9-15. Please, take it out this paragraph. This is material for 

conclusions. 

 

Thank you for this comment. In the revised version of the manuscript we left out this paragraph. 

 

Page 1211 Line 10. Change “with an” to “by”. 

 

Thank you for pointing this out. We changed it.  

 

Page 1212 Line 3. Images. 

 

Thank you for pointing this out. We changed it.  

 

 Line 24. Not relevant information. 

 

Thank you for this valuable comment. However, we believe that time needed for training a classifier is 

an important issue, thus decided to keep it in the revised version of the manuscript. 

 

  



Page 1213. Lines 1-11. This paragraph needs to be better explained. Line 4. Dense 

image matching? Please clarify. Line 9. “DTM provided by the swisstopo”, then the 

same provided by swissALTI3D. Line 16. “readings started … today” not relevant. Line 

18. Quality checks, too vague. Please, clarify. 

 

Thank you for pointing out this issue. In the revised version of the manuscript we rewrite the 

paragraph on height models. However, we believe that by explaining the dense matching technique 

we would go too much into photogrammetric details and move away from the main scope of the 

paper. On the other hand, we have provided the reader with references to the software used in image 

processing, where details on dense image matching method can be found. 

 

Page 1214 Line 8. Compartments, change to computing modules. Please 26. Please 

take out the term “standard”, it is only one of the available tools. 

 

Thank you for this comment. In the revised version of the manuscript we made the changes. 

 

Page 1215 There are too many details in Section 2.3. Please synthesize. Line 10. “defacto 

a standard” change to a largely used. Line 18. Consider also that this decaying 

behavior, known occurs when the number of classifier parameters (which generally 

increases, often super-linearly, with the number of features) becomes so large that the 

fixed training set is insufficient to accurately estimate all parameters. Landgrebe, D., 

2003. Signal Theory Methods in Multispectral Remote Sensing. John Wiley and Sons, 

Hoboken, New Jersey, USA. Line 19. Spectrally consistent? Please clarify. 

 

Thank you for pointing out this important issue. However, we do believe that in order to properly 

explain the reason behind using novel classification methods, we do have to include the paragraph on 

ML method, which we tried to keep as concise (and understandable) as possible.  

We deliberately did not explain the “curse of dimensionality” more in detail to keep the text as 

concise as possible. 

In the revised version of the manuscript we explain what “spectrally consistent” means. 

 

Page 1216. Line 19, “in our view…” this very subjective. Please corroborate properly 

your methodological choices. Usually testing set are selected randomly over the area 

to avoid subjectivity (Lillesand, Kieferm Chipman Remote sensing and image interpretation, 

Wiley; Richards and Jia, Remote sensing digital image analysis, Springer). 

 

Thank you for pointing out this issue. A state-of-the-art remote sensing accuracy assessment of 

classification results is done point-wise indeed (random selection of test points); however our 

approach (which is similar to those used in semantic labelling problems of computer vision) reports 

the classification accuracy for all the pixels in the area, which is more reliable/accurate than assessing 

it on a small subset. It is more time-consuming though, but for the purpose of this study we wanted to 

achieve as reliable accuracy assessment as possible. 

 

Page 1221. I suggest to merge Results and Discussion Sections, now your messages 

are too fragmented. Line 22. Pre-processing ans post processing, please specify to 

what you are referring. 

 

Thank you for pointing out this issue. In section 3 “Results” we present the quantitative/qualitative 

results of our study and in section 4 “Discussion” we discuss the results presented previously. We 

believe that in order to keep the manuscript clear and concise we should keep this division as it is. 

We did not include details on image pre- and post-processing because we did not to include too many 

details, which would move away from the main scope of the paper. 

Page 1222 Line 1. Not feasible. Why? Clarify in the text. 



 

Thank you for this valuable comment. We did not include details on image pre- and post-processing 

because we did not to include too many details, which would move away from the main scope of the 

paper. 

 

Page 1228 Section 4.2.3. This is not material of your work, but mainly speculation. You 

could synthesize this in one sentence only. 

 

Thank you for this comment. Indeed, the first paragraph of 4.2.3 may be, strictly seen, a little 

speculative since we do not quantitatively provide evidence that high-resolution images provide the 

basis for improved pollution load estimations. However, we think that condensing this paragraph to 

one single sentence would downgrade the relevance of point too much. We believe we can justify the 

relevance of this issue based on the findings from our study.  

  

We do not claim that our own work gives ‘full-evidence-answers’, but we have very reasonable 

grounds to assume that future (we start the paragraph with ‘In future investigations’) studies as 

suggested will further confirm the benefits of using UAV images in UD modelling. We do believe – 

backed-up by our findings in this study – that this type of individual high-resolution imagery will 

actually contribute a lot to pollution based urban drainage modelling studies in particular. Our results 

clearly show that different land covers can be identified more precisely (see Fig. 4 vs. 5 - rooftops can 

be better differentiated from roads) which ultimately means that also surface-specific pollution loads 

could be estimated more reliable. We do not show a pollution load model here since this i) would 

further extend the scope and ii) shift the focus away from the original intention of the paper. From 

our point of view, it is obvious that high-resolution imagery combined with a detailed classification 

method leads to a more precise quantification of land-use (and specific pollution loads, respectively), 

even though we do not show the detailed end-to-end comparison here.  

 

Still, we see your point. We therefore rephrased the text in Section 4.2.3 and condensed the entire 

paragraph as outlined below, hoping to address your point. 

 

The effect on surface runoff and pipe hydraulics using spatially aggregating models (two land-use 

classes) may not be as immense. However, in future investigations, models that allow differentiating 

between three or more land-use classes should be further investigated. This may be particularly 

relevant for pollutant load modelling, for which detail, accuracy and actuality of land-use 

characteristics are highly influential. . Relevance of input data accuracy may even further increase 

due to the fact that obtaining adequate pollution load reference data is considered to be very 

difficult (cf. Dotto et al., 2014).  

 

Also, other urban drainage tasks would greatly benefit from detailed land-use maps, e.g. precise and 

justified stormwater fees due to exactly delineated types of impervious areas (cf. Fig. 4,5). An 

improved feature (gully pots, sewer inlets, curbstone structures) identification is expected to further 

provide valuable input data for network generation approaches (e.g. as outlined in Blumensaat et al., 

2012) and the coupled 2-D surface runoff/1-D pipe flow model applications. For this, the RQE method 

seems to be most promising, although for the runoff analysis, a simpler method still seems to 

produce robust results.  

Blumensaat, F., Wolfram, M., and Krebs, P. (2012). "Sewer model development under minimum data 

requirements." Environmental Earth Sciences, 65(5), 1427-1437. DOI: 10.1007/s12665-011-

1146-1 

  



 

 

Page 1231. Many references are from conferences and grey literature not very relevant. I suggest to 

find more robust references. 

 

Thank you for pointing this out. We took this comment into consideration while preparing the revised 

version of the manuscript by adding more robust references. 

 

Figures 5 and 6. Please, add legend the figures will be more self-explicative. 

 

Thank you for pointing this out. We believe that adding the legend would unnecessarily blur the 

image. 

 

Figure 10. Please, add goodness of fit values in the panels. 

 

We added the correlation coefficients in each chart. 
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Abstract. Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk as-

sessment particularly against the background of a changing climate and an increasing urbaniza-

tion. These models typically rely on high-quality data for rainfall and surface characteristics of the

::::::::
catchment

:
area.

While recent research in urban drainage has been focusing on providing spatially detailed rain-5

fall data, the technological advances in remote sensing that ease the acquisition of detailed land-use

information are less prominently discussed within the community. The relevance of such methods

increase as in many parts of the globe, accurate land-use information is generally lacking, because

detailed image data is
::::
often

:
unavailable. Modern unmanned air

::::
aerial

:
vehicles (UAVs) allow ac-

quiring high-resolution images on a local level at comparably lower cost, performing on-demand10

repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study.

In this study, we investigate for the first time the possibility to derive high-resolution impervious-

ness maps for urban areas from UAV imagery and to use this information as input for urban drainage

models. To do so, an automatic processing pipeline with a modern classification method is tested and

applied
::::::::
proposed

:::
and

::::::::
evaluated

:
in a state-of-the-art urban drainage modelling exercise. In a real-life15

case study in the area of (Lucerne, Switzerland,
:
)
:
we compare imperviousness maps generated from

a
::::
using

::
a

:::::::::
fixed-wing

:
consumer micro-UAV and standard large-format aerial images acquired by

the Swiss national mapping agency (swisstopo). After assessing their correctness
:::::
overall

::::::::
accuracy,

we perform an end-to-end comparison, in which they are used as an input for an urban drainage

model. Then, we evaluate the influence which different image data sources and their processing20

methods have on hydrological and hydraulic model performance. We analyze the surface runoff of

1



the 307 individual sub-catchments
::::::::::::
subcatchments regarding relevant attributes, such as peak runoff

and volume. Finally, we evaluate the model’s channel flow prediction performance through a cross-

comparison with reference flow measured at the catchment outlet.

We show that imperviousness maps generated using UAV imagery
::::
from

:::::
UAV

::::::
images

:
processed25

with modern classification methods achieve accuracy comparable with
::
an

::::::::
accuracy

:::::::::
comparable

:::
to

standard, off-the-shelf aerial imagery. In the examined case study, we find that the different impervi-

ousness maps only have a limited influence on modelled
::::::::
predicted surface runoff and pipe flows. We

:
,
::::
when

:::::::::
traditional

:::::::::
workflows

:::
are

:::::
used.

:::
We

::::::
expect

:::
that

::::
they

::::
have

::
a
:::::::::
substantial

::::::::
influence,

:::::
when

:::::
more

::::::
detailed

:::::::::
modelling

::::::::::
approaches

:::
are

::::::::
employed

::
to

::::::::::
characterize

::::::::
land-use

:::
and

::
to

::::::
predict

:::::::
surface

::::::
runoff.30

:::
We conclude that UAV imagery represents a valuable alternative data source for urban drainage

model applications due to the possibility to flexibly acquire up-to-date aerial images at a superior

quality
::::::
quality

::::::::
compared

::::
with

:::::::::::
off-the-shelf

:::::
image

::::::::
products,

:
and a competitive price . Our analyses

furthermore suggest that spatially more detailed
::
at

:::
the

::::
same

:::::
time.

:::
We

::::::
believe

:::
that

::
in

:::
the

::::::
future, urban

drainage models can even better
::::::::::
representing

:
a
::::::
higher

::::::
degree

::
of

::::::
spatial

:::::
detail

:::
will

::::
fully

:
benefit from35

the full detail
:::::::
strengths

:
of UAV imagery.

1 Introduction

In the last century we have witnessed a massive
::::::::
increased migration of people from rural areas to the

cities. Today, a majority of the human population live in the cities and this number is estimated to

grow constantly, and reach a level of 60% (UN, 2013). The process of a rapid urbanization called on40

developing an infrastructure cabable
::::::
capable

:
to cope with a constantly increasing number of its users.

Accordingly, ensuring water supply for the people is important, but
:::
due

::
to

:::
the

::::::::
increased

:::::::::::
hydrological

:::::::
extremes

:::::::
induced

::
by

:::::::
climate

::::::
change

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Hirabayashi et al., 2013; Hall et al., 2014; Rojas et al., 2013) ,

being able to safely direct stormwater away from populated areas, in order to avoid flooding, is

also a a
::::

not
::::
least

:
challenging task. It requires predicting the hydraulic behaviour

:::::::
behavior

:
of the45

given drainage infrastructure using reliable hydrological models
::::::::::::::::::
(Arrighi et al., 2013) . Those mod-

els, apart from detailed rainfall information, call for surface characteristics such as imperviousness.

Impervious surfaces reduce the infiltration of water into the soil. They can be directly related to a

level of urbanization (Stankowski, 1972), because in urban environments, impervious surfaces dom-

inate (e.g. rooftops or roads). Monitoring of imperviousness level is substantial for it
:
as

::
it
:
directly50

impacts many environmental processes. An increasing percentage of impervious surfaces increases

surface runoff volume and peak discharge, and decreases soil moisture compensation and ground-

water recharge. Moreover, increased peak runoff volumes together with an inefficient drainage net-

work can not only cause
:::::
urban floods, but also lead to extensive erosion events and increase

::
an

::::::::
increased

::::::::
hydraulic

:::::
stress

:::
and

:::::::::
increasing the risk of loading waterbeds with sediments, and its asso-55

ciated constitents
:::::::::
constituents

:
(e.g. phosphorus, nutrientsand pesticides). Growing level of surface

2



imperviousness has a negative impact on water quality, because the pollutants will be more easily

washed out to the nearby waterbodies.
::::::::
nutrients,

:::::::::::
contaminants

:::
and

:::::::::::::::
micro-pollutants).

:

Many different methods have been developed and applied to map impervious areas. Amongst these

are manual methods, which for example use existing built-up zone plans, or manually process remote60

sensing images (Krejci et al., 1994) . An important step towards automatization of these processes

:::::::::
automation

::
of

:::
the

::::::::
processes

:::::::
applied

::
to

::::
map

:::::::::
impervious

:::::
areas was made as a consequence of remote

sensing sensors and classification techniques development (for a detailed review of remote sensing

methods used to map imperviousness, please refer to supplementary material
:::
the

::::::::::
Supplement). In

general, most of the studies on extraction of impervious surfaces from remote sensing data focused65

on satellite images. Examples include low-resolution sensors, such as MODIS (Boegh et al., 2009) ,

AVHRR (Carlson and Arthur, 2000) or DMSP-OLS (Lu et al., 2008) ; medium-resolution, such as

Landsat 5 TM (Parece and Campbell, 2013) and Landsat 7 ETM+ (Van de Voorde et al., 2009) ; or

high-resolution: SPOT (Li et al., 2011) and ASTER (Weng et al., 2009) . During the last decade, a

rapid improvement of imaging sensors gave the end-user an access to very high spatial resolution70

(VHR) imagery1. Satellite sensors like Ikonos (Chormanski et al., 2008) and QuickBird (Zhou and

Wang, 2008) or VHR aerial images (Fankhauser, 1999; Nielsen et al., 2011) were quickly adopted

for impervious surfaces mapping.
:::::
Some

::::::
studies

::::::
suggest

:::::
using

::::::
highly

:::::::
accurate

:::::::
methods

::
to
::::::::

quantify

::::::::
landscape

:::::::
changes

::::::::
(land-use

:::
and

:::::::::
land-cover)

:::::
using

::::::::::
multi-sensor

::::::::::
approaches

:::::::::::::::::::::
(Forzieri et al., 2012b, a) .

::
In

:::
the

::::::
context

::
of

:::::
urban

:::::::::
hydrology

:
Ravagnani et al. (2009) attempted to use impervious surfaces ex-75

tracted from VHR satellite and aerial imagery as an input to urban drainage model, but they did

not analyze pipe flow predictions, focusing only on surface runoff component. However, modern

urban drainage modelling methods call for up-to-date and detailed input data, which could also be

acquired in an efficient way. Even though VHR satellite images able to acquire fine-grained image

information (WorldView-3 satellite can achieve up to 0.31m GSD in panchromatic channel) and80

have short revisit periods, are still expensive and vulnerable to cloud cover. VHR aerial imagery on

the other hand, although being able to acquire very detailed imagery, is usually being updated at

most once a year, but usually every third year (swisstopo, 2010). Recently, imaging platforms based

on UAVs became very popular, finding their application in the fields of photogrammetry, arche-

ology or agriculture (Sauerbier and Eisenbeiß, 2010; Eisenbeiß, 2009; Zhang and Kovacs, 2012).85

In
:::::
More

:::::::
recently,

::::::::::::::::::::::::::
Leitão et al. (2015) investigated

:::
the

:::::::
quality

::
of

::::::
digital

::::::::
elevation

::::::
models

::::::::
(DEMs)

::::::::
generated

:::::
using

::::
UAV

:::::::
imagery

::::
from

:::::
urban

::::::::
drainage

:::::::::
modellieng

:::::::::::
applications.

::
In

:::
the

::::
study

:::
the

:::::::
authors

::::
show

::::
that

:::
the

:::::::
quality

::
of

:::::
UAV

::::::
DEMs

::
is

::::::::::
comparable

::
to
::::

that
:::
of

:::::::::::
conventional,

:::::::::::
off-the-shelf

::::::
height

:::::::
datasets.

::::::::
However,

::
to

:::
our

::::
best

:::::::::
knowledge

:::
no

::::::
studies

:::::
exist,

::::
that

::::
used

:::::::::
UAV-based

::::::::
imagery

::
to

::::::
extract

::::::::::::
imperviousness

:::::::::::
information,

::::
and

::
to

:::
use

::
it

::
in

:::
the

::::
field

::
of
::::::

urban
:::::::
drainage

:::::::::
modelling.

:::
In comparison90

to a standard, off-the-shelf satellite or aerial remote sensing imagery, UAVs demonstrate greater

flexibility and are more efficient in terms of money and time. Yet, the classification of UAV VHR

1We refer to a VHR image when sensor’s ground sampling distance (GSD) is lower than 1m
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imagery, particularly in urban areas, is challenging, because in this level of detail, many small ob-

jects appear, and fine-grained texture details of larger objects emerge. Thus, describing an object

class using only single raw pixel values is insufficient. Accurate classification needs additional95

image features, which would characterize the contextual information by describing object’s local

neighbourhood. Here, in order to properly exploit high level of detail of UAV imagery, we propose

to use a randomized quasi-exhaustive (RQE) feature bank (Tokarczyk et al., 2015) , which consists

of a multitude of multiscale textural features describing both, spectral and height information. To

sidestep manual selection of features from this exhaustive feature set, we use a boosting classifier to100

only choose the optimal features during training2.

In this study, we investigated the feasibility of using
::::::::::::
neighborhood.

:::
The

:::::
value

::
of
:::::

such
::::::::
approach

::
in

:::::::::::
classification

::
of

:::::::
surface

:::::::::::::
imperviousness

:::
has

:::::::
already

:::::
been

::::::::::::
acknowledged

::::::::::::::::::
(Moser et al., 2013) .

::::::::
However,

::::
what

::
is

::::::
highly

:::::::
relevant,

:::
but

::::::::
currently

:::::::
unclear,

::
is

::::
how

::
to

:::
best

:::::::
exploit

:::
the

:::
rich

:::::::::::
information,

::
i.e.

:::
the

::::::::::::
unprecedented

:::::
level

::
of

::::
detail

::::
and

::::::::
flexibility

::
to

::::::
acquire

::::::::::::::
problem-specific

::::::
images.

:::::
And,

:::::::
whether105

:
it
::
is

:::::::
feasible

::
to

:::
use imagery acquired with UAVs for urban drainage modelling.

Specifically, we present three main
:::
key

:
aspects:

1. we evaluate whether such low-cost monitoring data of land-use
:::
data

:::::
based

:::
on

:::::
UAV

:::::::
imagery

can be used to assess the performance of urban drainage systems,

2. we suggest using a boosting classifier in conjunction with
::::::
propose

:
a
::::::
unique

::::::::
workflow

:::::
based

:::
on110

:
a
::::::::::
randomized

::::::::::::::
quasi-exhaustive

::::::
(RQE)

::::::
feature

::::
bank

::::
and

:
a
::::::::
boosting

:::::::
classifier2

:
.
:::
The

:
RQE fea-

ture bank , to properly exploit high level of detail of UAV imagery, and
::::::
consists

::
of

::
a

::::::::
multitude

::
of

:::::::::
multi-scale

::::::
textural

:::::::
features

:::::::::
describing

::::
both,

:::::::
spectral

:::
and

:::::
height

::::::::::
information

:::::::::::::::::::::
(Tokarczyk et al., 2015) .

:::
The

::::::::
boosting

::::::::
classifier

:::::
lends

:::::
itself

::
to

:::
the

::::
task

:::
to

::::
only

::::::
choose

::::
the

::::::
optimal

::::::::
features

::::::
during

::::::
training

::::
(for

:::::
details

:::
see

:::::::
below),

:::
and

:
115

3. we perform end-to-end comparison of land-use against high-quality sewer pipe flow data. Al-

though important to correctly interpret the results, this is not routinely done in remote sensing

literature.

We
::::
The

:::
key

::::
idea

:::
of

:::
our

:::::
study

::::
was

:::
not

:::
to

:::::
solely

:::::
base

:::
the

::::::::::
assessment

::
of

:::
the

:::::::::
usefulness

:::
of

:::::
UAV

::::::
images

:::
for

:::::
urban

:::::::
drainage

::::::::::
applications

:::
on

:::
the

::::::::::
performance

:::
of

:::
the

::::::::
classifiers.

:::::
Thus,

:::
we

:
demonstrate120

the usefulness of our approach on
::
by

:::::
means

:::
of a case study from

::
in a small urban area in Lucerne,

Switzerland . First
::
in

:::
two

:::::
steps

::::
(see

::::
also

::::::
Figure

::
1):

::::
first, we compare the UAV data with standard

airborne imagery using a maximum likelihood
::::
(ML)

:
classifier and the RQE method on both image

sources
::
(1). Second, we use a hydrodynamic model to show the consequences of different land-use

information on urban drainage performance indicators(see Figure 1). ,
::::
here

:::::::
surface

:::::
runoff

:::
(2)

::::
and125

:::::::
in-sewer

::::
pipe

::::
flow

:::
(3).

:

2Boosting classifier used with conjunction with RQE features will be referred to as "RQE method" in this paper
2
::::::
Boosting

::::::
classifier

:::
used

:::
with

::::::::
conjunction

::::
with

:::
RQE

::::::
features

::
will

::
be
::::::
referred

:
to
::

as
::::
"RQE

::::::
method"

::
in

:::
this

::::
paper
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In general, our results are promising because we are able to classify land use using UAV imagery

as accurately as from standard aerial images. We find that the different imperviousness maps only

have a limited influence on surface runoff and pipe flows. Interestingly, this indicates that lumped

models might become a bottleneck in detailed rainfall-runoff studies. In our view, a major advantage130

of UAVs in practical applications is the possibility to flexibly acquire up-to-date and detailed aerial

images at a good quality and a competetive price, at least for small areas.

Figure 1.
::::::
Overall

::::::
analysis

:::::::
approach

:::
(	-%

:::
imp:

:::::
model

::::::::
parameter

::::::
"degree

::
of

:::::::::::::
imperviousness";

::::
ML:

::::::::
Maximum

::::::::
Likelihood;

:::::
RQE:

:::::::
boosting

:::
with

:::::::::
randomized

:::::::::::::
quasi-exhaustive

:::::
feature

:::::
bank).

The remainder of the paper is structured as follows: first we present general approach and the

case study catchment with related material, such as the hydrodynamic rainfall-runoff model, rainfall

and runoff observations
:
, and remote sensing data. Then we describe the applied methods, land-use135

classification, surface runoff and in-sewer flow modelling, as well as the suggested performance

criteria. Finally we present results and discuss the potential and limitations of using UAV images in

urban hydrology.

2 Materials and methods

2.1 Overview140

The key idea of our study was to not to solely base the assessment of the usefulness of UAV images

for urban drainage applications on the performance of the classifiers. In addition, we explore their

usefulness also in relation to predicting surface runoff and pipe flows, which are the ultimately

decisive processes for the urban drainage analysis (see Figure 1). In a case study in the area of

Luzern, Switzerland we evaluated the two remote sensing datasets to show following: assess the145

efficiency of a recent high-performance classification method (RQE) and compare it to a standard

classifier (ML) commonly used for perviousness mapping applied to images acquired with an UAV

in relation to standard off-the-shelf aerial images (1), and perform an end-to-end comparison, in
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which the maps from different data sources processed through different classification methods were

used as input for a hydraulic sewer model predicting surface runoff (2) and in-sewer channel flow150

(3), whereas the latter is compared to a measured reference.

Overall analysis approach (	-imp: model paramater "degree of imperviousness"; ML: Maximum

Likelihood; RQE: boosting with randomized quasi-exhaustive feature bank).

2.1 Case study and datasets

2.1.1 Case study155

For our case study we used a residential area, called Wartegg catchment, in the city of Lucerne,

Switzerland (see Figure 2). The catchment covers about 77 ha and is home for 6900 residents. It

is typical for many suburban areas in Switzerland: high- to moderate-density population, scattered

single- to two-story housing embedded in a hilly landscape, including the typical public infrastruc-

ture, such as shopping centres
::::::
centers

:
and sports grounds.160

Storm- and wastewater is drained by separate and combined sewers (see Figure 2) with a total

length of 11.2 km. An overflow structure connected to a small storage basin is installed to avoid

hydraulic overload in case of heavy rainfall. Excess combined sewage is directly discharged to the

lake, the carry-on flow travels by gravity to the wastewater treatment works. Three small creeks, to

some extent culverted, cross the catchment and are partly interlinked with the storm water network.165

Figure 2. Case study catchment area situated in Lucerne.
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2.1.2 Remote sensing datasets

Image data

In this study we used two image (see Figure ??) and two height datasets. The first image data was

acquired by swisstopo3 in June 2013. It is a part of an aerial orthophoto mosaic (RGB channels)

with a GSD of 0.0625 m, and consists of images acquired during leaves-on conditions. Although170

this dataset was acuired
:::::::
acquired on-demand (standard swisstopo orthophotos have a GSD of 0.25

m), images acquired by swisstopo are publically
:::::::
publicly available, and this data source is, to our

best knowledge, the standard for hydrological applications in Switzerland. Because swisstopo offers

off-the-shelf image products, which are already orthorectified and georeferenced, one can avoid

costly and time consuming pre-processing of raw image data. On the other hand, image acquisitions175

are made at most once a year, usually every third year, and try to alternate between leaves-on and

leaves-off periods (swisstopo, 2010). Thus, it might happen that one is not able to obtain up-to-date

results.

The second dataset was acquired with a Canon IXUS 127 HS digital consumer camera with 16

Mpix sensor, mounted on a fixed-wing micro-UAV platform (see supplementary material
:::::::
Sensefly180

::::
eBee,

::::
see

::::
Sect.

:::
A2

::
in

:::
the

::::::::::
Supplement for details). The flight was performed during leaves-off condi-

tions in March 2014.
:::
The

:::::::
custom

:::::::::
processing

::::::::
software,

:::::
which

::
is

:::::::
shipped

:::::::
together

::::
with

:::
the

:::::
UAV

:
(cf.

:::::::::::::::::::::
http://www.senseFly.com,

:::::
based

::
on

:::
the

::::::
Pix4D

::::::::::
technology, cf.

::::::::::::::::::::::
http://pix4d.com/products/)

:::
was

:::::
used

::
to

::::::
process

:::
the

:::::::
images.

:
It
::
is

::::::::
designed

::
for

::::
use

::
by

::::::::::
non-experts

:::
and

::
is

::::::
highly

:::::::::
automated,

::::
user

:::::::::
interaction

:
is
:::::::
limited

::
to

::::::::
selecting

::::
input

:::::::
images,

:::::::
entering

:::::
flight

::::::::::
parameters

:::::::
(camera

:::::
details

::::
and

::::::::
GPS/INS

:::::
data)185

:::
and

:::::::::
measuring

::::::
ground

::::::
control

::::::
points

:::::::
(GCPs). Orthophotos (RGB channels) generated from the ac-

quired images have a GSD of 0.10 m. The
:
In

:::
the

::::
case

::
of
::

a
:::::
small

:::::::::
catchment,

::
as

::
in

:::
our

::::::
study,

:
a
:
main

advantage of UAVs, when compared to manned aircraft with large-format mapping cameras, lies

in their flexibility , in terms of place and time of deployment, and
::
in their low costfor small areas

:
.

:::::::::
Conducting

::
a
:::::::
standard

::::::::::::::
photogrammetric

:::::
flight

:::::::::
campaign

:::::::
typically

:::::::
requires

::::
days

:::
of

:::::::::
preparation

::::
and190

:
is
:::::
more

:::::::::
dependent

:::
on

::
to

:::::::
weather

:::::::::
conditions.

:::::
Note

::::::
though,

:::::::::::
micro-UAVs

:::
are

::
at

:::::::
present

:::
not

:::::::
suitable

::
for

:::::::::
large-area

::::::::
mapping,

:::::::
because

::
of

::::
their

:::
low

:::::
speed

::::
and

::::::
limited

::::::
battery

:::::::
capacity.

Prior to the classification, both datasets were downsampled to a GSD of 0.25 m in order to make

the evaluation comparable to standard swisstopo imagery available on the market. Furthermore, this

step reduces the time needed for training the classifier.195

Height model

In this study we used two different height models. Classification of :
:::
(i)

:
a
:::::
DTM

:::::::
provided

::
by

:::::::::
swisstopo

::::::::::::::::::
(swisstopo, 2014) was

::::
used

::
to

::::::
classify the swisstopo dataset was performed using the swissALTI3D product (swisstopo, 2014) ,

whereas for UAV imagery we used a height modelextracted using dense image matching. The200

swissALTI3D product is a digital terrain model (DTM) and it
:::
and

::
to

::::::
derive

:::
the

:::::::::
catchment

:::::
slope

3In this paper "ortho" and "orthophoto" terms will be used interchangeably with swisstopo imagery.
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::
for

::::
the

:::::
urban

::::::::
drainage

::::::
model.

::::
This

::::::
model

:
features a grid size of 2 m. For impervious surfaces

classification the model has been
:
,
:::
for

:::
the

::::::::
land-use

:::::::::::
classification

::
it
::::
was

:
upsampled to the reso-

lution of corresponding image dataset. The second model is a normalized digital surface model

(nDSM), and was generated
:
;
:::
(ii)

:
a
::::::
nDSM4,

:::::::
created by subtracting a digital surface model (DSM )205

extracted from UAV images, and
:::::
DSM

::::::::
extracted

::::
using

:::::
dense

::::::
image

::::::::
matching

::::
from a DTM provided

by the swisstopo. For urban drainage modelling we used the swisstopo height model, because of its

empirically proven quality (swisstopo, 2014)
:::::::::
swisstopo,

:::
was

:::::
used

::
to

::::::
classify

:::
the

:::::
UAV

::::::
dataset.

Image datasets. swisstopo (left) and UAV (right).

2.1.3 Rainfall210

Precipitation data was collected from a meteo
::::::::::::
meteorological station located 2 km away from the

Wartegg catchment area, operated by the Swiss Meteorological Intsitiute
::::::
Institute

:
(MeteoSwiss).

Recordings were taken in a 10 min interval using a tipping bucket rain gauge with a precision of 0.1

mm- readings started at 1981 and last until today. Hourly precipitation was checked following the

quality assurance criteria of MeteoSwiss. Additional quality checks were carried out to ensure that215

the 10 min data are reliable. Spatial rainfall variability was not considered in the study due to the

short distance between the meteo
::::::::::::
meteorological

:
station and the study area.

2.1.4 Sewer flow reference data

Two flow data sets
:::::::
datasets were obtained from in-sewer flow monitoring located at the outlet of the

subcatchment (see Figure 2). Over a period of four months (17 July 2014 to 18 November 2014)220

the sewer flow was
:::::::
in-sewer

::::
flow

:::
was

:::::::::::
continuously

:
monitored with two different sensors, (i) Sigma

950 (HACH-LANGE
::
an

::::::::
acoustic

:::::::
Doppler

::::
flow

::::::
sensor

::::::
(Sigma

::::::::::
submerged

:::
AV

::::::
sensor,

:::::::
HACH) – 1

minute monitoring frequency and (ii) FLO-DAR (
:
a

:::::
digital

:::::::
Doppler

:::::
radar

:::::::
velocity

::::::
sensor,

:::::
along

::::
with

::::::::
ultrasonic

:::::::::::
level-sensing

::::::::::
(FLO-DAR, Marsh Mc Birney) - 15 minute monitoring frequency, to provide

redundant high quality measurements
:::
flow

::::
rate

::::::::::
information. Correlation analysis between the two225

reference signals show a high agreement and confirm the high
::::
solid quality of data.

2.1.5 Urban drainage model

Urban drainage models are tools to simulate surface runoff and sewer pipe flow. They can be used to

analyze the hydraulic behaviour of the urban drainage system
::::
urban

::::::::
drainage

::::::
systems, and to support

the analysis of flood risk and pollution of receiving water bodies. In general
:::
risk

:::::::
analysis

::
of
::::::

urban230

:::::::
flooding

:::
and

::::::::
receiving

::::::
water

::::::::
pollution.

::::::::
Typically, these models include two main compartments:

the hydrological model and the hydraulic
:::::::::
computing

::::::::
modules:

:::
the

:::::::
surface

:::::
runoff

:::::::::::::
(hydrological)

4
:
A
:::::
digital

::::
terrain

:::::
model

:::::
(DTM)

::::::
represents

:::
the

:::
bare

:::::
ground

:::::
surface;

::
a
::::
digital

:::::
surface

::::
model

:::::
(DSM)

:::::::
represents

:::
the

:::::
surface

::::
visible

::::
from

::
the

:::
top,

:::::::
including

::::::
buildings,

::::
trees

:::
etc;

::
the

::::::::
normalized

::::
digital

:::::
surface

:::::
model

::::::
(nDSM)

:
is
::::::
obtained

::
by

::::::::
subtracting

::
the

::::
DTM

:::
from

:::
the

::::
DSM

::
and

:::::
shows

::
the

:::::
relative

:::::
height

:
of
::::::::
non-ground

:::::
objects

:::
over

:::
the

:::::
ground.
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:::
and

:::
the

:::::::
in-sewer

::::
flow

::::::::::
(hydraulic) model. The hydrological model calculates the initial precipitation

losses, and resultant
:::::::
estimates

:::
the

:
time and space distribution of the direct runoff . The output

:::::
under

:::::::::::
consideration

::
of

::::::
initial

::::::::::
precipitation

::::::
losses

:::::::::::
(evaporation,

::::::
wetting

:::::::
losses)

:::
and

::::
soil

:::::::::
infiltration235

::
for

::::::::
pervious

:::::
areas.

::::
The

::::::::
resulting

:::::
runoff

:
is then used as input for the hydraulic model to simulate

surface and sewer networkflows
::
the

::::
pipe

::::
flow

::
in

:::
the

:::::
sewer

:::::::
network.

Like hydraulic models, hydrological models implemented
::
In

:::
the

::::::
present

:::::
study

:::
we

:::
use

:::
the

::::::
freely

:::::::
available

::::::::::
Stormwater

:::::::::::
Management

:::::
Model

:::::::
released

:::
and

:::::::::
constantly

:::::::::
developed

::
by

:::
the

::::
U.S.

::::::::::::
Environmental

::::::::
Protection

:::::::
Agency

:::::::::
(SWMM,

:::::::
Release

:::::::
5.1.006;

::::::::::::::::
(US-EPA, 2010) ).

::::::::
SWMM

::
is

:
a
:::::::

widely
::::
used

::::
and240

:::::::::::
well-accepted

:::::::::::::
state-of-the-art

::::
1-D

:::::::
dynamic

::::::::::::
rainfall-runoff

:::::::
model.

:::
We

::::::::::
deliberately

:::::
chose

::::::::
SWMM

::::::
despite

::
its

:::::::::
limitations

:::::::
(lumped

::::::
surface

:::::
runoff

::::::
model

:::::::
concept)

::
as

::
it

::::::::
represents

:
a
::::::
widely

::::
used

::::::::::::
state-of-the-art

:::::::::
application in urban drainage modellingsoftware are based on

:
,
:::
and

:::
we

::::::
wanted

::
to

::::
keep

:::
the

:::::::::
modelling

:::
use

::::
case

::
as

::::::
simple

::
as

:::::::
possible.

:

:::
The

::::::::::
description

::
of

:::
the

::::::
surface

::::::
runoff

::
is

:::::
based

:::
on

:::
the

::::::::::
MANNING

:::::::::
approach,

:
a
:
simplifying, con-245

ceptual formulations
::::::::::
formulation of transport phenomena that occur in the catchment . Generally,

these models assume
:::::::
assuming

:
that the surface runoff starts after the rainfall volume has exceeded

a representative value of the initial losses in the catchment. Rainfall losses are adjusted throughout

the rainfall event according to the changes occurring in the infiltration process
:::::::
(pervious

::::
part

:::
of

::::::::
catchment

:::::::
surface)

:
which is a function of the soil water saturation level. Surface runoff ends when250

the rainfall is smaller than the verified rainfall losses. Impervious surfaces are those where no infil-

tration occurs; the catchment
:::::::::
catchment’s

:
imperviousness degree and the catchment imperviousness

::
its spatial distribution are then expected to have a great impact on surface runoff and urban drainage

system modelling results.

To describe the hydraulic behaviour of the Wartegg catchment area during dry weather and storm255

events we developed a hydrodynamic sewer model implemented on the EPA SWMM modelling

platform (US-EPA, 2010) . The modelling platform SWMM is chosen as represents a standard,

well-established and freely available urban drainage model. The surface runoff is described by a

conceptual approach; pipe flow through the conveyance system is described with the Saint Venant

approach
::::
Flow

:::::::
routing

:::::::
through

::
a

::::::
system

::
of

::::::
sewer

:::::
pipes,

:::::::
storage

:::::
basins

::::
and

:::::::::
regulating

:::::::
devices

::
is260

:::::::::::
accomplished

::
by

:::::::
solving

::
the

:::::
Saint

::::::
Venant

::::
flow

::::::::
equations,

:::::::
whereas

::::
here

:::
we

::::::
applied

:
a
::::
type

::
of

::::::::
diffusive

::::
wave

::::::::::::
approximation

::::::
which

:::::::
neglects

::::::
inertial

::::
terms

:::::
from

:::
the

:::::::::
momentum

::::::::
equation

::::
when

::::
flow

::::::::
becomes

::::::::::
supercritical.

2.2 Methodology

2.2.1 Classification265

Generally, supervised classification consists of three main steps: (i) extraction of the features from

raw input image, (ii) training the classifier using a small, manually annotated training set (not nec-
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essarily from the same image), and (iii) classification of all pixels in the area of interest, using the

classifier trained in the previous step. In the following we describe two different types of supervised

classifiers: (i) Gaussian maximum likelihood, and (ii) boosting.270

Maximum likelihood

The Maximum Likelihood
:::::::::
maximum

::::::::
likelihood

:
(ML) classifier , which is de-facto a standard

::
is

:
a
:::::::
popular classification method in the field of urban hydrology, .

::
It
:

is a simple generative model

which assumes that the image features within each target class follow a Gaussian
::::::
normal

:
dis-275

tribution. Under this assumption, each of the target classes can be described by its mean vector

and covariance matrix. Given this information one can directly compute the statistical probabil-

ity of particular pixel belonging to one of the target classes. An important
::
A

::::::
serious

:
limitation

of ML is that it is not well suited for high-dimensional data; typically .
::::

Due
:::

to
:::
the

::::::
"curse

:::
of

:::::::::::::
dimensionality"

:::::::::::::
(Hughes, 1968) its performance degrades

:::::::
typically beyond a dozen or so feature280

dimensionsdue to the "curse of dimensionality" (Hughes, 1968) . For a medium
:
.
:::
For

::::::::
imagery

::::
with

:
a
:::::::
medium

::::::
spatial

:
resolution imagery, where objects are generally spectraly consistent

::::::
usually

::::::::
spectrally

::::::::
consistent5, it might be enough to construct image features consisting only of single raw

pixel values. However, the variability of the pixel values within an object class grows with the spatial

resolution of the image(
:
.
:::
For

:::::::
example

:::::
when

:
roof consists of many pixels and substructures become285

visible)
::::
such

::
as

::::::
planted

:::::
areas

::
or

::::
roof

::::::
gardens

:::::::
become

::::::
visible. Therefore one should no longer rely on

single pixel values, but has to consider contextual information and, for example, construct features

that exploit neighbourhood
::
the

::::::::::::
neighborhood of a pixel (e.g. textural features). Such features expand

the dimensionality of data, making generative classifiers inefficient.

Here we classified two image datasets using a maximum likelihood classifier implemented in Ar-290

cGIS software (ESRI, 2013). As often done in conjunction with the ML method, we use only the

spectral intensities at the pixel itself
:::::
single

:::
raw

:::::
pixel

:::::
values

:
as features.

Boosting

As an alternative to ML we chose
::::::
propose

:
a multiclass extension (Benbouzid et al., 2012) of adap-295

tive boosting (AdaBoost, Freund and Schapire (1995)). Unlike ML, boosting methods (and related

discriminative classifiers) are better suited for very high-dimensional feature spaces, as they do not

attempt to model the input data distribution. Boosting greedily learns an additive combination of

many simple classifiers (in our case shallow decision trees). A useful property of the method is that

it performs explicit feature selection as part of the classifier training. Thanks to this, we sidestep300

manual feature selection. Moreover, at test time only the selected features need to be computed,

which significantly reduces the computational effort. Here, we classified the images using random-

ized quasi-exhaustive (RQE) feature bank (Tokarczyk et al., 2015), which are able to capture multi-

5
::::::
Meaning

::
that

:::
they

:::::
consist

::
of

::::
pixels

::
of

:::::
similar

::::
values
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scale texture properties in a pixel’s neighbourhood
:::::::::::
neighborhood.

305

Performance assessment of classification

To assess the performance of the two classifiers used in this study, we have manually labeled a sub-

set (5 ha) of each of image datasets (see Figure 3). Hence, we were able to report the classification

accuracy for all pixels in an extended area, which in our view is a lot more reliable than sparse,

point-wise ground truth
:::::::
accuracy

::::::::::
assessment. We selected either three (rooftops/streets/vegetation)310

or two (impervious/pervious) target classes, where in the two-categories case, “impervious” class is

an aggregation of “rooftops” and “streets” classes. For the subsequent hydrological analysis, only

the two-class maps were used.

Both classifiers were trained using randomly selected subsets of pixels (1%, 2% or 5%, which

correspond roughly to 7000, 14000 and 36000 pixels). Thereby we can evaluate how the size of315

the training data has an influence on the overall classification accuracy. If satisfactory results can be

obtained, then a lower number of training samples is preferable, since it reduces the training time and

saves annotation effort. Similarily
::::::::
Similarly to experiments carried out in Tokarczyk et al. (2015),

we trained the boosting classifier using decision trees with eight leaf nodes, and set the number of

boosting rounds to 500. As performance metric for the classification we used the overall accuracy320

(OA), i.e. the fraction of correctly classified pixels.

Figure 3. Wartegg area containing 307 subcatchments (red polygons including blue polygons) overlayed on a

topographic map. The performance of classifiers was assessed on a subset depicted in blue.
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2.2.2 Assessing the importance of input data for
::
on surface runoff

To assess the importance
::::::::
influence of input data and the processing method

:::::::
accuracy on the surface

runoff, we predicted the surface runoff for a medium-size rain event
::::
rain

::::
event

::
of

::::::::
moderate

::::::::
intensity

::::
(total

:::::::
volume

::
of

::::
29.7

::::
mm;

:::::
peak

::::::
rainfall

:::::::
intensity

:::
of

:::
2.9

:::::
Ls−1). Then, we analysed the runoff of the325

307 individual catchments regarding relevant attributes, such as peak runoff and volume
::::::::::::
subcatchments

::::::::
regarding

:::
the

::::::::
following

::::::::
attributes:

:::
(i)

::::
peak

::::
flow

:::::::
(Qpeak)

:::
and

:::
(ii)

::::::
Volume

:::
of

::
the

:::::
peak

::::::
(Vpeak). As it is

very challenging to directly observe
:::::::
measure surface runoff that can be compared to the

:::
with

:
model

predictions, we first performed an exploratory analysis of the major influence factors. Second, we

investigated interactions between the data source and processing method by means of a regression330

analysis (see supplementary material
::::
Sect.

:::
A3

::
in

:::
the

::::::::::
Supplement for details).

Prediction of surface runoff To predict surface runoff, we selected a rain event lasting from 10

August 2014 at 22:00 to August 2014 at 03:00. This was a moderate event with a total volume of

29.7mm and a peak rainfall intensity of 2.9 Ls−1. Compared to other events registered for this area,335

it was an average event, thus we believe that general rainfall-runoff characteristics remain the same.

We characterized the hydrographs of all 307 sub-catchments with the following attributes: (i) peak

flow (Qpeak) and(ii) Volume of the peak (Vpeak). Performance assessment

Exploratory data analysis of surface
:::
and

::::::
surface

:
runoff characteristics

To summarize the important characteristics of the surface runoff, we visualized important aspects340

using boxplots and scatterplots (see Figure 6). Main research questions were:

– Which differences in imperviousness (deltaImp:::::
∆Imp) result for each catchment

:::::::::::
subcatchment:

(i) for the two data sources and (ii) for the two classification methods?

– Does the the image source have a substantial influence on the predictions of surface runoff

::::
from

:
a
::::::::::::
subcatchment? How does this depend on the processing method?345

Regression analysis of surface runoff characteristics

To answer the second question, we constructed four regression models with indicator variables (Mont-

gomery et al., 2012). This makes it possible to consider the individual effects of the data and the

processing method. In addition, a model with an interaction term, unlike an additive model, could

add a further adjustment for the "interaction" between the data source and the classification method.350

Specifically, we would like to explore whether the relationship between the image source and the

imperviousness in the subcatchments
:
, and their surface runoff characteristics is different for each

classifier. The model for a dependent variable y is:

yi = β0 +β1I
Data
i +β2I

Method
i +β3I

Data∗Method
i + εi (1)

where yi is the i-th observation of the dependent variable, IData
i an indicator variable which is 1 if355

yi was computed from UAV images (UAV) and 0 from orthophotos, IMethod
i is an indicator vari-
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able which is 1 if yi was computed with the RQE method and 0 for the ML classifier (ML). β0...β3

are the parameters to be estimated and εi is a random error term. If εi is normally distributed and

independent
:::
and

:::::::::::
independently

:::::::::
distributed, i.e. , εi ∼ N(0, σ2), this model is equivalent to a classical

least square regression or to a three-way analysis of variance model with treatment contrasts (Mont-360

gomery and Runger, 2007).

The imperviousness is bounded between 0 and 1, whereas a linear model could easily predict

values beyond this range, which is not admissible. To have a more plausible model, we therefore

used a logit-transformation on the imperviousness (%imp):

z = 2 ∗ arctanh(2 ∗ Imp− 1) (2)365

In addition, we analyze the results of this regression analysis on a qualitative basis only. With more

correct and more complex models, which better represent the underlying process that generated the

data, p-values (see Tables 5, 6 and 7 in supplementary material) would be tend to be larger. Here,

however, we are not really interested in the magnitude or statistical significance of the individual

effect, but
::
we just would like to see whether they are very different or not.370

2.2.3 Prediction of pipe flows

To assess the model’s capability to predict the resulting in-sewer flow(decisive for planning and

design of urban drainage infrastructure) , we compared the modelling result ,
:::
we

::::::::
predicted

:::::::::
stormwater

::::
flows

::
at
:::
the

:::::::::
catchment

:::::
outlet

:::
for

:::
36

::::::::::
independent

::::
rain

:::::
events

::
of

::::::::
different

:::::::
intensity

::::
and

:::::::
duration

::::
(see

::::::
below)

:::
and

::::::::
compared

:::::
them with flow data measured at the catchment outlet

:::::::::::
measurements (see Sec-375

tion 3.3). To do so, we evaluated the model performance regarding the
::
In

::::::::
particular,

:::
we

:::::::::
compared

::::::::
measured

:::
and

::::::::
predicted volume of the total runoff and the flow dynamics, particularly regarding the

prediction of the
:
as

::::
well

::
as
:
peak flows. Main driving questions for the analysis were:

– How do differences in imperviousness affect pipe flow predictions?

– To what extend
:::::
extent may differences regarding input data(imperviousness )

:
,
:::
i.e.

:::::
degree

:::
of380

::::::::::::
imperviousness

:::
of

:::::::::::
subcatchment

:::::
areas,

:
be compensated by the model calibration procedure?

Model calibration

To adress
::::::
address the latter question, we compared the results of the different model implementations

prior and after calibration. For the calibration/validation procedure we split the reference data set

::::::
dataset in a calibration (July to September 2014) and a validation period (September to November385

2014). In total, for both periods, 36 independent rain events of different intensity and duration were

observed, which we consider sufficient to cover the inherent variability of rain events.

To analyse the effect of different input data and how this would be addressed by model calibra-

tion, we applied a genetically adaptive multi-objective calibration algorithm (AMALGAM, Vrugt

and Robinson (2007)) to adjust the four implementations, in which the
::::::::
calibration

::::::::::
parameters

::
of

:::
the390
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:::
four

:::::::::::::::
implementations.

:::
The

:
model input (two image data sources × two different classifiers) is used

to derive the "%imp"-parameter. In the optimization, four different calibration parameters were ad-

justed to match three objective functions:(i) the
:::::::::
Simulation

::::
Bias

::::
(SB)

::::
and Nash-Sutcliffe-Efficiency

(NSE, Nash and Sutcliffe (1970)), (ii) the total flow balance, and (iii) the deviation regarding the

peak flows
::::
peak

::::
flow

::::::::
deviation

:
- all with respect to the flow at the catchment outlet. The input pa-395

rameter
::::::::::::
imperviousness

:
"%imp" is

::::::
derived

::::
from

::::::::::
orthophotos

::::
and

:
not subject to calibration. The

calibration parameters are:

– catchment width [m],

– HORTON maximum infiltration rate [mm d−1],

– Decay constant for the HORTON curve [d−1], and400

– Size of a virtual subcatchment [ha], mimicking groundwater infiltration into the sewer pipe

network.

Peformance
:::::::::::
Performance assessment: flow balance and flow dynamics

In a first step, we evaluated the match between modelled hydrographs and reference flow data us-

ing the Simulation Bias and the Nash-Sutcliffe-Efficiency (NSE)
::
SB

::::
and

::::
NSE. Both goodness-of-fit405

measures are well established in urban hydrology to cover deviations regarding the flow balance

(bias) and flow dynamics (NSE). The Simulation Bias B is defined as follows:

B =
(
E−M

)2
(3)

whereas M is the mean of measured (observed) values and E is the mean of estimated (simulated)

values. The bias ranges from −∞ until +∞ with an optimum at 0. The Nash-Sutcliffe-Efficiency410

NSE is defined as:

NSE = 1−
∑N

i=1 |Mi−Ei|2∑N
i=1 |Mi−M |2

(4)

whereas Mi is the measured (observed) and Ei is the simulated value at the time i, M is the mean

of measured (observed) values, E is the mean of estimated (simulated) values, and N the number of

paired data.NSE reaches 0 when the square of the differences between measured and estimated val-415

ues is as large as the variability in the measured data. In case of negative NSE values the measured

mean is a better predictor than the model.

To cover one of the key figures , relevant for engineering urban drainage systems, we included an

event-specific evaluation of peak flows in a second evaluation step. To this endwe extracted peaks

:
,
:::
we

::::::::
extracted

::::
peak

:
flows from observed and modelled hydrographs using a

::
an

:
event filter that420

identifies independent rainfall-runoff events with an, at least ,
::::::::
preceding

:::
dry

:::::::
weather

:::::
period

::
at
:::::

least

6 hourspreceeding dry weather period.
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3 Results

3.1 Classification

Table 1 presents per-pixel overall classification accuracy achieved using (i) two different datasets,425

(ii) two classification methods, and (iii) either two or three target classes. Figure 4 and 5 present

visual classification results for a subset of each of the two datasets, together with a respective ground

truth. We did not perform any pre- or post-processing of the data. Image pre-processing adds no

information and typically does not help, except for physically meaningful reflectance calibration,

which in our setting, was not feasible. Post-processing of the imperviousness map might improve430

overall accuracy, but carries the danger of introducing unwanted biases.

UAV Orthophoto

Class. method / % of train data 1% 2% 5% 1% 2% 5%

Three classes

ML 78.9 72.8 78.4 84.2 84.4 80.8

RQE 93.7 94.3 95.2 95.6 95.8 96.3

Two classes

ML 87.7 81.6 84.3 90.9 90.8 88.4

RQE 95.5 95.6 96.2 96.6 97.0 97.4

Table 1. RQE vs. ML method: Overall classification accuracies (in %). Boosting with RQE features after 500

iterations. Maximum likelihood classifier was trained with features consisting of single raw pixel intensities (all

spectral channels).

Figure 4. Cutouts of the swisstopo image: original image, manually labeled ground truth, and classification

results using ML and RQE (two and three classes). In a case of two classes impervious surfaces are black and

pervious are green. In a case of three classes rooftops are black, streets/sidewalks are grey and vegetation is

green.
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Figure 5. Cutouts of the UAV image: original image, manually labeled ground truth, and classification results

using ML and RQE (two and three classes). In a case of two classes impervious surfaces are black and pervious

are green. In a case of three classes rooftops are black, streets/sidewalks are grey and vegetation is green.

3.2 Prediction of surface runoff

Exploratory analysis

We used boxplots and scatterplots to investigate the effect for the four combinations of
::
of

:::::::::
combining

:::
two data sources and

:::
two

:
processing methods on (i) the imperviousness and the surface runoff char-435

acteristics, (ii) peak flows, and (iii) runoff volumes (see Figure 6).

– Imperviousness (Imp): The boxplot shows that the overall distributions of imperviousness for

307 subcatchments do not differ much across the different image sources and classification

methods. In general, the UAV images seem to produce slightly lower values of imperviousness

than the orthophoto, although this effect might also be dominated by the set of UAV image440

which was processed by the ML classifier. Regarding the classification methods, the boosting

classification method seems to deliver
::::::
delivers

:
slightly larger imperviousness values for both

data sources than the ML method.

– Peak runoff (Peak): Similar
::::
Like as for the imperviousness, the different image sources lead to

very similar peak runoff values. In general, boosting seems to lead to
::::
leads

::
to
:

slightly higher445

peak flows, which also have a slightly larger variance and slightly higher extreme values for

a couple of catchments
::::::::::::
subcatchments. Regarding the suitability of UAV images in rainfall-

runoff modelling, there are no relevant differences between the image sources.

– Runoff volumes (Volume): The exploratory analysis effectively suggest the same patterns for

the runoff volume as for the peak flows: boosting probably leads to larger runoff volumes and450

the resulting variability of the rainfall runoff from the 307 subcatchments is slightly larger than

for the ML classifier. Also, the UAV data seem to be associated with smaller runoff volumes.
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This is consistent, as they also seemed to be related to a lower
:::
this

::::::
relates

::
to

:::
the

:::::
lower

::::::
degree

::
of imperviousness in the subcatchments.

In general, the relative differences between the different alternatives are very small, with average455

values of a few percent (see Figure 6). For the imperviousness, there are only a few catchments

::::::::::::
subcatchments which show rather large differences. These are even less relevant for the peak runoff

and runoff volumes.

Furthermore, the scatterplots of the different explanatory and dependent variables also suggest that

there is not a substantial difference between the image sources or classification approaches for the460

modelled surface runoff in the different subcatchments (see Figure 10 in supplementary material).

For the boosting classifier, we observe a weak positive correlation with the degree of imperviousness

(see Figure 11 in supplementary material), which means that catchments which are rather impervi-

ous (or pervious) based on the ML classifier tend to be even more impervious (or pervious) for the

boosting classifier. However, this is difficult to identify by means of visual analysis and is better465

explored by an analysis of variance or regression analysis.

Figure 6. Boxplots of the imperviousness and surface runoff characteristics
:::
(Imp

:
[
:
−],

::::
Peak

:
[
::::
Ls−1]

:
,
::::::
Volume

[
::
m3])

:
for the 307 subcatchments for the four combinations of data sources and processing methods. Black=

Ortho, Red= UAV, Green= ML, Blue = RQE.
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Regression analysis

The results from the regression analysis are mainly the maximum likelihood estimates of the model

parameters and an indicator of their importance (see Tables 5 and 6 in supplementary material).470

For the imperviousness, as expected neither the image source nor the classifier are
:
is
:

strongly

correlated. The negative sign of the estimated slope parameter for the image source (β1 = -0.16) sug-

gests that UAV images generally go together with a lower imperviousness. In addition, the influence

of the image source seems to be larger than that of the classification method (β2 = 0.003), although

the large p-values for all parameters suggest that it is not very likely that the observed values of475

imperviousness were to have occurred under the given statistical model. Therefore, there is virtually

no evidence that there are interactions between the image source and the classifiers.

For the peak runoff, neither the image source nor the classifier are strongly correlated. The negative

sign of the estimated slope parameter for the image source (β1 = -0.6) suggest
::::::
suggests

:
that UAV

images generally correlate with a lower imperviousness
::::::
smaller

:::::
peaks. Here, the influence of the480

image source seems to be euqally
::::::
equally important as the classification method (β2 = -0.6), just with

a different sign. Nevertheless the high p-values for all parameters again suggest that it is not very

likely that the observed values of imperviousness were to have occurred under the given statistical

model. Also, the interaction between the image sources and classifiers is not important.

For the runoff volume, the UAV data generally seem to be correlated with slightly lower runoff485

volumes (β1 = -302), whereas the RQE method shows a positive correlation (β2 = 298), again,
:
.

:::::
Again,

:
neither the two effects nor their interaction seem to be important.

In summary, the analysis suggests that the resulting surface runoff is not different
:::::
surface

:::::::
runoffs

:::::::
predicted

:::::
with

:::::::
SWMM

::::
are

::::::
similar

:
for the different datasources or classification

:::
data

:::::::
sources

:::
or

::::::::
classifiers. In addition, neither the imperviousness nor peaks nor volumes of the runoff are influ-490

enced by interactions between the image sources and the classification methods. As the data source

and classifier alone do not represent the data generating process, the underlying statistical assump-

tions are not met and the numerical results should not be over-interpreted.

The high p-values for all parameters suggest that it is not very likely that the observed peak runoff

values were to have occurred under the given statistical model.495

3.3 Prediction of in-sewer flow

The evaluation regarding sewer pipe flow is split into two parts: (1) model performance of uncal-

ibrated implementations, and (2) calibrated implementations compared to reference flow data
::::
data,

i.e.
:::
flow

:::::::::
measured

::
at

::
the

::::::
outlet

::
of

:::
the

::::::::
catchment.

(1) Focusing on the results prior
:
to
:
calibration, it becomes obvious

::::
clear

:
that uncalibrated models,500

among each other, differ particularly regarding the peak flow performance (see boxplot in Figure 7).

This clearly corresponds to the findings of the surface runoff analysis (see Section 3.2) in which, for
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instance the implementation "UAV ML" with the lowest
:::::
mean degree of imperviousness produces

the lowest runoff peaks. The comparison with reference data through hydrological goodness-of-

fit measures (see Table 2) underlines the moderate performance regarding flow dynamics (NSE),505

whereas already good agreement is achieved for the total flow balance (bias). The slightly improved

performance of the implementation of which the imperviousness is derived from UAV data classified

::::
with the ML method (UAV ML) is assumed to occur

:::::::
probably

:::::
occurs

:
by chance.

Model implementation Model performance: Bias
::::
Prior

:
to

::::::::
calibration

:::
SB [-] / NSE

[-](prior calibration)

Model performance: Bias
::::
After

:::::::
calibration

:::
SB [-] / NSE [-]

(after complex

auto-calibration)

Ortho ML 2.0 / 0.54 3.16E-5 / 0.72

Ortho RQE 2.0 / 0.52 0.007 / 0.71

UAV ML 0.3 / 0.62 0.1 / 0.75

UAV RQE 2.0 / 0.53 1.38 / 0.73

Table 2. Goodness-of-fit measures prior and after calibration (both quantified for the validation period).

(2) Results from calibrated models (see Figure 8 and Table 2, right) show that conducting a de-

tailed calibration, as expected, leads to an improved model performance (NSE increase, bias re-510

duction) and interestingly compensates the imperviousness mapping deviations
:::::::
smooths

:::
out

::::
the

:::::::
land-use

:::::::::
differences

:
among the four implementations. This equalization becomes evident through

a visual assessment of simulated hydrographs (see
:
is
::::::
visible

:::
in Figure 8),

::::::
where

:::
the

:::::::::::
hydrographs

::
are

:::::::::
practically

:::
the

:::::
same. Even though the results from the UAV ML implementation after calibration

still shows slightly different results (see Figure 8, right), a peak flow analysis comparing the absolute515

maxima of in-sewer flow
::
the

::::::::::
differences

::
in

:::::
peak

::::
flow for the 13 most intense rain events leads to

very similar scatter patterns when cross-comparing the peak flow performance with reference data

::
are

::::
very

:::::::
similar (see Figure 9).

However, when analyzing the variation of final calibration parameter sets
::::::::::
Interestingly,

::::
the

::::
very

::::::
similar

::::::::::
performance

::
is
::::::::
achieved

::::
with

::::
very

::::::::
different

::::::::
parameter

:::::::::
estimates (see Figure 15 in supple-520

mentary material), it becomes clear that the best fit for each of the four model implementations is

achieved by a significantly different parameter set. Particularly the parameter "width", "maximum

infiltration rate" and "Decay K" (influencing the peak flow) vary significantly within the a priori

defined parameter ranges. Ultimately, results
::::::::::
substantially.

:::::::
Results

:
show that the calibrated runoff

model should be fairly robust against variations of the perviousness map, since these can be com-525

pensated by changing other, more uncertain parameters, e.g. by different parameter defining the

infiltration into pervious surfaces.
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Figure 7. Evaluation of peak flows [
::::
Ls−1] for the 13 most intense rain events (prior calibration).

Figure 8. Observed reference and simulations (prior calibration) for the full validation period September to

November 2014 (left) and a selected event on 11 October 2014 (right).
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Figure 9. Evaluation of the peak flows for the 13 most intense rain events in the validation period (after cali-

bration).

4 Discussion

4.1 Classification

The choice of the classifier has a substantial impact on the overall classification accuracy. While530

boosting achieves accuracies between 93.7% and 96.2% for the UAV dataset and 95.6% to 97.4%

for the swisstopo dataset, maximum likelihood yields results which are up to 20% worse. Further, it

can be seen that the number of target classes strongly influences the results of the ML method. Clas-

sification with three target classes is up to 9% less accurate than with two. Moreover, the amount of

data used to train the ML classifier gives unconclusive
::::::::::
inconclusive

:
results. By increasing the num-535

ber of training samples, overall accuracy should increase. However, in our case the training appears

to be unstable, and the expected increase only materializes in a single case (see Table 1, orthophoto

dataset, three classes). A possible explanation is that the class distribution is not unimodal, and thus

not appropriately captured by the Gaussian model.

In contrast to the ML method, the boosting classifier behaves in a stable manner. Differences540

in overall accuracy do not exceed 2.5% per dataset. The changes in boosting performance with

varying amounts of training data are negligible: 1% (7000 pixels) already yield satisfactory results,

i.e. the effort for annotation as well as the training time remains low. The efficiency and robustness of

boosting used together with features appropriate for VHR aerial imagery, makes this approach a good

choice for the task. Also overall classification accuracy achieved using a boosting classifier together545
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with UAV-based imagery shows that in terms of classification accuracy of impervious surfaces, this

new imaging platform gives comparable results to the off-the-shelf aerial image products.

Moreover, our experiments show that at the level of
::::::
surface runoff prediction, the differences be-

tween different imaging platforms and between different processing methods are small. Even though

the classification accuracy between data sets
::::::
datasets

:
and methods differs up to 20%, their influence550

on surface runoff characteristics lies within only few percent on average. We believe that one of

the possible reasons is the spatial size of
::
our

:
subcatchments. Each of them consists hundreds of

image pixels, but the amount of impervious surfaces per subcatchment used in the hydrological

model , is a
::::::::::
hydrological

:::::
model

:::::::::
disregards

:::
the

::::::
spatial

::::::::::
information

:::
and

::::
only

::::
uses

::::::::::
aggregated

::::::
values,

::
i.e.

::::
the sum of all impervious pixels belonging to this catchment. Thus, even if 20of pixels were555

classified incorretly, it might happen that it does not change the amount of impervious surfaces

within a subcatchment.
:::
one

::::::::::::
subcatchment.

:
A further observation is that the differences in classifi-

cation accuracy are
:::::
much larger for the three-class case. This is in line with conventional machine

learning wisdom ("only predict what you need to know"), however we have not yet constructed an

end-to-end study with the three-class result as
::
an

:
input.560

4.2 Prediction of surface runoff

Exploratory analysis of surface runoff

While there are substantial differences when the images are compared pixel-by-pixel
:::
(see

::::::
Figure

::
4

:::
and

::
5), these are largely lost for the predicted surface runoff. In our view, this is

::::
again

:
explained

by the SWMM surface runoff model. It is a lumped model, which aggregates the pixels and thus565

is smoothing out the differences, already on this tiny
:::::
small scale. This tendency will be even more

pronounced for a higher degree of spatial aggregation, e.g. when modelling larger urban areas, where

the subcatchments
::::::::
equipped with flow measurements will also be larger. Future experiments that in-

vestigate the continuous downscaling
::::::
spatial

::::::::::::
downsampling of images may reveal when differences

fully disappear.570

Model structure as a bottleneck?

Obvious differences in the input data may be assimilated
::::::::
smoothed

:::
out due to the simplified, con-

ceptual representation of the surface runoff in SWMM. In case a
::
We

:::
do

::::::
expect

:::::::
different

::::::
results

:::
for

::::
more

:::::::
detailed

::::::::::::
representation

::
of

::::::::
land-use,

:::
e.g.

::::
with

:
a
::::::::
separate

:::::
"roof"

:::::::
land-use

::
or

:::::::
modern pixel-based575

modelling approach
:::::::::
approaches

:
for surface runoffis used, results might be different. In .

::
In

:::
the future,

this might be even more important considering the increasing popularity of coupled 2D-overland/1D-

channel flow models including more detailed overland-flow modelling using raster/pixel-based ap-

proaches (cf. Austin et al. (2014)
:::::::::::::::::
Leandro et al. (2009) ). Traditional models are not ready yet to

fully process
:
-
::
as

:::::::
currently

:::::
used

::
in

:::::::::
day-to-day

::::::::::
engineering

:::::::
practice

:
-
::::
will

:::::::
probably

:::::
never

:::
be

::::
able

::
to580

::::
fully

:::::
make

:::
use the amount of detail (pixel basis) provided by such aerial images.
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High-resolution images provide added value in urban drainage

In future investigations, the aspect of differentating between three or more land-use classes should

be investigated. The effect on surface runoff and pipe hydraulics using the current lumped models585

:::::::
spatially

::::::::::
aggregating

:::::::
models

::::
(two

::::::::
land-use

:::::::
classes)

:
may not be as immense. However, for the

assessment of pollutant loads, which is usually strongly dependent of
:
in
::::::
future

:::::::::::
investigations,

:::::::
models

:::
that

:::::
allow

::::::::::::
differentiating

:::::::
between

::::
three

:::
or

::::
more

:
land-use characteristics, the accurate and up to date

monitoring
:::::
classes

::::::
should

:::
be

::::::
further

:::::::::::
investigated.

::::
This

::::
may

:::
be

::::::::::
particularly

:::::::
relevant

:::
for

::::::::
pollutant

:::
load

::::::::::
modelling,

:::
for

:::::
which

::::::
detail,

::::::::
accuracy

:::
and

::::::::
actuality

:
of land-use , feature recognition is more590

important. Relevance increases even more against the background the difficulty to obtain adequate

reference data for pollution load modelling. It is generally harder to calibrate such models
:::::::::::
characteristics

::
are

::::::
highly

:::::::::
influential.

:::::::::
Relevance

::
of

::::
input

::::
data

::::::::
accuracy

::::
may

::::
even

::::::
further

:::::::
increase

:::
due

::
to

:::
the

:::
fact

::::
that

::::::::
obtaining

:::::::
adequate

::::::::
pollution

::::
load

::::::::
reference

::::
data

::
is

:::::::::
considered

:::
to

::
be

::::
very

:::::::
difficult

:
(cf. Dotto et al.

(2014))implying the risk of making predictions without calibration.595

Also, other urban drainage tasks would greatly benefit from detailed land use maps,
:::::::
land-use

:::::
maps,

:::
e.g.

:
precise and justified stormwater fees due to exactly delineated roofs/

::::
types

::
of

:
impervious

areas (see cf. Figure 4
:::
and

::
5). An improved feature (gully pots, sewer inlets, curbstone structures)

identification would
:
is
::::::::
expected

::
to

::::::
further

:
provide valuable input data for network generation ap-

proaches
:::
(e.g.

:::
as

:::::::
outlined

::
in

:::::::::::::::::::::
Blumensaat et al. (2012) )

:
and the coupled 2D

:::
2-D surface runoff/1D600

:::
1-D

:
pipe flow model applications. For this, the RQE method seems to be most promising, although

for the runoff analysis, a simpler method still seems to produce robust results.

4.3 Pipe flow predictions

The results from the model calibration show that input data deviations are nearly fully compensated

by the calibration procedure, involving an adaption of four different calibration parameter
:::
sets. The605

analysis of the final calibration parameter values however reveals that the best fit for each of the

implementations is achieved by differing parameter sets (see Figure 15 in supplementary material).

On the one hand side, this may indicate that, even though the full range of a priori defined parameter

ranges is used during the auto-calibration procedure, for each implementation a different (local)

optimum in the Pareto front is identified. On the other hand, it may underline that the given model610

structure is flexible enough to address different model inputs through different parameter settings.

Here, it becomes clear that the compensation is achieved by adjusting parameters in a way that

involves the risk that some parameters loose its physically based origin and turn into "conceptual

handles". The discussion on this particular question is certainly interesting and would need further

analyses, but it cannot be accomplished in this paper contribution as it would blur the main focus of615

the paper.
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5 Conclusions

In this study we investigated the possibility to automatically generate high-resolution imperviousness

maps for urban areas from imagery acquired with UAVs, and for the first time assessed the potential

of UAVs for high-resolution hydrological applications compared with a standard large-format aerial620

orthophotos. We proposed an automatic processing pipeline with modern classification methods to

extract accurate imperviousness maps from high resolution aerial images, and presented an end-to-

end comparison, in which the maps obtained from different sources and processed with different

classification methods were used as input for urban drainage models.

The first part of our analysis indicates that using a boosting classifier in conjunction with RQE625

features we were able to classify UAV imagery with an accuracy comparable to standard aerial

orthophotos. The proposed classification method yields more stable results, when compared with

those produced using the maximum likelihood method. This improvement is even more apparent

when classifying three instead of two classes of land-use.

In the second part of our analysis we have demonstrated how model input data variations propa-630

gate in the course of the urban drainage modelling exercise, and how this is reflected in the surface

runoff and sewer flow predictions. Results from uncalibrated model implementations actually show

deviations in the predictions, which can be explained by input data variations. But still predictions

are inaccurate. Conversly
:::::::::
Conversely, after calibration the performance analysis shows that the cali-

bration process attenuates variations in the input data, suggesting that model predictions are insensi-635

tive to these variations. However, the analysis of the resulting model parameter settings also reveals

that apparent robustness is achieved by tweaking the parameter in a way which involves the risk of

leaving valid parameter ranges.

Because model development and calibration in everyday practice is often based on less accurate

information than used in our case study, it is important to underline reliable input data to reduce640

overall uncertainty in model predictions.

We note that the conclusions of the study are limited regarding (i) the small size of the case

study catchment, (ii) the degree of detail in which the catchment has been described (more detail

may show a more pronounced input error propagation, a more lumped description may absorb input

deviations from the start), and (iii) the type of hydrological modelling concept used. Therefore we645

suggest conducting further research to evaluate the impact of the spatial scale, i.e. the degree of

spatial aggregation linked to the hydrological model approach (ensemble modelling).
:
In

::::
the

::::
case

::::
study

:::::::::
presented

::::
here

:::
we

:::::
chose

:
a
:::::::::
traditional

:::
and

:::::::
widely

::::
used

:::::
urban

:::::::
drainage

::::::
model

:::::
(EPA

::::::::
SWMM)

::
to

::::::::::
deliberately

::::::::::
demonstrate

:::
the

:::::
effect

:::
of

::::
new

:::::
image

:::::::
sources

::::
and

:::::::::
processing

:::::::
methods

:::
for

::::::::
standard

:::::::::
engineering

::::::::
practice.650

We furthermore
::::
Still,

:::
we suggest using imperviousness maps consisting of three land-use classes

as more differentiated input for a more detailed hydrological model, i.e. a pollution load model,

which makes a better use of urban land-use differentiation. Because the proposed boosting classifier
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showed the largest accuracy gain for a three-class case, we strongly believe that introducing this

additional information might more clearly show
:::::
more

::::::
clearly

:::::
shows

:
the potential of UAV datasets655

and advanced classification methods for more accurate urban drainage and pollution load modelling.
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Appendix A: Supplementary Material

A1 Remote sensing methods to extract the imperviousness maps

A considerable amount of remote sensing research has been devoted to the problem of mapping

impervious surfaces. Here, we review some of the previous studies and evaluate them in respect of820

the datasets and classification methods. Furthermore, we focus on the studies which use the classified

land-use to predict urban rainfall runoff.

Whereas few studies have used low-resolution (GSD > 100m) satellite sensors, such as MODIS (Lu

et al., 2008; Boegh et al., 2009), AVHRR (Carlson and Arthur, 2000) and DMSP-OLS (Elvidge et al.,

2007; Lu et al., 2008), the large part of the research in this area focused on medium and high spa-825

tial resolution satellite data. Because of its exceptional temporal resolution, Landsat is still the most

popular satellite platform. A large number of authors used Landsat 5 TM (Civco et al., 2002; Carl-

son, 2004; Bauer et al., 2008; Yuan and Bauer, 2006; Li et al., 2011; Parece and Campbell, 2013;

Dougherty et al., 2004) and Landsat 7 ETM+ data (Civco et al., 2002; Yang et al., 2003; Wu and

Murray, 2003; Lu and Weng, 2006; Lee and Lathrop, 2006; Powell et al., 2007; Chormanski et al.,830

2008; Chabaeva et al., 2009; Van de Voorde et al., 2009) for analysing impervious surface cover.

Other examples of using images acquired by high resolution platforms include SPOT (Yang et al.,

2009; Li et al., 2011; Tan et al., 2009) and ASTER (Weng and Hu, 2008; Hu and Weng, 2009; Weng

et al., 2009).

However, recent developments of remote sensing imaging sensors and platforms gave access to835

VHR imagery. Examples of VHR satellite sensors application to impervious surfaces mapping in-

clude Ikonos (Cablk and Minor, 2003; Lu and Weng, 2009; Mohapatra et al., 2008; Chormanski

et al., 2008; Van de Voorde et al., 2009; Mathieu et al., 2007), and QuickBird (Lu et al., 2008; Yuan

and Bauer, 2006; Zhou and Wang, 2008). Except of satellite imagery, aerial images are also an im-

portant source of information. Many studies used aerial orthophotos only as a reference check to840

satellite imagery (Yang et al., 2003; DeBusk et al., 2010; Parece and Campbell, 2013). However

few attempts to automatically map imperviousness using such data were made (Nielsen et al., 2011;

Dougherty et al., 2004; Hodgson et al., 2003; Zhou and Wang, 2008; Fankhauser, 1999; Lee and

Heaney, 2003).

One possible way to extract imperviousness from images is to interpret them manually. Even845

though this is the most reliable method, and has been used in few studies (e.g. Lee and Heaney

(2003)), it is very costly in terms of time and money. Therefore it is common to automate the pro-

cess by using image classification. Maybe the simplest method is to assume that only vegetation

is pervious and rely on the normalized differential vegetation index (NDVI) (Nielsen et al., 2011;

Carlson and Arthur, 2000). Many of the studies use more advanced classification methods, such as850

object based image analysis (OBIA) (Zhou and Wang, 2008; Hodgson et al., 2003; Nielsen et al.,

2011; Mathieu et al., 2007). Other examples include maximum likelihood classifier (Fankhauser,
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1999; Hodgson et al., 2003), spectral mixture analysis (SMA) (Small, 2003; Van de Voorde et al.,

2009; Weng et al., 2009), artificial neural networks (ANN) (Chormanski et al., 2008; Van de Vo-

orde et al., 2009; Lee and Lathrop, 2006), classification and regression trees (CART) (Yang et al.,855

2003; Li et al., 2011; Dougherty et al., 2004) and rule-based classifiers (Hodgson et al., 2003). Some

of the mentioned methods also use the perviousness maps for urban drainage modelling like we

do (Nielsen et al., 2011; Melesse and Wang, 2008; Chormanski et al., 2008; Dougherty et al., 2004;

Lee and Heaney, 2003; Fankhauser, 1999). However, to our best knowledge no studies exist, that

used UAV-based imagery to extract imperviousness information, and to use it in the field of urban860

drainage modelling.

A2 UAV platform

The UAV platform used in this study is an autonomous fixed-wing drone produced by senseFly SA

(cf. http://www.senseFly.com). Table 3 includes detailed information about the platform.

865

Weight (incl. camera) ca. 0.69 kg

Wingspan 96 cm

Material EPP foam, carbon structure and composite parts

Propulsion Electric pusher propeller, 160 W brushless DC motor

Battery 11.1 V, 2150 mAh

Camera (supplied) 16 MP IXUS/ELPH

Cameras (oprional) S110 RGB, thermoMAP

Max. flight time 50 min

Nominal speed 40-90 km/h

Wind resistance Up to 45 km/h (12 m/s)

Radio link range Up to 3 km

Max. coverage (single flight) Up to 12 km2

Cost ca. 20’000 CHF (Drone + Software)

Table 3. Specifications of the UAV used in the study (source: http://www.senseFly.com)

The imaging unit mounted on a UAV was a customized version of Canon IXUS 127 HS compact

camera. Table 4 includes its specifications.

A3 Exploratory data analysis of the importance of image source and processing method for

the surface runoff870

A3.1 Exploratory analysis
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Camera effective pixels ca. 16.1 million

Lens’ focal length 4.3 - 21.5 mm (35 mm equivalent: 24 - 120 mm)

Interfaces Hi-speed USB, HDMI Output, Analog audio

output, Analog video output (NTSC/PAL)

Dimensions 93.2 × 57.0 × 20.0 mm

Weight ca. 135 g (incl. battery and memory card)

Table 4. Specifications of the Canon IXUS 127 HS Camera

Please refer to Figures 10 to ??.

Zoom-in of the relation for peak flows with other explanatory variables (all normalized to mean=0,

sd=1). Black = Ortho fotos, Red= UAV images

Zoom-in of the relation for runoff volumes with other explanatory variables (all normalized to875

mean=0, sd=1). Black = Ortho fotos, Red= UAV images

Zoom-in of the relation for time to peak flows with other explanatory variables (all normalized to

mean=0, sd=1). Black = Ortho fotos, Red= UAV images

Zoom-in of the relation for peak flows with other explanatory variables (all normalized to mean=0,

sd=1). Green= ML, Blue = RQE880

Zoom-in of the relation for peak flows with other explanatory variables (all normalized to mean=0,

sd=1). Green= ML, Blue = RQE

Zoom-in of the relation for peak flows with other explanatory variables (all normalized to mean=0,

sd=1). Green= ML, Blue = RQE

Boxplots of the imperviousness and surface runoff charactersistics for the 307 subcatchments for885

the different data sources

Boxplots of the relative differences of imperviousness and surface runoff charactersistics for the

307 subcatchments for the four combinations of data sources and processing methods. Black= Ortho,

Red= Uav, Green= ML, Blue = RQE

Absolute differences in imperviousness for the differenct combinations of image sources and890

processing methods in relation to the catcment charactersistics (i) imperviousness (column 5), (ii)

area (column 6), and (iii) slope (column 7). Differences in imperviousness are computed relative to

the basis scenario "Orthophotos processed with a ML classifier"

A3.1 Regression

Imperviousness895

Please refer to Table 5 and Figure 12.

Here we try to answer a following question: Which has the greater influence/is stronger correlate

3



with a change in imperviousness and surface runoff characteristics, the image source or the process-

ing method?900

Model and results

Here we present logit-transformation of imperviousness. This was done to constrain the model out-

put to the range between 0 and 1 and not to improve the statistical assumptions regarding the errors

of the data generating process.905

Description/Interpretation

UAV images seem to be negatively correlated with the imperviousness. The effect is not really strong.

Regarding the methods, there seems to be no influence, because the estimated linear relation is prac-

tically negligible. In addition, there is no evidence for interactions between the image source and the910

processing method.
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Peak runoff

Model and results915

Please refer to Table 6 and Figure 13

Description/Interpretation

UAVdata generally seem to produce slightly smaller peaks, whereas the RQE method is positively

correlated to peak hight. However both effects are not significant by any means. There are no inter-920

actions of these two. Statistical assumptions are not fulfilled.

Runoff volume

925

Model and results

Please refer to Table 7 and Figure 14

Description/Interpretation

UAV data generally seem to produce slightly runoff volumes, whereas the RQE method is positively930

correlated to runoff volume. However both effects are not significant by any means. There are no

interactions of these two. Statistical assumptions are not fulfilled.

Time to peak935

Analysis was not performed, because exploratory analysis suggest that the differences between the

different image sources are negligibly small.

940

A4 Pipe flow predictions

Please refer to Figure 15
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Figure 10. Scatter plot
::::::::
Scatterplot

:
of surface runoff characterstics

::::::::::
characteristics

:
for the 307 individual sub-

catchments of the Wartegg SWMM model. Black = Ortho fotos
:::::::::
Orthophotos, Red= UAV images. A_eff: effec-

tive area, Imp: imperviousness
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Figure 11. Scatter plot
::::::::
Scatterplot

:
of surface runoff characterstics

::::::::::
characteristics

:
for the 307 individual sub-

catchments of the Wartegg SWMM model. Green= ML, Blue = RQE. A_eff: effective area, Imp: impervious-

ness
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Table 5. Summary results of the regression analysis. The negative sign of the estimated slope parameter suggests

that the UAV images generally go together with a lower imperviousness. In addition, the influence of the image

source seems to be larger than that of the classification method, although the high p-values for all parameters

suggest that it is not very likely that the observed values of imperviousness were to have occurred under the

given statistical model.

Dependent variable:

Volume

DataUAV −301.699

(331.033)

MethodRQE 298.671

(331.033)

DataUAV:MethodRQE 199.362

(468.151)

Constant 3,893.406∗∗∗

(234.075)

Observations 1,228

R2 0.003

Adjusted R2 0.001

Residual Std. Error 4,101.333 (df = 1224)

F Statistic 1.274 (df = 3; 1224)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 12. Diagnostic plots of the regression analysis. It is obvious that the statistical assumptions are not

fulfilled very well and that the observe imperviousness is not well explained.
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Table 6. Summary results of the regression analysis for peak runoff. The negative sign of the estimated slope

parameter suggests that the UAV images generally go together with a lower stormwater peak flow. Here, the

influence of the image source seems to be in the same order of magnitude than that of the classification method,

although the former is negatively correlated and the latter has a positive correlation with peak runoff. Again,

the high p-values for all parameters suggest that it is not very likely that the observed peak runoff values were

to have occurred under the given statistical model.

Dependent variable:

Peak

DataUAV −0.065

(0.067)

MethodRQE 0.068

(0.067)

DataUAV:MethodRQE 0.038

(0.094)

Constant 0.826∗∗∗

(0.047)

Observations 1,228

R2 0.004

Adjusted R2 0.001

Residual Std. Error 0.827 (df = 1224)

F Statistic 1.507 (df = 3; 1224)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 13. Diagnostic plots of the regression analysis. It is obvious that the statistical assumptions are not

fulfilled very well and that the observe imperviousness is not well explained.
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Table 7. Summary results of the regression analysis for runoff volume.

Dependent variable:

Volume

DataUAV −301.699

(331.033)

MethodRQE 298.671

(331.033)

DataUAV:MethodRQE 199.362

(468.151)

Constant 3,893.406∗∗∗

(234.075)

Observations 1,228

R2 0.003

Adjusted R2 0.001

Residual Std. Error 4,101.333 (df = 1224)

F Statistic 1.274 (df = 3; 1224)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 14. Diagnostic plots of the regression analysis. It is obvious that the statistical assumptions are not

fulfilled very well and that the observe imperviousness is not well explained.

14



Figure 15. Distribution of calibration parameter (Decay K: infiltration decay rate after HORTON;

MaxRate: maximum infiltration rate after HORTON; width: conceptual parameter describing the width of a

sub-catchment
::::::::::
subcatchment; Add.area: conceptual parameter describing event-based sewer infiltration) values

identified during the auto-calibration process. Grey rhombs represent the optimum parameter set identified for

each population; the red rhomb represents the final parameter set.
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