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Abstract 18 

Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial 19 

resolution necessary for sub-field (≤ 10 m) and plant canopy (≤ 1 m) scale evapotranspiration 20 

(ET) monitoring.  In this study, high resolution (sub-meter scale) thermal infrared and 21 

multispectral shortwave data from aircraft are used to map ET over vineyards in central 22 

California with the Two Source Energy Balance (TSEB) model and with a simple model having 23 

operational immediate capabilities called DATTUTDUT (Deriving Atmosphere Turbulent 24 

Transport Useful To Dummies Using Temperature).  The latter uses contextual information 25 

within the image to scale between radiometric land surface temperature (TR) values representing 26 

hydrologic limits of potential ET and a non-evaporative surface.  Imagery from five days 27 
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throughout the growing season is used for mapping ET at the sub-field scale.  The performance 1 

of the two models is evaluated using tower-based measurements of sensible (H) and latent heat 2 

(LE) flux or ET.  The comparison indicates that TSEB was able to derive reasonable ET 3 

estimates under varying conditions, likely due to the physically based treatment of the energy 4 

and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy 5 

elements.  On the other hand, DATTUTDUT performance was somewhat degraded presumably 6 

because the simple scaling scheme does not consider differences in the two sources (vine and 7 

inter-row) of heat and temperature contributions or the effect of surface roughness on the 8 

efficiency of heat exchange.  Maps of the evaporative fraction (EF=LE/(H+LE)) from the two 9 

models had similar spatial patterns but different magnitudes in some areas within the fields on 10 

certain days.  Large EF discrepancies between the models were found on two of the five days 11 

(DOY 162 and 219) when there were significant differences with the tower-based ET 12 

measurements, particularly using the DATTUTDUT model.  These differences in EF between 13 

the models translate to significant variations in daily water use estimates for these two days for 14 

the vineyards.  Model sensitivity analysis demonstrated the high degree of sensitivity of the 15 

TSEB model to the accuracy of the TR data while the DATTUTDUT model was insensitive to 16 

systematic errors in TR as is the case with contextual-based models.  However, it is shown that 17 

the study domain and spatial resolution will significantly influence the ET estimation from the 18 

DATTUTDUT model.  Future work is planned for developing a hybrid approach that leverages 19 

the strengths of both modeling schemes and is simple enough to be used operationally with high 20 

resolution imagery. 21 

1 Introduction 22 

As a key component of the land hydrological, energy and biogeochemical cycles, 23 

evapotranspiration (ET) provides important information about terrestrial water availability and 24 

consumption (Evett et al., 2012).  Detailed knowledge of spatial ET distributions (especially in 25 

near-real time) at field or finer scale is particularly useful in precision agricultural water 26 

management (Anderson et al., 2012a; Sánchez et al., 2014).  This is especially relevant as the 27 

need to increase food production for a growing human population is hindered by the reduced 28 

availability of freshwater in many water limited regions, which potentially will be exacerbated 29 

with a changing climate.  Remote sensing techniques are considered to be one of the few reliable 30 

methods for mapping and monitoring ET at watershed and regional scales (Su, 2002; Kustas and 31 



3 

 

Anderson, 2009) since they provide a means for detecting changes in vegetation and soil 1 

moisture conditions at field scale affecting ET over space and time. 2 

Over the past several decades, numerous satellite products have been used in ET estimation and 3 

monitoring.  Among them, medium to moderate spatial resolution (100-1000 m) satellite data, 4 

e.g., from Landsat and the MODerate resolution Imaging Spectrometer (MODIS), have been 5 

applied with models for mapping ET at field to watershed and regional scales with some success 6 

(Anderson et al., 2012b; Cammalleri et al., 2013).  [In this paper we define satellite imagery with 7 

resolution on order of ~100 m as “medium resolution” and 1000 m as “moderate resolution” to 8 

distinguish from high resolution imagery with meter-scale spatial resolution.]  However, as water 9 

resources become more limited, there is a greater need for precision agricultural management at 10 

the field/subfield-scale, particularly for high-valued or specialty crops (Zipper and Loheide II, 11 

2014), and moderate resolution data are too coarse to inform variable rate application of water or 12 

nutrients within a field.  In addition, obtaining both high spatial and temporal resolution data is 13 

not feasible with the current satellite constellation since medium resolution earth observations 14 

have a long (two or more weeks) revisit cycle, particularly when considering cloud cover 15 

(Cammalleri et al., 2013). 16 

Remote sensing data from low altitude aircraft, especially from unmanned aerial vehicles 17 

(UAVs), can potentially provide the needed spatial and temporal frequency for precision 18 

agriculture applications.  Despite the fact that development of airborne scanner-derived thermal 19 

imagery for irrigation applications had begun back in the 1970s (Jackson et al., 1977), it is not 20 

until the last few years that very high resolution data are being considered for precision 21 

agricultural applications.  This is due to the technological advances that have allowed rapid 22 

integration and processing of high-resolution data from cameras mounted on aircraft and more 23 

recently on-board UAVs (Zarco-Tejada et al., 2013).  Current applications of high resolution 24 

thermal remote sensing data are mainly focused on detecting and mapping crop water status 25 

(Berni et al., 2009a; Gonzalez-Dugo et al., 2012; Zarco-Tejada et al., 2012) since canopy 26 

temperature has historically been used as an indicator of water stress (Jackson et al., 1981; 27 

Gardner et al., 1981; Fuentes et al., 2012).  Sub-meter resolution thermal imagery is able to 28 

retrieve pure canopy temperature, minimizing soil or other background thermal effects (Leinonen 29 

and Jones, 2004; Zarco-Tejada et al., 2013). 30 
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Spatially distributed ET can be obtained using remote sensing-based models with varying 1 

degrees of complexity and utility (Kalma et al., 2008).  In terms of treatment of the energy 2 

exchange with the surface, the thermal remote sensing-based ET models can be generally 3 

classified as one source (Bastiaanssen et al., 1998; Su, 2002; Feng and Wang, 2013) and two 4 

source (Norman et al., 1995; Kustas and Norman, 1999; Long and Singh, 2012; Yang and Shang, 5 

2013) parameterizations depending on whether they treat a landscape pixel as a 6 

composite/lumped surface or explicitly partition energy fluxes and temperatures between soil 7 

and vegetation.  These models are based on solving the surface energy balance and adopt 8 

radiometric surface temperature (TR) as a key boundary condition (Kustas and Norman, 1996). 9 

A commonly used method in one source models is the contextual scaling approach, which uses 10 

TR and vegetation amount (the normalized difference vegetation index, NDVI, or fractional 11 

vegetation cover, fc) as proxy indicators of ET (Bastiaanssen et al., 1998; Su, 2002; Allen et al., 12 

2007; Carlson et al., 1994; Jiang and Islam, 1999).  Accurate identification of extreme 13 

hydrologic limits, i.e., potential ET (cold/wet limit) and the largest water stress condition 14 

(hot/dry limit), is essential for proper scaling of the surface condition (e.g., the aerodynamic and 15 

air temperature difference, dT, and evaporative fraction, EF) of the other pixels between these 16 

extremes.  Examples include the Surface Energy Balance Algorithm for Land (SEBAL) 17 

(Bastiaanssen et al., 1998), the Mapping Evapotranspiration with Internalized Calibration 18 

(METRIC) model (Allen et. al., 2007), the triangle model (Carlson et al., 1994), and the satellite-19 

based energy balance algorithm with Reference Dry and Wet limits (REDRAW) (Feng and 20 

Wang, 2013). 21 

With UAV imagery, the pixel resolution can be very fine (i.e., 100 cm – 100 m) in order to map 22 

the variability in crop condition within a field.  This typically restricts the size of the area or field 23 

being monitored and hence reduces the likelihood of sampling the extremes in ET rates (i.e., ET 24 

~0 and ET at potential).  This issue was raised by Zipper and Loheide II (2014) who indicated 25 

that thermal-based ET models relying on extreme limits are not applicable at field scales since in 26 

agricultural landscapes vegetation cover within a field is fairly homogeneous and ideal extreme 27 

limits may be difficult to identify, especially during mature crop periods when the canopy is 28 

nearly closed.  They developed a mixed-input approach combining high resolution airborne and 29 

Landsat imagery with local meteorological forcing in a surface energy balance model they called 30 

High Resolution Mapping of EvapoTranspiration (HRMET).  HRMET combines a two-source 31 
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modeling approach for estimating available energy between the soil and vegetation elements but 1 

uses a single-source scheme for estimating the soil+canopy system H, with LE solved by residual. 2 

On the other hand, the contextual scaling approach can greatly simplify model computations and 3 

input data requirements (Carlson, 2007), and can reduce ET retrieval errors due to bias errors in 4 

TR and meteorological inputs such as air temperature and wind speed (Allen et al., 2007).  This 5 

facilitates near real-time operational applications for ET monitoring.  In the DATTUTDUT 6 

(Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature) modeling 7 

scheme introduced by Timmermans et al. (2015), land surface temperature is the only input 8 

needed for ET estimation.  DATTUTDUT solves for ET by scaling the evaporative fraction, EF, 9 

between the extreme values associated with potential (cool/wet pixel) and zero (hot/dry pixel) 10 

ET.  The main concept of DATTUTDUT is similar to the S-SEBI (the Simplified Surface Energy 11 

Balance Index) proposed by Roerink et al. (2000); however, DATTUDDUT has a more 12 

simplified scheme to obtain radiometric temperature end-members and radiation-related factors.  13 

Although these types of contextual scaling methods have been tested over a variety of landscapes 14 

using mainly moderate resolution remote sensing data, their applicability and performance in 15 

retrieving surface fluxes and ET at the high resolution/sub-field scale, and potential problems or 16 

behavior at the sub-field scale have not been adequately tested. 17 

The Two Source Energy Balance (TSEB) scheme originally proposed by Norman et al. (1995) 18 

and modified by Kustas and Norman (1996, 1999, 2000), has proven to be fairly robust for a 19 

wide range of landscape and weather conditions (Li et al., 2005; Kustas and Anderson, 2009; 20 

Colaizzi et al., 2012a).  Unlike single-source models based on contextual scaling approaches, the 21 

TSEB model contains a more detailed treatment of the radiative and flux exchange between soil 22 

and vegetation elements without the requirement of extreme hydrological limits existing within 23 

the scene.  Consequently, TSEB is still effective when applied over homogeneous landscapes 24 

and environmental conditions. 25 

The performance of TSEB and single-source models using TR/ET extremes (e.g., SEBAL, 26 

METRIC, Trapezoid Interpolation Model (TIM)) has been compared over a corn and soybean 27 

region in Iowa during SMACEX (French et al., 2005; Choi et al., 2009), sub-humid grassland 28 

and semi-arid rangeland during SGP '97 and Monsoon '90 (Timmermans et al., 2007), as well as 29 

a cotton field in Maricopa, Arizona (French et al., 2015).  These studies demonstrated that both 30 
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TSEB and the single-source models can reproduce fluxes with similar agreement to tower-based 1 

observations, yet they did reveal significant discrepancies in the ET patterns or spatial 2 

distributions especially in areas with bare soil or sparse vegetation.  In general, these model 3 

inter-comparisons have mainly used medium resolution satellite imagery such as Landsat and 4 

Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER).  French et al. 5 

(2015) conducted model comparison using both Landsat and aircraft data, and concluded that 6 

daily ET estimations were similar at high and medium spatial resolutions. 7 

However, more detailed comparisons between simple one-source contextual-based schemes 8 

versus more complex two-source models using high resolution imagery over different surfaces 9 

are still needed to fully understand the strengths and weaknesses of both modeling schemes.  10 

Such intercomparisons can facilitate development of hybrid schemes that leverage the strengths 11 

of different methodologies (e.g., Cammalleri et al., 2012), while incorporating simplications for 12 

routine application with airborne imagery. The purpose of this paper is to conduct an inter-13 

comparison of TSEB with the very simple contextual-based DATTUTDUT model that can be 14 

easily applied operationally using high resolution thermal and multispectral shortwave imagery 15 

for sub-field scale ET estimation.  The inter-comparison is conducted over two vineyard fields 16 

having significantly different biomass in central California.  ET estimates from the TSEB and 17 

DATTUTDUT models are compared in detail within the contributing source-area of the flux 18 

tower in each field, and the spatial patterns of modeled ET are compared throughout the whole 19 

vineyard field.  Additionally, a sensitivity analysis of key inputs to the two models is conducted, 20 

providing insight into the potential for precision agricultural water resource management 21 

applications using such high resolution earth observations. 22 

2 Model overview 23 

2.1 TSEB model 24 

The TSEB model, developed by Norman et al. (1995), partitions surface temperature and fluxes 25 

into soil and vegetation components.  Detailed formulations used in TSEB can be found in 26 

Kustas and Norman (1999) and Li et al. (2005, 2008).  In the TSEB model, the surface energy 27 

budgets are balanced for both the soil and canopy components of the scene: 28 

GHRRR ncns +LE+=+=n  (1) 
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GHR ss +LE+=ns  (2) 

ccHR LE+=nc  (3) 

where Rn is net radiation (W m-2), H is sensible heat flux (W m-2), LE is latent heat flux (W m-2), 1 

and G is soil heat flux (W m-2).  Subscripts s and c represent the soil and canopy flux 2 

components, respectively.  Component Rn is combined with the component temperature 3 

(Colaizzi et al., 2012b; Song et al., 2016): 4 

   4 4

ns 1 1l d l c c s s s s dR L T T S              (4) 

     4 4

nc 1 2 1 1l d s s c c s c dR L T T S              (5) 

where Ld and Sd are incoming longwave and shortwave radiation (W m-2), τl and τs are the 5 

longwave and shortwave radiation transmittances through the canopy (-).  ε, α and T are surface 6 

emissivity (-), surface albedo (-) and surface temperature (K) with subscripts s and c represent 7 

the soil and canopy. σ is the Stefan-Boltzmann constant (~5.67×10-8 W m-2 K-4).  Sd is either 8 

computed using sun-earth astronomical relationships under clear-sky conditions as done by 9 

DATTUTDUT (see below) or measured from a nearby weather station, and Ld is either measured 10 

or often computed using formulas based on weather station observations of air temperature and 11 

vapor pressure ( i.e., Brutsaert, 1975). 12 

TR is partitioned into component soil, Ts, and canopy, Tc, temperatures based on the fractional 13 

vegetation cover (fc): 14 

      4
1

44 1 sccc TfTfT  R  (6) 

where fc(θ) is the vegetation cover fraction at the thermal sensor view angle θ.  A clumping 15 

factor, Ω, is adopted in the fc(θ) calculation to account for the row structure of vineyards (i.e., 16 

vine biomass concentrated along trellises) using a formulation from Campbell and Norman 17 

(1998): 18 
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where LAI is leaf area index, which is often estimated from NDVI using an empirical 19 

LAI~NDVI relation (Anderson et al., 2004).  When calculating the flux component H, “series” 20 
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and “parallel” schemes are adopted for the resistance network separately for unstable and stable 1 

conditions.  Detailed formulations for the two schemes can be found in Norman et al. (1995) and 2 

Kustas and Norman (1999).  LEc is initially estimated using a Priestley-Taylor formulation: 3 

ncGPTc R
γ

fα
+Δ

Δ
=LE  (8) 

where αPT is Priestley-Taylor parameter, which may vary within different vegetation and climate 4 

conditions (Norman et al., 1995; Kustas and Norman, 1999; Kustas and Anderson, 2009). In this 5 

paper, the initial value of αPT is 1.26.  fG is the LAI fraction that is green with active transpiration.  6 

Δ is the slope of the saturation vapor pressure-temperature curve (Pa K-1) and γ is the 7 

psychrometric constant (Pa K-1).  G is parameterized as a fraction of Rns by: 8 

sncRG =  (9) 

where c is the empirical coefficient which tends to be constant during midmorning to midday 9 

period. 10 

With the above model formulations, energy fluxes for both soil and canopy can be solved.  11 

Important model inputs for TSEB include TR, fractional canopy cover condition (often related to 12 

NDVI), and a land use map providing canopy characteristics (mainly vegetation height and leaf 13 

width) obtained using remote sensing imagery.  Ancillary meteorological data required in TSEB 14 

include air temperature, vapor pressure, atmospheric pressure, and wind speed. 15 

2.2 DATTUTDUT model 16 

The DATTUTDUT model is an energy balance model that estimates surface energy fluxes solely 17 

from radiometric surface temperature observations acquired over the area of interest.  This model 18 

assumes that TR is an important indicator for the surface status, and scales key parameters for 19 

flux estimation by TR between the extremes of a cool/wet pixel with ET at the potential rate and 20 

hot/dry pixel where there is essentially no ET.  Detailed model formulations are described in 21 

Timmermans et al. (2015).  Similar to other energy balance models, Rn is estimated by 22 

computing the net shortwave radiation and the net longwave radiation: 23 

44)1( Raadn TTSR    (10) 
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where εa is the atmosphere emissivity (-) and ε is the effective (integrated soil + canopy 1 

emissivity) emissivity. The value of Sd is obtained from the sun-earth astronomical relationships 2 

under clear-sky conditions (Allen et al., 2007; Timmermans et al., 2015).  In the DATTUTDUT 3 

model, nominal values are taken for ε and εa for simplicity: εa is set to be 0.7 and ε is taken as 4 

0.96.  Air temperature, Ta (K), is assumed to be equal to the minimum TR identified within the 5 

scene of interest.  α is scaled with TR between extreme values of 0.05 and 0.25 based on the 6 

assumption that densely vegetated objects are likely to be darker and cooler while bare objects 7 

tend to appear brighter and hotter: 8 

2.005.0
minmax

min

















TT

TTR  (11) 

where Tmax is the maximum TR within the image, and Tmin is the 0.5% lowest temperature in the 9 

scene. Soil heat flux is calculated from Rn with the coefficient cG scaled between a minimum 10 

value of 0.05 for fully covered condition and maximum value of 0.45 for bare soil (Roerink et al., 11 

2000; Santanello and Friedl, 2003): 12 

4.005.0
minmax

min

















TT

TT

R

G
c R

n

G  (12) 

Similar to α and cG, evaporative fraction, EF, is assumed to be linearly related to TR: 13 

max

max min

LE LE LE
EF

LE

R

n

T T

H R G A T T


   

  
  (13) 

where A is available energy (W m-2), i.e., the difference between Rn and G. With the above 14 

formulations, LE can be calculated from A and EF, and H can be estimated as the residual to the 15 

energy balance equation. 16 

2.3 Daily flux calculation 17 

A common approach used to extrapolate ET from instantaneous (time of satellite overpass) to 18 

daily time scale is to assume the ratio of instantaneous LE to some reference variable remains 19 

constant during the day, which is described as “self-preservation” by Brutsaert and Sugita (1992).  20 

The reference variables typically used include A (Anderson et al., 2012b), standardized reference 21 

ET (Allen et al., 2007), solar radiation (Zhang and Lemeur, 1995), top-of-atmosphere irradiance 22 
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(Ryu et al., 2012).  Cammalleri et al. (2014) compared the performances of the scale factors 1 

derived by these four reference valuables in ET upscaling at 12 AmeriFlux towers, drawing a 2 

conclusion that solar radiation was the most robust reference variable for operational applications, 3 

particularly in areas where the modeled G component of A may have high uncertainties.  4 

However, the applicability of the various reference variables may differ within areas, since the 5 

energy budget is significantly influenced by surface characteristics such as soil moisture, 6 

vegetation condition (Crago, 1996).  In this study, EF (defined as the ratio of LE to A or H+LE) 7 

is assumed constant during the daytime period when solar radiation is larger than 0. The 8 

extrapolation to daytime ET using a constant EF is reasonable to apply during the main growing 9 

season period (Cammalleri et al., 2014). 10 

The ratio of instantaneous to daytime A at the flux tower site is used to obtain daytime A for each 11 

pixel within the study area by assuming that the A ratio between pixel and flux tower is constant 12 

during the daytime.  Therefore, daytime A for the pixel (Ap,d ) can be derived from the pixel-13 

based instantaneous A (Ap,i), and flux tower site values of instantaneous and daytime A (As,i and 14 

As,d) using the following expression: 15 

,

, ,

,

p i

p d s d

s i

A
A A

A
  (14) 

Then daytime ET for each pixel (ETp,d) can be calculated by tower observed daytime A and the 16 

EF retrieved by either TSEB or DATTUTDUT: 17 

, ,ET EFp d p dA  (15) 

and daytime H is computed as the residual in the energy balance equation. 18 

In this study, the observed available energy from the two flux towers during the daytime period 19 

for all five days was used to extrapolate instantaneous model estimates to daytime ET totals.  20 

However, in practice tower measurements of A would not be available, so results using solar 21 

radiation to extrapolate to daytime ET will also be evaluated. 22 
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3 Data and site description 1 

3.1 Study site 2 

The model comparison was conducted over two vineyard sites located near Lodi in central 3 

California, using data collected as part of the Grape Remote sensing Atmospheric Profiling and 4 

Evapotranspiration eXperiment (GRAPEX) (Kustas et al., 2014).  With a Mediterranean climate, 5 

this area has abundant sunshine and large day-and-night temperature differences, making it a 6 

primary wine grape producing area in California.  This study focuses on two drip irrigated Pinot 7 

Noir vineyards trained on quadrilateral cordons with a 1.5m space between vines and 3.3m 8 

distance between rows.  The north field (Site 1) has an area of about 35 ha with the flux tower 9 

located approximately half-way north-south along the eastern border of the field (38°17.3’N, 10 

121°7.1’W), while the south vineyard (Site 2) is smaller in size, at about 21 ha with the flux 11 

tower also approximately half-way north-south along the eastern border of the field (38°16.8’N, 12 

121°7.1’W) (see Fig. 1).  The towers were deployed at these locations to maximize fetch for the 13 

predominant wind direction during the growing season, which is from the west.  The vines in 14 

north field (7-8 years old) are more mature than those in south field (4-5 years old), resulting in a 15 

greater biomass/leaf area in the north field (see the LAI map for IOP2 in Fig. 4).  Vine height is 16 

similar in both fields and reaches ~2.5 m in height.  The vines typically leaf out in late March 17 

and grow through late August before the grapes are harvested in early September.  When winter 18 

rains and soil moisture are adequate, a grass cover crop flourishes early in the growing season in 19 

the inter-row until becoming senescent starting in late May, which is typically the beginning of 20 

the dry season.  During the growing season in 2013, the average air temperature was nearly 21 

20 °C and the total precipitation was only about 15 mm. 22 

3.2 Micrometeorological data 23 

Micrometeorological instruments for measuring the meteorological and flux data were installed 24 

at both the north and south field flux tower sites in late March, 2013.  The meteorological data 25 

needed for running the TSEB model include air temperature, vapor pressure, atmospheric 26 

pressure, wind speed, and incoming solar radiation.  These were all measured at approximately 5 27 

m above local ground level (AGL) and recorded as 15 minute averages.  The eddy covariance 28 
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(EC) system comprised of a Campbell Scientific, Inc.1 EC150 water vapor/carbon dioxide sensor 1 

and a CSAT3 three-dimensional sonic anemometer, both collecting data at 20 Hz producing 15-2 

minute averages.  A Kipp and Zonen CNR1 four-component radiometer measured net radiation 3 

at 6 m AGL.  Five soil heat flux plates (HFT-3, Radiation Energy Balance Systems, Bellevue, 4 

Washington) buried cross-row at a depth of 8 cm recorded soil heat flux.  Each heat flux plate 5 

had two thermocouples buried at 2 and 6 cm depths and a Stevens Water Monitoring Systems 6 

HydraProbe soil moisture sensor buried at a depth of 5 cm used to estimate heat storage above 7 

each plate.  Both meteorological and fluxes data were measured through the whole vine growing 8 

season (April to October) in 2013.  During this period (including both daytime and nighttime 9 

observations), the slope between A and H+LE is 0.83 for both two sites with coefficient of 10 

determination (R2) on order of 0.97.  This suggests an average energy balance closure of nearly 11 

85%.  In this study, the EC fluxes were closed using both the Residual (RE) and Bowen Ratio 12 

(BR) methods described in Twine et al. (2000) to ensure energy conservation. 13 

3.3 Airborne campaigns 14 

Three Intensive Observation Periods (IOPs) were conducted through the 2013 growing season as 15 

part of GRAPEX to capture different vine and inter-row cover crop phenological stages that may 16 

affect ET rates.  During IOP1 (April 9-11, 2013; Day of Year (DOY) 99-101) the vines were just 17 

starting to leaf out and the cover crop in the inter-row was green and flourishing.  By the time of 18 

IOP2 (June 11-13, DOY 162-164), the vines were fully developed with immature green grapes, 19 

while the cover crop was senescent.  Grapes were beginning to ripen and reach maturity while 20 

the vines were still green and growing during IOP3 (August 6-8, DOY 218-220). 21 

Airborne campaigns were conducted on five days (DOY 100, 162, 163, 218 and 219) over the 22 

three IOPs.  Multispectral and thermal imagery were acquired over the two vineyards with the 23 

Utah State University airborne digital system installed in a single engine Cessna TU206 aircraft 24 

dedicated for research.  The system consists of four ImperX Bobcat B8430 digital cameras with 25 

interference filters forming spectral bands in the Blue (0.465‐0.475 μm), Green (0.545‐0.555 μm), 26 

Red (0.645‐0.655 μm) and Near Infrared (NIR) (0.780‐0.820 μm) wavelengths.  The thermal 27 

                                                      
1 The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. 

Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or 

the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. 
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infrared (TIR) images were acquired with a ThermaCAM SC640 by FLIR Systems Inc. in the 1 

7.5-13 μm range.  The aircraft-based TIR images were provided in degrees Celsius and used in 2 

this analysis without performing atmospheric correction.  Details of image acquisition and 3 

processing can be found in Neale et al. (2012).  In Table 1, overpass time (UTC), multispectral 4 

and thermal pixel resolution, information and aircraft altitude are listed for the overpass dates.  5 

The high spatial resolution of the visible bands (0.05 or 0.1 m, see Table 1) made it possible to 6 

distinguish vegetation pixels from non-vegetated pixels to some extent.  However, with the 7 

coarser thermal pixel resolutions it was difficult to reliably distinguish pure vine canopy 8 

temperatures from background soil and/or inter-row cover crop temperatures (Fig. 1).  Since the 9 

imagery for the different overpass dates have different spatial resolutions and the TSEB model 10 

resistance and radiation formulations for the turbulent and radiative exchange for the soil/cover-11 

crop-vine system are appropriate at the plot/micrometeorological scale, both multispectral and 12 

thermal bands were aggregated to 5 m resolution for creating TSEB input fields to compute ET. 13 

This spatial resolution ensured both an inter-row and vine row would be sampled within the pixel.   14 

The original or native pixel resolution of the thermal imagery was also used as input to 15 

DATTUTDUT. 16 

3.4 Model input from aircraft data 17 

The key TSEB model input data from the aircraft observations include maps of NDVI, LAI, fc, 18 

and TR.  Auxiliary remote sensing data were required to produce multispectral reflectance and 19 

LAI maps.  The original multispectral imagery from aircraft was in digital numbers (DN) and 20 

needed to be converted into reflectance.  Smith and Milton (1999) introduced an empirical line 21 

method to calibrate remote sensing-derived DN to reflectance with errors of only a few percent 22 

in their case study.  Berni et al. (2009b) applied the empirical line method on high resolution date 23 

obtained by UAV yielding calculated reflectances that agreed well with measurements (RMSD = 24 

1.17 %). Since ground-based reflectance measurements were not collected for some of the 25 

airborne acquisition dates, Landsat multispectral band reflectance in the corresponding spectral 26 

bands were used to derive the empirical DN-reflectance relationships for this analysis. 27 

Three Landsat images were used to match the three IOP dates: Landsat 7 on DOY 98 from 28 

path44-row33, Landsat 8 on DOY 163 from path43-row33, and Landsat 8 on DOY 218 from 29 
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path44-row33.  Reflectances for Band 5, Band 4, Band 3 from the Landsat 8 images, and Band 4, 1 

Band 3, Band 2 from the Landsat 7 image were used to derive the DN-reflectance relationship 2 

for NIR, red, and green bands, separately. All shortwave bands were calibrated and 3 

atmospherically corrected by the Landsat ecosystem disturbance adaptive processing system 4 

(LEDAPS) proposed by Masek et al. (2006).  5 

The DN values with the original aircraft pixel resolution (Table 1) were aggregated up to 30 m 6 

resolution to match the Landsat multispectral bands resolution and the DN~reflectance 7 

relationship was derived.  Visible band reflectance measurements were taken during the IOPs on 8 

DOY 162, 218 and 219 both above the vine row and over cover crop inter-row for both north and 9 

south fields.  Estimated NIR, red and green band reflectance at aircraft pixel resolution are 10 

compared with reflectance measurements in Fig. 2.  Using 54 data points, including the three 11 

bands for three days at both sites, estimated reflectance from aircraft data agreed well with 12 

observations having a bias (observed-model) of -1.1 % and root mean square difference (RMSD) 13 

of 4.5 %.  This accuracy is comparable with that (a few percent) found by Smith and Milton 14 

(1999) and Berni et al. (2009b). 15 

NDVI was assumed to be correlated with fractional vegetation cover and related to LAI (Carlson 16 

and Ripley, 1997).  The MODIS Terra four-day composite LAI product (MCD15A3) was used to 17 

derive LAI maps at 30 m resolution using the regression tree approach introduced by Gao et al. 18 

(2012).  NDVI maps were generated from NIR (Band 5) and red (Band 4) band of Landsat 8 data.  19 

This permitted the derivation of a LAI~NDVI relation at 30 m resolution which was used to 20 

create a LAI map at aircraft pixel resolution.  An exponential equation was used to fit the 21 

LAI~NDVI relationship, which was able to accommodate the effect of NDVI saturation at high 22 

LAI values (Carlson and Ripley, 1997; Anderson et al., 2004).  In Fig. 3, the LAI~NDVI 23 

equation is compared with ground-based LAI measurements using LiCor LAI-2000 on DOY 163 24 

and DOY 218.  The ground-based LAI measurements were derived from 5 transects running due 25 

west of the tower at 10-15 m intervals and across 4 rows from south to north.  The average LAI 26 

from 5 transects represented a sampling area that was within 75 m due west of the flux tower 27 

sites.  Four below vine canopy measurements were made and consisted of a LAI observation 28 

directly underneath vine plants along a row, and ¼, ½ and ¾ distance from the vine row. A LAI 29 

image from IOP2 is displayed in Fig. 4 illustrating the significant spatial variation in LAI 30 

particularly for the north field. 31 
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Values of fc were derived by the aircraft-based visible bands taking advantage of the high spatial 1 

resolution (0.05 to 0.1 m, see Table 1 and Fig. 1) which allowed separation of the vine canopy 2 

from the inter-row area.  Pixels were classified into vegetation and non-vegetation categories by 3 

ENVI image processing software (Exelis, Boulder, CO), and then the percentage of vegetation 4 

pixels was quantified within each 5 m resolution pixel. 5 

4 Results and discussion 6 

4.1 Comparison of model estimates and tower data 7 

Fluxes were modeled by both TSEB and DATTUTDUT at 5-m resolution using the spatially 8 

aggregated aircraft-based remotely-sensed observations.  In addition, DATTUTDUT used the 9 

native pixel resolution of the thermal imagery since there is no specific spatial scale required by 10 

the model parameterizations.  TSEB additionally estimates soil and canopy temperatures.  A 11 

two-dimensional flux footprint model described by Li et al. (2008) based on Hsieh et al. (2000) 12 

was used to compute footprint-weighted aggregated model outputs for comparison with the 13 

tower-based measurements. This footprint model contains a lateral dispersion formulation to 14 

obtain a two-dimensional weighted source-area of flux from the upwind direction. 15 

Average soil and canopy component temperatures from TSEB were compared to the aircraft-16 

based observations for the pixels within the flux contributing source area of the towers (Fig. 5).  17 

The aircraft-based temperature observations were extracted using a classification of vegetation 18 

and non-vegetated areas generated with the high resolution visible bands to identify appropriate 19 

pixels in the thermal imagery.  The aircraft thermal band had a pixel resolution on the order of 20 

0.5 m (see Table 1), which was often slightly coarser scale than the width of the vine canopy and 21 

hence frequently resulted in a mixed pixel, combining both soil and canopy temperatures. Since 22 

obtaining purely vegetated surface temperature observations uncontaminated by background soil 23 

or cover crop temperature was difficult given the resolution of the thermal imagery, the 24 

minimum of the vegetated temperatures detected within the 5 m pixel was assumed to be a pure 25 

vegetated pixel temperature.  Then within the footprint source area, the average of the non-26 

vegetated temperatures (assumed to primarily consist of shaded and sunlit areas in the inter-row) 27 

was taken as the observed Ts and average of the minimum vegetated temperatures from all 5 m 28 

pixels within the source area was estimated to represent the observed Tc.  TSEB estimates of Ts 29 
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and Tc agreed well with the aircraft thermal observations yielding a bias of 0.5 °C and RMSD on 1 

the order of 2.5 °C.  This accuracy was comparable with similar types of comparisons reported 2 

by Li et al. (2005), Kustas and Norman (1999, 2000), and Colaizzi et al. (2012a) which had 3 

RMSD values ranging from 2.4-5.0 °C for Ts and 0.83-6.4 °C for Tc when comparing observed to 4 

TSEB-derived component temperatures. 5 

To assess the utility of the TSEB and DATTUTDUT models in reproducing the observed fluxes 6 

from the tower observations in the north (site 1) and south (site 2) vineyards, instantaneous 7 

modeled fluxes are compared with measurements (adjusted for closure using the RE method) in 8 

Fig. 6.  Table 2 lists the statistics of model performance compared with both original and 9 

closure-adjusted measurements.  Since the vines were at the very early growth stage during IOP1, 10 

and the inter-row cover crop was the main source of vegetation cover, the observed G on DOY 11 

100 was significantly larger than other IOPs (Fig. 6). 12 

Table 2 clearly shows that the RE closure adjustment method yields better overall agreement 13 

between measured and modeled fluxes with the average error computed as the ratio of RMSD 14 

and avereage observed flux value of ~27% for H and LE for the two sites, while the BR method 15 

has an error of ~37%; Instantaneous fluxes from TSEB (H and LE adjusted by RE method) 16 

agreed well with observations with RMSD ranging between 20-60 W m-2, which is considered 17 

acceptable and similar to prior studies (e.g., Neale et al., 2012).  DATTUTDUT gave estimated 18 

fluxes with relatively large errors particularly for Rn (RMSD = ~65 W m-2) and LE (RMSD = 19 

~105 W m-2) for Site 1.  The larger discrepancies in Rn from DATTUTDUT might be attributed 20 

to the simplifications in the net radiation computation (see Section 2.2).  For DATTUTDUT, the 21 

results using 5 m pixel data indicate the significant error in LE predominantly resulst from poor 22 

performance on DOY 162 and 219 (Fig. 6b and 6e), likely because the extreme pixels 23 

automatically selected on these two days failed to represent the dryest/wettest conditions within 24 

the image (see discussion below). 25 

Daytime integrated fluxes are compared with the tower measurements in Fig. 7 and Table 3.  26 

Available energy was slightly overestimated by the models for all the cases, with biases between 27 

-0.5 and -1.7 MJ m-2 d-1.  Again, the RE method yielded better agreement with the model 28 

estimates of H and LE on a daytime scale.  The LE values from TSEB at Site 1 agreed well with 29 

the observations with a bias of 0.5 MJ m-2 d-1 and RMSD of 1.1 MJ m-2 d-1 (Fig. 7a and Table 3).  30 
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However LE from DATTUTDUT had larger differences with the measurements at Site 1 (bias = 1 

-1.1--1.0 MJ m-2 d-1 and RMSD = 1.9-2.0 MJ m-2 d-1) mainly due to the poor agreement in the 2 

instantaneous LE.  For 5 m resolution results, the two models were comparable in their 3 

agreement with LE measurements at Site 2, yielding a small bias of -0.5 to ~0 MJ m-2 d-1 and for 4 

both a RMSD on order of 1.7 MJ m-2 d-1.   5 

At both instantaneous and daytime time scales, application of DATTUTDUT with the native 6 

(finer) pixel resolution thermal imagery yielded comparable (at Site 1) or significantly greater (at 7 

Site 2) discrepancies with the tower measurements than using the 5 m pixel resolution data (see 8 

Tables 2 and 3). Changes in the agreement with the tower measurements are mainly attributable 9 

to the new hot and cold temperature pixels selected by the DATTUTDUT procedure with the 10 

finer resolution TR data. 11 

In practice, we will not have observations of available energy, A, from a flux tower for 12 

extrapolating the instantaneous ET from a single airborne observation to daytime ET, but instead 13 

are more likely to have weather station observations of incoming solar radiation, Sd.  Results 14 

using Sd for extrapolating model estimates instead of flux tower measurements of A are listed in 15 

Table 4.  In general, the differences between modeled and measured daytime ET (using RE 16 

method) increase, although not significantly for TSEB. On the other hand, discrepancies with the 17 

ET measurements for DATTUTDUT at the north vineyard (site 1) increase dramatically due to 18 

the large overestimation of instantaneous LE on DOY 162 and 219 (see Fig. 6b). 19 

In general, the TSEB reproduced the measured fluxes with higher accuracy than did 20 

DATTUTDUT, both at the instantaneous and daytime temporal scales.  It is hypothesized that 21 

this likely results from a better physical representation of the energy and radiative exchange 22 

within TSEB, since it explicitly considers differences in soil and vegetation radiation and 23 

turbulent energy exchange and affects on the radiative temperature source (French et al., 2005; 24 

Timmermans et al., 2007).  Flux estimation from single-source models based on the use of ET 25 

extremes will be sensitive to the selection of extreme end-member TR pixels (Feng and Wang, 26 

2013; Long and Singh, 2013), and actual extremes might not exist when applying such models to 27 

to small vineyards that are uniformly irrigated and managed as in this study.  This may be a key 28 

factor that caused the fluxes from DATTUTDUT using 5 m resolution data to agree well with 29 
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measurements on DOY 100, 163 and 218, but not on DOY 162 and DOY 219 when the ET 1 

extremes may not have been readily present or captured in the imagery (see discussion below). 2 

Fig. 8 shows the locations of the extreme TR pixels selected according to the DATTUTDUT 3 

modeling approach using 5 m resolution input for the five days.  The dark green band in the 4 

lower half of the south field (especially obvious in Fig. 8b and 8c) is an old stream bed which is 5 

likely to have different soil properties than the surrounding field.  For DOY 162 and 219, cold 6 

pixels were located at the north vineyard (Fig. 8b and 8e); while for DOY 163 and 218 just one 7 

day later or earlier than DOY 162 and 219, cold pixels were located within this former stream 8 

bed or at the tree pixel near the parking lot to the north (Fig. 8c and 8d).  Hot pixels were all 9 

located in bare soil pixels near the parking lot or in the north field without vines. 10 

In addition to the issues related to the selection of the TR end-members, DATTUTDUT does not 11 

consider effects of aerodynamic resistance (surface roughness) on the heat exchange for a given 12 

surface-air temperature difference.  A similar finding was reported by French et al. (2005), where 13 

they found bias for H from TSEB was typically within 35 W m-2, while bias for H from SEBAL 14 

could reach up to 150 W m-2.  Nevertheless, the simpler DATTUTDUT modeling scheme is 15 

much easier to apply to an image without a priori knowledge or skill required.  This is a 16 

significant benefit in operational, realtime applications.  Moreover as shown by Timmermans et 17 

al. (2015), output of fluxes from DATTUTDUT often were in good agreement with flux tower 18 

measurements and resulting flux fields had patterns consistent with more physically-based 19 

models including TSEB and SEBAL. 20 

Using measured Sd from the towers instead of computing from the sun-earth astronomical 21 

relationships routinely applied by DATTUTDUT, there is only a minor reduction in the 22 

differences with the tower fluxes.  An overall improvement in DATTUTDUT estimation of LE is 23 

achieved by adopting TSEB estimates of Rn and G (see Table 5). This is particularly true for the 24 

north vineyard (site 1).  However, even with this better agreement in estimated LE, the 25 

discrepancies with observed LE from DATTUTDUT is still larger than with the output of TSEB.  26 

This indicates that the errors in available energy using the DATTUTDUT formulations are not 27 

the only significant source of error in estimating the LE flux. 28 
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4.2 Comparison of spatial patterns in modeled fluxes 1 

Maps of instantaneous EF (assumed to be constant during the day) over the two vineyards are 2 

displayed in Fig. 9, along with frequency histograms of daytime ET from the TSEB and 3 

DATTUTDUT models expressed in mass units of mm d-1.  During IOP1 (DOY 100), the vines 4 

were leafing out in early growth stage and the cover crop in the inter-row was the main source of 5 

ET.  However, the cover crop in the interrow for the north field was mowed shortly before this 6 

aircraft overpass, while the cover crop in the south field was unmowed, and was taller and more 7 

lush.  As a result, EF and daytime ET distribution histograms showed bimodal shape on DOY 8 

100.  The histograms become more unimodal in later IOPs as the vine water use begins to 9 

dominate total ET. 10 

While spatial patterns of EF from TSEB and DATTUTDUT were quite similar for all the five 11 

overpass dates, driven largely by patterns in TR (see Fig. 8), the magnitudes in EF differ between 12 

the models, some days more significantly than others (Fig. 9a-9e).  Use of the finer resolution 13 

data had generally a minor to moderate effect on the EF and ET distributions except for DOY 14 

163 where the high resolution output indicates a bimodal distribution in EF and ET compared to 15 

the unimodal distributions using the 5 m resolution output from DATTUTDAT and TSEB.  16 

Since the DATTUTDUT model always scales EF between 0 and 1, results from the 17 

DATTUTDUT model generally had a wider distribution in EF compared to TSEB.  An example 18 

of a clear difference in the width of the EF distribution can be seen for DOY 162 in IOP 2 (Fig. 19 

9g), while for daytime ET, differences in the distributions were quite evident in IOP 2 and IOP 3 20 

(Fig. 9l, 9n and 9o).  A similar result was obtained by Choi et al. (2009), who compared 21 

turbulent fluxes estimated by METRIC, TIM and TSEB using Landsat imagery over a corn and 22 

soybean production region in central Iowa. 23 

Despite similar model agreement in instantaneous ET with the tower measurements using the 5 24 

m resolution data on DOY 100, 163 and 218 for the three IOPs (Fig. 6), there are in some cases 25 

where there are significant differences in maps of EF generated by the two models on these days 26 

(Fig. 9).  EF discrepancies were particularly large on DOY 162 during IOP2 (Fig. 9b), and on 27 

DOY 219 during IOP3 (Fig. 9e).  These discrepancies are due primarily to model differences in 28 

partitioning A between H and LE within these areas, rather than differences in A itself.  In 29 

particular, DATTUTDUT has less sensitivity to dry aerodynamically rough surfaces, which the 30 
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model does not account for; therefore, DATTUTDUT scheme tends to estimate higher EF 1 

(Timmermans et al., 2015).  Similar spatial discrepancies in model output were reported by 2 

Timmermans et al. (2007) and Choi et al. (2009), even though there was good agreement when 3 

the models were compared to flux tower measurements.  The selection of improper extreme 4 

pixels is another crucial factor causing the large discrepancies for the DOY 162 and 219, as 5 

analyzed and discussed in Section 4.1. 6 

4.3 Sensitivity of TSEB and DATTUTDUT to the key input, TR 7 

The sensitivity of the TSEB and DATTUTDUT models to the key input, TR,  was analyzed in 8 

order to further investigate the strengths and weaknesses of the two modeling approaches.  The 9 

aircraft imagery from DOY 163 was selected as a case study since input data were collected in 10 

the afternoon (see Table 1) with near maximum radiation and air temperature conditions.  Since 11 

TR is the most important input to both TSEB and DATTUTDUT, EF and ET values were 12 

calculated with a bias in TR (± 3 °C) to evaluate the sensitivity of these two models to absolute 13 

accuracy of this key input.  The ±3 degree bias in TR was selected based on a comparison 14 

between ground-based and the airborne TR measurements for IOP 3.  For DATTUTDUT, the 15 

influence of extreme pixel selection on the computed EF and ET was also investigated.  Values 16 

of EF and ET were also calculated with a 1 degree deviation in the assigned Tmax/Tmin (±1 °C).  17 

In addition, the values of Tmax/Tmin were selected using the native pixel resolution TR imagery.  18 

Finally, values of Tmax/Tmin were derived from imagery encompassing a larger study 19 

area/modeling domain both at the aggregated 5 m pixel resolution and the TR native (~0.6 m) 20 

resolution.  Note that for TSEB, using finer resolution TR would not be consistent with the model 21 

formulations for partitioning between soil and canopy convective energy and radiation fluxes and 22 

kinetic temperatures.  A list of sensivity tests conducted, along with  the resulting EF and 23 

daytime ET statistics describing model output over the north and south vineyards, is provided in 24 

Table 6. 25 

Results for the various tests of sensivity of output from TSEB and DATTUTDUT to biases in TR 26 

inputs indicate that the error/uncertainty in EF and ET estimation can be fairly significant for 27 

TSEB (Fig. 10a-10c and Fig. 10l) with an uncertainty in field average ET of ~1 mm day-1, while 28 

there is no real impact on the output from DATTUTDUT (Fig. 10d-10f and Fig. 10m).  For 29 

TSEB, the shape of the ET distribution remains essentially unchanged, just the mean/centroid of 30 
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the distribution and max/min ET are shifted.  This result is not unexpected based on prior 1 

sensitivity studies of both modeling approaches (e.g., Timmermans et al., 2007).  The ± 1 degree 2 

change in the max/min TR also does not impact the output of ET with DATTUTDUT (Fig. 10g-3 

10h and Fig. 10n).  However, changing the size of the modeling domain for defining max/min TR 4 

and/or the pixel resolution has a measurable impact on the spatially-distributed output from 5 

DATTUTDUT in these tests (Fig. 10i-10k and Fig. 10o).  Similar to TSEB, the uncertainty in 6 

field average ET is ~ 1 mm day-1.  With a larger study domain, the selected hot pixel is likely to 7 

have higher TR while the cold pixel will tend to have lower TR (see Table 6) since the number of 8 

pixels available for selection of the extremes are increased.  This causes the ET estimation from 9 

larger domain (Case D5 and D7) to have a narrower distribution compared to ET from smaller 10 

domain (Case D0 and D6) (see Fig. 10o).  The finer (native) TR resolution also results in greater 11 

temperature extremes in the hot and cold pixels. (Table 6) since the pixels available for selection 12 

of the end-members were less contaminated containing a mixture of canopy and soil/substrate 13 

surfaces.  Owing to the likely difference LE rates for the bare soil/senscent cover crop versus the 14 

irrigated vine vegetation the ET estimation from finer resolution TR data (Case D6 and D7) 15 

tended to be more bimodal than that from courser resolution TR (Case D0 and D5) (see Fig. 10o). 16 

These tests confirm that simple scaling schemes like DATTUTDUT benefit from insensitivity to 17 

biases in TR, but are sensitive to pixel size and range of conditions present within the modeling 18 

domain.  This is in contrast to results reported by French et al. (2015), where they concluded that 19 

no significant difference in daily ET estimation accuracy was observed running the METRIC 20 

model at high (aircraft-based) and medium (Landsat) pixel resolutions.  Their study fixed 21 

extreme pixels using an objective criteria based on clustered means rather than single pixels, 22 

which may reduce the likelihood of an error in selecting an outlier as an extreme hot or cold 23 

pixel.  Moreover they conducted the inter-comparison of model output at the two resolutions 24 

focused on field-averaged ET in comparison to water balance estimates; therefore, the effects on 25 

ET distributions or variability were not evaluated in detail.  Lastly, the sources of the input data 26 

at the two spatial resolutions were provided by the different platforms - aircraft and Landsat; 27 

however, the effects of changing the pixel resolution of either the aircraft or satellite data were 28 

not evaluated. While more automated approaches are being developed for determining extreme 29 

TR-values in applying contextual-based methods such as METRIC (Morton et al., 2013), the 30 

current study demonstrates that pixel resolution of TR and sampling area will influence the 31 
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selection of extreme limits in the approach used by DATTUTDUT, resulting in differences in 1 

spatial distribution/patterns in ET from DATTUTDUT within a given study area. 2 

4.4 Water consumption analysis 3 

Water consumption estimates at the field scale provide important information for water 4 

management decision making.  In this section, estimates of field-scale daytime water 5 

consumption for the north and south fields were calculated by aggregating daytime ET totals for 6 

all pixels encompassed within each field and then converting to a volume (in liters) by the area 7 

of the corresponding field.  When using the observed ET (from the flux towers), the field scale 8 

water consumption was computed by simply multiplying the tower measured daytime ET 9 

(forcing closure by residual) by the area (size) of the vineyard.  The volume of water use for each 10 

field for the five overpass dates is illustrated in Fig. 11. 11 

The discrepancies between field water consumption from TSEB and DATTUTDUT were 12 

relatively small (3% - 6%) on DOY 100, 163 and 218, since the instantaneous and daytime ET 13 

estimates from the two models were similar.  However, the water use estimated from TSEB was 14 

25% and 33% less than that computed by DATTUTDUT on DOY 162 and 219, respectively.  15 

Water consumption calculated by TSEB tended to agree with observed daytime ET estimated 16 

from the tower observations, but often had slightly lower ET estimates.  This is consistent with 17 

the fact that, particularly for the north (site 1) vineyard, the flux tower footprint generally came 18 

from the center area of the field with highest EF and ET (cf. Fig. 1 and Fig. 9). On the other hand, 19 

DATTUTDUT tended to estimate higher field scale ET than TSEB and tower measurements, 20 

particularly on DOY 162 and 219.  The overall higher estimated water use for IOP2 and IOP3 by 21 

DATTUTDUT is likely due to the simplfied parameterization of heat exchange based solely on 22 

TR and the pixel selection criteria for the hydrologic extremes as analyzed in Section 4.1 and 23 

Section 4.2. 24 

Water use from TSEB was separated into soil/inter-row evaporation (E) and vine/vegetation 25 

transpiration (T) for each day by assuming the E/T ratio estimated at the aircraft overpass time 26 

was constant during the daytime period (see the red lines in Fig. 11).  The variation of E between 27 

days was smaller than the variability in T, with standard deviations in E of 95 and 55 kiloliters 28 

for the north and south fields, respectively, as compared 197 and 173 kiloliters for T.  On 29 
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average over the 5 days, the E/ET ratios for site 1 and 2 were estimated by TSEB to be ~0.33 and 1 

0.35, respectively.  Although observations of E/ET are not available to validate the TSEB 2 

estimates of partitioning, other studies in drip-irrigated vineyards report E/ET ratios of ~0.3 3 

±0.12 (Yunusa et al., 2004; Ferreira et al., 2012; Poblete-Echeverría et al., 2012; Kerridge et al., 4 

2013), indicating TSEB estimates of E/ET partitioning are not unreasonable. 5 

While some level of discrepancy is expected between modeled and measured vineyard water use 6 

due to model errors and measurement uncertainties, there are additional factors which may play a 7 

role when there appears to be a fairly large difference in water consumption estimated from the 8 

tower measurements versus the models, particularly with the TSEB model which tends to have 9 

better agreement with the tower measurements.  The climate in this region is quite arid during 10 

the growing season with the drip irrigation being the only water source for the vines.  As a result, 11 

the water availability (or soil water content) condition in the vine root zone plays a crucial role in 12 

the vegetation biomass. Therefore it is reasonable to assume there would be a strong correlation 13 

between ET and vine LAI as representative of the water availability in the root zone. The spatial 14 

variation in vine LAI is likely due to variation in the amount of irrigated water and/or variability 15 

in soil water holding capacity.  Specifically, on days like DOY 162 and 163 for the north field 16 

and DOY 100 for the south field where there are significant differences between tower 17 

observations and TSEB estimates, there are also large differences observed between the LAI 18 

within the tower source area and the field average.  The lower (higher) LAI of the flux tower 19 

source area is associated with the lower (higher) daytime ET estimated from the flux tower 20 

observations versus the spatially-distributed ET output from the TSEB model.  The differences in 21 

LAI from the source area and field average are not large (see Table 7), but they do support the 22 

idea that a single measurement of water use within a vineyard is not always representative of the 23 

total vineyard water consumption. 24 

In a comparison of ET measurements acquired over irrigated cotton eddy covariance, water 25 

balance and lysimeters, Kustas et al. (2015) show how variability in LAI within the different 26 

source areas associated with each measurement device was correlated to discrepancies between 27 

the measured values ET.  In the current study, if the ratio of the field versus flux tower source 28 

area average LAI is used to adjust the water consumption estimates from the ET tower 29 

measurements for the two fields, in all cases except one (DOY 100 at site 2) there is closer 30 

agreement with TSEB estimates (see Fig. 11).  The continued discrepancy for DOY 100 site 2 31 
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has more to do with the fact that the G values from the tower site were significantly higher than 1 

modeled (see Fig. 6) and are suspect since the ratio of G/Rn for much of the daytime period 2 

ranged from 0.3 to 0.45 which are values expected for bare soil (Santanello and Friedl, 2003).  3 

This resulted in the daytime available energy Rn-G for the tower site to be ~0.7 of the value 4 

estimated by TSEB. Therefore, closure of the tower-based ET flux did not significantly boost the 5 

observed value for DOY 100. 6 

With the ET distributions from the models illustrated in Fig. 12, one sees that often the tower 7 

measurements fall significantly away from the center/mean of the modeled ET distributions. This 8 

is a major advantage with remote sensing-based ET approaches using high pixel resolution data 9 

which can capture the actual variation in key surface conditions (vegetation cover, soil moisture) 10 

affecting ET.  While in most cases the LAI adjustment to the ET tower measurements improved 11 

the agreement with model estimated field scale water consumption, the capability of the remote 12 

sensing-based surface energy balance models in mapping ET provides a unique tool for 13 

identifying areas in the field potentially under water stress conditions.  This isn’t practical using 14 

micrometeorological methods. 15 

Current operational techniques for estimating water use of crops primarily rely on the crop 16 

coefficient technique based on the FAO 56 publication (Allen et al., 1998).  The actual ET of the 17 

crop is estimated by first computing a reference ET (ET0) which is then multiplied by the crop 18 

coefficient (KC).  This single crop coefficient is often divided (called the dual crop coefficient) 19 

into a basal crop coefficient (KCb), which is associated with the crop transpiration and has been 20 

related to remotely sensed vegetation indices (Neale et al., 1989) and a soil surface evaporation 21 

coefficient (Ke).  There is also included a Ks coefficient to reduce crop transpiration for a deficit 22 

in water availability in the root zone so the expression has the form ET=( KCbKs + Ke)ET0.  23 

Determining Ke and Ks requires running a soil water balance model for the surface and root zone.  24 

A recent application of this methodology over corn and soybean croplands is given by Gonzalez-25 

Dugo and Mateos (2008) where they find this reflectance-based crop coefficient technique can 26 

significantly overestimate ET during a prolonged dry down period.  There also appears to be no 27 

consistent or universal relationship between crop coefficients and vegetation indices and so this 28 

approach is not readily transferable to different crops and climatic conditions (Gonzalez-Dugo et 29 

al., 2009).   30 
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As an example, the spatial distribution of KC was computed using FAO 56 estimated ET0 and the 1 

ET map from TSEB from DOY 163 (Fig. 13).  There is a significant spatial variation in KC due 2 

in part to the know effect of leaf area/fractional cover (Choudhury et al., 1994), which is seen in 3 

the correlation between the KC map and LAI map of Fig. 4, but there are other factors including 4 

the vine variety and the possibility of some level of stress in areas of the vineyard that cannot be 5 

reliably detected by this approach.  Using the ET measurements from the flux towers and FAO 6 

56 estimated ET0, for the north vineyard site 1, the value of KC ranged from 0.55 for DOY 100 to 7 

0.76-0.82 for the other days.  For the south vineyard (site 2), KC values ranged from 0.59 for 8 

DOY 100 to 0.62-0.65 for the other days, indicating little variation in KC with vine phenology.  9 

In contrast, the FAO 56 manual recommends KC values for vineyards at early, peak and end of 10 

the growing season of 0.3, 0.7 and 0.45.  Clearly, a calibration with this approach is required, 11 

which is not only dependent on vine variety but also on vine management (i.e., row orientation 12 

and spacing, pruning, irrigation scheduling, etc.) 13 

5 Conclusions 14 

High resolution multispectral and thermal imagery obtained by aircraft mounted sensors were 15 

used to map evapotranspiration (ET) over two vineyards in central California using both the Two 16 

Source Energy Balance (TSEB) and single-source contextual-based DATTUTDUT (Deriving 17 

Atmosphere Turbulent Transport Useful To Dummies Using Temperature) model which scales 18 

evaporative fraction (EF) between 0 and 1 using only the radiometric surface temperature (TR) 19 

extemes of cold/wet and hot/dry pixels in the remotely sensed scene.  This study focused on five 20 

aircraft overpass dates (DOY 100, 162, 163, 218 and 219) over the vine growing season in 2013. 21 

Component soil and canopy temperatures from TSEB agreed well with the airborne-based 22 

observationsderived within the flux-tower source-area yielding a bias on the order of 0.5 °C and 23 

a RMSD-value ~2.5 °C for both soil/cover crop and vine canopy temperatures.  Instantaneous 24 

and daytime integrated fluxes from the TSEB and DATTUTDUT models were validated with 25 

flux tower measurements.  The TSEB model was able to derive satisfactory estimates of both 26 

instantaneous and daytime sensible heat flux (H) and latent heat flux (LE) for all the five 27 

overpass dates, while overall the DATTUTDUT model output of H and LE were in less 28 

agreement with the tower measurements, particualrly for DOY 162 and 219 overpass dates. 29 
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Spatial distributions of evaporative fraction, EF, and daytime ET from the two models were 1 

compared for all the five overpass dates.  While the spatial patterns of relatively high and low 2 

values of EF mapped by TSEB and DATTUTDUT for the two vineyard fields were similar, the 3 

magnitude and range in the EF values were quite different on certain days.  Specifically, the 4 

distributions of EF values from DATTUTDUT often yielded a wider range due to the 5 

requirement that each image contains ET at the extremes of potential and ET=0.  This resulted in 6 

EF and daytime ET magnituides and spatial patterns generated by the two models being fairly 7 

similar on DOY 100, 163 and 218, while having larger discrepancies on DOY 162 and 219. In 8 

general, inter-comparisons between the performance of TSEB and DATTUTDUT using high 9 

resoultion (meter-scale) data tended to yield conclusions consistent with results from prior 10 

studies comparing TSEB with single-source models based on contextual scaling of maximum 11 

and minimum ET using moderate resolution data (see e.g., French et al., 2005, 2015; 12 

Timmermans et al., 2007; Choi et al., 2009).  With a more physically-based two-source 13 

formulations explicitly treating soil and vegetation energy and radiation exchanges and reliable 14 

TR data, the TSEB model is fairly robust and able to derive reliable ET patterns at sub-field scale 15 

under a wide range of environmental conditions.  The performance of DATTUTDUT model in 16 

computing reliable ET and generating distributions and patterns over the vineyards was similar 17 

to TSEB on some of the overpass dates, but for other times the DATTUTDUT model 18 

performance was less than satisfactory largely depending on whether there actually existed pixels 19 

in the scene that were representative of the extreme ET conditions, namely “maximum” ET 20 

(LE=Rn-G) and no ET (LE= 0). 21 

Differences in daytime ET estimated from the two models directly contributes to the 22 

discrepancies in field-scale water use estimates, which on certain days was quite significant.  The 23 

discrepancies in field scale water consumption calculations from the two models ranged from 3% 24 

to 33%, which translated to differences in field scale water use between the two models ranging 25 

from approximately 68 to 899 kiloliters.  Field-scale water consumption estimated from TSEB 26 

agreed more closely with estimates based on tower ET observations, while DATTUTDUT 27 

tended to estimate higher water use.  Disagreement between modeled and measurements is partly 28 

due to the difference with LAI of the tower source area and the whole field average.  Larger 29 

differences in water use occurred when source area LAI failed to represent the field average. A 30 

simple adjustment using the ratio of average LAI from the field and the tower source-area greatly 31 
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reduced the discrepancy with the TSEB model output.  Comparsion between tower measured ET 1 

and ET distributions from the models shows that tower measurements generally do not have a 2 

value that is representative of the center/mean of the modeled ET distributions. 3 

Compared with water consumption information provided by flux tower observations, the type of 4 

spatially-distributed ET information provided by thermal-based energy balance models has clear 5 

advantages, particularly when imagery is at fine pixel resolution.  ET observed by flux tower is 6 

sampling a relatively small area of the field, while the ET models with the TR imagery can 7 

provide spatially-distributed water use information over the entire vineyard and consequently 8 

identify the spatial distribution of plant water status, a required input for precision irrigation 9 

systems.  Two-souce schemes like TSEB are able to provide reliable ET estimation as well as the 10 

partitioning between E and T since the model explicitly parameterizes the radiative and 11 

convective exchanges between the soil and canopy systems. 12 

However, the senstivity analysis indicates that high-quality TR input data are needed for TSEB.  13 

The DATATTUDUT contextual scaling approach, with automatic pixel selection, is not sensitive 14 

to errors in TR and requires only very basic information as model input, making it relatively easy 15 

to apply operationally.  Nevertheless, such one-source approaches fail to provide estimates of the 16 

E and T partitioning, and the ET estimation at least for DATTUTDUT can be sensitive to 17 

domain size and spatial resolution due to the simple model parameterizations. 18 

With UAV technology rapidly developing to provide remote sensing products in near real time 19 

(Berni et al., 2009b) , the DATTUTDUT scheme can provide real time ET maps at sub-field 20 

scale that will in many cases yield reliable patterns, but not in all cases appropriate magnitudes in 21 

ET. In cases where the landscape is aerodynamically rough and dry, an adjustment to the end-22 

member selection for the DATTUTDUT scheme appears to be necessary (Timmermans et al., 23 

2015).  If routine high-resolution imagery from UAVs become operational, a hybrid 24 

methodology integrating a very simple ET model (DATTUTDUT) with a more robust modeling 25 

scheme (TSEB) should be developed.  Moreover, to ensure continuous and reliable daily water 26 

use and vegetation stress monitoring incorporating the crop coeffcient based technique linked to 27 

a water balance model with the thermal-based ET approach using data assimilation has shown 28 

utility and addresses to a large extent the shortcomings in estimating/updating the crop 29 

coefficient and the impact of plant stress (Neale et al., 2012). 30 
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Tables： 1 

Table 1. Flight and pixel resolution information concerning the images obtained from the 2 

airborne campaigns. 3 

IOP Date (DOY) Flight time (UTC) 
Original spatial resolution (m) Flight height 

(m) Multispectral Thermal 

1 April 10 (100) 18:29-18:43 0.09 0.7 430 

2 June 11 (162) 18:20-18:26 0.05 0.42 240 

2 June 12 (163) 21:11-21-16 0.05 0.38 240 

3 August 6 (218) 18:34-18:37 0.1 0.66 480 

3 August 7 (219) 18:46-18:49 0.1 0.65 480 

  4 
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Table 2. Difference statistics describing comparisons between modeled fluxes from TSEB and 1 

DATTUTDUT at the overpass time and observations (original and with adjustments using the 2 

RE and BR methods for energy balance closure) (W m-2). 3 

Site Flux 
DOY 

No. 

Mean 

Obs. 

TSEB 

(5 m pixel res.) 

DATTUTDUT 

(5 m pixel res.) 

DATTUTDUT 

(native pixel res.) 

Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD 

Site 

1 

Rn 5 593 0 26 33 -43 64 66 -61 61 65 

G 5 85 5 28 33 -18 35 40 -24 35 38 

H 5 195 13 37 42 48 53 68 41 57 68 

LE 5 268 -63 70 87 -117 117 150 -123 139 157 

LERE 5 313 -18 32 37 -73 76 105 -78 100 106 

HBR 5 215 33 55 62 68 71 89 61 76 91 

LEBR 5 293 -38 50 58 -92 94 125 -98 119 129 

Site 

2 

Rn 5 590 6 15 23 -19 26 27 -40 40 42 

G 5 132 41 43 59 6 47 61 12 42 55 

H 4 195 -23 43 45 8 31 39 21 53 59 

LE 4 186 -90 90 102 -106 106 119 -149 149 163 

LERE 4 253 -23 43 51 -38 55 63 -81 90 101 

HBR 4 231 13 33 48 44 59 68 57 81 90 

LEBR 4 217 -59 61 77 -74 77 93 -117 117 136 

 4 

  5 
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Table 3. Difference statistics describing comparisons between modeled daytime fluxes from 1 

TSEB and DATTUTDUT model and observations (original and with adjustments using the RE 2 

and BR methods) (MJ m-2 d-1). 3 

Site Flux 
DOY 

No. 

Mean 

Obs. 

TSEB 

(5 m pixel res.) 

DATTUTDUT 

(5 m pixel res.) 

DATTUTDUT 

(native pixel res.) 

Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD 

Site 

1 

Rn-G 5 15.0 -0.5 0.7 0.9 -1.2 1.2 1.5 -1.2 1.4 1.6 

H 5 4.4 -1.0 1.2 1.4 -0.1 1.0 1.2 -0.1 1.2 1.3 

LE 5 8.5 -1.6 1.6 1.8 -3.2 3.2 3.6 -3.1 3.2 3.6 

LERE 5 10.6 0.5 1.0 1.1 -1.1 1.4 1.9 -1.0 1.9 2.0 

HBR 5 9.9 4.4 4.4 5.1 5.4 5.4 6.1 5.4 5.4 6.0 

LEBR 5 5.1 -4.9 4.9 5.4 -6.6 6.6 7.1 -6.5 6.5 6.9 

Site 

2 

Rn-G 5 13.9 -1.4 1.5 1.9 -1.1 1.5 2.3 -1.7 2.0 2.5 

H 4 5.2 -1.8 1.8 2.2 -0.8 1.1 1.3 -0.3 1.1 1.3 

LE 4 6.2 -2.6 2.6 2.9 -3.1 3.1 3.5 -4.3 4.3 4.6 

LERE 4 8.8 0.0 1.7 1.7 -0.5 1.7 1.8 -1.6 2.2 2.3 

HBR 4 7.6 0.6 1.9 1.9 1.6 1.6 1.8 2.1 2.1 2.3 

LEBR 4 6.4 -2.4 3.0 3.4 -2.9 2.9 3.4 -4.0 4.0 4.2 

 4 

  5 
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Table 4. Difference statistics for daytime ET (MJ m-2 d-1) extrapolated from instantaneous 1 

estimates using observed available energy A (Obs. A) from flux towers versus using incoming 2 

solar radiation measurements (Sd). 3 

Site Stat 
TSEB DATTUTDUT 

Obs. A Sd Obs. A Sd 

Site 1 

Bias 0.5 -1.4 -1.1 -3.4 

MAE 1.0 1.4 1.4 3.4 

RMSD 1.1 1.6 1.9 4.1 

Site 2 

Bias 0.0 -0.8 -0.5 -1.3 

MAE 1.7 1.5 1.7 1.3 

RMSD 1.7 1.8 1.8 1.8 

 4 

  5 
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Table 5. Difference statistics comparing instantaneous output of LE from TSEB and 1 

DATTUTDUT with current DATTUTDUT algorithms for estimating the available energy versus 2 

using the estimates from TSEB. 3 

Site Flux 
DOY 

No. 

Mean 

Obs. 

TSEB DATTUTDUT (5m) 
DATTUTDUT using Rn 

and G from TSEB 

Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD 

Site 1 

H 5 195 13 37 42 48 53 68 52 59 75 

LE 5 268 -63 70 87 -117 117 150 -101 101 123 

LERE 5 313 -18 32 37 -73 76 105 -56 56 77 

HBR 5 215 33 55 62 68 71 89 72 77 96 

LEBR 5 293 -38 50 58 -92 94 125 -76 76 97 

Site 2 

H 4 195 -23 43 45 8 31 39 1 30 37 

LE 4 186 -90 90 102 -106 106 119 -114 114 123 

LERE 4 253 -23 43 51 -38 55 63 -47 47 59 

HBR 4 231 13 33 48 44 59 68 37 46 62 

LEBR 4 217 -59 61 77 -74 77 93 -83 83 95 

 4 

  5 
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Table 6. Statistics describing EF and daytime ET produced by TSEB and DATTUTDUT over the north and south vineyards for each 1 

sensitivity test described in the text. 2 

Model Cases Input setting 

TR of extreme 

limits (°C) 
EF Daytime ET (mm) 

Tmax Tmin Mean1 Med.2 Std.3 Max.4 Min.5 Mean Med. Std. Max. Min. RMSD6 

TSEB 

T0 Original Input - - 0.61 0.62 0.12 0.91 0.01 4.3 4.4 1.0 6.8 0.1 0.6 

T1 TR+3 - - 0.46 0.48 0.14 0.80 0.02 3.2 3.3 1.1 5.9 0.1 2.0 

T2 TR-3 - - 0.73 0.74 0.11 0.99 0.02 5.3 5.3 1.0 7.6 0.1 0.3 

DATTUTDUT 

D0 Original Input 54.7 31.4 0.67 0.67 0.11 1 0 4.5 4.5 1.3 8.9 0 0.5 

D1 TR+3 57.7 34.4 0.67 0.67 0.11 1 0 4.4 4.3 1.2 8.7 0 0.6 

D2 TR-3 51.7 28.4 0.67 0.67 0.11 1 0 4.7 4.6 1.3 9.1 0 0.4 

D3 Tmax+1 55.7 31.4 0.68 0.68 0.11 1 0.04 4.7 4.6 1.2 8.9 0.1 0.4 

D4 Tmin-1 54.7 30.4 0.64 0.64 0.11 0.96 0 4.3 4.2 1.2 8.3 0 0.8 

D5 Whole Area 58.4 23.4 0.55 0.55 0.08 0.77 0.11 3.4 3.3 0.8 5.9 0.3 1.6 

D6 Native Resolution 58.5 25.7 0.62 0.64 0.17 1 0 4.2 4.2 1.8 9.3 0 0.7 

D7 
Whole Area and 

Native Resolution 
61.4 20.3 0.57 0.58 0.13 0.87 0.07 3.6 3.6 1.4 7.4 0.2 1.3 

1Mean: mean of the EF or ET distribution 3 

2Med.: median of the EF or ET distribution 4 

3Std.: Standard deviation of the EF or ET distribution 5 

4Max.: Maximum value of the EF or ET distribution 6 

5Min.: Minimum value of the EF or ET distribution 7 

6RMSD: the RMSD of the modeled daytime ET at Site 1 and Site 2, RMSD = {[(O1-M1)2+ (O2-M2) 2]/2}1/2. 8 
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Table 7. Average leaf area index (LAI) estimated for the flux tower source area/flux footprint 1 

versus the whole field derived from the aircraft imagery (NDVI relationship with LAI).  The LAI 2 

values in bold are associated with the days where differences in water consumption estimated by 3 

TSEB versus using the tower measured ET are significant for site 1 (North vineyard) and site 2 4 

(South vineyard). 5 

Site DOY 
LAI 

Source Area Whole Field 

1 

100 1.3 1.3 

162 2.0 1.5 

163 1.8 1.5 

218 1.6 1.5 

219 1.7 1.5 

2 

100 1.7 1.9 

162 1.5 1.5 

163 1.5 1.5 

218 1.2 1.2 

219 1.3 1.2 
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Figures: 1 

 2 

 3 

Figure 1. Location of study area overlaid on a false color composite of near-infrared (NIR), red, 4 

and green bands with 0.1 m spatial resolution (a) and thermal band with 0.66 m spatial resolution 5 

(b) obtained by aircraft on August 6, DOY 218, 2013.  In the visible band image (a), red and 6 

gray colors denote the vine and bare soil/senescent cover crop in the inter-row, respectively, 7 

while in the thermal band image (b), blue/green and yellow/red colors represent vine and bare 8 

soil/senescent cover crop in the inter-row, respectively.  The black line denotes the boundary of 9 

north and south fields, and the blue stars are the locations of the flux tower sites.  The two photos 10 

of the north and south fields (c and d) were taken on June 11 in 2014 after vines had fully leafed 11 

out. 12 
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 1 

 2 

Figure 2. Comparison between observed (O) and modeled (M) visible band reflectance.  The 3 

statistics (for the sample size n=54) listed in the figure are the Bias (Σ (O-M)/n), mean absolute 4 

error (MAE=Σ|O-M|/n) and root mean square difference (RMSD=[Σ(O-M)2/n]1/2) where the 5 

symbol Σ represents a summation over the sample size n. 6 
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 2 

Figure 3. Validation of the LAI~NDVI relation using the ground-based LAI measurements on 3 

DOY 163 and 218. 4 
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 1 

Figure 4. The LAI map generated from the NDVI image for IOP 2 DOY 163. 2 
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 3 

Figure 5. Comparison between modeled Ts and Tc from TSEB and values extracted from the 4 

aircraft imagery on the five acquisition days.  All the statistics (Bias, MAE and RMSD) have 5 

units of °C. 6 
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Figure 6. Scatter plot of observed and modeled fluxes from (a) TSEB (5 m pixel resolution),  (b) 3 

DATTUTDUT (5 m pixel resolution) and (c) DATTUTDUT (native pixel resolution) at the 4 

aircraft overpass time for the five days in 2013.  The observed H and LE use the RE method for 5 

energy balance closure.  Note for DOY 162, there were no flux data from site 2 due to an EC 6 

sensor malfunction. 7 

  8 



51 

 

 1 

 2 

Figure 7. Scatter plot of observed and modeled daytime fluxes from (a) TSEB (5 m pixel 3 

resolution),  (b) DATTUTDUT (5 m pixel resolution) and (c) DATTUTDUT (native pixel 4 

resolution) for the five days in 2013.  The observed energy components are adjusted for energy 5 

balance using the RE method. 6 
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Figure 8. Locations of hot (red points) and cold (blue points) pixels selected from the TR maps 3 

for DATTUTDUT model on the five days. 4 
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Figure 9. Comparison of TSEB ( 5 m resolution) and DATTUTDUT model output at 5 m and 3 

native pixel resolution: spatial distribution of instantaneous EF (a to e), frequency histogram of 4 

instantaneous EF (f to j) and daytime ET (k to o). 5 
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 1 

Figure 10. Comparison of the ET patterns and frequency distributions generated by TSEB and DATTUTDUT under the sensitivity 2 

tests described in Table 6. 3 
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Figure 11. Water consumption calculated from estimates of ET computed by TSEB and 3 

DATTUTDUT models for the five aircraft overpass days (103 liter).  The numerical values above 4 

or in the columns denote the total water consumption from each field as estimated by the two 5 

models.  For results from TSEB, the red lines separate the total water consumption into soil 6 

evaporation below the lines and vegetation transpiration above the lines.  The blue diamonds 7 

denote the water consumption calculated using the EC tower-based daytime ET observed (Obs.) 8 

multiplied by the area of the north and south vineyards.  The yellow squares are the water 9 

consumption values from ET Obs. adjusted (adj.) by multiplying ET Obs. by the ratio of the 10 

tower source area LAI and the whole field average LAI. 11 
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Figure 12. Histograms of output of spatially distributed daytime ET estimated from the TSEB 3 

and DATTUTDUT with the daytime ET values from the flux towers identified in the 4 

distributions by a yellow and green diamond for the north and south vineyards, respectively. 5 
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Figure 13. Spatial variation in the crop coefficient Kc computed using TSEB output of ET and 3 

ET0 computed from FAO56 for DOY 163 imagery (a).  Also the frequency distribution in Kc for 4 

the image is illustrated (b). 5 
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