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Abstract

The usage of time series of earth observation (EO) data for analyzing and modeling
surface water dynamics (SWD) across broad geographic regions provides important
information for sustainable management and restoration of terrestrial surface water
resources, which suffered alarming declines and deterioration globally. The main ob-5

jective of this research was to model SWD from a unique validated Landsat-based time
series (1986–2011) continuously through cycles of flooding and drying across a large
and heterogeneous river basin, the Murray–Darling Basin (MDB) in Australia. We used
dynamic linear regression to model remotely sensed SWD as a function of river flow
and spatially explicit time series of soil moisture (SM), evapotranspiration (ET) and rain-10

fall (P ). To enable a consistent modeling approach across space, we modeled SWD
separately for hydrologically distinct floodplain, floodplain-lake and non-floodplain ar-
eas within eco-hydrological zones and 10 km×10 km grid cells. We applied this spatial
modeling framework (SMF) to three sub-regions of the MDB, for which we quantified
independently validated lag times between river gauges and each individual grid cell15

and identified the local combinations of variables that drive SWD. Based on these au-
tomatically quantified flow lag times and variable combinations, SWD on 233 (64 %)
out of 363 floodplain grid cells were modeled with r2 ≥0.6. The contribution of P , ET
and SM to the models’ predictive performance differed among the three sub-regions,
with the highest contributions in the least regulated and most arid sub-region. The SMF20

presented here is suitable for modeling SWD on finer spatial entities compared to most
existing studies and applicable to other large and heterogeneous river basins across
the world.

1 Introduction

Periodically inundated areas such as floodplains play a major role in the healthy func-25

tion of river systems and perform many ecosystem services of value to people such
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as the retention of flood water, nutrients and sediment and the provision of food, clean
water and groundwater recharge (Hamilton, 2010; Lemly et al., 2000; Maltby and Acre-
man, 2011; Robertson et al., 1999; Tockner et al., 1999). Floodplains are particularly
important within water stressed areas with high rainfall variability and semi-arid climate
conditions as they help to sustain smaller discharges during the dry season, resulting5

in improved overall availability of water (Teferi et al., 2010). During the last century,
increasing development of water resources, land use transformations and agricultural
intensification have led to an alarming disappearance and decline of terrestrial surface
water resources (Finlayson and Spiers, 1999; Jones et al., 2009; Lemly et al., 2000).
A recent study estimates that nearly two-thirds of all terrestrial freshwater wetlands10

were lost between 1997 and 2011, expressed as a reduction of the global area from
165 to 60 million ha (Costanza et al., 2014). Consequently, there is an urgent need for
improved management and restoration of terrestrial surface water resources, which re-
quires cost effective methods for mapping and analyzing the distribution and dynamics
of surface water across large spatial and temporal scales (Alsdorf et al., 2007; Bakker,15

2012; Finlayson et al., 1999; Vörösmarty et al., 2015).
Earth observation (EO) data and techniques represent a promising and cost effec-

tive approach for systematic observation of surface water (Alsdorf et al., 2007; Overton,
2005). New satellite, airborne and ground-based remote sensing data with high spatial,
temporal and radiometric resolution are growing in size and variety at exceptional rates20

(Nativi et al., 2015). Such data enable analyses of changes in the availability and distri-
bution of surface water on continental or sub-continental scales based on comparison
of snapshots of the state of the system at two (Baker et al., 2007; Teferi et al., 2010) or
multiple points in time (Huang et al., 2014b; Zhao et al., 2011). The opening of archives
of continuous optical satellite data such as Landsat and MODIS imagery further in-25

troduced the potential of performing time series analysis of remotely sensed surface
water extent and inundation dynamics (hereafter referred to as surface water dynamics
or SWD) over large areas and long periods of time (Klein et al., 2014; Kuenzer et al.,
2015; Mccarthy et al., 2003; Sakamoto et al., 2007; Tulbure and Broich, 2013). Such
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EO-based analyses of SWD are to be distinguished from EO-based flood mapping,
which focuses on flooding of areas that are not frequently inundated and large-scale
damage assessment of floods (Kuenzer et al., 2015). In comparison to change anal-
ysis based on multiple observations, time series analysis refers to temporally dense
monitoring of land surface dynamics over a defined period of time (Broich et al., 2011;5

Wagner et al., 2015). Synthetic aperture radar (SAR) has the advantage of not being
affected by cloud cover for mapping surface water, but the availability of long-term SAR
time series data for large areas is still limited (Yan et al., 2015). Accordingly, optical
satellite data currently represent the main choice for time series analysis of SWD.

Empirical models of surface water extents (SWE) on floodplains derived from optical10

satellite data as a function of discharge or water height in the adjacent river (Table 1)
have been developed in case studies for the Okavango Delta (∼15 000 km2) (Gum-
bricht et al., 2004), the Waza-Logone floodplain in Cameron (∼3000 km2) (Jung et al.,
2011; Westra and De Wulf, 2009), the Tana River Delta in Kenya (∼1300 km2) (Leau-
thaud et al., 2013) and various floodplains across the Murray–Darling Basin (MDB) in15

Australia (Table 1, study# 4, 5, 6, 7, 8). Table 1 gives an overview of studies in which in-
undation extent derived from continuous optical satellite imagery was empirically mod-
eled as a function of river flow and other driver variables for relatively large floodplain
sites. The RIM-FIM (River Murray Floodplain Inundation Model) (Sims et al., 2014)
used between four and seven manually selected Landsat images during the rising side20

of flood hydrographs in the period from 1984 to 2012 in combination with high reso-
lution DEMs to create empirical models of floodplain inundation as a function of river
flow for 11 zones in the MDB. Huang et al. (2014a) used MODIS imagery during the
biggest annual floods between 2001 and 2010 to develop a model that provides maxi-
mum inundation extents for river flow levels with a range of average return periods for25

90 zones covering the entire MDB (∼1 million km2). While such EO-based inundation
models can provide cost effective tools for sustainable management of water resources
on sub-continental scales, there is currently still a gap between models of SWD on local
scale and high spatial resolution (Table 1, study# 2, 4, 5, 6) and sub-continental scale
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and coarse resolution, which cover large areas but lack local detail (Table 1, study#
7). Using a unique Landsat-based time series (1986–2011) of validated surface water
extent (Tulbure and Broich, 2015), the overall aim of this research was to model SWD
at large river basin scale with locally relevant detail, focusing on the MDB of Australia
as a case study. The Landsat-based SWE time series is unprecedented in its spatial5

(30 m) and temporal (every 16 days) resolution and provides unique insights into 25
years of SWD across the entire MDB, including the Millennium Drought (1997–2009)
(Leblanc et al., 2012), and numerous major floods (e.g. 2010–2011 La Nina floods).

Despite the great value of large-scale inundation models for water resources man-
agement, there remains potential for improving the usage of time series of EO data for10

modeling SWD on sub-continental scale and multi-decadal time periods. One of the
major limitations of existing approaches is that most are based on a small number of
satellite images, which are typically acquired before, during and after the occurrence of
peak flow of manually selected floods (see event-based models in Table 1). The result-
ing models are event-based, limiting them to forecasting a single maximum flood extent15

for a given peak flow. Considering the importance of flood propagation and duration for
biodiversity as well as the increasing availability of time series of EO data, an event
based approach has drawbacks and a dynamic modeling approach, where each time
step of the SWE time series is accounted for, is desirable (Chen et al., 2014; Hamilton,
2010; Shaikh et al., 2001). Based on this consideration, this study aimed at modeling20

SWD continuously through cycles of flooding and drying, using all observations of the
SWE time series along with a modeling approach suited for time series data.

Even though the extent of floodplain inundation highly depends on the discharge
and water level in the river, the hydrologic conditions of the floodplain as well as the
local climate before, during and after a flood play an important role in the flooding and25

drying behavior of floodplains. For many water bodies that are not connected to rivers,
local rainfall (P ) is the main source of inundation (Kingsford et al., 2001). Increased soil
moisture (SM) prior to flooding usually leads to reduced transmission losses and thus
to a larger flood extent and longer flood duration for a given flow level compared to dry
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antecedent conditions of the floodplain (Overton, 2005). Additionally, evapotranspira-
tion (ET) is a major component of the water balance of surface water bodies especially
in semi-arid regions such as the MDB (Lamontagne and Herczeg, 2009; Sánchez-
Carrillo et al., 2004). Besides river flow as the key driver for floodplain inundation, five
of the studies that developed EO-based inundation models accounted for P and four of5

them also for ET during or before flooding, whereas only one study accounted for the
antecedent SM condition of the floodplain (Table 1). Accounting for the local climate
before and during flooding is most commonly done based on a modeling approach
that requires definition of conceptual water balance and flow routing models (Table 1,
study# 9, 10, 11). In order to understand the key factors that drive the dynamics of10

surface water over extended areas, we modeled SWD as a function of river flow and
spatially explicit time series of P , SM and ET and quantified the contribution of each of
these variables for developing SWD models.

Even though some of the larger study sites are divided into smaller sub-regions for
modeling (Table 1), only one study (Westra and De Wulf, 2009) accounted for lag times15

between discharge recorded at the gauge and the correlated surface water extents in
different areas of the sub-region. The overall aim of this study was to develop a holis-
tic and data-driven methodology for modeling SWD and its drivers through periods of
flooding and drying across a large and heterogeneous river basin. Specific key objec-
tives of this study were to:20

1. develop a transferable spatial modeling framework that allows the application of
a holistic modeling approach across the study area;

2. model lag times between remotely sensed SWD per modeling unit and recordings
of discharge at available river gauges; and

3. model SWD and quantify the role of drivers (i.e. river flow, ET, SM, P ) across25

space and time.
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2 Methods

2.1 Study area

The study area of this research was Australia’s largest river system, the Murray–Darling
Basin (more than 1 million km2). The eastern and southern border of the MDB is
marked by the Great Dividing Range (Fig. 1), which is also where most of the MDB’s5

surface water runoff is generated (CSIRO, 2008). Outside of these partly humid high-
lands, the majority of the MDB is characterized by extensive and flat low-lying plains
with arid and semi-arid climatic conditions and slowly meandering rivers with vast flood-
plains (MDBA, 2010). The long-term average annual rainfall of the MDB is 469 mm of
which around 90 % evaporates or transpires back into the atmosphere. There is also10

a pronounced climate gradient across the MDB with average annual rainfall decreasing
and climate variability increasing from south-east to north-west (Leblanc et al., 2012).

The MDB has almost 30 000 wetlands (MDBA, 2010) with 16 wetlands listed as “wet-
lands of international importance” (Ramsar Convention Secretariat, 2014) and around
200 specified in the Directory of Important Wetlands in Australia (Environment Aus-15

tralia, 2001). The majority of wetlands are floodplains which cover around 6 % of the
MDB’s total area (Kingsford et al., 2004). In the second half of the 20th century, the
MDB’s water resources have been developed intensively with agriculture now taking
up around 80 % of the MDB’s area (CSIRO, 2008) and accounting for more than 80 %
of the MDB’s average annual surface water use of 11.3 km3 year−1 (Leblanc et al.,20

2012). Reduction in both frequency and size of flooding events resulting from agricul-
tural development within the MDB has led to deterioration in the health of many surface
water ecosystems (Kingsford, 2000). On top of this human-induced stress, between
1997 and 2009 the MDB experienced the most severe drought since the beginning of
records, during which the floodplains and wetlands of the lower MDB received very lit-25

tle or no inflows with devastating environmental and ecological impacts (Leblanc et al.,
2012). These key features illustrate that water requires extensive and well-planned
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management in the MDB for which a basin-wide empirical model of surface water and
inundation dynamics can provide a valuable tool.

2.2 Data

The dependent variable used in this this study is a time series of validated, open sur-
face water extent derived from the seasonally continuous archive of Landsat TM and5

ETM+ imagery available for the entire MDB from 1986 to 2011. The methodology for
the development of this time series through machine learning based classification of
surface water on the imagery is described in Tulbure and Broich (2015). The overall
classification accuracy of surface water bodies was 99 %. The SWE time series used
Landsat images with ≤ 50 % cloud cover (Tulbure and Broich, 2015), resulting in times10

between subsequent observations of SWE from 16 days (Landsat temporal resolution)
to a multiple of 16 days.

In order to model SWD continuously through periods of flooding and drying, we
used spatially explicit time series of rainfall, evapotranspiration and near-surface soil
moisture along with river flow as predictor variables (Table 2). The selection criteria15

for these variables were that the temporal extent of the datasets had to be spatially
explicit and long enough to cover the entire period of the SWE time series. River flow
data was acquired for gauges that had complete records of daily discharge expanding
over the entire time frame of the SWE time series and downloaded from respective
state repositories (State Government Victoria, 2015; Queensland Government, 2015;20

Government of South Australia, 2015; New South Wales Government, 2015).

2.3 Spatial modeling framework

Figure 2 gives a schematic overview of the data processing, analysis and spatial mod-
eling framework used in this analysis. Due to the large geographic extent of the study
area and the related heterogeneity of surface water dynamics across the basin, the25

study area was split into suitable sub-units for modeling SWD. Overton et al. (2009)
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developed a zonation of the MDB into zones with uniform ecological and hydrological
characteristics (EH-zones), which is described as a trade-off between the finer res-
olution of the river and floodplain behavior and available river gauges. This zonation
was used for the development of the MDB-FIM (Chen et al., 2012) and subsequently
adapted and improved by accounting for the hydrologic structure of the MDB (Huang5

et al., 2013) (Figs. 2a and 3). The zonation was specifically developed to enable hydro-
logical and hydraulic modeling on a whole-of-basin scale while preserving key ecologic
and hydrologic entities, and served as the basic spatial segmentation in this analysis.
For each EH-zone, the most suitable river gauge for modeling SWD is specified by this
zonation and the size of the resulting 89 zones ranges from a maximum of 59 991 km2

10

to a minimum of 541 km2 with an average zone size of 11 935 km2.
The MDB contains numerous small and ephemeral rivers and other water bodies

that are not connected to major river systems. As opposed to floodplains, we expected
SWD of these water bodies to be mainly driven by local rainfall and evapotranspiration.
Furthermore, the inundation dynamics of floodplain-lakes differ greatly from those of15

shallow floodplains, especially with respect to the retention of flood water after a flood
has passed. Therefore, we used an existing static wetland layer (Kingsford et al., 2004)
to categorize the entire study area into floodplain, floodplain-lake and non-floodplain
area (hereafter referred to as surface water categories (SWC)), so that the heteroge-
neous dynamics of surface water on these different entities could be accounted for in20

the modeling process (Fig. 2b and c). The definition of the floodplain and floodplain-
lake SWC is based on hydraulic connectivity of surface water bodies to river systems
with available discharge data for modeling. We defined hydraulic connectivity based on
the Geofabric (Australian Hydrological Geospatial Fabric) Surface Network (Common-
wealth of Australia (Bureau of Meteorology), 2012), a fully connected and directed spa-25

tial river network, which allowed performing upstream and downstream routing opera-
tions through the river network based on the location of available river gauges (Fig. 2).
As a result of this approach, several water bodies that were defined as floodplains by
the static wetland layer were assigned to the non-floodplain instead of the floodplain
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SWC. Accordingly, the floodplain-lake SWC comprised all non-permanent lakes, for
which the river network indicated hydraulic connectivity to a river gauge. Since surface
water dynamics of reservoirs are mainly a function of respective management strate-
gies, they were masked out for generating the SWCs.

To enable similar modeling conditions across the study area and to identify local spa-5

tial patterns in the role of climate drivers (P , SM, ET) of SWD, we imposed a regular
grid on top of the EH-zonation (Fig. 2c). The regular grid allowed us to quantify the rela-
tionship between SWD and hydrologic key parameters at a much finer scale compared
to using the regional EH-zonation only. For the definition of a suitable cell size for the
sub-zonation, we considered edge lengths of 75, 50, 25 and 10 km. A finer grid leads10

to a decrease in the fraction of cells that contain any floodplain area and consequently
also to an increase in cells that contain very small fractions of floodplain. Based on this
consideration, we chose 10 km as the most suitable cell size for modeling as a trade-off
between sufficient spatial detail for capturing the variability in SWD at a local scale and
the suitability and spatial resolution of data for modeling the driver variables.15

2.4 Statistical modeling of surface water dynamics

2.4.1 Data pre-processing

In order to prepare geospatial time series datasets for statistical analysis and modeling,
we summarized all datasets based on the grid cells and SWC. For all spatially explicit
driver variables (i.e., ET, SM, P ) we developed numeric daily time series per grid cell by20

computing spatial averages for each day using reproducible Python (Python Software
Foundation, 2014) scripts (Fig. 2). For the dependent variable, we developed a time
series of surface water area for each SWC in each grid cell based on the SWE time
series. Even though a cloud cover threshold of 50 % per Landsat scenes was already
applied for generating the SWE time series, there could still be excessive cloud cover25

of up to 100 % in individual 10 km×10 km grid cells. To preserve a maximum number
of valid surface water observations while maintaining acceptable levels of noise and
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uncertainty in the SWE time series, we therefore applied another cloud cover threshold
of 40 % per individual grid cell. To account for scale effects resulting from different
fractions of each SWC in different grid cells, we used the fraction of SWE area of the
cloud-free part of each SWC in a cell instead of actual areas in the modeling process
(Table 3). For data management and modeling purposes, all data were stored and5

handled in time series format using the zoo infrastructure for regular and irregular time
series (Zeileis and Grothendieck, 2005) in R (R Development Core Team, 2008).

2.4.2 Model development and specification

To better understand SWD and its drivers across the study area, we developed dy-
namic multiple linear regression models with surface water as the dependent variable10

and four predictor variables (P , SM, ET, and river flow data, Table 3) for each SWC per
grid cell. One of the key objectives was to take advantage of each time step of the SWE
time series and to model surface water extent continuously through periods of flooding
and drying. We achieved this by including the previous SWE observation as an addi-
tional predictor variable into the model equation. Models in which a lagged dependent15

variable is used as an additional predictor variable are referred to as dynamic linear re-
gression models or lagged dependent variable (LDV) models and are commonly used
for the analysis and forecasting of time series data in ecomonics (Keele and Kelly,
2006; Shumway et al., 2006). The lagged dependent variable introduces a temporal
component into the model, so that the SWE at a given time step is also a function of20

the SWE of the previous time step in the time series. The equation that includes all po-
tential predictor variables used for modeling SWD on floodplains and floodplain-lakes
is shown in Eq. (1).

SWDt = β0 +β1Lag(Q)+β2SWE(t−1) +β3ET +β4P +β5SM+e. (1)

Where β0 is the intercept, β1−5 are the regression coefficients, SWEt is the surface25

water extent at time t, Lag(Q) is the discharge at the related gauge lagged by the time
it takes for a flood to travel from the gauge to the respective modeling cell, SWE(t-1) is
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the surface water extent of the previous available Landsat observation (t−1), P is local
rainfall, ET is evapotranspiration, SM is soil moisture and e are the residuals.

The equation used for modeling surface water dynamics on non-floodplain areas is
the same as Eq. (1) but without discharge as a predictor variable.

We used the dynlm (Zeileis, 2014) R package for dynamic linear modeling and time5

series regression for implementation and analysis of dynamic models based on the
numerical input time series. To account for the time that it takes for water to travel from
the gauge where it is recorded to a modeling cell, discharge is incorporated into the
equation by applying a lag time. This lag time for discharge (Q-lag) is the modeled tim-
ing between daily flows measured at the gauge and the correlated satellite-observed10

inundation response of a downstream or upstream grid cell. After quantification of Q-
lags, we used a 10-day moving average of discharge instead of daily flows in order
to match the inter-daily variability and dynamics of the discharge time series with the
dynamics of the SWE time series (16 day time step). For local rainfall and actual ET we
used the sum of 16 days before each Landsat observation (including the day the image15

was taken) because P and ET that occurred more than 16 days before were already
accounted for by the previous SWE observation. Compared to ET and P , a previous
16 day moving average of SM before each Landsat observation was used, since SM
characterizes the condition of the floodplain or land surface rather than input or output
of water to the system such as ET and P . By transforming daily time series of the pre-20

dictor variables into moving averages and sums, we smoothed out the high inter-daily
variation of these variables which is not reflected in the SWE time series and thus, not
suitable for explaining the variation of SWD in modeling. The final approach for includ-
ing the driver variables into the models is based on our conceptual understanding of
SWD, where the SWE on a given observation is a function of river flow during the ob-25

servation, the SWE of the previous observation and changes in P , ET and SM between
the previous and current observation (Table 3).
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2.4.3 Variable selection and model validation

We used the coefficient of determination (r2) as a measure of how well SWD are ex-
plained by the models. For quantifying the relative importance of the predictor variables
on SWD, we tested whether accounting for P , ET and SM leads to an improvement of
the models’ predictive performance. We used the Root Mean Squared Error (RMSE) in5

5-fold cross validation (CV), hereafter referred to as CV-RMSE, to quantify predictive
performance of models. The RMSE is the root of the mean of the squared residuals of
the prediction and is in the same unit as the dependent variable, which ranges between
0 and 1 (Table 3). For 5-fold CV, we split the data into five equally sized chronological
subsets. We then fitted the model to four subsets of training data and used it to pre-10

dict the remaining subset as test data. We repeated this process for the other four
constellations of training and test data and the CV-RMSE was calculated by averaging
the RMSE of all five predictions. The variable selection process was implemented in
R by using the cross-validation tools for regression models (cvTools) package (Alfons,
2012).15

We used step-wise variable selection to find the variable combination that leads to
the best predictive performance as measured by CV-RMSE. Since we considered Q
and P as the key drivers for SWD of floodplains and non-floodplains respectively, the
initial models included only Q as a predictor for floodplain and floodplain-lake models
and only P for non-floodplain models. The base model is the initial model after adding20

the LDV as a predictor variable. Based on the order of predictor variables as given by
Eq. (1), we then added one variable at a time to the base model and kept the variable in
the model if it led to a reduction in CV-RMSE. Hereby, a very small improvement in CV-
RMSE was sufficient for including a variable into the model. If adding a certain variable
did not lead to an improvement in CV-RMSE, this variable was no longer considered25

in the variable selection process. The predictor variables that were selected based
on this process are hereafter referred to as additional predictor variables (APV). The
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model that is obtained after adding the APV to the base model is hereafter referred to
as the final model.

2.4.4 Quantification of flow lag times

Preliminary analysis of available gauges and their suitability for modeling showed
that there are often multiple suitable gauges for grid cells that contain floodplain or5

floodplain-lake area and that large EH-zones with multiple major inflows and outflows
require more than one gauge to model all floodplain cells. Therefore, we considered
all available gauges with suitable discharge data and used the Australian Geofabric
river network to assign the most suitable gauge to all modeling cells that contained
floodplain or floodplain-lake area. We then quantified the most suitable lag time for10

discharge by iterating through a variety of positive and negative Q-lags at 5-day in-
tervals and selecting the one that led to the highest correlation between discharge at
the gauge and surface water extent on the respective cell. We selected 5-day intervals
to account for the fact that there is no exact lag time for each cell because flow travel
times are a function of discharge and overbank flow, so that elevated discharges during15

times of flooding are likely to result in different flow travel times compared to low flows
(Overton et al., 2006). For each possible lag time, we developed a simple linear regres-
sion model with surface water area as the dependent variable and lagged discharge as
the predictor variable and used the adjusted r2 as a measure for correlation. The lag
that led to the highest r2 was then assigned to each cell and used for modeling SWD20

on floodplains and floodplain-lakes. For floodplain-lakes, the estimation of discharge
lag times is more difficult, since the SWE on these surface water bodies is only corre-
lated to discharge on the rising side of the flood hydrograph, whereas the draining of
these depressions is primarily driven by infiltration and evapotranspiration. To account
for this, we used only increasing SWE observations (observations of surface water that25

are higher than the previous observation) for quantifying Q-lags for floodplain-lakes.
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2.5 Case study and experiment design

One of the main objectives of this study was to develop a spatial modeling framework
that enables capturing SWD on a local scale, while being applicable to large (i.e. sub-
continental) and heterogeneous areas. We selected three sub-regions (Fig. 3) across
the study area for illustrating the modeling and analysis results. Based on the climate5

characteristics of the MDB (see Sect. 2.1), we expected SWD and the role of the pre-
dictor variables to differ substantially amongst the three sub-regions.

Each of the three sub-regions contains important floodplain wetland systems that are
listed under the Directory of Important Wetlands in Australia (Environment Australia,
2001). The Paroo sub-region comprises large parts of the Paroo river system, which10

together with the neighboring Warregoo River is considered the last of 26 major rivers
in the MDB without large dams and diversions and consequently little or no manipu-
lation of the natural flow and inundation regimes (Kingsford et al., 2001). These river
systems experience semi-arid to arid climate conditions and have a flow regime typi-
cal for dryland rivers, which is characterized by extreme variability with long dry spells,15

punctuated by large and unpredictable flood events and more frequent flow pulses that
lead to in-channel flows without achieving floodplain inundation (Bunn et al., 2006). An-
other important feature of the Paroo river system is that it is predominantly a terminal
river system that has only connected with the Darling River a few times in recorded
history through the Paroo Overflow (Fig. 5).20

The Murray sub-region covers the lower Murray River and its adjacent floodplains
along a ∼350 km stretch, starting from the location where the Darling River merges into
the Murray River. This section of the Murray River is highly regulated by a sequence
of locks, weirs and storage facilities. The Murrumbidgee sub-region covers a ∼300
km stretch of the Murrumbidgee River and its adjacent floodplains as well as parts25

of the mountainous runoff-generating catchment area. Both the Murray and the Mur-
rumbidgee sub-regions are highly regulated and contain areas of irrigated agriculture
which is likely to have a pronounced impact on SWD.
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In the southern part of the MDB including the Murray and the Murrumbidgee sub-
regions, floods naturally occur in winter and spring as a result of reliable rainfalls
and snowmelt and typically last for several months (Penton and Overton, 2007). In
the northern part of the MDB including the Paroo, floods typically occur in the sum-
mer months as the result of increased rainfall activity in the corresponding catchment5

areas during this time of the year. Floodplain inundation in the Murray sub-region is
largely driven by discharges generated by rainfall in distant upstream catchments. In
comparison, the Paroo and the Murrumbidgee sub-regions are located close to runoff-
generating catchment area, thus local rainfall will likely have a more pronounced effect
on SWD as compared to the Murray. Runoff and climate characteristics were calculated10

based on the data and time period used in this analysis and differed among the three
sub-regions (Table 4).

3 Results

3.1 Flood propagation and flow lag times

There was more than one available river gauge in all three sub-regions (Table 5), which15

allowed us to validate Q-lag estimates based on a comparison of flow data from two
gauges in the same river reach. For each pair of validation gauges, we randomly se-
lected four floods of different magnitudes that had a single pronounced flood peak and
calculated the time difference between the day of occurrence of the flood peak at the
upstream and downstream gauge (Table 5).20

Q-lags for the Murray sub-region were modeled for flow data of two different gauges
(Fig. 4a and b). We found that despite the long length of the river reach, using one
gauge for all floodplain modeling cells of the sub-region still leads to realistic estimates
of Q-lags. Both the most upstream (2-A) and most downstream located gauge (2-B)
led to a gradual increase and decrease in Q-lags respectively along the 350 km reach25

in accordance with the externally validated lag time of 12 days between gauge 2-A and
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2-B (Table 5). Despite the overall realistic flow propagation pattern for both gauges,
there were a few outlier cells, for which Q-lags were different as compared to the av-
erage Q-lag of neighboring cells. For floodplain-lakes, we expected Q-lags to be in
the same range as the Q-lags of the surrounding floodplains, with potential minor dif-
ferences resulting from the larger volume and slower filling behavior of these water5

bodies compared to shallow floodplains. For both gauge 2-A and 2-B, Q-lags were in
good accordance with the Q-lags of the surrounding floodplains for some floodplain-
lakes (e.g. lakes around Lake Limbra) but deviated substantially for others (e.g. lakes
around Lake Woolpolool and Lake Wallawalla) (Fig. 4a and b).

Due to the complexity of the river and floodplain network in the Paroo, the usage10

of a single gauge was found to be insufficient for modeling all floodplains across this
sub-region. The Paroo River receives lateral inflows from the Warregoo River which
first passes the large Yantabulla Swamp before merging into the Paroo further down-
stream (Fig. 5). The Kerribree Creek is a second lateral inflow into this sub-region from
the Warregoo River but is likely not connected to the Paroo River (Timms, 2009). To15

account for these lateral inflows, Q-lags of the Paroo sub-region were modeled using
two gauges. The main branch of the Paroo River (west of line L-A in Fig. 5a) was mod-
eled using gauge 1-C (Fig. 5a). Similar to the Murray, Q-lags in the area of the gauge
(1-C) were 0 days and showed a gradual increase and decrease in downstream and
upstream direction respectively, with the exception of a patch of connected floodplain20

area in the east of the southernmost floodplains. The externally validated flow lag time
of 9 days between river gauge 1-B and 1-E (Table 5) is captured well by the model
with Q-lags consistently approaching −5 days in floodplain areas around gauge 1-B
and 5 days around gauge 1-E. In the most downstream located floodplains of this sub-
region, Q-lags approached the upper limit of 60 days that was defined for modeling.25

The lateral inflows from the Warregoo River to the Yantabulla Swamp and Kerribree
Creek (east of line L-A in Fig. 5a) were modeled using Gauge 1-B, for which records
only date back until 1991. Despite the limited temporal coverage of this gauge, Q-lags
for the northern inflows represent a realistic pattern, with a noticeable abrupt increase
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of about 5 to 10 days along the passage through the Yantabulla Swamp. The increase
in Q-lags from 0 to 5 days occurs in the area of validation gauge 1-D which is in ac-
cordance with the externally validated flow lag time of 4 days between gauge 1-A and
1-D (Table 5). For floodplains and floodplain-lakes of the Kerribree Creek, automated
quantification of Q-lags did not lead to realistic results as indicated by negative Q-lags.5

In the Murrumbidgee sub-region, quantification of Q-lags was based on two gauges
along the reach (3-A and 3-B) and led to realistic flow propagation patterns until a point
where the floodplains divert into two branches (Point A in Fig. 6). Before Point A, Q-
lags were in good accordance with externally validated flow lag times of 5 days between
gauges 3-A and 3-B and between 3-B and 3-C (Table 5). Downstream of Point A, Q-10

lags abruptly approached the pre-defined upper limit of possible lag times consistently
for the remaining floodplain cells.

3.2 Model performance

In order to quantify the relative importance of the LDV and APV for predicting SWD,
we compared the CV-RMSE of the initial, base and final models as defined in15

Sect. 2.4.3 (Table 6). Since the majority of water bodies in all three sub-regions
are floodplains, this section is mainly focused on this surface water category. For
all three sub-regions, adding the LDV to the initial model of the floodplain SWC
yielded large improvements in CV-RMSEs, with an average improvement of 81 % (∆CV-
RMSE=0.19) for the Paroo, 81 % (∆CV-RMSE=0.16) for the Murray and 87 % for the20

Murrumbidgee (∆CV-RMSE=0.10). In comparison to that, adding the APV (i.e., P ,
ET, SM) to the base model, only led to further CV-RMSE improvement of 5.2 % (∆CV-
RMSE=0.0029) for the Paroo, 0.3 % (∆CV-RMSE=0.0001) for the Murray and 0.8 %
(∆CV-RMSE=0.0003) for the Murrumbidgee on average. Since the RMSE is in the
same unit as the dependent variable, it partly depends on the average magnitude of25

the SWE ratio on local floodplain units and is consequently not suitable for comparing
model performance among the three sub-regions but only within each sub-region.
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In comparison to the RMSE, r2 is independent of the magnitude of the dependent
variable and thus suitable for comparing model performance between the sub-regions.
The r2 of initial floodplain models is a measure of how well SWD are explained by river
flow as the only predictor variable after accounting for Q-lags. The average r2 of initial
models was much higher in the Murray sub-region with 0.58 as compared to the Paroo5

(0.33) and Murrumbidgee (0.25). Despite this large difference in r2 of initial models,
average r2 of floodplain models in the Paroo increased to the same level as the Murray
(0.67) after accounting for the LDV (0.62) and APV (0.67). For the Murrumbidgee, the
performance of final floodplain models was much lower compared to the other two sub-
regions with an average r2 of 0.41. The average r2 of all 363 floodplain models across10

the three sub-regions was 0.63. Similar to the CV-RMSE, accounting for the APV only
led to small further improvements in model r2 compared to the large improvements
resulting from the LDV. Analysis of the spatial distribution of r2-based performance of
final models showed that there were no distinct patterns for floodplain and floodplain-
lake models of the Murray (Fig. 4c), Paroo (Fig. 5a) and Murrumbidgee sub-region15

(results not shown).
The average r2 of final models of the floodplain-lake SWC was 0.69 for the Pa-

roo, 0.68 for the Murray and 0.47 for the Murrumbidgee. For the non-floodplain SWC,
average r2 of final models was 0.42 for the Paroo (Fig. 5b), 0.27 for the Murray (re-
sults not shown) and 0.32 for the Murrumbidgee (results not shown). In comparison to20

floodplain and floodplain-lake models, r2-based model performance of non-floodplain
models showed distinct spatial patterns in the Paroo with predominantly high r2 (> 0.6)
for all modeling cells that contained surface water bodies that are not hydraulically
connected to the modeling gauges (see non-floodplain waterbodies in Fig. 5b).

The large differences in performance of initial and final models of the floodplain SWC25

are mainly a result of the distinct relationships between remotely sensed SWE on local
floodplain units and river flow in each of the three sub-regions (Fig. 7). In the Paroo,
most floodplain areas showed SWD similar to example cells Ex-A and Ex-B (location is
shown in Fig. 3), which are characterized by long dry periods punctuated by relatively

11865

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/11847/2015/hessd-12-11847-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/11847/2015/hessd-12-11847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 11847–11903, 2015

Modeling 25 years of
spatio-temporal
surface water

V. Heimhuber et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

short flood pulses. Both example cells are located in the area of overlapping Landsat
satellite paths resulting in approximately double the number of SWE observation and
a shorter modeling time step on this cell compared to the Murray and Murrumbidgee ex-
ample cells. Most flood pulses are captured well by the SWE time series in both cases
but example cell Ex-B (Q-lag=25 days) illustrates that the river flow data recorded at5

the gauge becomes less representative for SWD with increasing distance to the gauge.
For example cell Ex-B, The SWE time series shows prolonged inundation of floodplain
areas for several months after river flow at the gauge has returned to dry conditions re-
sulting in a much lower r2 of the initial model of example cell Ex-B (0.45) as compared
to example cell Ex-A (0.83). After accounting for the LDV, the r2 of example cell Ex-B10

increased to 0.79 which illustrates the importance of the LDV for achieving uniformly
good performance in the final models (i.e. r2 > 0.6). Due to the large size of the Paroo
sub-region, SWD on many of the floodplain areas differ from the dynamics of river flow
at the modeling gauge as in example cell Ex-B, which explains the low average r2 of
initial floodplain models in this sub-region. In the Murray, most of the floodplain areas15

showed similar SWD to the example cell for which the SWE time series closely resem-
bles the dynamics of river flow whenever a certain minimum flow threshold is exceeded
in the river. Inundated area reduces quickly when river flow recedes to pre-flood levels,
which explains the comparatively high initial r2 of the example floodplain model (0.74).
Out of the three sub-regions, the Murrumbidgee is most affected by cloud cover during20

times of flooding due to its proximity to mountainous headwater catchments. Conse-
quently, SWD during times of flooding are not captured well by the SWE time series for
the majority of floods resulting in a low initial r2 of 0.39. In comparison to the Paroo,
accounting for the LDV did not lead to large improvements in model performance with
r2 of the final model of 0.79 (7 %) in the Murray and 0.43 (10 %) in the Murrumbidgee25

example cells.
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3.3 Predictor variable combinations and spatial patterns

One of the main objectives for modeling SWD was to gain a better understanding
of the role of local climate drivers (i.e. P , ET, SM) of SWD across space and time.
Based on the results of the variable selection process, we calculated the percentage
of models in each sub-region for which inclusion of APV led to improvement of CV-5

RMSE (Table 7). On average, P and SM were more important for explaining SWD on
floodplains in the Paroo as compared to the Murray and Murrumbidgee sub-regions,
for which P and ET were selected for about 50 % of all floodplain models. In general,
local rainfall was the most influential APV and helped to explain SWD in 241 (66 %)
out of 363 floodplain models and 41 (89 %) out of 46 floodplain-lake models. ET was10

selected for approximately half of all floodplain models in the Murrumbidgee and Murray
sub-regions and 36 % of models in the Paroo. For floodplain-lake models, local rainfall
and evapotranspiration were more important in the Paroo compared to the Murray sub-
region. There were only four modeling cells that contained floodplain-lake area in the
Murrumbidgee sub-region so that a comparison with the other two zones is of limited15

value for this SWC. For non-floodplain models, we found a similar pattern for actual ET
and SM for all three sub-regions with both variables being selected for about one-third
to one-half of all models with an exception in the Murray, where SM was only selected
for 11 % of the models.

In comparison to r2 based model performance, there were distinctive spatial patterns20

for the contribution of the LDV and the APV to predictive performance as measured by
CV-RMSE of floodplain and floodplain-lake models. For instance in the Paroo, the LDV
led to the largest improvement in CV-RMSE in areas with poor predictive performance
(high CV-RMSE) of the initial models such as the area of the Yantabulla Swamp, the
most downstream-located dead-end floodplain areas and the floodplains of the Ker-25

ribree Creek (Fig. 8a and b). The Kerribree Creek along with the Yantabulla Swamp
also showed the highest contribution of the APV for explaining SWD (Fig. 8c). The
floodplains of the Kerribree Creek are a good example showing that previous flood-
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plain conditions (i.e. LDV) and local climate drivers (i.e. APV) explain the variability in
SWD (i.e. models with r2 > 0.6, Fig. 5) for floodplains on which inundation dynamics
are poorly correlated with river flow from available gauges as indicated by initially high
CV-RMSE (Fig. 8a). In general, the magnitude of the improvements in CV-RMSE re-
sulting from the APV was small compared to the improvements resulting from including5

the LDV.
The complex nature of the relationship between SWD and its drivers over time was

identified by analyzing cross-correlations and lag effects of the time series used for
modeling. The correlation coefficient indicates how variation of one variable over time
is explained by a second variable. We calculated this coefficient for a range of positive10

and negative lag times between different pairs of input time series using the cross-
correlation function in R (R Development Core Team, 2008). Based on the variables
used for modeling the floodplain area in the Paroo example cell Ex-A (location shown
in Fig. 3), it can be seen that SM is partly driven by P (maximum correlation coeffi-
cient 0.43 at a lag of 3 days), indicated by short-term peaks in the otherwise strongly15

seasonal SM signal during larger rainfall events (Fig. 9a). We found the highest cross
correlation (maximum correlation coefficient of 0.84 at a lag of 3 days) between river
flow and SWE (Fig. 9b).

This floodplain example illustrates the importance of the hydrologic condition of the
floodplain as well as the local climate conditions before, during and after flooding. The20

three consecutive floods starting in 2000 (referred to as the “2000 Floods” in Fig. 9) led
to prolonged inundation of parts of the floodplain for an entire year until another minor
flooding occurred shortly before the end of 2000 (referred to as the “End of 2000 Flood”
in Fig. 9). In comparison to that, the flood that occurred after three dry years in 2004
(referred to as the “2004 Flood” in Fig. 9) had a higher peak flow in the river and a larger25

maximum surface water extent but only caused short term flooding of the floodplain
which rapidly returned to dry conditions after the flood had passed. Comparison of SM
and ET and their respective trend components (Fig. 9c) showed that both parameters
were significantly higher during the time period of the 2000 Floods than in the time
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period of the 2004 Flood (see trend components in Fig. 9c). ET has a distinct seasonal
component with a peak during the summer months but it is also a function of water
available for evapotranspiration which is mainly governed by P and SM. The maximum
correlation coefficient between ET and SM was 0.44 at a lag of 24 days and 0.53 at
a lag of 26 days between ET and P . These analyses of the various time series used in5

this study illustrate the complexity of surface water dynamics over large areas and long
time periods as well as the important role of the local climatic and hydrologic conditions
for SWD.

4 Discussion

Globally, terrestrial surface water resources continue to suffer degradation and decline10

(Costanza et al., 2014; Jones et al., 2009) and there is currently a new boom in hydro
power development, expected to reduce the number of remaining free-flowing large
rivers by about 21 % (Zarfl et al., 2015). As a result of this trend, there is an urgent need
for balancing the socio-economic demands on water resources with the requirements
of the environment for maintaining ecological health of terrestrial freshwater ecosys-15

tems. Especially in absence of dense in-situ monitoring networks, time series of earth
observation data combined with adequate modeling techniques represent a promising
tool for quantifying water resources across large and heterogeneous river basins which
is crucial for balancing these competing demands. In this study, we used dynamic lin-
ear regression to model SWD through cycles of flooding and drying as a function of20

key hydrological drivers. We developed a spatial modeling framework that allowed us
to use a tailored modeling approach for hydrologically distinct floodplain, floodplain-
lake and non-floodplain areas within 10 km×10 km grid cells. Our empirical inundation
models are seasonally continuous and suitable for predicting surface water extent and
retention on each modeling cell based on locally quantified combinations of predictor25

variables. The SMF developed here is transferable to other large and heterogeneous
river basins across the world.
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4.1 Model selection

The appropriate form of a model depends on its specific objectives (Bennett et al.,
2013). The main objective for developing SWD models was to identify distinctive pat-
terns in the role of lagged surface water observations and predictor variables for SWD
across space and time. Here, we used a dynamic linear regression approach to model5

SWD.
We chose a dynamic modeling approach because including the previous SWE ob-

servation as an explanatory variable allowed us to account for the complex and spatially
varying flooding and drying behavior of different water bodies. Slow flooding and drying
behavior of periodically inundated waterbodies leads to an increase in autocorrelation10

in the SWE time series, resulting in a higher probability of a large inundated area at
time t, if there was a large inundated area on the previous time step (t−1). By in-
cluding the LDV into the models, we were able to partly overcome the limitations of
existing event based approaches for modeling SWD, in which observations during the
falling limb of floods, which likely contain water from the previous observation, were not15

used for model development (see event based models in Table 1). Additionally, Keele
and Kelly (2006) suggest that in most cases, LDV models are more appropriate than
static models if a process is known to be dynamic, meaning that the process at time
t is a function of history as modified by new information, which applies to SWD. Fur-
thermore, our findings indicate that the degree of improvement in CV-RMSE resulting20

from accounting for the LDV yields information about the flooding and especially drying
behavior of waterbodies. Large improvements in predictive performance as measured
by CV-RMSE resulting from accounting for the LDV were commonly linked with poor
predictive performance of initial models and surface water bodies that tend to retain
floodwater for prolonged periods of time. In both cases, including the LDV played an25

essential role in achieving homogenous model performance across each sub-region.
Based on these considerations, this study illustrates that a dynamic modeling frame-
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work has a variety of advantages compared to a static modeling approach for modeling
SWD through flooding and drying cycles and over long periods of time.

One of the drawbacks of using a LDV model is that the resulting models are limited
to forecasting SWE for one Landsat time-step (commonly ≥16 days), since the previ-
ous SWE observation needs to be specified as part of the predictive model equation.5

Nevertheless, the resulting models are still of high practical relevance, considering that
a 16-day forecast of SWE across the Murray–Darling Basin is valuable for many water
management applications. Additionally, the models can be used for estimating miss-
ing time steps in the SWE time series resulting from discarding images with excessive
cloud cover.10

During the iterative model selection process, we considered a variety of more com-
plex models for modeling SWD. Autoregressive moving average (ARMA) models (Box
and Jenkins, 1970) are part of the family of dynamic linear models and are well estab-
lished in time series analysis since they are particularly suitable for forecasting (Keele
and Kelly, 2006). These models are well established in a variety of fields including hy-15

drology (Aksoy et al., 2013) but due to the limited interpretability of the fitted models,
they were not further considered for this application. Additionally, we also fitted polyno-
mial regression models for all floodplain waterbodies, in which SWD were a function of
a quadratic form of discharge, since the true relationship between SWE and discharge
is likely not linear for most floodplains. On average, this did not lead to improvements in20

model r2 and CV-RMSE. This is most likely a result of using all available SWE obser-
vations and the large size of some of the floodplain units used for modeling, which did
not allow modeling SWD with enough precision to reveal the potential non-linearity of
this relationship. In order to keep the models as simple as possible and interpretability
of model fits high, we thus decided not to use quadratic terms in the models.25

4.2 Quantification of flow lag times

In previous studies, one gauge was commonly used for synchronous inundation mod-
eling over comparatively large floodplain units without applying lag times (Table 1). Our
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results illustrate that the continuous Landsat-based SWE time series yields sufficient
information for estimating Q-lag times and consequently the spatio-temporal dynamics
of surface water on a finer than sub-basin scale. By classifying water bodies into three
categories and using a regular grid of 10 km×10 km cells, we were able to quantify the
local combination of predictor variables on individual grid cell level and to apply a tai-5

lored modeling approach to surface water bodies with distinctive inundation dynamics.
Our results show, that for floodplain and floodplain-lake areas, accurate quantifica-

tion of Q-lags is an essential step for developing SWD models with good predictive
performance. For all three sub-regions, automated Q-lag estimation led to realistic lag
time patterns, as confirmed by external validation, with gradual increase or decrease of10

Q-lags in downstream and upstream direction away from the gauge. There were, how-
ever, a number of scattered outlier cells, for which Q-lags deviated from the average
Q-lag of neighboring cells. These outliers were likely a result of the large differences in
SWD from cell to cell as a result of river regulation and variable floodplain geometries.
Furthermore, the available datasets did not allow for an exact distinction between per-15

manent and non-permanent floodplain-lakes. Permanent and semi-permanent lakes
that are connected to a river have a less pronounced discharge to SWE relationship
and slow draining behavior compared to other floodplain areas. The Q-lag relation-
ship was therefore more difficult to model as reflected in more frequent occurrence
of outliers for floodplain-lake compared to floodplain Q-lags. For future applications,20

these outliers could be eliminated by only allowing increasing lag times for modeling
cells along the reach (in downstream direction) or by averaging the Q-lag for each cell
based on the Q-lags of the surrounding cells.

In the most southerly located floodplain areas of the Paroo sub-region, Q-lags in-
creased abruptly and eventually approached the upper limit of 60 days that was de-25

fined for modeling. This is likely a result of the hydrologic characteristics of this ter-
minal river system. Due to the large extent of this sub-region and the abundance of
vast and shallow floodplains, the flow pattern recorded in the Darling River in the north
of the sub-region changes significantly when flowing downstream and filling up vast
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floodplains. As a result of this, flow travel times from gauge 1-C (most southerly gauge
with flow data covering the analysis period) to far downstream located floodplain cells
are assumed to be strongly dependent on the magnitude and duration of floods and
thus difficult to quantify from the data. The unrealistic Q-lags of the Kerribree Creek
floodplains (Fig. 5a) as well as a patch of connected floodplain area in the east of the5

southernmost floodplains are most likely a result of the fact that due to the above men-
tioned drastic changes to the flow regime, the river flow data of the modeling gauge was
not representative for SWD on these areas. In addition to this, there were hardly any
surface water observations of large magnitude in the east of the southernmost flood-
plains during the analysis period which imposed difficulties for quantifying flow travel10

times from the gauge to these areas.
The abrupt increase in Q-lags downstream of Point A in the Murrumbidgee sub-

region (Fig. 6) is not reflected in the flow data (see validation in Table 6), indicating
that our approach for automated estimation of Q-lags did not work in this area. This
is likely a result of the high level of river regulation in this area as illustrated by the15

large areas of irrigated agriculture in the close proximity of this reach and the resulting
drastic changes to the flow regime in downstream direction from the gauge.

4.3 Advances in modeling surface water dynamics from space

One of the key objectives of this study was to develop a highly automated, data-driven
top-down approach for modeling SWD. Most existing studies of satellite-based em-20

pirical inundation modeling (Table 1) required extensive site analysis, manual image
and data selection and tailoring of the modeling approach to local site characteristics.
While these approaches are likely to result in improved inundation models for the lo-
cal floodplain system for which they were developed, they are not applicable across
large river basins with highly variable SWD across space and time. Consequently, they25

would not be suitable for modeling SWD on sub-continental scales, where complex
parameterization of site characteristics is not feasible. Existing studies on large-river
basin or sub-continental scale on the other hand, provide empirical inundation models
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linked to higher levels of uncertainty because variables are often averaged for com-
paratively large, yet potentially hydrologically complex spatial entities. The complexity
of SWD across space and time and the high level of variability of these dynamics on
a local scale as revealed by this study illustrate that there is a level of ambiguity in-
volved when developing inundation models for such large spatial units. Such models5

may potentially neglect fine scale variations in SWD, which could lead to high levels
of uncertainty in the results, poor model performance or unexpected model behavior.
Nevertheless, modeling SWD on sub-continental scale requires a simplification of the
process to a certain degree and segmentation of the study site into adequate spatial
units. By providing a novel approach for balancing the local complexity of SWD with10

the requirements and limitations of modeling surface water processes on large river
basin scale, this study is filling the gap between existing approaches of large-scale and
high level of uncertainty and finer-scale and complex site analysis. The key feature of
this approach was the spatial modeling framework, which allowed us to model each
cell based on automatically quantified flow travel times and to capture the dynamics of15

surface water on a local scale across a large and heterogeneous river basin.
Additionally, the spatial modeling framework allowed us to apply a tailored modeling

approach to surface water bodies that are not hydraulically connected to river systems.
This surface water category was modeled as a function of local rainfall as the key driver
rather than river flow. Average r2 of final models of this SWC was much lower for all20

three sub-regions compared to the other two SWCs. Similarly to the floodplain and
floodplain-lake SWCs, the LDV played an important role in achieving uniform model
performance in non-floodplain models. One of the reasons for the low average r2 of
non-floodplain models was our definition of this SWC, which comprised all remaining
land surface areas that were not assigned to the floodplain and floodplain-lake SWC.25

We used this definition to capture inundation of land surface areas that are not de-
fined as water bodies by the static wetland layer, which could potentially be caused by
intense local rainfall events. As a result of this definition of the non-floodplain SWC,
many of the non-floodplain modeling cells did not have sufficient surface water obser-
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vations for fitting a model equation. These findings indicate that a definition, in which
the non-floodplain SWC is limited to dynamic surface water areas rather than the en-
tire remaining land surface, could be more suitable for modeling this SWC. The SWE
time series used in this study quantifies the spatial and temporal distribution of sur-
face water over 25 years at 30 m pixel size and can thus be used to characterize the5

non-floodplain SWC.
The large size of the study area introduces some limitations for modeling SWD de-

picted in a Landsat-based time series of SWE. Overlapping satellite paths and dis-
carding of images with excessive cloud cover led to varying sample densities across
the study area and sometimes across single EH-zones. The MDB expands across10

eight Landsat paths from east to west, which resulted in seven overlapping stripes with
a width of approximately 40 km. In these areas of overlapping satellite paths, the num-
ber of observations is approximately twice as high as in the remaining areas resulting
in variable temporal density of the SWE time series used for modeling across the study
area. Discarding images or parts of images with excessive cloud cover introduced gaps15

into the otherwise regular time series of SWE (every 16 days). Since these missing time
steps in the time series were not explicitly accounted for during the fitting of the models,
these gaps led to inclusion of SWE observations into the models that are sometimes
several 16-day time steps apart from the current observation.

4.4 Role of the local climate for surface water dynamics20

Another key objective of this research was to analyze the role of APV (i.e., P , ET
and SM) in SWD, based on integration of spatial time series of rainfall, near surface
soil moisture and actual evapotranspiration. We used dynamic linear regression and
5-fold cross-validation for performing a data-driven analysis of the role of these driver
variables across space and time.25

Since we developed a highly automated and data-driven approach for modeling
SWD, we did not consider modeling SWD processes based on simplified water bal-
ance models as done in other studies on a smaller-scale (Table 1, study# 9, 10, 11).
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Instead, we performed a variety of exploratory analysis (e.g. Figs. 7 and 9) to get a bet-
ter understanding of the relationships between variables and to find the most suitable
representation of each variable in the models (Table 4). Even though analysis of cross-
correlations indicated that for some variables the correlation with SWE is highest after
applying relatively large lag times, we did not apply lag times for any of the APV for5

modeling and variable selection. Instead, the final modeling approach was based on
our conceptual understanding of SWD, for which the SWE at time t, should be a func-
tion of river flow at time t, the SWE at time (t−1) and the changes in P , ET and SM
between (t−1) and t. Using a 10 day moving average for river flow helped to account
for the fact that especially for modeling cells located far away from a gauge, Q-lags are10

an approximation and partly depend on the magnitude of floods so that actual daily
values become less suitable for modeling SWD.

Cross-validation is commonly used for variable selection and the high value of predic-
tive modeling for explanatory purposes and capturing patterns and relationships in rich
datasets is widely recognized (Arlot and Celisse, 2010; Bennett et al., 2013; Shmueli,15

2010). We found that local rainfall was the most important additional driver variable
across all three sub-regions and that the APV were more important for modeling and
predicting SWD in the Paroo sub-region compared to the other two sub-regions. The
Paroo is the largest and most arid of the three sub-regions which, in combination with
its extensive shallow floodplains, might be the reason for the increased importance of20

the APV in this area.
Based on our understanding of SWD, we expected actual evapotranspiration to help

explain SWD particularly on slow draining surface water areas such as the floodplains
of the Paroo sub-region, since these waterbodies mainly drain as a result of infiltration
and evapotranspiration. Despite these assumptions, ET was the least influential local25

climate variable in the Paroo. One of the reasons for this may be that the ET data is
modeled output of the AWRA-L land surface and water balance model (Table 2). Even
though the AWRA-L model is calibrated against streamflow and partly accounts for
surface water body dynamics, including inflows from runoff and discharge (Viney et al.,

11876

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/11847/2015/hessd-12-11847-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/11847/2015/hessd-12-11847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 11847–11903, 2015

Modeling 25 years of
spatio-temporal
surface water

V. Heimhuber et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2014), model estimates of actual evapotranspiration might be of limited accuracy over
extended dynamic surface water areas such as large floodplains.

In comparison to ET, the P and SM datasets are of observational nature. The rainfall
dataset was generated based on spatial interpolation of point measurements and the
SM time series was generated based on remotely sensed data sets. The active and5

passive microwave data used for generating the SM time series is expected to be
largely influenced by extended open water bodies, including inundated floodplains as
well as by dense vegetation cover (Liu et al., 2012; Ye et al., 2015). Consequently,
this data set may be biased for floodplain areas during flooding, where large scale
inundation is likely to drive soil moisture estimates towards saturation so that the SM10

data is partly a direct observation of SWD.
Overall, the improvements in CV-RMSE after accounting for the APV were small

compared to the improvements after accounting for the LDV in all sub-regions, which is
likely a result of the complex relationship between SWD and the local climate drivers.
This relationship is non-trivial to quantify due to the absence of spatially continuous15

information on inundation volumes and infiltration rates (missing variables) as well as
resolution limits of the datasets used here. A conceptual water balance model, as an
alternative modeling framework, capable of accounting for all fluxes of water into and
out of each spatial modeling unit, would likely be limited by the same factors. Alterna-
tively, in an event-based modeling approach, the APV could be used to characterize20

the antecedent conditions of floodplains for each modeled flood, which are known to
have a strong influence on the magnitude and duration of inundation on floodplains.
Such an event-based modeling approach may be useful for certain applications but is
not suitable for modeling SWD continuously through cycles of flooding and drying as
done in this study.25
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5 Conclusions

In this study, we statistically modeled SWD over a period of 25 years across three large
and hydrologically distinct sub-regions of the MDB. We developed a spatial modeling
framework that allowed us to apply a tailored modeling approach to hydrologically dis-
tinct floodplain, floodplain-lake and non-floodplain areas and to quantify local driver5

combinations on the level of 10 km×10 km grid cells. Based on this SMF, we modeled
SWD continuously through cycles of flooding and drying on 946 modeling cells across
the three sub-regions. Automated quantification of flow lag times was a key step for
modeling floodplains and floodplain-lakes on the level of individual grid cells and ac-
counting for the LDV was crucial for achieving uniform model performance across the10

three sub-regions. Freely available time series of EO data on P , ET and SM allowed us
to analyze the role of local hydrological and climatic conditions for SWD. Even though
the contribution of local rainfall, evapotranspiration and soil moisture to the predictive
performance of SWD models were small compared to the large improvements resulting
from the LDV, these variables were important for achieving good model performance15

in a variety of hydrologically distinctive areas. Additionally, local rainfall was the main
driver for modeling SWD on all surface water bodies that are not connected to river sys-
tems with available flow data. The empirical inundation models developed in this study
provide unique insights into the inundation and retention behavior of surface water bod-
ies and local driver combinations and can provide a valuable tool for improving water20

resource management in the MDB. Future work will focus on applying the presented
methodology to the entire MDB, providing a first of its kind basin-wide and seasonally
continuous inundation model. The SMF is transferable to other large and heteroge-
neous river basins across the world given that hydraulic connectivity of surface water
bodies and river systems can be determined.25
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Data availability

The Landsat-based time series of surface water extent will be made freely available
as part of the Australian Research Data Storage Infrastructure in accordance with the
rules of the funding agency and embargo regulations of UNSW. The rainfall data prod-
uct can be purchased from the Australian Bureau of Meteorology. The soil moisture5

time series is provided and distributed free of charge by the European Space Agency’s
CCI (Climate Change Initiative) soil moisture project. The Geofabric Surface Network
and the AWRA-L evapotranspiration data product are available free of charge through
the Australian Bureau of Meteorology. A data portal for public distribution of the AWRA-
L data is currently in development. The static wetland layer for the Murray–Darling10

Basin can be requested from the Murray–Darling Basin Authority. All river flow data
used in this analysis can be obtained partly free of charge from respective state gov-
ernment repositories as specified in Sect. 2.2 of this paper.

Author contributions. V. Heimhuber, M. G. Tulbure and M. Broich designed this research and in-
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Table 1. Overview of studies that modeled optical satellite-based observations of surface water
as a function of river flow and other driver variables.

Dependent variable Predictor variables

Reference Modeling
technique

Study site (size) Modeling
unit

Inundation extent (spatial
resolution/time period)

Time step River flow/height Rainfall Soil
moisture

Evapo-
transpiration

[1] Westra and
De Wulf (2009)

Multiple linear
regression

Logone Flood-
plain, Chad
and Cameroon
(∼3000 km2)

Three sub
regions

Annual maximum inundation extent
based on three 16 day composite
MODIS Vegetation Indices images
aggregated into a single flood ex-
tent (250 m×250 m/2000–2005)

Annual/Event-
based

Cumulative runoff in
upstream catchment at
different time points
in the season

– Antecedent
(MODIS)

–

[2] Jung
et al. (2011)

Second polyno-
mial regression
and time
shifting

Logone Flood-
plain, Chad
and Cameroon
(∼3000 km2)

Entire study
site

Continuous time series of inunda-
tion extent derived from Landsat
(30 m×30 m/33 images between
Jan 2006 and Nov 2008)

≥ 16 days River heights at five
locations (two ENVISAT-
based and three from
gauges)

– – –

[3] Gumbricht
et al. (2004)

Multiple linear
regression
(including previ-
ous year
inundatio
n extent)

Okawango
Delta,
Botswana
(∼15 000 km2)

Seven sub
regions

Annual maximum inundation extent
derived from daily NOAA AVHRR
satellite data (1 km×1 km/1985 to
2000)

Annual/Event-
based

Cumulative runoff in 10
months preceding the yearly
flood at an upstream gauge

Cumulative
10 months
(two
gauges)

– Cumulative
(one gauge)

[4] Ren
et al. (2010)

Flexible local
polynomial
regression
(LOESS)

Macquarie
Marshes,
Australia
(∼2000 km2)

Entire study
site

Annual maximum inundation extent
from Landsat MSS and TM im-
agery during times of spring flood-
ing (30 m×30 m/1979 to 2006)

Annual/Event-
based

Cumulative annual river flow
(upstream gauge)

Cumulative
annual (two
gauges)

– –

[5] Sims
et al. (2014)

Inundation
extent linked to
corresponding
flow level (no
model provided)

Three flood-
plain sites,
Murray–Darling
Basin, Australia

11 sub
regions

Between four and seven Landsat
images per zone corresponding to
a range of river flow
values at rising hydrograph limbs
(30 m×30 m/1984 to 2012)

Event-based Discharge on day of Landsat
image (one gauge per zone)

– – –

[6] Frazier and
Page (2009)

Inundation
extent linked to
corresponding
flow level (no
model provided)

Murrumbidgee
River and
floodplains,
Australia
(∼640 km)

Six zones
along the
reach

Inundation extend for 22 selected
floods derived from Landsat im-
agery using sliding maximum
wetland extent technique (Frazier
et al., 2003) (30 m×30 m/1989 to
2008)

Event-based Flood peak discharge of all
selected floods (one gauge
for each of six sub-reaches)

– – –

[7] Huang
et al. (2014a)

Inundation
extent linked to
corresponding
flow level (no
model provided)

Murray–Darling
Basin, Australia
(∼1 million km2)

90 sub
regions

Annual maximum inundation extent
mapped from seven MODIS
images during maximum annual
flood (250 m×250 m/2001–2010)

Annual/Event-
based

Annual peak flow (one
gauge
per sub-region)

– – –

[8] Chen
et al. (2014)

Inundation
extent linked to
corresponding
flow level (no
model provided)

Maquire Mares,
Australia
(∼2000 km2)

Entire study
site

Maximum flood extent of two
1 in 10 year floods derived
from MODIS 8 day composites
(250 m×250 m/2000–2011)

Annual/Event-
based

Peak flows of two 1 in
10 year floods based on
flood frequency analysis
(two
gauges)

– – –

[9] Leauthaud
et al. (2013)

Tailored flood
routing and
water balance
model
calibrated with
inundation
extents

Tana River
Delta, Kenya
(∼1300 km2)

Entire study
site

Time series of inundation extents
based on classification of 434
MODIS 8 day composite images
(250 m×250 m/2002–2011)

Daily Daily discharge (one
upstream gauge)

Daily (one
gauge)

– Modeled
(monthly)

[10] Costelloe
et al. (2003)

Gridded
conceptual
water balance
and flow
routing model
calibrated with
inundation
extents

Diamantina
River and flood-
plains, Australia
(∼330 km)

5 km×5 km
Grid

Inundation extents for a variety of
flood events derived from Landsat
and NOAA-AVHRR imagery used
for definition of flow paths between
grid cells (30 m×30 m
and 1 km×1 km)

Daily Daily discharge (one
upstream gauge)

Spatial time
series (daily)

– Spatial time
series
(monthly)

[11] Powell
et al. (2008)

Semi-
distributed
water balance
and inundation
model

Gwydir
Wetlands,
Australia
(∼2200 km2)

Channels,
flow paths
andwetlands

15 daily inundation extents for one
large flood used for model calibra-
tion derived from classified NOAA-
AVHRR imagery (1 km×1 km)

Daily Daily discharge (two gauges
in the study area)

Daily (one
gauge)

– (one gauge)
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Table 2. Overview of spatial time series used for modeling SWD.

Product Description Period Interval Resolution Sources

Surface Water Time series of open surface
water extent across the entire
Murray–Darling Basin derived
from Landsat imagery

1986–2011 ≥ 16 days 30 m Tulbure and
Broich (2015)

Rainfall Time series of rainfall based on
interpolation of rainfall gauge
records throughout Australia
(Australian Bureau of Meteorol-
ogy)

1980–2014 daily 5 km Commonwealth of
Australia (Bureau of
Meteorology) (2015)

Evapo-transpiration Time series of actual evapo-
transpiration (Modeled output of
the landscape component of the
Australian Water Resource As-
sessment System (AWRA-L 4.5)
continental scale water balance
model)

1980–2014 daily 5 km Viney et al. (2014);
Vaze et al. (2013)

Soil Moisture Time series of near surface soil
moisture derived from active and
passive satellite microwave sen-
sors (European Space Agency’s
CCI (Climate Change Initiative)
soil moisture project)

1986–2011 daily 25 km Liu et al. (2012);
Wagner et al. (2012)
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Table 3. Definition of model parameters per grid cell.

Parameter Signification Type Unit

SWE Surface Water Extent Fraction of SWE on cloud free km2 km−2

surface water category area
Q Discharge 10-day moving average ML day−1

P Rainfall Previous 16-day sum mm 16 days−1

ET Evapotranspiration Previous 16-day sum (actual) mm 16 days−1

SM Soil Moisture Previous 16-day average m3 m−3
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Table 4. Long term average climate and runoff characteristics along with total, floodplain and
floodplain-lake area of the three sub-regions used for illustration of the modeling framework.

Averages Rainfall ET Discharge Total Area Floodplains Floodplain-Lakes
(1986–2011)

Paroo 294 290 1062 50 593 7908 (15.6) 479 (0.9)
Murray 270 264 11 987 9132 3109 (34.1) 784 (8.6)
Murrumbidgee 453 448 7773 13 032 907 (7.0) 5 (0.04)
Unit mm year−1 mm year−1 ML day−1 km2 km2 (% of km2 (% of

total area) total area)
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Table 5. Official names, ID and start dates of river gauges and data used for this analysis along
with estimated average flow travel times between gauges used for validation of Q-lags.

Sub-Region EH-zone Name ID Start Date Validation Gauge
(Lag Time)

Paroo (east) 27 423202C 1-A 1991
Paroo 27 A424201 1-B 1967
Paroo 27 424002 1-C 1975
Paroo (east) 27 423005 1-D 1993 (incomplete) 1-A (4 days)
Paroo 27 424001 1-E 1980 (incomplete) 1-B (9 days)
Murray 75 A4260505 2-A 1957 2-B (12 days)
Murray 79 A4260528 2-B 1985
Murrumbidgee 48 410001 3-A 1980 3-B (5 days)
Murrumbidgee 49 410005 3-B 1920 3-C (5 days)
Murrumbidgee 49 410078 3-C 1995 (incomplete)
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Table 6. Average CV-RMSE and r2 of initial, base and final models of the floodplain category
of the three sub-regions (definition of initial, base and final models is given in Sect. 2.4.3).

Sub-Region Paroo Murray Murrumbidgee

Number of Floodplain Models 255 57 51
CV-RMSE of Initial Models 0.239 0.204 0.122
CV-RMSE of Base Models (Initial Model + LDV) 0.046 0.039 0.016
CV-RMSE of Final Models (Initial Model + LDV + APV) 0.043 0.039 0.015
r2 of Initial Models 0.33 0.58 0.25
r2 of Base Models (Initial Model + LDV) 0.62 0.67 0.39
r2 of Final Models (Initial Model + LDV + APV) 0.67 0.67 0.41
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Table 7. The role of local climate variables for modeling SWD on floodplains, showing the
percentage of grid cells in each sub-region where automated variable selection led to improve-
ments in CV-RMSE and thus inclusion of each APV into the final models.

Sub-Region Paroo Murray Murrumbidgee

Number of Floodplain Models 255 57 51
Models including P 74 % 46 % 51 %
Models including ET 36 % 49 % 47 %
Models including SM 47 % 23 % 35 %
Number of Floodplain-Lake Models 28 15 3
Models including P 100 % 73 % 67 %
Models including ET 43 % 33 % 33 %
Models including SM 43 % 47 % 0 %
Number of Non-floodplain Models 502 68 169
Models including ET 37 % 56 % 46 %
Models including SM 54 % 25 % 33 %
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Figure 1. Major rivers and topography of the Murray–Darling Basin. Source: DEM (Geoscience
Australia and CSIRO, 2011).
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Figure 2. Overview of the analysis design and spatial modeling framework. Sources: river
network (Commonwealth of Australia (Bureau of Meteorology) 2012), surface water categories
derived from (Kingsford et al., 2004), eco-hydrological zonation (Huang et al., 2013).
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Figure 3. (a) Eco-hydrological zonation, irrigation areas and wetlands of the Murray–Darling
Basin and surface water categories of the three sub-regions ((b) Paroo, (c) Murray and (d)
Murrumbidgee), used for illustrating the abilities of the spatial modeling framework for modeling
SWD on a local scale (per grid cell) across large river basins. Sources: surface water categories
derived from (Kingsford et al., 2004), eco-hydrological zonation (Huang et al., 2013).
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Figure 4. Murray sub-region: (a) Q-lags for river gauge 2-A, (b) Q-lags for river gauge 2-B and
(c) r2 of floodplain and floodplain-lakes (final models).
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Figure 5. Paroo sub-region: (a) Q-lags and r2 for the floodplain and floodplain-lake surface
water category (final models) based on river gauge 1-A (all cells east of line L-A) and 1-C (all
cells west of line L-A), (b) r2 of non-floodplain category (final models).
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Figure 6. Murrumbidgee sub-region: Q-lags for river gauge 3-A (used for modeling the reach
between gauge 3-A and 3-B) and 3-B (used for modeling all areas downstream of gauge 3-B).
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Figure 7. Time series of surface water extent ratio on floodplains and discharge in the cor-
responding river gauge for four example grid cells for the period from 1992 to 1999. (Vertical
green bars indicate time steps of the SWE time series; location of example grid cells is shown
in Fig. 3.)
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Figure 8. (a) CV-RMSE of the initial models of the floodplain and floodplain-lake surface water
category in the Paroo sub-region and improvement in CV-RMSE after accounting for the (b)
LDV (base models) and (c) APV (final models).
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Figure 9. Relationship of variables used for modeling the floodplain area of the Paroo example
cell Ex-A (location shown in Fig. 3) for the period from 1999 to 2006: (a) soil moisture and local
rainfall, (b) discharge and surface water extent ratio and (c) soil moisture and evapotranspira-
tion with respective trend components (dashed lines).
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