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Abstract

Flood-envelope curves (FEC) are useful for constraining the upper limit of possible flood
discharges within drainage basins in a particular hydroclimatic region. Their usefulness,
however, is limited by their lack of a well-defined recurrence interval. In this study we
use radar-derived precipitation estimates to develop an alternative to the FEC method, i.e.
the frequency-magnitude-area-curve (FMAC) method, that incorporates recurrence
intervals. The FMAC method is demonstrated in two well-studied U.S. drainage basins,
i.e. the Upper and Lower Colorado River basins (UCRB and LCRB, respectively), using
Stage III Next-Generation-Radar (NEXRAD) gridded products and the diffusion-wave
flow-routing algorithm. The FMAC method can be applied worldwide using any radar-
derived precipitation estimates. In the FMAC method, idealized basins of similar
contributing area are grouped together for frequency-magnitude analysis of precipitation
intensity. These data are then routed through the idealized drainage basins of different
contributing areas, using contributing-area-specific estimates for channel slope and
channel width. Our results show that FMAC:s of precipitation discharge are power-law
functions of contributing area with an average exponent of 0.82 + 0.06 for recurrence
intervals from 10 to 500 years. We compare our FMACs to published FECs and find that
for wet antecedent-moisture conditions, the 500-year FMAC of flood discharge in the
UCRB is on par with the U.S. FEC for contributing areas of ~10* to 10’ km*. FMACs of
flood discharge for the LCRB exceed the published FEC for the LCRB for contributing
areas in the range of ~10° to 10* km”. The FMAC method retains the power of the FEC

method for constraining flood hazards in basins that are ungauged or have short flood
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records, yet it has the added advantage that it includes recurrence interval information

necessary for estimating event probabilities.

1. Introduction
1.1 Flood-Envelope Curves

For nearly a century, the flood-envelope curves (FEC), i.e. a curve drawn slightly
above the largest measured flood discharges on a plot of discharge versus contributing
area for a given hydroclimatic region (Enzel et al., 1993), have been an important tool for
predicting the magnitude of potential future floods, especially in regions with limited
stream-gauge data. FECs assume that, within a given hydroclimatic region, maximum
flood discharges for one drainage basin are similar to those of other drainage basins of
the same area, despite differences in relief, soil characteristics, slope aspect, etc. (Enzel et
al., 1993). This assumption enables sparse and/or short-duration flood records over a
hydroclimatic region to be aggregated in order to provide more precise constraints on the
magnitude of the largest possible (i.e. long-recurrence-interval) floods.

FECs reported in the literature have a broadly similar shape across regions of
widely differing climate and topography. For example, FECs for the Colorado River
Basin (Enzel et al., 1993), the central Appalachian Mountains (Miller, 1990; Morrison
and Smith, 2002), the 17 hydrologic regions within the U.S. defined by Crippen and Bue
(1977), the U.S. as a whole (Costa, 1987; Herschy, 2002), and China (Herschy, 2002) are
all concave-down when plotted in log-log space, with maximum recorded flood
discharges following a power-law function of contributing area for small contributing
areas and increasing more slowly at larger contributing areas (i.e. the curve “flattens”).

Traditional FECs also have the potential problem that the maximum flood
associated with smaller drainage basins may be biased upward (or the floods of larger
drainage basins biased downward) because there are typically many more records of
floods in smaller drainage basins relative to larger drainage basins (because there are
necessarily fewer large drainage basins in any hydroclimatic region). That is, the largest
flood of record for small drainage basins within a hydroclimatic region likely corresponds
to a flood of a larger recurrence interval compared with the largest flood of record for

larger drainage basins. In this paper we present a method that includes recurrence-interval
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information and avoids any sample-size bias that might exist as a function of contributing
area.

The use of FECs to quantify flood regimes is limited by the lack of recurrence-
interval information (Wolman and Costa, 1984; Castellarin et al., 2005) and by the short
length, incomplete nature, and sparseness of many flood discharge records. Without
recurrence-interval information, the data provided by FECs are difficult to apply to some
research and planning questions related to floods. In the U.S. for example, the 100- and
500-year flood events are the standard event sizes that define flood risk for land planning
and engineering applications (FEMA, 2001).

Previously published studies have looked at new approaches to approve upon the
FEC method. Castellarin et al. (2005) took a probabilistic approach to estimating the
exceedance probability of the FEC for synthetic flood data. The authors were able to
relate the FECs of certain recurrence intervals to the correlation between sites, the
number of flood observations, and the length of each observation. Later, Castellarin
(2007) and Castellarin et al. (2009) applied these methods to real flood record data and
extreme rainfall events for basins within north-central Italy. Castellarin et al. (2009) also
created depth-duration envelope curves of precipitation to relate extreme precipitation
events to mean annual precipitation. This group of studies was successful in
incorporating recurrence-interval information into the traditional FEC method. However,
most of the models presented in these studies were completed with synthetic data or
created for design storm processes and require additional analysis. Also, most of the
precipitation data used in these past studies was collected using rain gauges (point
sources), while only a small subset of data in Castellarin et al. (2009) was sourced from
radar-derived precipitation estimates. In contrast to these studies we formulate a
simplified method (i.e. the FMAC method) that is readily applicable to any region of
interest and can be directly compared to already existing FECs. Also we favor the use of
spatially complete radar-derived precipitation estimates in order to apply our methods to
ungauged basins.

To mitigate the uncertainty caused by short and incomplete flood discharge
records, this study uses a space-for-time substitution (e.g. regionalization) to lengthen the

record for a given contributing area. Previous studies have employed similar methods,
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including the index-flood procedure first described by Dalyrymple (1960) and expanded
upon by many subsequent authors. The index-flood method uses data from multiple sites
within a region to construct more accurate flood-quantile estimates than would be
possible using a single site (Stedinger et al., 1993 and Hosking and Wallis, 2005). This
method can also be used on precipitation data where it is referred to as the station-year
method (Buishand, 1991). The index-flood method is based on two major assumptions:
(1) that observations from two or more basins are independent; and (2) that observations
follow the same distribution (Wallis et al., 2007).

Here we use a regionalization method similar to the index-flood method in order
to calculate rainfall intensity values associated with specific recurrence intervals. The
assumption of statistical independence of rainfall (and associated flood) observations is
one that we assume in this study but understand may not be true for all samples in our
natural data set. This assumption is difficult to definitively prove with natural data
(Hosking and Wallis, 2005). For example, a large rainfall event may affect two basins in
a similar way and therefore create correlated maximum rainfall intensity values. This
spatial correlation is difficult to avoid and may cause biased results. However, it has been
shown that the index-flood method can be used in the absence of fully statistically
independent observations and still give robust results (Hosking and Wallis, 1988;
Hosking and Wallis, 2005). The assumption that observations are sampled from the same
distribution is also somewhat difficult to prove with natural data, but by knowing the
study areas well a researcher can identify regions with similar rainfall and flood
mechanisms. Many examples of this type of area analysis can be found in the literature,
including Soong et al. (2004) who separated rural streams in Illinois into hydrological
regions based on basin morphology and soil characteristics. Soong et al. (2004) used
regionalization in their study to increase the amount of flood data available for frequency
analysis. Wallis et al. (2007) employed a similar regionalization method to identify
hydroloclimatic regions in their study of precipitation frequency in Washington. It should
be noted that FEC’s in general use this type of regionalization approach to analyze
maximum flood data for hydroclimatic regions with similar flood mechanisms. In this
study we similarly attempt to analyze regions based on their basic rainfall mechanisms, in

this case by separating the Upper and Lower Colorado River basins.
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In this study, a new method for estimating flood discharges associated with user-
specified recurrence intervals is introduced that uses radar-derived precipitation estimates
(in this case rainfall only), combined with the diffusion-wave flow-routing algorithm, to
create frequency-magnitude-area curves (FMACs) of flood discharge. Our method (i.e.
the FMAC method) retains the power of the FEC approach in that data from different
drainage basins within a hydroclimatic region are aggregated by contributing area,
thereby enabling large sample sizes to be obtained within each contributing-area class in
order to more accurately constrain the frequencies of past extreme flood events and hence
the probabilities of future extreme flood events within each class. The method improves
upon the FEC approach in that the complete spatial coverage of radar-derived
precipitation estimates provides for large sample sizes of most classes of contributing
area (larger contributing areas have fewer samples). The radar-derived precipitation
estimates include only rainfall and therefore snow and other types of precipitation are not
included in the study. The precipitation estimates are then used to predict flood
discharges associated with specific recurrence intervals by first accounting for water lost
to infiltration and evapotranspiration using runoff coefficients appropriate for different
contributing areas and antecedent-moisture conditions, and then routing the available
water using a flow-routing algorithm. Predicted flood discharges are presented as FMACs
on log-log plots, similar to traditional FECs, except that the method predicts a family of
curves, one for each user-defined recurrence interval. These plots are then compared to

FEC:s for the study region (Enzel et al., 1993) and the U.S. (Costa, 1987).

1.2 Study Area

This study focuses on the Upper and Lower Colorado River Basins (UCRB and
LCRB, respectively; Fig. 1) as example applications of the FMAC method. Although the
methods we develop are applied to the UCRB and LCRB in the western U.S. in this
study, the methods are applicable to any region of interest where radar-derived
precipitation estimates are available (i.e. the entire U.S. and at least 22 countries around
the world; Li, 2013; RadarEU, 2014). We focus on the UCRB and LCRB because they
have been a focus of flood-hazard assessment studies in the western U.S. and hence the

FECs available for them are of especially high quality. In addition, the distinctly different
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hydroclimatic regions of the UCRB and LCRB (Sankarasubramanian and Vogel, 2003)
make working in these regions an excellent opportunity to test and develop the new
methods of this study on different precipitation patterns and storm types.

Precipitation and flooding in the LCRB are caused by convective-type storms,
including those generated by the North American Monsoon (NAM), and frontal-type and
tropical storms sourced from the Pacific Ocean and the Gulf of California (House and
Hirschboeck, 1997; Etheredge et al., 2004). In the UCRB, the influence of the NAM and
tropical storms is diminished and floods are generally caused by Pacific frontal-type
storms (Hidalgo and Dracup, 2003). In both regions, the El Nifio Southern Oscillation
(ENSO) alters the frequency and intensity of the NAM, tropical storms, and the Pacific
frontal systems, and can cause annual variations in precipitation and flooding (House and
Hirschboeck, 1997; Hidalgo and Dracup, 2003). Winter storms in both regions are also
intensified by the occurrence of atmospheric rivers (Dettinger et al., 2011), which can
cause total winter precipitation to increase up to approximately 25% (Rutz and
Steenburgh, 2012). The radar-derived precipitation estimates used in this study record
this natural variability in precipitation in the two regions.

The methods used in this study to calculate rainfall and flood discharges of
specified recurrence intervals from radar-derived precipitation estimates require a few
main assumptions. The first assumption is that of climate stationarity, i.e. the parameters
that define the distribution of floods do not change through time (Milly et al., 2008).
Climate is changing and these changes pose a challenge to hazard predictions based on
the frequencies of past events. Nevertheless, stationarity is a necessary assumption for
any probabilistic analysis that uses past data to make future predictions. The results of
such analyses provide useful starting points for more comprehensive analyses that
include the effects of future climate changes. The second assumption is that the sample
time interval is long enough to correctly represent the current hydroclimatic state (and its
associated precipitation patterns and flood magnitudes and risks) of the specified study
area. Our study uses data for the 1996 to 2004 water years and therefore may be limited
by inadequate sampling of some types of rare weather patterns and climate fluctuations
within that time interval. To address whether or not the sample time interval used in this

study includes major changes in circulation and weather patterns, and therefore is a good
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representation of climate in the CRB, we investigated the effect of the El Nifio Southern
Oscillation (ENSO) on rainfall intensity within the UCRB and LCRB. ENSO is a well-
known important influence on the hydroclimatology of the western U.S. (Hidalgo and
Dracup, 2003; Caion et al., 2007). In general, winter precipitation in the southwestern
U.S. increases during El Nifio events and decreases during La Nifia events (Hidalgo and
Dracup, 2003). The opposite effects are found in the northwestern portions of the U.S.
(including the UCRB; Hidalgo and Dracup, 2003). The last assumption of the method is
that all basins of similar contributing area respond similarly to input rainfall, i.e. that they
have similar flood-generating and flow-routing mechanisms. Specifically, the method
assumes that basins of similar contributing area have the same runoff coefficient, flow-
routing parameters, basin shape, and channel length, width, and slope. This assumption is
necessary in order to aggregate data into discrete contributing-area classes so that the
frequency of extreme events can be estimated from relatively short-duration records. In
this study, high-recurrence-interval events (i.e. low frequency events) can be considered
despite the relatively short length of radar-derived-precipitation-estimate records because
the number of samples in the radar-derived record is extremely large, especially for small
contributing areas and small duration floods. For example, for a 1-h time-interval-of-
measurement and a contributing area of 4,096 km? event in the UCRB, there are
approximately 40 (number of spatial scale samples) times 55000 (number of temporal
scale samples in nine years of data) samples of rainfall-intensity values (and associated
modeled discharges obtained via flow routing). As contributing area and time intervals of
measurement increase there are successively fewer samples, within any particular
hydroclimatic region, thus increasing the uncertainty of the resulting probability

assessment for larger areas and longer time periods.

2. Next-Generation-Radar (NEXRAD) Data

The specific radar-derived precipitation estimates we use in this study come from
the Stage III Next-Generation-Radar (NEXRAD) gridded product, which is provided for
the entire U.S., Guam, and Puerto Rico. NEXRAD was introduced in 1988 with the
introduction of the Weather Surveillance Radar 1988 Doppler, or WSR-88D, network
(Fulton et al., 1998). The WSR-88D radars use the Precipitation Processing System
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(PPS), a set of automated algorithms, to produce precipitation intensity estimates from
reflectivity data. Reflectivity values are transformed to precipitation intensities through
the empirical Z-R power-law relationship,
Z =aR’ (1)
where Z is precipitation rate (mm h™), « and /8 are derived empirically and can vary
depending on location, season, and other conditions (Smith and Krajewski, 1993), and R
is reflectivity (mm6 m'3; Smith and Krajewski, 1993; Fulton et al., 1998; Johnson et al.,
1999). Precipitation intensity data are filtered and processed further to create the most
complete and correct product (Smith and Krajewski, 1993; Smith et al., 1996; Fulton et
al., 1998; Baeck and Smith, 1998). Further information and details about PPS processing
are thoroughly described by Fulton et al. (1998).

Stage III NEXRAD gridded products are Stage II precipitation products mapped
onto the Hydrologic Rainfall Analysis Project (HRAP) grid (Shedd and Fulton, 1993).
Stage II data are hourly precipitation intensity products that incorporate both radar
reflectivity and rain-gauge data (Shedd and Fulton, 1993) in an attempt to make the most
accurate precipitation estimates possible. The HRAP grid is a polar coordinate grid that
covers the conterminous U.S., with an average grid size is 4 km by 4 km, although grid
size varies from approximately 3.7 km (north to south) to 4.4 km (east to west) in the

southern and northern U.S., respectively (Fulton et al., 1998).

3. Methods
3.1 NEXRAD Data Conversion and Sampling

NEXRAD Stage III gridded products (hereafter NEXRAD products) for an area
covering the Colorado River basin from 1996 to 2005 were downloaded from the NOAA
HDSG website (http://dipper.nws.noaa.gov/hdsb/data/nexrad/cbrfc_stageiii.php) for
analysis. The data files were converted from archived XMRG files to ASCII format (each
data file representing the mean rainfall intensity within each 1 h interval) using the
xmrgtoasc.c program provided on the NOAA HDSG website. The ASCII data files were

then input into a custom program written in IDL for analysis.

3.2 Rainfall Sampling Over Space
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In this study we quantified hourly rainfall intensities (mm h™") over square
idealized drainage basins (i.e. not real drainage basins, but square drainage basins as
shown schematically in Fig. 2A as brown squares) of a range of areas from 16 km? to
11,664 km? (approximately the contributing area of the Bill Williams River, AZ, for
readers familiar with the geography of the western U.S.) by successively spatially
averaging rainfall-intensity values at HRAP pixel-length scales of powers of two (e.g. 4,
16 pixel’, etc.) and three (e.g. 9, 81 pixel’, etc.; Fig. 2, Step 1). Spatial averaging is done
by both powers of 2 and 3 simply to include more points on the FMACs than would
result from using powers of 2 or 3 alone. The number of samples within each contributing
area class limited the range of contributing areas used in this study, i.e. at larger
contributing areas there were too few samples to successfully apply the frequency
analysis.

UCRB and LCRB boundaries from GIS hydrologic unit layers created by the
USGS and provided online through the National Atlas site
(http://www.nationalatlas.gov/atlasftp.html#hucs00m) were projected to HRAP
coordinates using the methods of Reed and Maidment (2006). These boundaries were
used to delineate the region from which rainfall data were sampled from the NEXRAD
products, i.e. when averaging rainfall data by powers of two and three a candidate square
drainage basin was not included in the analysis if any portion of the square fell outside of
the boundaries of the UCRB or LCRB (Fig. 2A). Throughout the analysis, the HRAP
pixel size was approximated by a constant 4 km by 4 km size despite the fact that HRAP
pixel sizes vary slightly as a function of latitude (Reed and Maidment, 2006). Our study’s
drainage basins span latitudes between approximately 31°N and 43°N resulting in a
maximum error of 15%. However, by keeping the pixel size constant, all pixels could be
treated as identical in size and shape allowing us to sample the NEXRAD products in an
efficient and automated way over many spatial scales.

For larger contributing areas, necessarily fewer samples are available within a
given hydroclimatic region, thus increasing the uncertainty associated with the analysis
for those larger contributing-area classes. For the UCRB and LCRB specifically, the
uncertainty in the analysis becomes significant for contributing-area classes equal to and

larger than ~10° to 10" km? depending on the recurrence interval being analyzed. Of
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course, if the hydroclimatic region is defined to be larger, more samples are available for

each contributing-area class and hence larger basins can be analyzed with confidence.

3.3 Rainfall Sampling Over Time

In addition to computing rainfall intensities as a function of spatial scale, we
averaged rainfall intensities as a function of the time interval of measurement ranging
from 1 to 64 hours in powers of two by averaging hourly rainfall intensity records over
the entire 9-year study period (Fig. 2, Step 1). This range in time intervals was chosen in
order to capture rainfall events that last on the order of ~1 hour (convective-type storms)
to days (frontal-type storms).

Rainfall data was sampled temporally by taking the maximum value of each storm
event. Storm events were identified as consecutive non-zero rainfall intensity values
separated by instances of zero values in time for each temporal scale. This allows for
multiple maximum rainfall values in time to be sampled within a year and throughout the
entire 9-year study period. This sampling method is similar to that used in the Peak Over
Threshold (POT) method typically used on discharge data where a minimum threshold
value is set and maximum peaks above the threshold value are recorded as maximum
events. Here we set the minimum threshold value to zero and hence the maximum values

of all individual storm events are considered in the analysis.

3.4 Rainfall Recurrence Interval Calculations

To determine the rainfall-intensity values with a user-specified recurrence
interval, maximum rainfall intensities of storm events sampled from the NEXRAD data
for each contributing-area and time-interval-of-measurement class were first ranked from
highest to lowest (Fig. 2A, Step 2). The relationship between recurrence intervals and
rank in the ordered list is given by the probability-of-exceedance equation (i.e. the

frequency-rank relationship):

_(n+))
- m

RI

)
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where RI is the recurrence interval (yr), defined as the inverse of frequency (yr™) or
probability of exceedance, 7 is the total number of samples in each contributing-area and
time-interval-of-measurement scaled to units in years (resulting in units of yr), and m is
the rank of the magnitude ordered from largest to smallest (unitless). Here the recurrence
interval is prescribed (10, 50, 100, and 500 yr), then the rank associated with this
recurrence interval is computed using the frequency-rank relationship (Equation 2). The
resulting rainfall intensities associated with a user-specified recurrence interval and
contributing-area and time-interval-of-measurement class was then used to calculate the
O, value.

At the end of the calculations described above we have datasets of rainfall-
intensity values for each combination of the eight contributing-area classes, the seven
time-interval-of-measurement classes, and the four recurrence intervals. We then find the
maximum values of rainfall intensity associated with a given contributing-area class and
recurrence interval among all values of the time-interval-of-measurement class (i.e. the
values calculated for 1 to 64 h time intervals). This step is necessary in order to find the
maximum values for a given contributing area class and recurrence interval independent
of the time-interval-of-measurement, i.e. independent of storm durations and associated
types of storms. The maximum values are used to be consistent with the methods of the
traditional FECs where the points represent the largest possible storm for a given
contributing area. These maximum values are used to calculate O, and Qg (see next

section).

3.5 Rainfall and Runoff Calculations

The first variable calculated from the maximum rainfall intensities found for each
contributing-area class and recurrence interval is the preciptiation (here rainfall only)
discharge, O,. The variable Q, is defined as the average rainfall intensity over a basin and
time interval of measurement multiplied by the contributing area, resulting in units of m’
s. This is a simple calculation resulting in a “discharge” of rainfall to a basin. Oy 1s the
input value for the flow-routing algorithm that we employ to calculate the peak flood

discharge (Fig. 2B, Step 3).
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The flow-routing algorithm we employ does not explicitly include infiltration and
other losses that can further reduce peak flood discharge relative to input to the basin, Q,.
In this study we modeled infiltration and evaporation losses by simply removing a
volume of water per unit time equal to one minus the runoff coefficient, i.e. the ratio of
runoff to rainfall over a specified time interval, for three antecedent-moisture scenarios
(wet, med, and dry). We estimated runoff coefficients for each contributing-area class
and each of three antecedent-moisture scenarios using published values for annual runoff
coefficients for large basins within the UCRB and LCRB (Rosenburg et al., 2013) and
published values for event-based runoff coefficients for small basins modeled with a
range of antecedent-moisture conditions by Vivoni et al. (2007) (Fig. 3). On average,
estimated runoff coefficients are higher for smaller and/or initially wetter basins. We
found the dependence of runoff coefficients on contributing area and antecedent moisture
to be similar despite the large difference in time scales between event-based and annual
values. Despite the difference in geographic region between our study site and that of
Vivoni et al. (2007) (they studied basins in Oklahoma), the runoff coefficients they
estimated are likely to be broadly applicable to the LCRB and UCRB given that basin
size and antecedent moisture are the primary controls on these values (climate and soil
types play a lesser role except for extreme cases).

We applied the estimated runoff coefficients for all three antecedent-moisture
scenarios by simply using them to remove a portion of the Q, calculated for specific time

interval and basin area

Qpm = C*Qy )

where C is the runoff coefficient calculated for the specific basin area and antecedent-
moisture scenario under evaluation. The newly formed Qpr, is now the Q, value for the
wet, medium, or dry antecedent-moisture scenario under analysis for each given

recurrence interval and contributing area class.

3.6 Flood Discharge Calculations
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The second variable calculated in this study, and the end-result of our methods, is
the peak flood discharge, Q. The variable Qg is the peak flood discharge (m3 s'l)
calculated via the diffusion-wave flow-routing algorithm for a hypothetical flood
triggered by a rainfall discharge, Opm, input uniformly over the time interval of
measurement to idealized square basins associated with each contributing-area class (Fig.
2B, Step 4).

The flow-routing algorithm routes flow along the main-stem channel of idealized
square basins with sizes equal to the contributing area of each contributing-area class.
The choice of a square basin is consistent with the square sample areas (see Section 3.1)
and it allows for basin shape to remain the same (and therefore comparable) over the
range of contributing areas used in this study. The main-stem channel, with a length of L
(m), was defined as the diagonal distance from one corner to the opposite corner across
the square basin (i.e. L is equal to the square root of two times the area of the square
basin). This main-stem channel was used in conjunction with a normalized area function
to represent the shape of the basin and the routing of runoff through the drainage basin
network. By including the normalized area function, we can account for geomorphic
dispersion (i.e. the attenuation of the flood peak due to the fact that rainfall that falls on
the landscape will take different paths to the outlet and hence reach the outlet at different
times) in our analyses. The normalized area function, 4(x) (unitless), is defined as the
portion of basin area, AL (x) (m?), that contributes flow to the main-stem channel within a
given range of distances (x) from the outlet, normalized by the total basin area, A7 (m®;
Mesa and Miftlin, 1986; Moussa, 2008). The normalized area function is assumed to be
triangular in shape with a maximum value at the midpoint of the main-stem channel from
the outlet. Area functions, and related width functions, from real basins used in other
studies show this triangular shape in general (Marani et al., 1994; Rinaldo et al., 1995;
Veneziano et al., 2000; Rodriguez-Iturbe and Rinaldo, 2001; Puente and Sivakumar,
2003; Saco and Kumar, 2008), although not all basins show this shape. The triangular
area function has been shown to approximate the average area function of basins and that
the peak discharge and time to peak discharge is likely more important to the shape of the
flood wave (Henderson, 1963; Rodriguez-Iturbe and Valdes, 1979).
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A 1-dimensional channel with simplified width and along-channel slope
appropriate for channels in the CRB is used to approximate the geometry of the main-
stem channel of the idealized basin in the flow-routing algorithm. In addition, values for
channel slope, S (m/m), and channel width, w (m), are assigned based on the contributing
area of the idealized basin and the results of a least-squares regression to channel-slope
and channel-width data from the CRB. We assume here that the assigned channel slopes
and widths represent the average value for the entire idealized basin. To find the best
approximations for channel slope and width values, we developed formulae that predict
average channel slope and channel width as a function of contributing area based on a
least-squares fit of the logarithms of slope, width, and contributing area based on
approximately 100 sites in the Colorado River Basin (CRB; Fig. 4). The data used in
these least-squares regressions included slope, width, and contributing area information
from all sites in the LCRB and southern UCRB presented in Moody et al. (2003) and
additional sites from USGS stream-gauge sites from across the CRB.

The assigned channel slope and width values, together with the values of Opm
modified for each antecedent-moisture scenario, were used to calculate the depth-average
velocities, ¥ (m s™), in hypothetical 1D main-stem channels of idealized square drainage
basins corresponding to each contributing-area and time-interval-of-measurement class.
In this study, flow velocity is not modeled over space and time, but rather is set at a
constant value appropriate for the peak discharge using an iterative approach that solves
for the peak depth-averaged flow velocity, uses that velocity to compute the parameters
of the diffusion-wave-routing algorithm, routes the flow, and then computes an updated
estimate of peak depth-averaged velocity. To calculate the depth-averaged velocity, V, we

used Manning’s equation, i.e.

1 2L
-—R'S’, @
Vi
where ny is Manning’s n (assumed to be equal to 0.035), and R is the hydraulic radius
(m) calculated with the assigned channel width, and S (m/m) is the assigned channel
slope. In order to calculate R, water depth, 4, of the peak discharge needed to be

determined. In this study / was iteratively solved for based on the peak-flow conditions

(i.e. the depth-averaged velocity, V, associated with the peak-flood discharge, Q) with £
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set at 1 m for the first calculation of the flow-routing algorithm. At the end of each
calculation, 4 is recalculated using Manning’s equation. These iterations continue until
the water depth converges on a value (i.e. the change from the last calculation of / to the
next calculation of / is < 0.1 m) corresponding to a specific recurrence interval,
contributing-area class, and time-interval-of-measurement class.

The method we used to model flow through the main-stem channel is the
diffusion-wave flow-routing algorithm. This approach is based on the linearized Saint-
Venant equations for shallow-water flow in one dimension. To find a simpler, linear
solution to Saint-Venant equations, Brutsaert (1973) removed the acceleration term from
the equations, leaving the diffusion and advection terms that often provide a reasonable
approximation for watershed runoff modeling (Brutsaert, 1973). Leaving the diffusion
term in the flow-routing algorithm includes hydrodynamic dispersion of the flood wave
in the calculation of the flood hydrograph. In the case where the initial condition is given
by a unit impulse function (Dirac function), the cell response function of the channel, g4
(units of ™), is given by:

X

= 172, 372 X (x —at,)
(2m) “bt,

5
2b°t, ®)

44

where x is the distance along the channel from the location where the impulse is input to
the channel, # is time since the impulse was input into the channel, and the drift velocity
a (m s™) and diffusion coefficient 5° (m* s™') are defined as

a=1+a,)V (6)

3

b2

- W) (7)

where F is the Froude number, g is the acceleration due to gravity (m s*), and aq is a
constant equal to 2/3 when using Manning’s equation (Troch et al., 1994). The large
floods modeled in this study are assumed to have critical-flow conditions and therefore
the Froude number is set to a constant value of 1.

The unit response discharge, gg (m” s™), at the outlet of a drainage basin can be
computed from equations (3)-(5) by integrating the product of the cell response function
qd(x,f) corresponding to a delta-function input of the normalized area function, 4(x), i.e.

the spatial distribution of rainfall input. The integral is given by
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au(t) = [ %dt' [ qu(x.t, =t Ax)dx (8)

0
where £, is the time interval of measurement over which the unit impulse input (i.e. O,) is
applied to the idealized square drainage basin, and ¢ is the time after the input of the unit
impulse that is long enough to capture the waxing the waning portions and the flood peak
of the flood wave. The final peak discharge value, or Qg (m® ), was calculated by
multiplying the unit discharge g (m” s™) by the channel width found through the formula
derived from CRB data in Figure 4, and then selecting the largest value from the resulting

hydrograph.

3.7 Estimation of Uncertainty

Confidence intervals (i.e. uncertainty estimates) were calculated to quantify the
uncertainty in calculated rainfall intensities and associated O, and QO values. In this
study we estimated confidence intervals using a non-parametric method similar to that
used to calculate quantiles for flow-duration curves (Parzen, 1979; Vogel and Fennessey,
1994). Like quantile calculations, which identify a subset of the ranked data in the
vicinity of each data point to estimate expected values and associated uncertainties, we
estimated confidence intervals for our predictions based on the difference in O, values
between each point and the next largest value in the ranked list. This approach quantifies
the variation in the rainfall intensity value for a given contributing area and recurrence
interval. In some cases the calculated uncertainties for rainfall intensities and associated
Op and Qg values are infinite due to the values being past the frequency-magnitude
distribution, i.e. there are not enough samples for these values to be determined and there
are no finite numbers to sample. These values are not used in this study.

The resulting confidence intervals of rainfall intensity were used to calculate
confidence intervals for O, and QOr. Confidence intervals for O, values were equal to the
confidence intervals for rainfall intensity propagated through the calculation of O, (i.e.
multiplying by contributing area). Confidence intervals for Qg values were calculated to
be the same proportion of the O value as that set by the rainfall intensity value and it’s
confidence intervals. For example, if the upper confidence interval was 120% of a

rainfall-intensity value, the upper confidence interval for the Q4 value associated with the
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rainfall-intensity value is assumed to be 120% of the Qx4 value. This approach to
propagation of uncertainty treats all other variables in the calculations as constants and
additional uncertainty related to regression analyses on variables used in the flow-routing

algorithm such as slope, channel width, and runoff coefficients was not included.

3.8 Testing the Effects of Climate Variability

To quantify the robustness of our results with respect to climate variability, we
separated the NEXRAD data into El Nifio and La Nifia months using the multivariate
ENSO index (MEI). All months of data with negative MEI values (La Nifia conditions)
were run together to calculate the rainfall intensity and O, values for contributing areas of
16, 256, and 4096 kmz, time intervals of 1 to 64 hours, and for 10-, 50-, 100-, and 500-
year recurrence intervals. This was repeated with all months of data with positive MEI
values (El Nifio conditions). Figure 5 shows the distribution of negative and positive MEI

values during the 1996 to 2004 water years used in this study.

4. Results
4.1 Channel Characteristics and Runoff Coefficients

Least-squares regression of channel slopes and channel widths from the CRB
versus contributing area was used to estimate channel slope, channel width, and runoff
coefficients for each idealized basin of a specific contributing-area class. Channel slope
decreases as a power-law function of contributing area with an exponent of -0.30 (R* =
0.39), whereas channel width increases as a power-law function of contributing area with
an exponent of 0.28 (R* = 0.65; Fig. 4). These results follow the expected relationships
among channel slopes, widths, and contributing area, i.e. as contributing area increases
the channel slope decreases and the channel width increases.

Runoff coefficients for wet, medium, and dry antecedent-moisture conditions all
decrease with increasing contributing area following a logarithmic function, with the
slope of the line decreasing from wet to dry conditions. The fitness of the line to the data
also decreases for the wet to dry conditions, with the R? values for wet, medium, and dry
conditions equal to 0.78, 0.45, and 0.04, respectively. Runoff coefficients decrease with

increasing contributing area due to the increased probability of water loses as basin area
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increases. Also, as expected, runoff coefficients are highest in basins with wet initial

conditions that are primed to limit infiltration and evapotranspiration.

4.2 Trends in Rainfall Intensity

Maximum rainfall intensities (i.e. the maximum among all time-interval-of-
measurement classes) for each contributing-area class and recurrence interval decrease
systematically as power-law functions of increasing contributing area for all recurrence
intervals with an average exponent of -0.18 + 0.06 (error is the standard deviation of all
calculated exponents found from a weighed least-squares regression; average coefficient
of determination R* = 0.78). Note that maximum-rainfall-intensity results are not
presented because they are closely related to the plots of O, versus contributing area in
Figure 6, 1.e. O, 1s simply the rainfall intensity multiplied by the contributing area. The
decrease in maximum rainfall intensity with contributing area can be seen in Table 1,
where maximum rainfall intensities over contributing areas of 11,664 km” are 45% to 8%
of maximum rainfall intensity values for basin areas of 16 km” in both the UCRB and
LCRB (Table 1). The largest decrease in maximum rainfall intensity values between the
smallest and largest contributing areas were found for the largest recurrence interval (e.g.
500-year) for both the UCRB and LCRB. The decrease in maximum rainfall intensity
with increasing contributing area suggests that there is a spatial limitation to storms of a
given rainfall intensity.

Differences among maximum rainfall intensities for the four recurrence intervals
as a function of contributing area are larger in the UCRB than in the LCRB (Table 1).
This larger “spread” in the maximum rainfall intensities in the UCRB relative to the
LCRB is also propagated throughout the maximum rainfall and flood discharge
calculations. For both the UCRB and LCRB, the difference between the 50- and 100-year
recurrence interval values was the smallest (Table 1). These trends show that maximum
rainfall intensities vary much more as a function of recurrence interval in the UCRB
compared with the LCRB.

Maximum rainfall intensities associated with a 10-year recurrence interval are
similar in the LCRB and UCRB, while intensities were higher in the UCRB than the
LCRB for recurrence intervals of 50-, 100-, and 500-years (Table 1). The results of the
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comparison between the two basins suggest that common (i.e. low-recurrence-interval)
rainfall events will have similar maximum rainfall intensities in the UCRB and LCRB,
but that rare (i.e. high-recurrence-interval) rainfall events will have higher maximum
rainfall intensities in the UCRB than in the LCRB for the same recurrence interval.
Maximum precipitation intensities associated with the four defined recurrence
intervals are similar to previously published values. In general the values we calculate for
the LCRB and the UCRB for the 10-, 50-, and 100-year recurrence intervals are on the
order of 10s of mm h™. This is similar to the spread in values reported on precipitation
intensity maps for the same duration and recurrence interval in Hershfield (1961).
However, the values reported by Hershfield (1961) are slightly higher (by less than 20
mm h™') in the LCRB for the three recurrence intervals and in the UCRB for the 10-year
recurrence interval than values calculated in this study. The values calculated here are
also broadly consistent with presented precipitation frequency estimates for points within
the LCRB and UCRB provided by the NOAA Atlas 14 Point Precipitation Frequency
Estimates website (http://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html). Due to the
difference in how precipitation intensities are measured and how the frequencies are
calculated the values are expected to be slightly different but within the same order of

magnitude.

4.3 Trends in Q,

Maximum precipitation (here only rainfall) discharges (O, hereafter) increase
with contributing area as power-law functions with an average exponent of 0.82 + 0.06
(error is the standard deviation of all calculated exponents) based on weighed least-
squares regressions on the data (R* = 0.98) for all recurrence intervals and for both the
UCRB and LCRB (Fig. 6). These O, values for a given contributing-area class and
recurrence interval are the largest values taken from the multiple values calculated for
each of the seven time intervals of measurement as explained in Section 3.3. By taking
the maximum values, the resulting O, FMACs approximate the upper envelope of values
of a given recurrence interval. In this study the FMAC follows a power-law function that

shows that O increases predictably across the range in contributing areas. As with the
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maximum rainfall intensity results, differences between Q, values of different recurrence
intervals for a given contributing area were larger for the UCRB than the LCRB (Fig. 6).
In general, confidence intervals for O, values increase with increasing
contributing-area class (Table 1 and Fig. 6). The large values of the highest contributing-
area classes and highest recurrence intervals show the spatial limitation of the method,
meaning that at these contributing-area classes and recurrence intervals the values are
sampled from the largest ranked value and have infinite confidence intervals. These
values include the 50-, 100-, and 500-year recurrence intervals for the UCRB and the
100- and 500-year recurrence intervals for the LCRB at the 11,664 km” contributing-area
class. These values also include the 100- and 500-year recurrence intervals for the UCRB
and the 500-year recurrence intervals for the LCRB at the 4,096 km” contributing-area
class. Values with infinite confidence intervals are not included in Fig. 6 due to their high

uncertainties.

4.4 Trends in QO

Maximum Qg values (hereafter QOx), i.e. the largest values taken for the multiple
values calculated for each time interval of measurement for a given contributing-area
class and recurrence interval, were used to plot FMACs for wet, medium, and dry
conditions for both the UCRB and LCRB (Fig. 7). In general, FMACs for O values
follow the power-law relationship shown in the O, FMACs until contributing areas of
~1,000 km?, where the curves begin to very slightly flatten or decrease. As with the Qp
values, Qg values representing some of the higher recurrence intervals converge to the
same value (i.e. the value corresponding to the highest rainfall intensity for the
contributing-area class) at contributing areas of ~10,000 km? the and the confidence
intervals become infinite (Table 2). This convergence of Qx4 values at the largest
contributing areas is due to the reduction in the range of values and the number of
samples from which to calculate the associated values for each recurrence interval.

In general, The UCRB Qrs FMACs (Fig. 7A, C, and E) are slightly higher in
magnitude and span a larger range of magnitudes than the FMACs for the LCRB. For
both basins, FMACs for the wet, medium, and dry conditions resulting in the highest,
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middle, and lowest magnitudes, respectively. This trend is expected due to the lowering
of runoff coefficients and available water as conditions become drier.

FMAC:s of Qx4 for the LCRB plot below published FECs for the LCRB and U.S.
(Fig. 7B, D, F) at low contributing areas, but meet and/or exceed the LCRB FEC for
contributing areas above ~1,000 km? and ~100 km? for dry and wet antecedent-moisture
conditions, respectively. The FMACs for the LCRB do not exceed the U.S. FEC. All of
the FMACs of Oy for the UCRB exceed the LCRB FEC for wet conditions, with the
FMAC:s of lower recurrence intervals exceeding the curve at higher contributing areas
than the FMAC:s of higher recurrence intervals (Fig. 7A). The 500-year FMAC for wet
conditions approximate the U.S. FEC for contributing areas between ~100 to 1,000 km®,
These results suggests that under certain antecedent-moisture conditions, and in basins of
certain contributing areas, the LCRB produces floods that exceed the maximum recorded
floods in the LCRB and the UCRB produces floods of magnitudes on par with the

maximum recorded floods in the U.S.

4.5 The Effects of ENSO on Rainfall

Definitive differences in maximum rainfall intensities and Q, values were found
between months with positive versus months with negative MEI values (Table 3). For
very small contributing areas (16 km?) in the LCRB maximum rainfall intensities and Op
values are similar during negative and positive MEI conditions. Larger contributing areas
(256 and 4,096 km?) show higher maximum rainfall intensities during negative MEI
conditions regardless of recurrence interval. Values of O, show the same trend as the
maximum rainfall intensity in the LCRB. In the UCRB, maximum rainfall intensities and
O, values during negative MEI conditions are higher than those during positive MEI

conditions regardless of recurrence interval.

S. Discussion
5.1 Use and Accuracy of NEXRAD Products

NEXRAD products are widely used as precipitation inputs in rainfall-runoff
modeling studies due to the spatially complete nature of the data necessary for hydrologic

and atmospheric models (Ogden and Julien, 1994; Giannoni et al., 2003; Kang and



641  Merwade, 2011). In contrast to past studies similar in scope to this study (Castellarin et
642  al., 2005; Castellarin, 2007; Castellarin et al., 2009) we did not use rain-gauge data and
643  only used NEXRAD products to determine the FMAC:s for precipitation and flood

644  discharges. We favor NEXRAD products due to the spatial completeness of the data.
645 Intuitively, NEXRAD products that are spatially complete and that average

646  precipitation over a 4 km by 4 km area would not be expected to match rain-gauge data
647  within that area precisely (due to the multi-scale variability of rainfall), although some
648  studies have tried to address this discrepancy (Sivapalan and Bloschl, 1998; Johnson et
649  al, 1999). Xie et al. (2006) studied a semi-arid region in central New Mexico and found
650  that hourly NEXRAD products overestimated the mean precipitation relative to rain-
651  gauge data in both monsoon and non-monsoon seasons by upwards of 33% and 55%,
652  respectively. Overestimation of precipitation has also been noted due to the range and the
653  tilt angle at which radar reflectivity data are collected (Smith et al., 1996).

654  Underestimation of precipitation by NEXRAD products relative to rain gauge data has
655  also been observed (Smith et al., 1996; Johnson et al., 1999), however.

656 Under- and over-estimation of precipitation by NEXRAD products in relation to
657  rain-gauge data is partly due to the difference in sampling between areal NEXRAD

658  products and point data from rain gauges and partly due to sampling errors inherent to
659  both methods. For example, NEXRAD products include problems such as the use of
660 incorrect Z-R relationships for high intensity storms and different types of precipitation,
661  such as snow and hail (Baeck and Smith, 1998). Also, because of its low reflectivity,
662  snow in the NEXRAD products is measured as if it were light rain (David Kitzmiller,
663  personal communication, January 10, 2012). This means the NEXRAD products likely
664  underestimate snowfall and therefore snowfall is not fully accounted for in this study.
665  Due to snowfall not being included in this study, associated snowpack and snowmelt
666  effects were also not accounted for. Rain gauges can also suffer from a number of

667  measurement errors that usually result in an underestimation of rainfall (Burton and Pitt,
668  2001). In addition, gridded rainfall data derived from rain gauges are not spatially

669  complete and therefore must be interpolated between point measurements to form a

670  spatially complete model of rainfall. It is impossible to discern which product is more

671  correct due to the differences in measurement techniques and errors, but by taking both
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products and combining them into one, the Stage IIl NEXRAD precipitation products
generate the best precipitation estimate possible for this study. Moreover, it should be
noted that 100-year flood magnitude predictions based on regression equations have very
large relative error bars (ranging between 37 to 120% in the western U.S.; Parrett and
Johnson, 2003) and that measurements of past extreme floods can have significant errors
ranging from 25% to 130% depending on the method used (Baker, 1987). As such, even a
~50% bias in NEXRAD-product-derived precipitation estimates is on par or smaller than
the uncertainty associated with an analysis of extreme flood events.

As stated previously, the NEXRAD precipitation estimates used here do not
include snowfall and other non-rainfall precipitation types. In this study we also do not
include snowpack information into our flood discharge calculations. The omission of
snowpack is a reasonably assumption for our low elevation, warm regions within most of
the UCRB and LCRB. However, we acknowledge some of our higher elevation areas at
higher latitudes may be underestimating the maximum flood discharge by only including
rainfall-derived runoff. If the methodology in this paper were applied to a snowmelt-
dominated region, snowpack would need to be added to accurately estimate the

maximum flood discharge.

5.2 Comparison of FMAC:s to Published FECs

FMAC:s of Oy exhibit a similar shape and similar overall range in magnitudes as
previously published FECs, derived from stream-gauge and paleoflood records, for the
LCRB and U.S. (Fig. 7). In general, the FMACs exceed or match published FECs at
larger contributing areas, and are lower than or on par with published FECs at the
smallest contributing areas (Fig. 7).

All FMAC:s except the 500-year recurrence-interval curve for the UCRB under
wet conditions are positioned well below the U.S. FEC presented by Costa (1987; Fig.
7A). The similarity between the 500-year recurrence interval Or FMAC for the UCRB
under wet conditions and the U.S. FEC suggests that the U.S. FEC includes floods of
larger recurrence-intervals, which are similar in magnitude to the 500-year recurrence-
interval floods within the UCRB. The approximation of the U.S. FEC by the 500-year
UCRB FMAC is a significant finding due to the fact that the U.S. FEC includes storms
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from other regions of the U.S. with extreme climatic forcings (i.e. hurricanes, extreme
convection storms, etc.).

The Ot FMACs for the LCRB can be directly compared to the FEC for the LCRB
presented by Enzel et al. (1993). At contributing areas smaller than approximately 100
kmz, 01 FMAC:s for wet conditions and all recurrence intervals are positioned below the
LCRB FEC, but at larger contributing areas Oy FMACs exceed or approximate the
LCRB FEC. Ot FMACs calculated for medium and dry antecedent conditions show the
same trend, but exceed the LCRB FEC at a larger contributing areas (> 1,000 km?). This
comparison suggests that although the FMACs overlap the overall range of flood
magnitudes of the LCRB FEC, the two methods are not capturing the same trend for
extreme flood discharges and the LCRB is capable of producing floods larger than those
on record.

The difference in the slope of the FMACs, and specifically the exceedance of the
published LCRB FEC, suggests that the two methods are not capturing the same
information. This difference may be due to the difference in how the data are sourced for
each method. FECs are created as regional estimates of maximum flood discharges and
are based on stream-gauging station and paleoflood data. The FECs are then used to
provide flood information for the region, including ungauged and unstudied drainage
basins. FECs are limited to the number of stream gauges employed by public and private
parties and do not include all basins within a region. In general, FECs may underestimate
maximum floods in larger basins, relative to smaller basins, because there are a larger
number of smaller basins to sample than larger basins. This sample-size problem
introduces bias in the record where flood estimates for smaller contributing areas may be
more correct than estimates for larger basins. In this study, the regional precipitation
information given by the NEXRAD network is used to form the FMAC, therefore taking
advantage of the entire region and using precipitation data to calculate flood discharges,
rather than directly measuring flood discharges. This sampling scheme allows for much
larger sample sizes for the range of contributing areas, therefore minimizing the sample
bias of the traditional FEC.

This study aimed to introduce the new method of the FMAC and therefore
improve upon the traditional methods of the FEC. By calculating FMACs we provide
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frequency and magnitude information of possible flood events for a given region in
contrast to the FECs that only provide an estimate of the largest flood on record. This
information is vital for planning and infrastructure decisions and the accurate
representation of precipitation and flooding in design-storm and watershed modeling. In
addition, the fact that the FMACs match the FECs for large (500-year) recurrence
intervals and do not exhibit the same trends suggests that the FMACs are capturing
different samples than the FECs. This indicates that by using the NEXRAD products, the
FMACSs may provide a more inclusive flood dataset for a region (especially ungauged

areas) than the traditional stream-gauge records.

5.3 Precipitation Controls on the Form of the FEC

O, FMACs were shown to have a strong (average R* =0.93) power-law
relationship between O, and contributing area for all recurrence intervals. Figure 8 shows
a conceptualized FEC where the concave-down shape is created when the observed
envelope curve diverges from the constant positive power-law relationship between O,
and contributing area. This diversion creates a “gap” between the two curves and
indicates that flood discharge is not a simple power-law function of contributing area.
Three mechanisms have been proposed to explain the “gap” and characteristic concave-
down shape of FECs: (1) integrated precipitation (i.e. total precipitation over an area) is
more limited over larger contributing areas compared to smaller contributing areas
(Costa, 1987), (2) a relative decrease in maximum flood discharges in larger contributing
areas due to geomorphic dispersion (Rodriguez-Iturbe and Valdes, 1979, Rinaldo et al.,
1991, Saco and Kumar, 2004), and (3) a relative decrease in maximum flood discharges
in larger basins due to hydrodynamic dispersion (Rinaldo et al., 1991). The first
explanation, proposed by Costa (1987), suggests that there is a limitation to the size of a
storm and the amount of water that a storm can precipitate. The effect of precipitation
limitations may be evidenced by the decreasing maximum rainfall intensities with
increasing contributing area. However, the strong power-law relationship between O, and
contributing area for all recurrence intervals indicates that Qp, 1s, in general, increasing
predictably over the range of contributing areas used in this study. Even if precipitation

limitations affect the shape of the curve, this single hypothesis does not account for all of
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the concave-down shape of each FEC suggesting that other mechanisms are important to
creating the characteristic shape. However, it is important to note that the importance of

each mechanism may be different for different locations.

5.4 Climate Variability in the NEXRAD Data

The results from comparing negative and positive MEI conditions in the UCRB
and LCRB are generally consistent with ideas about ENSO and how it affects
precipitation in the western U.S. In the LCRB, during negative MEI conditions, small,
frequent storms have similar or slightly higher maximum rainfall intensities and O,
values than during positive MEI conditions. This similarity between the two conditions
may be explained by the balancing of increased winter moisture during El Nifio in the
southwestern U.S. (Hidalgo and Dracup, 2003) and increased summer moisture through
the strengthening of the NAM system and the convective storms it produces during La
Nifia conditions (Castro et al., 2001; Grantz et al., 2007). In general, the strengthening of
the NAM may explain the higher maximum rainfall intensities and O, values during
negative MEI conditions in the LCRB. Strengthening of the NAM may be due in part to
the large temperature difference between the cool sea surface of the eastern Pacific Ocean
and the hot land surface of the southwestern U.S. and northwestern Mexico during La
Nifia conditions. The large temperature gradient increases winds inland, bringing the
moisture associated with the NAM (Grantz et al., 2007). In the UCRB it is during
negative MEI conditions, where the highest maximum rainfall intensities and O, values
for all recurrence intervals occur. This suggests that the UCRB is affected by ENSO
much like the northwestern U.S., where wetter winters are affiliated with La Nifia and not
El Nifio conditions (Cayan et al., 1999; Hidalgo and Dracup, 2003). It is important to
note that this comparison is of intensity rates and not total precipitated moisture so the
METI condition resulting in wetter conditions is not known.

In addition to the ENSO analysis, by investigating previous studies we see that,
along with natural yearly precipitation variability, the 1996 to 2004 water years included
many atmospheric river events (Dettinger, 2004; Dettinger et al., 2011). It is important
that these events were included due to their ability to greatly increase winter precipitation

in the UCRB and LCRB (Rutz and Steenburgh, 2012). Atmospheric river events
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(sometimes known as Pineapple Express events) can also be tied to major Pacific climate
modes such as the ENSO (Dettinger, 2004; Dettinger, 2011), the Pacific Decadal
Oscillation (PDO; Dettinger, 2004), and the North Pacific Gyre Oscillation (NPGO;
Reheis et al., 2012) in southern California. Unfortunately, correlations between
atmospheric river events are unknown and/or less clear for the interior western U.S.
However, all three of these Pacific climate modes shifted during the 9-year study period
in ~1998 to 1999 (Reheis et al., 2012) indicating that both positive and negative
conditions of the ENSO, PDO, and NPGO exist in the NEXRAD products used in this
study.

The presence of distinct trends in maximum rainfall-intensity and Q, values
calculated for negative and positive MEI conditions, as well as the information in the
literature on atmospheric river events, indicates the NEXRAD products used in this study
incorporate circulation-scale weather patterns. In addition, the patterns in maximum
rainfall intensities and Qp values during different MEI conditions agree with common
understanding of the effects of ENSO on the western U.S. and provide evidence that the
data and methods used in this paper to analyze precipitation are reliable. This analysis
shows that the NEXRAD products worked well in this location and that using radar-
derived precipitation products may be useful for identifying precipitation and climatic

trends in other locations where the FMAC method can be applied.

6. Conclusions

In this study we present the new FMAC method of calculating precipitation and
flood discharges of a range of recurrence intervals using radar-derived precipitation
estimates combined with a flow-routing algorithm. This method improves on the
traditional FEC by assigning recurrence interval information to each value and/or curve.
Also, instead of relying on stream-gauge records of discharge, this method uses up-to-
date and spatially complete radar-derived precipitation estimates (in this case NEXRAD
products) to calculate flood discharges using flow-routing algorithms. This study presents
an alternative data source and method for flood-frequency analysis by calculating
extreme (high recurrence interval) event magnitudes from a large sample set of

magnitudes made possible by sampling the radar-derived precipitation estimates.
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The FMAC:s for Q, and Qs for the UCRB were similar to those produced for the
LCRB. In general, all recurrence-interval curves followed the same general trend,
indicating that the mechanisms of precipitation and flood discharge are similar for the
two basins. However, there were some differences between the two basins. Overall, there
were larger differences between curves of different recurrence intervals for the UCRB
than the LCRB suggesting a larger range in maximum rainfall intensities, and therefore
O, and Qyq, in the UCRB relative to the LCRB. For both the UCRB and LCRB the 50-
and 100-year recurrence interval curves for all precipitation and discharge FMACs were
the most similar. This similarity may mean that although historical discharge records are
short, having a 50-year record may not underestimate the 100-year flood as much as one
might expect. Also, for O, and Oy, low recurrence-interval values were slightly higher in
the LCRB than in the UCRB. This relationship was opposite for high recurrence-interval
values. This likely points to a general hydroclimatic difference between the two basins,
with the LCRB receiving high intensity storms annually due to the NAM and the UCRB
receiving more intense and rarer winter frontal storms.

Power-law relationships between maximum rainfall intensity, O, and
contributing area were also found in this study. Maximum rainfall intensities decreased as
a power-law function of contributing area with an average exponent of -0.18 + 0.06 for
all recurrence intervals. O, values for all recurrence intervals increased as a power-law
function of contributing area with an exponent of approximately 0.82 + 0.06 on average.
Based on the constant power-law relationship between O, and contributing area, the
“gap” or characteristic concave-down shape of published FEC are likely not caused by
precipitation limitations.

In general, the FMACs of Qx4 calculated in this study are lower than, and exceed,
the published FECs for the LCRB at lower and higher contributing areas. All FMACs of
QOra were positioned well below the U.S. FEC except the UCRB 500-year FMAC, which
approximated the U.S. FEC during wet antecedent-moisture conditions. All FMACs of
Qxq for all moisture conditions in the LCRB closely approximated the same magnitudes
as the published LCRB FEC, but exceeded it for larger contributing areas. The higher

estimates of flood discharges at larger contributing areas may be the result of the
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difference of sampling methods and are likely not erroneous and may be proved true by
future events.

Lastly, the approximately 9 years of NEXRAD products were found to be a good
representation of climate in the CRB. This conclusion was made based on differences in
precipitation between positive and negative ENSO conditions in both the UCRB and
LCRB and additional data found in the literature. In general, the UCRB was found to
have a hydroclimatic regime much like that of the northwestern U.S. where El Nifio
conditions result in lower maximum rainfall intensities and amounts and La Nifia
conditions result in higher maximum rainfall intensities. The LCRB showed a more
complex trend with similar maximum rainfall intensities for both El Nifio and La Nifia
conditions.

Here this method is applied to the UCRB and LCRB in the southwestern U.S., but

could be applied to other regions of the U.S. and the world with variable climate and

storm types where radar-derived precipitation estimates are available. In this study we

used set values for contributing area, drainage basin shape, time intervals of

measurement, and recurrence intervals that can be changed based on the focus of future

studies. However, it is also important to note that a number of assumptions were made in

this study that simplified our analysis, most importantly: (1) space for time substitution,

or regionalization, was used to increase the number of samples and assumed that

observations were independent and sampled from the same distribution: (2) it was

assumed that the time period length and the spatial and temporal sampling scales were

sufficient to create a representative sample from the observations: (3) it was assumed that

similar flood-generating and flow-routing mechanisms (and related variables such as

runoff coefficients) were present in each basin regardless of size or location. These

assumptions allowed us to form and apply the methods described here to our study area

but may not apply to all areas. Other variables such as snowpack, elevation, land use, and

climate change that were not included in this study should be explored in conjunction

with this methodology to better understand controls on precipitation and flooding. The

absence of these elements from the method here may limit the application of this method

to other locations.
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Tables
Table 1. Maximum rainfall intensity and Q, for the Upper Colorado River Basin (UCRB)
and Lower Colorado River Basin (LCRB). Note that data are all sampled from time

intervals of measurement < 2 hours.

RI Area Intensity 0O,

(km?) (mmh™) (m’s™

UCRB LCRB UCRB LCRB

10 16 28.0+0.0 36.6+0.0 125+0 162+0
10 64 254+0.1 32.5+0.0 451+1 578+ 0
10 144 25.1+1.1 29.5+0.4 1004 + 44 1182+ 16
10 256 23.7+0.2 27.3+0.0 1682 +13 1944 + 1
10 1024 19.8+1.5 19.7+0.4 5644 + 427 5610+ 114
10 1296 20.7+2.4 21.7+3.5 7439 £ 873 7820 + 1268
10 4096 15.5+3.0 15.9+0.8 17682 + 3462 18134 + 890
10 11664 12.6 1.7 11.0+2.6 40914 + 5571 35521 + 8586
50 16 55.9+0.7 56.2+0.1 248 +£3 250+ 0
50 64 55.1+12 47.7+£0.0 980 + 22 847+ 1
50 144 55.3+3.5 433+0.9 2211+ 142 1734 + 38
50 256 549+14 409+0.5 3901 =101 2908 + 32
50 1024 50.8+5.5 33.6+1.4 14449 + 1569 9560 + 393
50 1296 50.8£25.0 32.5+3.9 18287 £ 9011 11704 + 1410
50 4096 27.6+22.2 30.0+5.2 31382 +£25313 34126 + 5969
50 11664 21.1%* 154+83 68434* 49764 + 26874
100 16 92.3+0.3 68.6 0.0 410+ 1 305+0
100 64 91.9+2.5 545+0.2 1635+ 44 970+ 3
100 144 90.1+3.0 51.9+1.0 3606+ 118 2075+ 41
100 256 88.7+4.3 484+0.4 6305 £+ 307 3440 £ 27
100 1024 63.8+11.0 425+22 18155+ 3139 12085 + 630
100 1296 78.5+50.1 432+7.8 28257 £ 18022 15544 + 2820
100 4096 40.8* 32.0+104 46422* 36425+ 11803
100 11664 21.1%* 20.1% 68434* 65011*
500 16 254.0+0.8 81.9+0.5 1129+ 3 364 £2
500 64 229.0+3.1 68.6+1.5 4071 £55 1219+ 26
500 144 219.1+119 68.6+4.7 8762 + 476 2743 £ 187
500 256 2194+73 68.6+3.4 15600 + 517 4877 +242
500 1024 166.0 +44.1 68.6 3.1 47229 £ 12554 19507 + 884
500 1296 174.6 +85.3 65.6+31.3 62862 + 30696 23624 £ 11279
500 4096 81.6* 53.6* 92844* 60930*
500 11664 21.1* 20.1%* 68434* 65011*

* Values with infinite confidence intervals, not used in this study.
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Table 2. Maximum Qg4 for the Upper Colorado River Basin (UCRB) and Lower Colorado

River Basin (LCRB). Note that data are all sampled from time intervals of measurement

<2 hours.
RI Area Wet Qfd Med Qfd DI'y Qfd
(km?) (m*s™) (m*s™) (m*s™)
UCRB LCRB UCRB LCRB UCRB LCRB
10 16 65+0 86+ 0 36+ 0 47+0 20+ 0 26+ 0
10 64 246 + 1 263 40 137+ 0 151+ 0 75+ 0 89+ 0
10 144 465 + 20 489 +7 268 + 12 290 + 4 156 + 7 175 +2
10 256 657+ 5 748 £ 0 388 +3 449 + 0 244 £ 2 283+ 0
10 1024 2363 + 179 2194 + 44 1423 + 108 1326 £27 892 + 68 820+ 17
10 1296 2244 £ 263 2384 + 387 1459 + 171 1543 £ 250 1010+ 118 1066 = 173
10 4096 5594+ 1095 5304 + 260 3665 + 718 3375 £ 166 2507 + 491 2315+ 114
10 11664 14603 +1966 11048 +2670 9010+ 1213 6978 + 1687 6105 + 822 4942 + 1195
50 16 131+2 1310 7341 73+ 0 411 41+0
50 64 553+ 12 387+0 307 +7 22240 172+ 4 130+ 0
50 144 1145+ 73 720+ 16 636 + 41 424+9 355+23 259+ 6
50 256 1772 + 46 1119+ 12 1043 £27 676 +7 639+ 16 421+5
50 1024 6127 £ 665 3062 + 126 3665 + 398 1928 £ 79 2291 + 249 1308 + 54
50 1296 7076 + 3487 3562 + 429 4265 + 2102 2300 + 277 2682 + 1321 1571 + 189
50 4096 15716+ 12650 8487+ 1485 9451 +7607  5850+1023 6076+ 4890 4343 + 760
50 11664 44482 15700 + 8478 28783* 10176 + 5495 19770* 7138 + 3855
100 16 216+ 1 160 + 0 120+ 0 89+0 67+0 50+ 0
100 64 924 + 25 442 + 1 514+ 14 255+ 1 286 + 8 150+ 0
100 144 1807 + 60 860 £ 17 1041 £ 35 508 + 10 610+ 20 309 + 6
100 256 2888 + 140 1324+ 10 1706 + 83 798 £ 6 1037 £ 50 499 + 4
100 1024 10586 + 1830 3812+ 199 6366+ 1101 2438 + 127 3979 + 688 1662 + 87
100 1296 9564 + 6100 4713 + 855 5752 + 3668 3058 £ 555 3619 + 2308 2104 + 382
100 4096 29415% 10319 + 3344 19095* 6654 +2156 13116* 4698 £ 1522
100 11664 59600%* 18607* 38667* 12904* 26747* 9609
500 16 594 42 192+ 1 330+ 1 107 + 1 184 + 1 5940
500 64 1855 + 25 556 +£12 1068 + 14 320+ 7 628 + 8 188 + 4
500 144 3631 + 197 1138 =77 2141 £ 116 670 + 46 1306 + 71 408 + 28
500 256 6012 + 200 1879 + 93 3618 + 120 1130 £ 56 2266 £ 75 709 + 35
500 1024 19049 + 5059 6139 +278 11478 £3048 3945+ 179 7186 + 1909 2660 + 120
500 1296  19075+9314  7153+3415 12370+ 6041 4656 +2223 8499 +4150 3198 + 1527
500 4096 43688* 14892%* 28354 10460* 19481%* 7800%
500 11664 65705%* 23062* 42738%* 16198* 29364* 12080*

* Values with infinite confidence intervals, not used in this study.
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Table 3. Maximum rainfall intensity and Q, values for 10, 50, 100, and 500-year

recurrence intervals during negative (neg) and positive (pos) Multivariate ENSO Index

(MEI) conditions within the Lower Colorado River Basin (LCRB) and Upper Colorado

River Basin (UCRB). Note that data are all sampled from time intervals of measurement

< 2 hours.
Basin MEI Area Intensity O,
(km?) (mm h') (m’s™)
10 yr 50 yr 100yr 500 yr 10 yr 50 yr 100yr 500 yr
LCRB neg 16 39 56 69 77 175 250 305 343
neg 256 31 46 53 69 2206 3251 3741 4877
neg 4096 21 32 43 54 23856 36425 48363 60930
pos 16 40 64 74 130 179 284 330 576
pos 256 27 38 47 52 1943 2690 3369 3721
pos 4096 13 20* 20* 20* 15229  22689* 22689* 22689*
UCRB  neg 16 41 98 162 254 186 435 721 1129
neg 256 33 101 155 254 2366 7172 11012 18055
neg 4096 22 34 41 82 25556 39013 46422 92844
pos 16 26 51 56 74 115 225 248 330
pos 256 18 40 51 56 1255 2810 3601 4018
pos 4096 10 26 27* 27* 10822 30034 31044* 31044*

* Values with infinite confidence intervals, not used in this study.
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Figure 1. Map showing the locations of the Upper and Lower Colorado River Basins

(UCRB and LCRB, respectively) outlined by the dotted line.



A Step 1: Rainfall Sampling Over Space and Time
For “Time Interval” =1, 2, 4, 8, 16, 32, 64 h
Rainfall = Average (Rainfall) into blocks of time of length “Time Interval” (see below)
For “Area” = 16, 64, 144, 256, 1024, 1296, 4096, 11664 km2
For “Basins” within drainage basin defined by user (see below)
For “Time” 1 to end of 9-year record in increments of “Time Interval”
Find max Rainfall in consecutive blocks of non-zero Rainfall a.k.a. storm event (see below)
n = count of max Rainfall values
Record max storm-event Rainfall ("Time Interval, “Area”, n)
End For “Time” Loop
End For “Basins” Loop
End For “Area” Loop
End For “Time Interval” Loop
Result: 7 x 8 x n Array of Rainfall (Time Interval, Area, n)

Example of gridded rainfall intensity Example of rainfall intensity
aggregated over spatial scales averaged over temporal scales
2 hasi 2 hasi
10k’ basins | .?f‘.k.’(f.‘..b??'.”.s.. [oTas[ZIoo]71]1hdata
. P : | 2 L6 | o | 4 |2hdata
;oo ] 2 | 2 | 4-h data
v, o WS : | 3 |8-h data
= Study area outline |:| Max Rainfall in Storm Event

|:| Basins included (within study area)

Step 2: Rainfall Recurrence Interval Calculations
For “Time Interval” = 1, 2, 4, 8, 16, 32, 64 h
For “Area” = 16, 64, 144, 256, 1024, 1296, 4096, 11664 km2
Rank Rainfall from highest to lowest
For Recurrence Interval, “RI”, = 10, 50, 100, 500 years
m = (n +1)/“RI" (see Equation 2)
Record Rainfall at rank m (“Time Interval”, “Area”, “RI”)
End For “RI” Loop
End For “Area” Loop
End For “Time Interval” Loop
Result: 7 x 8 x 4 Array of Rainfall (Time Interval, Area, RI)

1191

1192 Figure 2A. Pseudocode describing the methods of the paper with schematic diagrams
1193  shown below pseudocode in some cases. Equations within the text and other figures are
1194  referenced in red text.
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B Step 3: Qpm Calculation
For Antecedent Moisture Condition, “AMC” = dry, medium, wet
For “Time Interval” =1, 2, 4, 8, 16, 32, 64 h
For “Area” = 16, 64, 144, 256, 1024, 1296, 4096, 11664 km2
Runoff Coefficient, RC, set as function of “Area” (see Fig. 3)
For “RI” = 10, 50, 100, 500 years
Qp = Rainfall * “Time Interval” * “Area”
Qpm = Qp * RC("AMC”) (see Equation 3)
End For “RI” Loop
End For “Area” Loop
End For “Time Interval” Loop
End For “AMC” Loop
Find peak Qpm value from all values for different time intervals and use as max Qpm value
Result: 3 x 8 x 4 Array of Qpm (AMC, Area, RI)

Step 4: Qfd Calculation
For “AMC” = dry, medium, wet
For “Area” = 16, 64, 144, 256, 1024, 1296, 4096, 11664 km2
For “RI” = 10, 50, 100, 500 years
Slope, S, set as function of “Area” (see Figure 4A)
Channel Width, W, set as function of “Area” (see Figure 4B)
For “lteration” = 1 to when water depth, h, change < 0.001
If “Iteration” = 1,thenh=1m
Else when “lteration” > 1, then h = last calculated h
Channel velocity, V = solve Manning’s Equation (see Equation 4)
Drift velocity a = (1+a9 V (see Equation 6)
Diffusion coefficient b<= solve Diffusion Equation (see Equation 7)
For “Timestep” = 1 to end
For “Pixel” = 1 to channel length L
Qpm added to 1D channel following triangular width function A(x)
Solve Unit Impulse Function gfq (see Equation 5)
Record peak discharge Qfq ("AMC”, “Time Interval”, “Area”, “RI")
End For “Pixel” Loop
End For “Timestep Loop”
If h change < 0.001, then record peak Qiq ("AMC”, “Time Interval”, “Area”, “RI")
End for “Iteration Loop”
End For “RI” Loop
End For “Area” Loop
End For “AMC” Loop
Result: 3 x 8 x 4 Array of Q¢4 (AMC, Area, RI)

Bl —

idealized basin
cross section
w/ triangular
area function

flow through main channel along
diagonal axis (length of L) using
diffusion-wave flow-routing algorithm

\ $Qfd
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Figure 2B. Pseudocode describing the methods of the paper with schematic diagrams
shown below pseudocode in some cases. Equations within the text and other figures are

referenced in red text.
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dry: y=-0.008In(x)+0.231

wet

o
o

med

Runoff Coefficient
o
S

d
0.2 v
0.0 : . = ®
100 101 102 103 104 105 106

Contributing Area (km2)

Figure 3. Logarithmic relationships between runoff coefficients and contributing area
using modeled data for wet (filled diamonds), medium (open squares), and dry (filled
circles) antecedent-moisture conditions (Vivoni et al., 2007) and measured data for larger
contributing areas (filled squares; Rosenburg et al., 2013). The medium (open squares)
and dry (filled circles) data separate into two distinct groups relating to the precipitation
event used to model them, with the lower group and higher group relating to a 12-h, 1-

mm h™ event and 1-h, 40-mm h™' event, respectively. All points were used in the least-

squares weighed-regression analysis.
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Figure 4. Power-law relationships between channel slope and contributing area (A) and

channel width and contributing area (B) for the Colorado River Basin.
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Figure 5. Multivariate ENSO Index (MEI) of months included in Stage IIl NEXRAD

gridded products. Months are numbered from September 1996 to September 2005 with

years shown in gray. Dashed black line MEI equal to zero. Positive MEI indicates El

Nifio conditions, while negative MEI indicates La Nifia conditions.



1283
1284

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

UCRB A LCRB B

10° 1 10%}
o 10 1104
E

o 103 1 103}

C ~_10RI

102 | 102l — 50 RI

100 RI
. . . | o — 500 Rl
101 102 103 104 105" 7101 102 103 104 10°
Contributing Area (km?) Contributing Area (km?)

Figure 6. Frequency-magnitude-area (FMA) curves of O, versus contributing area for
recurrence intervals (RI) of 10, 50, 100, and 500 years for the Upper Colorado River
Basin (UCRB; A) and the Lower Colorado River Basin (LCRB; B).
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Figure 7. Qg frequency-magnitude-area curves of 10, 50, 100, and 500 recurrence

intervals (RI) and for wet, medium, and dry conditions for the Upper Colorado River
Basin (UCRB) and the Lower Colorado River Basin (LCRB). Published FECs (black
lines) for the Lower Colorado River Basin (solid black line) from Enzel et al. (1993) and
the United States (dashed black line) from Costa (1987) are also shown.
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1316  Figure 8. Conceptual diagram of the characteristic concave-down shape of the FEC
1317  (observed) shown in comparison to a power-law function between O, and contributing
1318  area. The “gap” between the observed curve and the predicted power law is caused by
1319  precipitation limitations and mechanisms occurring during the routing of water over the
1320  landscape.
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