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Abstract 11 

The Budyko framework represents the general relationship between the evapotranspiration 12 

ratio (F) and the aridity index (φ) for the mean annual steady state water balance at the 13 

catchment scale. It is interesting to investigate if this standard F-φ space can be also applied to 14 

capture the shift of annual water balance in catchments with the varying dryness. Previous 15 

studies have made significant progress in incorporating the storage effect in the Budyko 16 

framework for the non-steady conditions whereas the role of groundwater dependent 17 

evapotranspiration was not investigated. This study investigates how groundwater dependent 18 

evapotranspiration causes the shift of the annual water balance in the standard Budyko space. 19 

A widely used monthly hydrological model, the ABCD model, is modified to incorporate 20 

groundwater dependent evapotranspiration in the zone with shallow water table and delayed 21 

groundwater recharge in the zone with deep water table. This model is applied in six 22 

catchments in the Erdos Plateau, China, to estimate the actual annul evapotranspiration. 23 

Results show that the variations in the annual F value with the aridity index do not satisfy the 24 

standard Budyko formulas. The shift of the annual water balance in the standard Budyko 25 

space is a combination of the Budyko-type response in the deep groundwater zone and the 26 

quasi-energy limited condition in the shallow groundwater zone. Excess evapotranspiration 27 

(F>1) could occur in dry years, which is contributed by the significant supply of groundwater 28 
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for evapotranspiration. Use of groundwater for irrigation can increase the frequency of the 1 

F>1 cases. 2 

 3 

1 Introduction 4 

Estimating catchment water balance is one of the fundamental tasks in hydrology. Efforts 5 

have long been devoted to construct the physical, empirical, and statistical models to explain 6 

the general relationship among precipitation (P), runoff (Q), potential evapotranspiration (E0) 7 

and actual evapotranspiration (E) in terms of mean annual fluxes at the catchment scale 8 

(Budyko, 1948, 1958, 1974; Mezentsev, 1955; Fu, 1981; Porporato et al., 2004; Gerrits et al., 9 

2009). A simple and highly intuitive approach widely used for estimating E at the mean 10 

annual steady state is the Budyko framework, in which the mean annual evapotranspiration 11 

ratio (E/P) was presumed as a function of the climatic dryness: 12 
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where φ is the aridity index defined as E0/P, and F(φ) is an empirical function that relates E/P 14 

to φ based on general water-energy balance. The proposed formula by Budyko (1958; 1974) 15 

was: 16 

)/1tanh()]exp(1[)( φφφφ −−=F      (2) 17 

which indicates a nonlinear relation between F and φ. This F-φ curve has been called the 18 

Budyko curve (Zhang et al., 2004; Roderick and Farquhar, 2011) and the F-φ space was 19 

called Budyko space (Renner et al., 2012). 20 

Instead of using a single curve determined by Eq. (2) in the Budyko space, researchers have 21 

introduced a specific catchment parameter in F(φ) to consider the impacts of catchment 22 

properties such as soils and vegetation (Mezentsev, 1955; Fu, 1981; Zhang et al., 2001). For 23 

example, Fu’s equation (Fu, 1981) was derived following the idea of Mezentsev (1955), 24 

which can be expressed as follows: 25 

wwwF /1)1(1),( φφφ +−+=       (3) 26 
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where w is a parameter represents the catchment conditions. F increases with w, leading to 1 

reduced Q/P as w grows (Fu, 1981). Fu’s equation has been widely used in the last decade 2 

(Zhang et al., 2004; Yang et al., 2006; Yang et al., 2007; Zhang et al., 2008; Greve et al., 3 

2015). Donohue (2007) highlighted the role of vegetation dynamics in the application of the 4 

Budyko framework. Wang and Tang (2014) also developed a one-parameter Budyko model 5 

based on the proportionality hypothesis and revealed a complex relationship between the 6 

catchment specific parameter and the remote sensing vegetation index. These modified 7 

formulas suggested a group of Budyko curves instead of the single original Budyko curve, in 8 

which a curve represents a specific type of the catchments with similar features controlling 9 

the mean annual water balance. Nevertheless, Gentine et al. (2012) argued that the original 10 

Budyko curve reflects the interdependence among vegetation, soil and climate and could be 11 

applied as a strong constraint on land-surface parameterizations. 12 

Budyko hypothesis has been directly used to analyze the interannual change in water balance 13 

in catchments (Koster and Suarez, 1999; Arora, 2002; Zhang et al., 2008; Potter and Zhang, 14 

2009) ignoring the change in storage (∆S) under the assumption of steady state water balance. 15 

One can plot annually the estimated F data in the standard Budyko space to check whether the 16 

standard Budyko curves are sufficient or not to represent the interannual variability of 17 

evapotranspiration with the varying dryness. In this way, Potter and Zhang (2009) found that 18 

the Budyko framework is generally applicable for the catchments in Australia and the optimal 19 

Budyko curve of the annual F-φ data is highly dependent on the seasonal variations in rainfall. 20 

However, this approach should be carefully used when the annual F value is approximated by 21 

the annual (P−Q)/P value. Wang et al. (2009) and Istanbulluoglu et al. (2012) reported that 22 

the annual data of (P−Q)/P in some basins are negatively related to the aridity index, 23 

exhibiting an inverse relation in comparison with the standard Budyko curves. According to 24 

long-term groundwater observations in the North Loup River basin, Nebraska, USA, 25 

Istanbulluoglu et al. (2012) demonstrated that the annual F data estimated by (P−Q−∆G)/P 26 

basically follow the Budyko hypothesis, where ∆G is the change in groundwater storage. 27 

However, in some other studies, an unexpected high evapotranspiration ratio (F>1) was 28 

observed (Cheng et al., 2011; Wang, 2012; Chen et al., 2013). Among the 12 watersheds 29 

investigated by Wang (2012), half of them had such high F values in two or more drought 30 

years. The physical base of the phenomena is the significant contribution of storage in dry 31 

periods by which the high level of evapotranspiration is maintained. Although some of the 32 
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cases were triggered by extracting groundwater for irrigation in farmlands (Cheng et al., 2011; 1 

Wang, 2012), it could occur in natural conditions as a result of the temporal redistribution of 2 

water from seasonal patterns (Chen et al., 2013). Wang (2012) and Chen et al. (2013) 3 

proposed an approach to extend the Budyko framework for annual or even intra-annual water 4 

balance by considering the soil water storage as a potential source of water supply for 5 

evapotranspiration. They defined P−∆S for the selected time scales as the effective rainfall in 6 

building the modified Budyko space with E/(P−∆S) and E0/(P−∆S), instead of E/P and φ, 7 

respectively. In summary, the previous studies made significant progress in incorporating 8 

storage effects into the Budyko framework, but the role of groundwater dependent 9 

evapotranspiration was not yet investigated. 10 

The excess annual evapotranspiration may be originated from both soil water and 11 

groundwater. As reported by Wang (2012), during the drought year in 1988, two watersheds 12 

in Illinois, USA, showed F=1.1 with ~100 mm depletion in soil water and ~200 mm decrease 13 

in groundwater storage, respectively. It seemed that the contribution of groundwater was more 14 

significant (partially enhanced by groundwater pumping). Small depth to water table is an 15 

advantage to keep a high level of soil water content near ground surface for 16 

evapotranspiration (Chen and Hu, 2004). Therefore, it could be argued that the existence of 17 

shallow groundwater in a catchment would enhance the occurrence of the F>1 cases in 18 

drought years. Groundwater dependent evapotranspiration at the regional scale has been 19 

noticed in the previous studies (York et al, 2002; Chen and Hu, 2004; Cohen et al., 2006; Yeh 20 

and Famiglietti, 2009). Nevertheless, little has been known on the role of groundwater in the 21 

interannual variability of the evapotranspiration ratio with the varying dryness. Chen et al. 22 

(2013) did not identify the change in groundwater storage to explain the controls of the F>1 23 

cases. Wang (2012) mentioned the potential role of groundwater in occurrence of the F>1 24 

cases, but the individual contribution of groundwater dependent evapotranspiration was not 25 

soundly analyzed. 26 

This study develops a method to analyze the effect of groundwater dependent 27 

evapotranspiration on the annual water balance of catchments in the standard Budyko space, 28 

in addition to the storage effect that proposed in previous studies. In Section 2, the location, 29 

characteristics and data of the typical six studied catchments in the Erdos Plateau, China, are 30 

presented. Preliminary analysis showed the abnormal F-φ relations in some of the catchments, 31 

which probably indicates the effect of groundwater dependent evapotranspiration. In Section 32 
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3, a monthly hydrological model is developed from the widely used ABCD model (Thomas, 1 

1981) to incorporate the groundwater dependent evapotranspiration as well as the deep 2 

infiltration in the vadose zone. The monthly E is partitioned into two components in 3 

accounting for the individual roles of the normal soil water dependent and the specific 4 

groundwater dependent evapotranspiration. Then, the modified model is calibrated for the 5 

study catchments in Section 4 and used to produce the annual time series of the 6 

evapotranspiration components linking with the variable soil water and groundwater storages. 7 

With varying climatic dryness, the shifts of the interannual water balance in the standard and 8 

modified Budyko spaces are analyzed and discussed in Section 5. The impacts of human 9 

activities and the limitations of the approach are also discussed in Section 5.  10 

 11 

2 Study Area, Data and Preliminary Analysis 12 

2.1 River Basins 13 

The study area is located in the Erdos Plateau in the north-central China (Fig. 1a), belongs to 14 

the middle part of the Yellow River Basin. The climate of the Erdos Plateau is typically 15 

inland semiarid to arid with a significant gradient of the mean annual precipitation, from 150 16 

mm in the west to 450 mm in the east (Fig. 1b). More than half of the annual precipitation is 17 

received in the warm season (from June to September). Six catchments with available data, 18 

numbered as C1-C6 (Fig. 1b), are selected for this study. The areas of the catchments range 19 

between 1,272 km2 and 3,253 km2.  20 

In particular, C1 is the Hailiutu River Catchment, with an area of 2,645 km2, which lies on the 21 

southeast edge of the Mu Us Desert and is a sub-catchment of the Wuding River basin (Fig. 22 

1b). The main channel in C1 has a length of approximately 85 km and flows southwards to 23 

the Hanjiamao hydrological station, as shown in Fig. 1c. Due to the arid climate and desert 24 

landscape, the land cover within the catchment is characterized by desert sand dunes with 25 

patches of mostly shrublands. Depression areas and terraces with shallow groundwater are 26 

covered by meadows and some farmlands. Wind-breaking trees (Salix matsudana and 27 

Populus tomentosa) can be found along the roads and crop areas. Farmlands are mainly 28 

located in the southern area and especially in the river valley. Crops cover only ~3% of the 29 

total catchment area. Maize is the dominant crop and is irrigated with streamflow and/or 30 
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groundwater. Several diversion dams have been constructed along the Hailiutu River for 1 

irrigation since the early 1970s. 2 

The other catchments have different characteristics. C2 is also located in the Wuding River 3 

basin but mainly covered by loess soils and shows a hilly landscape than that in C1. The 4 

landscape of C3 is a mixture of the desert sand dunes in the west and the loess hills in the east. 5 

C4-C6 are mainly located in the loess hills region with steep slopes and deep valleys. Among 6 

them, C4 is the upstream area of a larger river basin with more flat landscape than the 7 

downstream topography. A lot of ravines exist in the loess hills region by which floods can be 8 

released to the rivers. Soil and water conservation projects have been conducted to control the 9 

floods and sediment loss. A comparison of the hydrological behaviors between C1 and C6 has 10 

been presented by Zhou et al. (2015). In the west part of the Erdos Plateau there are also some 11 

river basins but they are lack of hydrological data for a proper analysis. 12 

In the study area, groundwater is stored in complex aquifer systems. In general, the Erdos 13 

Plateau is characterized by shallow groundwater in the sandy sediments and deep 14 

groundwater in the underlying sandstones. In C1-C2, the Cretaceous sandstones form a thick 15 

aquifer enabling active groundwater circulation. In C3~C6, the Cretaceous sandstones is 16 

limited or replaced by the Jurassic sandstone-mudstone formations with lower permeability so 17 

that the movement of deep groundwater is restricted. Meanwhile, shallow groundwater exists 18 

in the valleys or near-lake areas covered by sandy or loess sediments. Regional groundwater 19 

level distribution in the catchment C1 has been investigated in Lv et al. (2013) based on a 20 

hydrogeological survey carried out in 2010 and was shown in Figure 1(c). According to this 21 

investigation, depth to water table (DWT) in C1 varies in a large range from zero to 110 m. In 22 

more than half of the area, DWT is less than 10 m. The shallow groundwater zone, where 23 

DWT is no more than 2 m, occupies 16.0% of the whole catchment area. As investigated in 24 

Yin et al. (2015) at a research site in this catchment, when DWT is less than 2 m, the actual 25 

evapotranspiration is generally 80% higher than the potential evapotranspiration. This 26 

investigation confirmed that groundwater dependent evapotranspiration is an essential process 27 

in the Erdos Plateau. 28 

2.2 Data 29 

Daily streamflow data since 1957 for the hydrological stations at the outlets of the 6 30 

catchments were collected from the Yellow River Conservancy Commission. A rainfall gauge 31 
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was also installed at the Hanjiamao hydrological station (Fig. 1c) in 1961, providing daily 1 

precipitation. 2 

To better account for the variability of rainfall in space and time, we develop gridded monthly 3 

precipitation data with 1-km resolution between 1957 and 2010 from the data of 15 national 4 

meteorological stations in the Erdos Plateau (Fig. 1b). Monthly rainfall data at these stations 5 

were downloaded from the China Meteorological Data Sharing Service System (CMDSSS, 6 

http://cdc.nmic.cn). We construct the gridded data using the inverse distance square weighting 7 

(IDSW) method due to the moderate topography of the Erdos Plateau in the form of low-relief 8 

rolling hills. Fig. 1b shows the mean annual precipitation contours of the Erdos Plateau 9 

obtained from the gridded data. In this study, the area-averaged monthly data of the 10 

precipitation in the 6 catchments for the period 1957-2010 are estimated by imposing the 11 

basin boundaries on the gridded monthly precipitation data and taking the arithmetic average 12 

of the cell values within the catchment. 13 

The method applied in constructing the gridded precipitation data is further applied in 14 

constructing a 1-km resolution gridded dataset for the monthly pan evaporation between 1957 15 

and 2010 covering the Erdos Plateau. The pan evaporation data were based on observations 16 

from 200-mm diameter pans that were installed in most stations in the Erdos Plateau and can 17 

be also downloaded from CMDSSS (http://cdc.nmic.cn). The average monthly data of the 18 

potential evapotranspiration (E0) in the 6 catchments are estimated from the spatially averaged 19 

data of the pan evaporation using a local pan coefficient (0.58) for the 200-mm diameter pan. 20 

This coefficient was suggested by various investigations of pan coefficients for Chinese 21 

meteorological stations (Shi et al., 1986; Fan et al., 2006). 22 

In summary, the mean annual values of P, E0 and Q during the period in 1957-1978 for the 6 23 

catchments are listed in Table 1. In this period, the streamflow was not significantly 24 

influenced by the hydraulic engineering, irrigation water use and coal mine industry so that 25 

the hydrological behavior was close to the natural state. It can be estimated from the data that 26 

the mean annual Q/P values in this ‘natural’ state ranged between 0.1 and 0.3 for the 27 

catchments. Accordingly, the mean annual F values are higher than 0.7 with respect to the 28 

mean values of the aridity index (E0/P) varying between 2.5 and 3.4. 29 

In Fig. 2a, the variation patterns of the monthly rainfall and potential evapotranspiration 30 

during 1957-2010 are shown for the catchment C1. Both rainfall and evapotranspiration are 31 



 8 

high in the summer and low in the winter. However, there is a difference in the patterns by 1 

which the seasonal variation in runoff may be influenced: the rainfall peak normally arrives in 2 

the August but the highest evaporation is exhibited in the June. With respect to these 3 

meteorological patterns, the total runoff drops in the Spring and in the early Summer until the 4 

heavy rainfall comes in the August, as shown in Fig. 2b. In comparison with the rainfall and 5 

the potential evapotranspiration, the mean monthly runoff (2.6 mm) and its fluctuation 6 

amplitude (0.8-11.9 mm) are quite small. This indicates that most of the precipitation in C1 7 

returns to the atmosphere by evapotranspiration. During 1957 to 2010, the annual aridity 8 

index in the catchment showed a large variation range (between 1 and 10), covering the semi-9 

humid, semi-arid and arid climatic conditions as classified in the scheme recommended by the 10 

United Nations Environment Programme (UNEP) (Middleton and Thomas, 1992). 11 

In the study area, there are significant interannual fluctuations in streamflow. For the 12 

catchment C1, Yang et al. (2012) investigated the annual regime shifts in streamflow and 13 

found that the shifts were caused largely by land use policy changes and river water 14 

diversions for irrigation. Tab. 2 shows the mean annual fluxes in four typical periods with 15 

different numbers of water diversions in the Hailiutu River and major branches during 1957-16 

2010. These diversions influenced the hydrological behavior in C1 and will be discussed in 17 

the following sections. However, before 1967, the Hailiutu River was free of hydraulic 18 

engineering, and the studied area was mostly close to the natural conditions. In the other 19 

catchments, the changes in the streamflow regime were also mainly contributed by human 20 

activities but in more complex ways. In C6, the river discharge was also influenced by a large 21 

number of check dams that constructed to reduce water and sediment loss (Zhou et al., 2015). 22 

In C3-C5, the impacts of coal mining industry were significant. To analyze the natural 23 

hydrological behaviors, the study period should not be later than 1978. 24 

2.3 Preliminary analysis using (P−Q)/P 25 

In many cases, it is possible to estimate the annual E in a catchment from the annually 26 

observed P and Q by P−Q when the change in storage is significantly small. Then it could be 27 

treated as the "real" data of the annual E and the shift of annual water balance in the Budyko 28 

space could be investigated with the plot of (P−Q)/P versus φ. In this section, we check the 29 

validity of this approach in the study area. 30 
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The plots of annual (P−Q)/P versus φ during 1957-1878 (close to the natural state) for the 6 1 

catchments are shown in Fig. 3. In particular, Fig. 3a shows the locations of the mean annual 2 

(P−Q)/P data of the 6 catchments in the Budyko space. The data points fall below the original 3 

Budyko curve given by Eq. (2) but can be bounded between two modified Budyko curves that 4 

determined using Eq. (3). They approximately exhibit a positive relation between (P−Q)/P 5 

and φ. It indicates that the behaviors of the catchments in long-term average (22-years) 6 

satisfied the steady state water balance assumption in the original Budyko framework. 7 

If the original Budyko formula (Budyko, 1958) is available for the annual water balance, the 8 

annual (P−Q)/P value should be equal to F(φ) so that the shift path of (P−Q)/P in each 9 

catchment should be an increasing curve with a positive slope in the Budyko space. However, 10 

as shown in Fig. 3(b-d), the annual (P−Q)/P data in C1-C4 follow a negative relation. The 11 

annual (P−Q)/P value of C3 significantly decreased from ~0.8 to ~0.5 when the aridity index 12 

increased from 1.2 to 5.8 (Fig. 3c). It seems that C5 (Fig. 3e) and C6 (Fig. 3f) showed a 13 

positive relation but the data points did not fall closely along the original Budyko curve. The 14 

negative relation in C1-C4 are contrary to the positive relation in the original Budyko 15 

framework, indicating the false of taking the annual (P−Q)/P as the replica of the annual F 16 

value in the study area. In a previous study, Istanbulluoglu et al. (2012) also highlighted this 17 

abnormal relation in the North Loup River basin, Nebraska, USA, and they demonstrated that 18 

it was caused by ignoring the change in storage. They used long-term monitoring data of 19 

groundwater level to estimate the inter-annual change in groundwater storage (∆G) and 20 

replaced the (P−Q)/P data with the (P−Q−∆G)/P data to reproduce a normal Budyko curve 21 

for the basin. However, groundwater dependent evapotranspiration was not explicitly 22 

considered in Istanbulluoglu et al. (2012). 23 

It is a good idea to estimate the change in groundwater storage using groundwater monitoring 24 

data. However, long-term groundwater level monitoring data are not available for the 25 

catchments in this study. In addition, the approach of using (P−Q−∆G)/P data ignores the 26 

inter-annual change in the soil moisture storage. In a different way from Istanbulluoglu et al. 27 

(2012), we estimate ∆G from the monthly baseflow (groundwater discharge) data with a 28 

calibrated hydrological model, in which the groundwater dependent evapotranspiration is also 29 

incorporated. Using the model, the storage components and the contribution of groundwater 30 

for the annual E can be simultaneously obtained at the catchment scale. 31 
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3 Hydroclimatologic models 2 

3.1 The ABCD model 3 

The ABCD model is a conceptual hydrological model with 4 parameters (a, b, c, and d) 4 

developed by Thomas (1981) to account for the actual evapotranspiration, surface/sub-surface 5 

runoff and storage changes. The ABCD model was originally applied at an annual time step 6 

but has been recommended as a monthly hydrological model (Alley, 1984). It was widely 7 

applied as a hydroclimatologic model to investigate the response of catchments to climate 8 

change (Vandewiele et al., 1992; Fernandez et al., 2000; Sankarasubramanian and Vogel, 9 

2002; Li and Sankarasubramanian, 2012). 10 

Both the soil water and groundwater are considered in the ABCD model, as shown in Fig. 4a. 11 

At the monthly time step, the change in the soil water storage is determined by: 12 

1m m m m mW W P E R−− = − −       (4) 13 

where Wm−1 and Wm are the effective soil water storages at the beginning and at the end of the 14 

m-th month, respectively; Pm and Em are the monthly precipitation and evapotranspiration, 15 

respectively; and Rm is the monthly loss of soil water via direct runoff and groundwater 16 

recharge. The change in groundwater storage is determined by: 17 

mmmm dGcRGG −=− −1       (5) 18 

where Gm−1 and Gm represent the groundwater storage at the beginning and the end of the m-th 19 

month, respectively; c and d are two parameters that account for groundwater recharge and 20 

discharge from Rm and Gm, respectively. The monthly streamflow is the summation of the 21 

monthly direct runoff and groundwater discharge, as follows: 22 

mmm dGRcQ +−= )1(       (6) 23 

The change in storage in the ABCD model is the summation of the changes in the soil water 24 

storage and groundwater storage, which can be expressed as (Wm−Wm−1) + (Gm−Gm−1). 25 
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Thomas (1981) proposed a nonlinear function to estimate (Em+Wm) from (Pm+Wm−1) as 1 

follows: 2 

2
1 1 1( )

2 2
m m m m m m

m m
P W b P W b P W bE W

a a a
− − −+ + + + + + = − − 

 
 (7) 3 

where a is a dimensionless parameter, and b is the upper limit of (Em+Wm). In addition, 4 

Thomas (1981) assumed: 5 

0( )exp( / )m m m mW E W E b= + −  (8) 6 

where E0m is the monthly potential evaporation for the m-th month. Substituting Eq. (8) into 7 

Eq. (7), the monthly evapotranspiration can be estimated as: 8 

2
1 1 1 0( ) 1 exp

2 2
m m m m m m m

m
P W b P W b P W b EE

a a a b
− − −

 + + + + +      = − − − −           
   (9) 9 

Wang and Tang (2014) demonstrated that Eq. (9) can be derived from the generalized 10 

proportionality principle and yield an equivalent Budyko-type model. 11 

3.2 The ABCD-GE model 12 

To investigate the effect of groundwater dependent evapotranspiration in basins with both 13 

shallow and deep groundwater, the original ABCD model is extended in this study as the 14 

ABCD-GE model, where ‘GE’ denotes groundwater dependent evapotranspiration. As shown 15 

in Fig. 4b, a catchment is conceptually divided into two zones where the Zone-1 and Zone-2 16 

represent different areas with deep and shallow groundwater, respectively. Direct runoff is 17 

originated from both zones. Surface water (water in river, canals, lakes, etc.) is also included 18 

in the Zone-2. The soil water reservoir in the Zone-1 is the same as that in the ABCD model. 19 

In addition, a transition vadose zone is specified between the soil layer and water table to 20 

represent the delayed groundwater recharge. The transition zone is included to handle the 21 

existence of the thick unsaturated zone (>10 m) in a basin. Soil water in this zone is 22 

dominated by the vertical downward flow. In the Zone-2, the rainfall and evapotranspiration 23 

are the components directly involved in the water balance of groundwater. Thus, three storage 24 

components are considered as a chain in the hydrological processes. It is assumed that the 25 



 12 

potential change in groundwater storage by the lateral flow coming in and out of a catchment 1 

is negligible. For a large river basin (>1000 km2) this assumption is generally acceptable. 2 

Dividing the Zone-1 and Zone-2 in a catchment depends on how groundwater can be accessed 3 

by the evapotranspiration process. It is controlled by the depth of plant roots and the rise of 4 

capillary water above water table. In the case study of the catchment C1, it was observed that 5 

some trees have long roots penetrated 2-3 m or more into the soil (Lv et al., 2013), but in 6 

general the dominant root zone is less than 2 m below ground surface for shrubs and grasses. 7 

When the DWT is larger than 2 m, the contribution of groundwater for evapotranspiration 8 

will dramatically decrease to a negligible level (Yin et al., 2015). Thus, it is reasonable to use 9 

the contours of 2-m-depth of groundwater as the approximate boundary between the Zone-1 10 

and Zone-2 in the study area. In the Zone-1, the transition vadose zone is roughly defined as 11 

the zone between 2-m-depth below ground surface and 2-m-height above water table. In the 12 

assumptions of the ABCD-GE model, this zone could not be influenced by both the 13 

evapotranspiration and groundwater flow processes. Thus, the thickness of the soil layer 14 

would be less than 2 m in the model. However, one should be aware of that it is not necessary 15 

to find the distinct and exact boundaries for the zones, since the ABCD-GE model is a 16 

conceptual hydrological model. 17 

Similar to that in the ABCD model, the change in the soil water storage in the Zone-1 is 18 

determined by: 19 

1 1m m m m mW W P E R−− = − −  (10) 20 

where E1m is the monthly evapotranspiration in the Zone-1 determined with Eq. (9); Rm 21 

becomes the summation of the leaking soil water to the transition vadose zone, cRm, and the 22 

direct runoff, (1−c)Rm, in the Zone-1. The change in storage of the vadose zone is described 23 

with: 24 

mmmm kVcRVV −=− −1   (11) 25 

where Vm and Vm−1 represent the values of the storage in the transition vadose zone at the end 26 

and beginning of the m-th month, respectively; and k is the parameter that accounts for the 27 

groundwater recharge rate as kVm. 28 
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In the ABCD-GE model, the source of runoff is partitioned by the fractions of the area of the 1 

two zones. The total runoff in the catchment is the summation of the direct runoff and 2 

groundwater discharge as follows: 3 

mmmm dGPcRcQ +−+−−= )(1)1)(1( αα  (12) 4 

where α is the ratio of the Zone-2 area to the whole catchment area. In Eq. (12), the term 5 

(1−α)(1−c)Rm denotes the direct runoff contributed by the Zone-1 whereas the term α(1−c)Pm 6 

denotes the direct runoff contributed by the Zone-2. In considering of the gain-loss processes 7 

of groundwater, the change in the effective groundwater storage is yielded by: 8 

mmmmmm dGEcPkVGG −−+−=− − )()1( 21 αα  (13) 9 

where E2m is the monthly evapotranspiration in the Zone-2, which depends on the effective 10 

groundwater storage as follows: 11 

mmm EgGE 02 =   (14) 12 

where g is a parameter controlling the intensity of groundwater dependent evapotranspiration. 13 

Eq. (14) assumes that the evapotranspiration rate in the Zone-2 is simply proportional to both 14 

the groundwater storage (which is positively related to groundwater level) and the potential 15 

evapotranspiration rate. Thus, the evapotranspiration rate as a whole in the catchment is 16 

summarized as: 17 

mmm EEE 21)1( αα +−=                       (15) 18 

Eqs. (10)-(13) are solved one by one and finally the value of Gm is substituting into Eq. (12) 19 

to obtain the runoff. The results of the ABCD-GE model are controlled by 7 parameters as: a, 20 

b, c, d, g, k and α. The parameter values can be identified with the model calibration process. 21 

 22 

4 Model Calibration and Results 23 

4.1 Model calibration 24 

We apply the ABCD-GE model to estimate the monthly evapotranspiration and the change in 25 

the storage components in the 6 catchments after the model parameters were calibrated. The 26 
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monthly evapotranspiration data are then summed up to estimate the annual 1 

evapotranspiration for further analysis. The model calibration is based on the observed 2 

monthly streamflow data at the hydrological stations and the separated baseflow data. 3 

Because groundwater discharge has been included in the model, a baseflow analysis was 4 

performed to obtain the expected groundwater discharge for the model calibration. Using the 5 

automated hydrograph separation method HYSEP (Sloto and Crouse, 1996) on the daily 6 

streamflow data, such ‘observed’ groundwater discharge data were obtained. For C1, these 7 

data were partly reported in Zhou et al. (2013). The mean values of the baseflow index for 8 

C1-C6 range between 0.13 and 0.88 (Table 1). The catchment C1 has the highest baseflow 9 

index (0.88), indicating that groundwater discharge is the dominant hydrological process in 10 

this catchment. Variation patterns of the monthly groundwater discharge in C1 are shown in 11 

Fig. 2b. In C5 and C6, the baseflow index values are smaller than 0.2 because most of the 12 

streamflow in the two catchments are contributed by direct runoff. 13 

The ordinary least squares (OLS) criterion is applied for parameter estimation. The errors of 14 

both log-streamflow and log-baseflow were included in the OLS objective function, as 15 

follows: 16 
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where: 18 

mm QQe )/ˆln(= ,  mbbm QQq )/ˆln(=                   (17) 19 

and U is the value of the objective function; N is the number of the months;  and Q are the 20 

simulated and observed monthly streamflow, respectively;  is the simulated monthly 21 

groundwater discharge through dGm in Eq. (12); and Qb is the ‘observed’ monthly 22 

groundwater discharge obtained from the baseflow analysis. The log form errors given in Eq. 23 

(17) are used to obtain the homoscedastic residuals (rather than the residual errors) of the 24 

normal absolute differences between the observed data and the model outputs (Alley, 1984). 25 

The nonlinear optimization algorithm Generalized Reduced Gradient (GRG) (Lasdonet al., 26 

1978) is applied to determine the optimum values of the parameters. The Nash-Sutcliffe 27 

efficiency (NSE) (Nash and Sutcliffe, 1970) is also used to evaluate the performance of the 28 

Q̂

ˆ
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model in simulating the monthly runoff. It ranges in (−∞, 1) whereas a higher than zero value 1 

is required for a well-perform model. 2 

For the catchment C1, the model parameters are firstly identified using the 1957-1966 data, 3 

and this calibrated model is considered to be a ‘natural’ model due to the minimum impact of 4 

human activities during this 10-year period. For C2-C6, the 1957-1978 period is applied to 5 

roughly identify the ‘natural’ model. The initial storage values are treated as the unknown 6 

parameters to be determined in the calibration process. Changes in the initial conditions 7 

generally influenced the simulated results in the first and second years. Therefore, the residual 8 

errors in the later years are applied to estimate the parameter values with the less influence 9 

from the initial conditions. A sensitivity analysis is carried out to schematically capture the 10 

ranges of the parameter values.  11 

The best fitting parameter values of the ‘natural’ models for C1-C6 are shown in Table 3. The 12 

a value ranges between 0.91 and 0.97. In previous studies using the ABCD model, the a value 13 

was found generally to be higher than 0.9 (Alley, 1984; Sankarasubramanian and Vogel, 2002; 14 

Li and Sankarasubramanian, 2012). The b and c values in this study are generally higher than 15 

that obtained by Alley (1984) for ten catchments in the USA. The higher c value indicates the 16 

more significant role of groundwater in the hydrological behaviors. However, the d values of 17 

C1-C6 fall into the range suggested by Alley (1984). The optimized α values in the ‘natural’ 18 

models range between 0.09 and 0.27. In particular, the α value of C1 (0.21) in this ‘natural’ 19 

state was larger than the current value (DWT in 16.0% of the area is less than 2 m). Such a 20 

difference is reasonable because the groundwater level in the 1950s and 1960s should be 21 

higher than that at present as indicated by the higher baseflow (Fig. 2b). The k value controls 22 

the rate of groundwater recharge below the transition vadose zone. The transition vadose zone 23 

is a necessary component in C1-C3 as demonstrated by the sensitivity analysis. When an 24 

extremely high value of k is used (k >100), the kVm value would be almost equal to cRm so 25 

that the transition vadose zone does not make sense. However, in this situation the model 26 

could not capture the seasonal variation patterns of groundwater discharge. Thus, the delayed 27 

groundwater recharge is an essential process for the catchments. The best fitting k values for 28 

C4-C6 are significantly higher than that for C1-C3, indicating a weaker delay effect. This 29 

confirms the hydrogeological conditions in C4-C6: active groundwater flow is limited in the 30 

near-surface zone.  31 
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For the calibration period, the root-mean-square error (RMSE) of the ‘natural’ models with 1 

respect to the aggregated results of the 6 catchments is 39% for the monthly runoff. For the 2 

aggregated annual runoff data, the RMSE is 21%. The errors include the streamflow 3 

observation error and the meteorological data treatment error. It is more reasonable to 4 

evaluate the model performance according to the observation-simulation correlation 5 

coefficient and the NSE value. A comparison between the observed and simulated monthly 6 

runoff (including groundwater discharge) for all of the 6 catchments can be seen in Fig. 5. 7 

The coefficient of determination (R2=0.89) is high. The NSE values of the model range 8 

between 0.48 and 0.81 for the different catchments (Table 3), indicating that the model 9 

performs well in the study area. It is usually difficult to obtain a high NSE value for a 10 

catchment with weak seasonal variation in runoff (Mathevet et al., 2006), such as that in C1 11 

and C2.  12 

4.2 Modelling results 13 

We use the 'natural' models to estimate the monthly hydrological components during the 14 

whole 1957-2010 period. As an example, typical results of the catchment C1 are shown in Fig. 15 

6. The modeling results of the monthly runoff after 1970s are generally higher than the 16 

observed data (Fig. 6a) due to ignoring the impacts of land use changes and increased 17 

utilization of water for irrigation. However, the simulated patterns of groundwater discharge 18 

are similar to the observations (Fig. 6b): falling in the summer, rising in the winter. This 19 

agreement between the simulated and observed patterns demonstrates the ability of the 20 

ABCD-GE model in simulating the hydrological behaviors in the studied catchment: 21 

significant groundwater-dependent evapotranspiration occurs in the summer, and a strong 22 

recovery of storage in the shallow-groundwater zone occurs in the winter due to delayed 23 

recharge from the thick vadose zone. 24 

For the catchment C1, there are significant differences between the observed and model 25 

calculated annual runoff after 1966, as shown in Fig. 6c. This deviation could be interpreted 26 

as the excess evapotranspiration induced by the increasing agricultural water use. Enhanced 27 

evapotranspiration also occurred in the shallow groundwater zone due to groundwater 28 

pumping for irrigation. To evaluate the actual water balance, the following equation: 29 

)( OBSNATNATACT QQEE −+≈    (18) 30 
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is applied to approximately estimate the actual annual evapotranspiration (EACT) after 1966 1 

from the ‘natural’ model result (ENAT) plus the difference of the annual runoff between the  2 

‘natural’ model (QNAT) and the observation (QOBS). This difference may be partly induced by 3 

the multiple time-scale variations in the climate conditions but would be mainly caused by the 4 

irrigation water use. Results are shown in Fig. 6d. It seems that the relative difference 5 

between ENAT and EACT is not significant. The maximum QNAT −QOBS value is less than 10% 6 

of the mean annual evapotranspiration (~315 mm). Accordingly, the irrigation water use in 7 

this catchment did not significantly influence the annual evapotranspiration. However, it 8 

dramatically influenced the streamflow. As shown in Fig. 6a, almost all of the direct runoff 9 

was removed from the total runoff after 1987 and the groundwater discharge was significantly 10 

decreased even though the seasonal patterns basically remained (Fig. 6b). 11 

4.3 Annual water balance in the standard Budyko space 12 

In Fig. 7, the annual F data for the annual water balance obtained from the ‘natural’ models 13 

over the 1957-2010 period are plotted in the standard Budyko space. It is obvious that with 14 

the increasing aridity index (φ), the evapotranspiration ratio (F) for all of the catchments 15 

increased in almost a linearly patterns with the different slopes. When φ<4, most of the data 16 

points fall below the original Budyko curve, indicating that F<1 is generally satisfied in this 17 

situation. When φ >4, the original Budyko curve gives F≈1, indicating the limitation (0<F≤1) 18 

for the mean annual evapotranspiration ratio. However, some of the data points fall above the 19 

line of F=1 while φ is larger than 3 but even less than 4, indicating that the F>1 cases were 20 

not only occurred in dry years. The maximum F value (2.2) was obtained in C1 when the 21 

aridity index jumped from φ=1.5 in 1964 to φ=9.8 in 1965. It means that C1 lost a volume of 22 

water in 1965 by evapotranspiration, which is more than twice of the gained water from 23 

precipitation in the same year. In comparison, the F values in C4 and C6 are not sensitive to 24 

the change in the aridity index since the slopes of the F-φ regression lines are less than 0.1. 25 

The effect of groundwater dependent evapotranspiration can be clearly observed when the 26 

evapotranspiration ratio is divided into two parts and plotted in the Budyko space separately 27 

with respect to the shallow and deep groundwater zones. The annual E values in the Zone-1 28 

and Zone-2 are estimated, respectively, as:  29 
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for every year, where E1m is calculated with Eq. (9), whereas E2m is calculated with Eq. (14). 2 

Typical results are shown in Fig. 8 for C1 and C4. The data in Fig. 8 are estimated with the 3 

parameter values of a, b and g for the ‘natural’ models. It is obvious that the annual E1/P 4 

values in the Zone-1 (deep groundwater) for the whole range of the aridity index (0<φ<8) are 5 

smaller than 1.0 and fall below the original Budyko curve determined by Eq. (2). The low 6 

E1/P value in the Zone-1 is mainly due to the water limited condition in the soils without the 7 

supply of groundwater, especially in C1 where the landscape is dominated by sand dunes. The 8 

variation of E1/P can be approximately fitted by the Budyko curve determined with Eq. (3) 9 

using w =1.4 and 1.6, respectively, for C1 and C4. The higher w value in C4 is linked with the 10 

higher b value of the model for C4, as listed in Table 3. However, the relationship between 11 

E2/P and the annual aridity index in the shallow groundwater zone definitely could not be 12 

explained by any of the standard Budyko formulas, because for the Zone-2 all the annual F 13 

values are higher than 1.0 in C1 and most of the data points fall above the bound in C4.  14 

In the catchment C1, the E2/P data points follow a linear regression line with the slope of 0.52. 15 

This agrees with the relationship between E2 and E0 (E2∝E0) that described in Eq. (14). Since 16 

the groundwater storage, G, is relatively stable (small d and k values in the model), the annual 17 

E2/P value would be proportional to the φ value and the slope is close to the annual mean 18 

value of gG. In C1, the annual mean value of gG is 0.65 according to the ‘natural’ model. 19 

Such a groundwater dependent evapotranspiration process is the reason for the occurrence of 20 

the F>1 cases at the catchment scale. Note that in the original Budyko framework, the F=φ 21 

case denotes an energy-limited condition when water supply (only precipitation for mean 22 

annual water balance) is sufficient for the evapotranspiration process. The slope of the E2/P 23 

line in C1 is less than 1.0 but is closer to the F=φ line than the water limited line represented 24 

by F=1. It indicates that in the Zone-2 the evapotranspiration process is in a quasi-energy 25 

limited condition, rather than in a water limited condition, because shallow groundwater can 26 

effectively serves as an external source of water supply. 27 

In C4, the E2/P data points show a scatter distribution around the regression line. This is 28 

mainly caused by the significant variability in the groundwater storage, G, at the monthly and 29 

annual scales. The d and k values in the model for C4 are quite larger than that for C1 by 30 
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which the model could capture the significant fluctuation of the baseflow. As a result, the 1 

annual mean gG value of C4 vary in a large range between 0.18 and 0.84. Similar unstable 2 

E2/P data also exist for C5 and C6 as indicated by the high d and k values (Table 3).  3 

 4 

5 Discussions 5 

5.1 Controls on the F >1 cases 6 

It has been demonstrated in Fig. 7 that the annual evapotranspiration ratio, F, could be higher 7 

than 1.0 when the aridity index, φ, is larger than 4.0 in the studied catchments. In the literature, 8 

the F>1 cases were also observed when φ is just higher than 1.0 (Cheng et al., 2011; Wang, 9 

2012; Chen et al, 2013). Thus, it is interesting to discuss how the occurrence of the F>1 cases 10 

is controlled by the catchment properties when shallow groundwater plays an important role. 11 

The equation for the annual evapotranspiration ratio can be derived from Eqs. (15) and (19) as 12 

follows: 13 
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where the term E0m/E0 denotes the proportion of the monthly potential evaporation to the 15 

annual one with respect to the m-th month. It has been known that the relationship between 16 

E1/P and φ determined by the ABCD model is similar to that predicted by the standard 17 

Budyko formulas, as shown in Fig. 8, where E1/P is less than 1.0. For the groundwater 18 

dependent term, defining: 19 
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as the weighted average of the monthly groundwater storage, Eq. (20) can be replaced by: 21 

φαφφαφ a
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where E1/P is represented by Eq. (3). According to Eq. (22), the function F(φ) is controlled by 23 

the parameters, g, w, α and the status of groundwater represented by Ga. As indicated in Eq. 24 
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(14), gGa is a dimensionless parameter to describe the intensity of groundwater dependent 1 

evapotranspiration related to the potential evaporation. The recommended range of gGa is 0.2-2 

1.0 according to Table 3. In Eq. (22), the term with w indicates the normal energy-water 3 

limited process in the Zone-1, whereas the term with gGa indicates the quasi-energy limited 4 

process in the Zone-2. The actual F value is a mixed result of the different processes. 5 

Typical F-φ curves obtained with Eq. (22) are plotted in Fig. 9. It can be seen that the 6 

proportion of shallow water table area (α) has large effect on the occurrence of the F>1 case. 7 

When the shallow water table area is small (α=0.1), the F>1 case occurs only during dry 8 

years. When the gGa value increases, the F>1 case occurs at the smaller aridity index. The 9 

specific catchment parameter (w) for E1/P also influences the occurrence of the F>1 case. A 10 

larger w value shifts the F-φ curves (comparing Fig. 9b with Fig. 9a) to the left side indicating 11 

that the F>1 case could occur at smaller aridity index. 12 

Groundwater dependent evapotranspiration estimated in the ABCD-GE model does not 13 

violate the F<1 rule for the long-term steady state water balance, because the model will yield 14 

E=P−Q for the average flux in a long-term period. As shown in Fig. 9, more than half of the 15 

data points fall below the line of F=1, indicating that the less-than-1 rule for the average F 16 

value is satisfied in the whole study area. For each catchment, in addition, the mean annual F-17 

φ data for the 1957-2010 period have been shown in Fig. 7 (intersection points of the green 18 

cross lines). None of these mean annual F values is higher than 1.  19 

5.2 Using effective precipitation and modified Budyko space 20 

The standard Budyko space assumes that the potential water supply for evapotranspiration is 21 

only rainfall in a catchment. This is valid for the mean annual water balance, but exceptions 22 

might exist for the annual or intra-annual behaviors. Several previous studies attempted to 23 

modify the Budyko framework for the short time scale. Wang (2012) and Chen et al. (2013) 24 

argued that the reduction of storage in a period should be regarded as one of the water supply 25 

components. They suggested an approach to replace the evapotranspiration ratio and the 26 

aridity index by E/(P−∆S) and E0/(P−∆S), respectively, where ∆S is the storage depletion in a 27 

studied period and P−∆S is regarded as the effective precipitation. In this modified Budyko 28 

space, evapotranspiration is always less than the water supply so that the original Budyko 29 

hypothesis could be satisfied for the small time-scale problems. Alternatively, Greve et al. 30 
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(2016) proposed a two-parameter Budyko function to explain the cases of evapotranspiration 1 

exceeds precipitation in unsteady state conditions. However, groundwater flow is not included 2 

in their model so that the role of groundwater dependent evapotranspiration could not be 3 

assessed by such a two-parameter Budyko function.  4 

In this section, we attempt to check the characteristics of the annual water balance data in the 5 

study area using the modified Budyko space suggested by Wang (2012) and Chen et al. 6 

(2013). With the results of the ABCD-GE model, the total change in storage for a year can be 7 

estimated as: 8 
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where m is the number of the months in the year, W0, V0 and G0 for m=0 denoting the 10 

respective storage components at the end of the previous year. 11 

Results are shown in Fig. 10 for the 6 studied catchments. It can be seen that in the modified 12 

Budyko space the annual water balance data fall into the zone below the limitation: 13 

E/(P−∆S)<1. However, in any one of the catchments, the shift path of the data points could 14 

not be captured by a single Budyko curve in the modified Budyko space. For the cases in C1 15 

and C2, the increase of E/(P−∆S) with the increasing E0/(P−∆S) seems too small in 16 

comparison with any one of the standard Budyko curves determined by Eq. (3). Similar 17 

difference between the data and the standard Budyko curves also exists in the other 18 

catchments but not as significant as that in C1 and C2. Furthermore, in C1 and C2 the 19 

E/(P−∆S) value approaches a stable value around 0.90 with the high E0/(P−∆S) values. It 20 

indicates that at least 10% of P−∆S is contributed to the annual runoff, in terms of Q/(P−∆S). 21 

This portion of the water supply seems to be inaccessible for the evapotranspiration process. 22 

Similar bounds of the E/(P−∆S) value also exist in C3-C6. In particular, this limitation is 23 

lower than 0.8 in C3, implying significant contribution of change in storage to the streamflow 24 

in dry years.  25 

The difficulties in using the effective precipitation defined by Wang (2012) and Chen et al. 26 

(2013) are the unknown ∆S for an investigated time step and the possible existence of the 27 

inaccessible part of ∆S for the evapotranspiration process. Consequently, the estimation of 28 

E/(P−∆S) value is not straightforward, but requires a complex iteration process. In the original 29 



 22 

Budyko framework for the steady state water balance, the water supply (only precipitation) 1 

does not depend on both evapotranspiration and runoff so that the aridity index is an 2 

independent variable in assessing the behaviors of the catchments. However, the water supply 3 

represented by the effective precipitation is influenced by the evapotranspiration-runoff 4 

processes due to the feedback mechanism. This interdependence between the water supply 5 

and evapotranspiration significantly reduces the efficiency of using the modified Budyko 6 

space in analyzing the shift of annual water balance in a catchment. In contrast, it would be an 7 

efficient and straightforward approach to extend formulas for annual water balance in the 8 

standard Budyko space, such as Eq. (22), keeping an independent index (φ) for the climatic 9 

conditions. 10 

5.3 Landscape-driven and human-controlled shifts of annual water balance 11 

As illustrated in Fig. 6d, the actual evapotranspiration in the catchment C1 has been enhanced 12 

by human activities. This impact might exist in both the shallow and deep groundwater zones. 13 

Crops in C1 are mainly planted in the depressions and terrace lands with shallow groundwater, 14 

especially in the river valley. Crops require much more water than the precipitation for 15 

growing. For example, maize could consume more than 3 times of rainfall water in growing 16 

seasons (Zhou et al., 2013). Thus, irrigation is necessary to maintain the agricultural 17 

production. In the croplands far away from the rivers, groundwater was abstracted from wells 18 

for irrigation. In the river valley, irrigation was realized with the diversions and channels. 19 

Therefore, an increase in the evapotranspiration in the shallow groundwater zone is 20 

dominated by irrigation. Along the river, the area of the surface water body was significantly 21 

enlarged in the reservoirs, leading to an increase in the surface water evapotranspiration loss. 22 

It is equivalent to the increase in groundwater dependent evapotranspiration in this study 23 

because surface water is also included in the shallow groundwater zone. As a result, the shift 24 

of the annual water balance in the Budyko space was partly caused by change in land use and 25 

controlled by regulation of river water for irrigation. 26 

Recently, Jaramillo and Destouni (2014) developed a method to assess the landscape-driven 27 

change in the mean evapotranspiration ratio using the difference between the actual change in 28 

the F value and the climate-driven change in the F value following the Budyko framework. In 29 

this section, we extend their method to assess the landscape-driven change in annual water 30 

balance in the catchment C1. The period between 1957-1966 is selected from Table 2 as the 31 
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reference period. Changes are evaluated for the different average values of the annual F data 1 

in the different periods listed in Table 2. The climate-driven change is estimated with the 2 

annual ENAT values obtained from the 'natural' model, using a formula similar to Jaramillo and 3 

Destouni (2014), as follows: 4 
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where ∆(ELD/P) denotes the landscape-driven change in comparison with the 1957-1966 6 

period. However, this quantity index includes the landscape changes driven by both of the 7 

climatic force and human activities. To check how this index is correlated with the increasing 8 

impacts from the reservoirs and diversions in rivers, following Jaramillo and Destouni (2015), 9 

the coefficient of intra-annual variation of the monthly runoff (CVQ) was applied. The 10 

CVQ/CVP value was estimated to reveal the separate influence of such a human-controlled 11 

flow regulation from the mixed human-climate controlling, where CVP is the coefficient of 12 

intra-annual variation of the monthly rainfall.  13 

Results of the ∆(ELD/P) and ∆(CVQ/CVP) data between the three periods 1968-1987, 1988-14 

1997, 1998-2010 and the reference period 1957-1967 are shown for the catchment C1 in Fig. 15 

11. The ∆(ELD/P) values are all positive but not big (less than 6%), indicating a slight increase 16 

in the evapotranspiration ratio after 1966 driven by the changes in the natural landscape 17 

conditions of water storage and/or human controlled land use. The ∆(CVQ/CVP) values show a 18 

significant fluctuation around zero but also limited in a small range (±5%). Both the ∆(ELD/P) 19 

and ∆(CVQ/CVP) values are largest in 1988-1997. Fluctuations of these data could not be fully 20 

explained by the increasing number of diversions in the rivers. The negative ∆(CVQ/CVP) 21 

value in 1968-1987 may be caused by the construction of two reservoirs since reservoirs 22 

commonly smooth the variation of the streamflow. In 1988-1997, the ∆(CVQ/CVP) value 23 

turned to positive when 5 new diversions were built, indicating the opposite impacts of the 24 

reservoirs and diversions. It is possible that the streamflow was disturbed by the regulation of 25 

water for irrigation on these diversions with small overflow dams. The decrease in the 26 

∆(CVQ/CVP) value from 4.72% in 1988-1977 to 0.72% in 1998-2010 may be caused by the 27 

control of the river water use under some government policies to prevent the desertification 28 

(Yang et al., 2012; Zhou et al., 2015). The following decrease in the ∆(ELD/P) value form 29 

5.05% in 1988-1997 to 3.73% in 1998-2010 is not significant, seems indicating the alternative 30 
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irrigation practice in the croplands (for example pumping groundwater) so that the real water 1 

consumption was reduced but still on a high level. As a result, utilization of surface water and 2 

groundwater for irrigation can increase the frequency of the F>1 cases. 3 

5.4 Limitation Remarks 4 

Attention should be paid to the simplifications in the conceptual model extended from the 5 

ABCD model, when the equations and formulas are applied in complicated catchments. The 6 

ABCD model assumes that the storage-evapotranspiration relationship is controlled by the 7 

parameters a and b whereas the physical interpretation of them is difficult (Alley, 1984). Eq. 8 

(8) in the ABCD model is also hypothesized from a simplified storage-loss model that 9 

controlled by the parameter b (Thomas, 1981). Sankarasubramanian and Vogel (2002) 10 

suggested that the b value for the annual water balance could be approximately represented by 11 

the maximum soil moisture field capacity plus the maximum E0 for φ<1 or the maximum P 12 

for φ≥1. The a value is generally estimated in a small range between 0.95 and 1.0. In this 13 

study, the model output is not sensitive to the a value. The correlation between a and b may 14 

exist because both of them are positively related with Em+Wm in Eq. (7). The ABCD model 15 

neglects the possibility of groundwater-dependent evapotranspiration which has been 16 

incorporated in the ABCD-GE model. The ABCD-GE model divides the area into shallow 17 

and deep groundwater zones, without considering a complicated spatial distribution of 18 

groundwater depth. For the shallow groundwater zone, the evapotranspiration is assumed to 19 

be proportional to the groundwater storage. Nonlinear behavior in groundwater dependent 20 

evapotranspiration could be further included if it can be successfully parameterized. Linear 21 

groundwater storage-discharge relationship is adopted in both of the ABCD and ABCD-GE 22 

models. These simplifications could cause systematic errors in modeling a catchment where 23 

the nonlinear behaviors in the hydrological processes are significant.  24 

Limitations in the data processing and complexities in the hydrogeological conditions could 25 

also influence the accuracy of the modeling results. The average potential evapotranspiration 26 

data, E0, and the average precipitation data, P, in some degree, are dependent on the 27 

estimation methods and may introduce biases. For the hydrogeological conditions, this study 28 

assumed that the boundary of a catchment determined along the terrain divides is also the 29 

boundary of groundwater flow, i. e., no inter-basin transfer of groundwater exists. The 30 

assumption is plausible acceptable in the east part of the Erdos Plateau because the spatial 31 
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variation in the groundwater level is highly correlated with the land surface elevation in this 1 

area (Lv et al. 2013; Zhou et al., 2015). However, the groundwater flow system in the west 2 

part of the Erdos Plateau is more complex where the climate is more arid and water table 3 

divides could be significantly different from the terrain divides. 4 

In fact, when the Budyko framework is applied for small time-scale water balance in a 5 

catchment, the other additional sources of water supply should be considered, apart from 6 

groundwater. Significant changes in soil moisture, snow cover or frozen water in cold regions 7 

could also cause an 'abnormal' shift of the annual water balance for a catchment in the 8 

standard Budyko space (Jaramillo and Destouni, 2014). The effects of these storage 9 

components are negligible in this study but may be essential in other study areas. In particular, 10 

the special processes in the cold regions are not included in the ABCD-GE model. However, 11 

one can refer to Martinez and Gupta (2010) where the snow-augmented ABCD model was 12 

proposed and can be incorporated into an extension of the ABCD-GE model. 13 

 14 

6 Conclusions 15 

The Budyko framework was developed for the long-term steady state water balance in 16 

catchments, which estimates the evapotranspiration ratio (F) as a function of the aridity index 17 

(φ). It can be represented by curves for the F-φ relationship in the standard Budyko space that 18 

were determined by the original Budyko formula without any parameter or the formulas with 19 

a catchment specific parameter. It is interesting to investigate whether the Budyko space can 20 

be also applied to capture the annual water balance in a catchment with varying dryness. 21 

However, the shift of the annual water balance in the standard Budyko space could be 22 

significantly different from that presumed from the standard Budyko curves, in particular, 23 

when the cases of F>1 occur as that have been observed in a number of catchments. 24 

In this study, we highlight the effect of groundwater dependent evapotranspiration in 25 

triggering the abnormal shift of the annual water balance in the standard Budyko space. A 26 

conceptual monthly hydrological model, the ABCD-GE model, is developed from the widely 27 

used ABCD model to incorporate groundwater-dependent evapotranspiration in the zone with 28 

shallow water table and delayed groundwater recharge in the zone with deep water table. The 29 



 26 

model is successfully applied to analyze the behaviors of 6 catchments in the Erdos Plateau, 1 

China. 2 

The results show that the standard Budyko formulas are not applicable for the interannual 3 

variability of catchment water balance when groundwater dependent evapotranspiration is 4 

significant. The shift of the annual water balance in the F-φ space is a combination of the 5 

Budyko-type response in the deep groundwater zone and the quasi-energy-limited condition 6 

in the shallow groundwater zone. Shallow groundwater supplies excess evapotranspiration 7 

during dry years, leading to the F>1 cases. The occurrence of the F>1 cases depends on the 8 

proportion area of the shallow groundwater zone, the intensity of groundwater dependent 9 

evapotranspiration and the catchment properties determining the Budyko-type F-φ 10 

relationship in the deep groundwater zone. Water utilization for irrigation may enhance this 11 

excess evapotranspiration phenomenon. The modified Budyko space with the effective 12 

precipitation incorporating the change in storage can force F values below 1.0. However, the 13 

computation is complicated in dealing with the gain-loss feedback and uncertain with the 14 

inaccessible storage for the evapotranspiration process. The empirical formula proposed in 15 

this study for the standard Budyko space provides a straightforward method to predict the 16 

changes in the annual water balance with the varying dryness. 17 
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Table 1. The characteristics of the study catchments shown in Fig. 1. 1 

Catchments Area (km2) 
Mean annual Flux† 

P (mm) E0 (mm) Q (mm) Baseflow Index 

C1 2645 367  1245  37.7  0.88 

C2 2415 386  1218  38.8  0.64 

C3 3253 447  1162  127.2  0.72 

C4 3065 381  1227  75.8  0.31 

C5 1272 466 1146 81.8 0.13 

C6 3246 412 1186 53.0 0.16 

† According to the data in the 1957-1978 period. 2 

 3 

  4 
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Table 2. Mean annual fluxes in the Hailiutu River Catchment (C1) in different periods 1 

Periods P(mm) E0(mm) Q(mm) 
Number Of 

Diversions(reservoirs)† 

1957-1966 387.0  1230.2  42.3  0(0) 

1967-1987 337.0  1269.6  32.6  4(2) 

1988-1997 329.9  1240.2  23.4  9(2) 

1998-2010 352.8  1234.0  28.0  10(2) 

† According to Yang et al. (2012).  2 

 3 

4 
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Table 3. Best fitting parameters of the ‘natural’ models for the study catchments. 1 

Catchments a b (mm) c d g k α αgGmean
† NSE 

C1 0.97 33 0.97 0.05 0.010 0.017 0.21 0.14 0.51 

C2 0.91 75 0.92 0.11 0.058 0.025 0.09 0.12 0.43 

C3 0.91 41 0.90 0.18 0.017 0.017 0.18 0.15 0.71 

C4 0.94 83 0.68 0.19 0.049 0.076 0.21 0.09 0.67 

C5 0.97 155 0.67 0.10 0.070 0.214 0.27 0.14 0.81 

C6 0.93 179 0.67 0.11 0.077 0.162 0.18 0.11 0.71 

    †Gmean is the mean value of the effective groundwater storage in the calibration period 2 

3 
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Figure Captions: 1 

 2 

Figure 1. Geographic information of the study site: (a) location of the study area in north 3 

central China; (b) Distribution of meteorological stations in the Erdos Plateau (green points) 4 

and the study catchments numbered as C1-C6. (c) Characteristics of landscape in the 5 

catchment C1 (the Hailiutu River Catchment) according to Lv et al. (2013). 6 

 7 

Figure 2. The monthly meteorological data (a) and streamflow-baseflow data (b) from 1957 to 8 

2010 in the catchment C1. 9 

 10 

Figure 3. The plots of the annual (P−Q)/P data versus the aridity index in the study 11 

catchments for the 1957-1978 period: (a) the mean annual data points for the 6 catchments 12 

bounded by the two Budyko curves (dashed lines) according to Eq. (3) with w=1.6 and w=2.5; 13 

and (b)-(f) are the annual data points of the different catchments. C1-C6 are the numbers of 14 

the catchments shown in Fig. 1. The solid line is the original Budyko curve determined with 15 

Eq. (2). The dashed lines are the regression curves of the scatter data points with the slope 16 

values shown nearby. 17 

 18 

Figure 4. Schematic representations of the ABCD model (a) and ABCD-GE model (b). W and 19 

V are the effective soil water storage and the effective storage in the transition vadose zone, 20 

respectively. G is the effective groundwater storage. 21 

 22 

Figure 5. Scatter plot for the observation and simulation results of the monthly runoff and 23 

groundwater discharge in the study catchments in the calibration period. 24 

 25 

Figure 6. Simulated results of the ‘natural’ ABCD-GE model in comparison with the 26 

observation data in the catchment C1 from 1957 to 2010, including: Monthly runoff (a), 27 
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groundwater discharge (b), annual runoff (c) and annual evapotranspiration (d). The actual 1 

evapotranspiration in (d) was estimated with Eq. (18). 2 

 3 

Figure 7. Plots of the annual F-φ data in the study catchments in the standard Budyko space 4 

for the 1957-2010 period. The actual evapotranspiration is estimated using the 'natural' 5 

models. The solid blue line is the original Budyko curve determined with Eq. (2). The dashed 6 

red lines are the linear regression curves of the data points with the slope data shown nearby. 7 

The intersection point of the green lines denotes the mean annual data.  8 

 9 

Figure 8. Plots of the F-φ data in the standard Budyko space using the E1 data for the Zone-1 10 

and the E2 data for the Zone-2 that estimated with Eq. (19) in the catchments C1 (left) and  11 

C4 (right). The red curves are the Budyko curves determined with Eq. (3), which could 12 

approximately represent the variations of the E1/P data. The dashed blue lines are the linear 13 

regression lines of the E2/P data. 14 

 15 

Figure 9. The typical F-φ curves for annual water balance in the standard Budyko space 16 

determined with Eq. (22) when w=1.5 (a) and w=2.0 (b). The solid and dashed curves are 17 

estimated using gGa=0.2 and gGa=1.0, respectively. Dots are the data points of the study 18 

catchments. 19 

 20 

Figure 10. The annual water balance data in the modified Budyko space with the effective 21 

precipitation defined by Wang (2012). Dots are the data obtained for the catchments using the 22 

‘natural’ models. The solid curves represent the standard Budyko curves determined with 23 

Eq.(3) using E0/(P−∆S) and E/(P−∆S), respectively, instead of F and φ. Budyko curves of 24 

w=1.9 and w=2.5 are selected to bound the data points of the catchment C1 and applied for 25 

the comparison with the other catchments. The dashed lines approximately represent the 26 

limitations of the E/(P−∆S) data. 27 

 28 
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Figure 11. Histogram of the ∆(ELD/P) data determined with Eq. (24) and the ∆(CVQ /CVP) data 1 

determined with the coefficients of intra-annual variation of the monthly runoff (CVQ) and 2 

rainfall (CVP) for the different periods in the catchment C1. The numbers of diversions 3 

(reservoirs) are shown on the top of the blocks according to Table 2. 4 
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