
Dear Reviewer #1, 
 
Thanks a lot for again taking the time to review our manuscript. Please find a table 
including your comments, our reply and a description of changes in the manuscript 
below.   
 

Comment Reply Changes in Manuscript 
Provide more finality with regards 
to the details of the near RT 
product. The paper could also be 
of external interest as a technical 
document describing a completed 
(and ready for use) near RT 
product. However, the authors 
seem to be hedging on how close 
the product is to actual operational 
implementation (e.g. they state in 
the last line of the abstract that the 
product is “getting ready for 
operational use”). Of course, this 
timing may be something beyond 
the author’s control. But, at the 
very least, they could provide a 
fuller discussion of the products 
near RT attributes (e.g. where it 
will be posted, in what format and 
– most critically – at what 
temporal data latency). That way, 
it can make a firmer technical 
contribution by helping users 
better prepare for its eventual 
availability. This detail is missing 
from the current manuscript. 

Thanks for this 
comment – such 
information was 
indeed missing.  

Information about the availability 
of the pre-operational CCI NRT 
product, its latency, data format, 
coverage and the updating 
frequency was added to the last 
paragraph in section 5 
(discussion/conclusions). 
  

I recommend that the author’s 
revise their manuscript to better 
articulate a clear scientific and/or 
technical contribution to an 
external technical audience.  
 

The manuscript 
aims at both 
readers interested 
in the technical and 
scientific content of 
the study. We now 
articulate more 
clearly that we 
address both the 
technical 
challenges 
(objective 1) and 
the scientific 
challenges 
involved (objective 
2)  

The manuscript was revised, in 
particular the introduction (last 
paragraph), methods (section 3.1) 
and the discussions/conclusions 
(section 5). 
 
We also provide a more detailed 
explanation of the intercalibration 
issues related to AMSR2 in section 
2.3.1 

In addition, some typos are still Thanks for this The manuscript was again checked 



existing in the manuscript. Please 
double check. And use the term 
either AMSR2 or AMSR-2 rather 
than mixing use them. 

comment.  for typos. The sensor is now named 
AMSR2 throughout the manuscript.  

 
 



Dear	Reviewer	#2,	
	
Thanks	a	lot	for	again	taking	the	time	to	review	our	manuscript.	Please	find	a	table	including	your	comments,	our	reply	and	a	description	
of	changes	in	the	manuscript	below.			
	

Comment	 Reply	 Changes	in	Manuscript	
The	paper	still	offers	no	clear	description	
of	what	specific	methodological	
differences	(e.g.	calibration	issues,	
screening	difference	and	algorithm	
parameterizations)	exist	between	the	
retrospective	and	NRT	CCI	soil	moisture	
data	sets	and	how	these	differences	may	
potentially	lead	to	retrospective	versus	
NRT	differences	in	SM	products.	Without	
a	clear	understanding	of	these	source	
differences,	it’s	difficult	for	the	reader	to	
gain	any	real	insight	from	the	SM	
comparison	results	presented	in	the	
paper.	Towards	the	beginning	of	the	
paper	the	author’s	need	to	summarize	
these	differences	and	present	(at	least)	
some	cursory	discussion	of	their	expected	
impact.	I	understand	that	some	of	the	
differences	might	require	a	tedious	level	
of	detail/explanation…in	these	cases	it	
would	be	fine	to	keep	the	discussion	at	a	
relatively	high	level.		
	

We	acknowledge	that	the	difference	between	
the	offline	ESA	CCI	and	the	CCI	NRT	dataset	
was	not	sufficiently	clear.	
	
	We	decided	to	rewrite	the	manuscript	to	
clarify	the	difference	in	both	the	processing	
chains	and	the	offline/NRT	data.	The	
explanation	of	the	difference	in	offline/NRT	
data	quality	in	the	case	of	ASCAT	is	relatively	
straightforward.	However,	we	added	a	sub-
section	about	the	more	complex	
intercalibration	issues	related	to	AMSR-E	and	
AMSR2.	In	addition,	we	try	to	explain	the	
influence	of	the	NRT	data	quality	on	the	
overall	CCI	NRT	dataset.	
	
With	regard	to	data	screening	we		tried	to	
keep	the	screening	of	the	NRT	data	as	similar	
as	possible	to	the	ESA	CCI	SM	processing	
chain.	However,	in	special	cases	(e.	g.	in	the	
case	of	snow-covered/frozen	soil)	the	quality	
flags	are	not	available	in	NRT.	As	an	
alternative	we	used	a	static	mask	for	snow-

We	elaborate	on	these	issues	at	the	
beginning	of	the	document	(last	paragraph	
in	the	introduction),	in	the	description	of	
intercalibration	issues	between	AMSR-E	
and	AMSR2	(2.3.1),	the	section	about	the	
methods	(section	3.1)	and	the	
discussion/conclusions	(section	5).	
	
Section	3.1.	also	focuses	on	the	problem	of	
a	missing	flag	for	snow-covered/frozen	
soils	and	a	different	resampling	strategy	
for	the	NRT	data.	
	
	
	



covered/frozen	soils,	which	inevitably	affects	

the	soil	moisture	retrieval.		

While	there	is	some	attribution	

discussion	in	Section	5,	it	is	presented	in	a	

cursory	and	unsatisfying	manner.	For	
instance,	lines	381-382	say	that	“Since	

most	of	these	regions	are	covered	by	
AMSR2,	the	most	likely	error	sources	are	

the	GLDAS-based	rescaling	parameters.”		

There	are	two	issues	here.	First,	both	
AMSR2	and	ASCAT	soil	moisture	products	

are	rescaled	via	by	“GLDAS-based	

rescaling	parameters”,	so	it’s	unclear	why	
the	use	of	AMSR2	in	these	regions	points	

to	a	re-scaling	problem.	Second,	the	
“problems”	being	referred	to	are	

associated	with	poor	temporal	

correlations.	This	is	odd	since	
correlations	should	be	minimally	

impacted	by	rescaling	(i.e.,	correlation	is	

not	impacted	by	any	kind	of	linear	
scaling).	

	

The	current	version	of	the	manuscript	

discusses	more	carefully	the	issue	related	to	

the	scaling,	which	may	have	resulted	from	a	
misunderstanding.	We	apply	a	CDF	matching	

based	on	linear	functions	to	scale	both	ASCAT	
and	AMSR2	to	GLDAS	as	their	common	

reference	dataset.	The	full	documentation	of	

the	CDF	matching	can	be	found	in	the	ATBD:	
http://www.esa-soilmoisture-

cci.org/sites/default/files/documents/public

/Deliverables%20-
%20CCI%20SM%202/CCI2_Soil_Moisture_DL

2.1_ATBD_v2.2_04_merging.pdf	
	

	

	

Section	3.1	explains	the	CDF	matching,	its	

background	and	the	estimation	of	

uncertainty	(noise)	in	greater	detail.	A	
second	reference	(Koster	et	al.,	2004)	was	

added.	
	

The	first	bullet	point	in	section	5	

(discussion	and	conclusion)	was	rewritten	
with	regard	to	the	calibration	of	the	two	

AMSR	datasets	(in	ESA	CCI	SM	and	CCI	

NRT).	The	rescaling	parameters	are	indeed	
a	potential	source	of	error,	but	it	is	

currently	not	possible	to	estimate	robust	
new	rescaling	parameters	for	AMSR2,	

because	it	has	only	been	operational	since	

2012.	
	

The	initial	sensor	calibration	of	AMSR2	was	

recently	improved	after	gathering	a	
sufficiently	large	overlapping	dataset	with	

its	predecessor	AMSR-E	through	a	
dedicated	“slow	rotation”	mode.	This	

dataset	is	used	to	generate	the	ESA	CCI	SM	

dataset.	However,	the	AMSR2	NRT	dataset	
does	not	apply	this	calibration,	potentially	

affecting	the	level	of	brightness	
temperature.	Section	2.3.1	and	section	5	



focus	on	these	issues,	which	are	to	a	large	
extent	based	on	the	findings	of	Parinussa	et	
al.	(2015)	about	the	issue	of	consistent	soil	
moisture	retrievals	from	AMSR2.	The	
corresponding	reference	was	added.		

Along	the	same	lines,	in	lines	392-394	it	is	
unclear	how	a	2013	(retrospective	versus	
NRT)	bias	can	be	attributed	to	a	AMSR-
E/AMSR2	cross-calibration	issue	given	
that	AMSRE	stopped	functioning	in	2010	
and	obviously	played	no	direct	role	in	the	
generation	of	any	2013	soil	moisture	
product.	I	suspect	that	there	is	a	subtle	
calibration/scaling	issue	at	play	here	-	
whereby	AMSRE	does,	in	fact,	end	up	
impacting	the	calibration	of	the	2013	soil	
moisture	results.	However	no	explanation	
is	given	on	exactly	what	this	
issue/connection	is.	
	

We now explain the challenges related to the 
brightness temperature calibration of AMSR-E 
and AMSR2 in the updated version of the 
manuscript. Even small inconsistencies in such a 
brightness temperature calibration will inevitably 
propagate into the soil moisture retrievals 
(Parinussa et al. 2015). 
Please find a more detailed explanation below: 
 
The	 consistency	 of	 brightness	 temperature	
observations	 from	 AMSR-E	 to	 AMSR2,	 hence	
also	 soil	 moisture	 retrievals,	 is	 challenging	
due	to	 the	 lack	of	an	operational	overlapping	
period	 between	 both	 sensors.	 AMSR-E	 was	
shut	down	in	October	2011	while	the	AMSR2	
soil	moisture	 dataset	 started	with	 July	 2012.	
As	 a	 result,	 the	 first	 version	 of	 AMSR2	 data	
was	not	 perfectly	intercalibrated	with	AMSR-
E.	 In	 December	 2012,	 AMSR-E	was	 switched	
on	 again	 in	 a	 special	 slow	 rotation	 mode	 to	
get	simultaneous	observations	of	 the	 sensors.	
Afterwards,	 the	 overlapping	dataset	 between	
the	 operational	 AMSR2	 and	 slow	 rotation	
AMSR-E	was	 sufficiently	 large	 to	 re-calibrate	

We	introduced	a	separate	chapter	to	
explain	the	intercalibration	issues	of	
AMSR-E	and	AMSR2	as	well	as	the	
differences	in	AMSR2	datasets	(section	
2.3.1)	



AMSR2	 and	 align	 those	measurements	 based	
on	 this	overlapping	 period	
(http://global.jaxa.jp/press/2015/12/20151
207_amsr-e.html).	 Before	 JAXA	 corrected	 for	
these	subtle	 differences,	 a	 preliminary	
solution	 was	 developed	 by	 (Parinussa	 et	 al.,	
2015).	This	preliminary	product	was	used	 to	
generate	the	ESA	CCI	dataset.		
	

Same	issue	with	line	396	–	which	
mentions	the	potential	benefits	of	a	
“dynamic	snow	map	for	ASCAT.”	The	
sounds	plausible	but	it’s	also	not	clear	
how	snow	mapping	errors	may	be	
affecting	the	observed	retrospective	
versus	NRT	differences.	Is	snow	masking	
applied	differently	in	the	two	products?	I	
couldn’t	find	any	discussion	on	this	issue.	
The	same	issue	with	the	RFI	masking	
mentioned	later	in	the	paragraph…how	
exactly	does	this	issue	lead	to	
retrospective	versus	NRT	differences	(i.e.	
the	core	issue	examined	in	the	paper)?	
	

Thanks	for	this	comment.	The	latest	version	
of	the	manuscript	discusses	differences	
caused	by	the	snow	mask	and	the	RFI	
masking	in	greater	detail.		
	
A quick note on the RFI masking: This can 
indeed be different because AMSR2 has a 
massive advantage through the additional 7.3 
GHz observations - which is an additional 
frequency that significantly improves the 
detection of RFI (De Nijs et al., 2015)	

We	added	some	information	about	the	
additional	7.3	channel	and	possible	
differences	in	RFI	masking	in	section	2.3	
(second	paragraph).	
	
The	last	paragraph	in	the	introduction	and	
section	3.1	(Integrating	NRT	ASCAT	and	
AMSR2	into	the	ESI	CCI	SM	dataset)	were	
rewritten	with	regard	to	the	masks	for	RFI	
and	snow-covered/frozen	soils,	which	are	
different	in	the	offline	and	NRT	datasets.	
The	flag	for	snow-covered/frozen	soils,	for	
instance,	is	not	available	in	the	NRT	
product.	As	a	consequence,	we	used	a	static	
mask	that	generally	works	well	on	a	global	
scale,	but	not	for	the	Winter	of	2013	over	
Europe.		

In	contrast,	Lines	400-404	are	very	
good…they	clearly	describe	how	ASCAT	
calibration	issues	may	be	driving	

Thanks!	 	



retrospective	versus	NRT	differences.	I’d	

really	like	to	see	more	of	that	in	a	revised	

version.	

So,	in	summary,	I’d	still	urge	the	authors	

to	spend	more	time:	1)	describing/listing	

the	underlying	sources	of	retrospective	

versus	NRT	soil	moisture	differences	and	

2)	providing	a	better	attribution	

discussion	which	clarifies	the	connection	

between	these	sources	of	differences	with	

specific	inter-comparison	results	

presented	in	the	paper	(see	above	for	

specific	advice	on	how	to	do	this).	I	don’t	

think	this	would	require	a	significant	

amount	of	re-writing…just	a	modest	

amount	of	additional	text	in	Sections	1	

and	5	or	the	revised	manuscript.	

	

Thanks	–	we	agree	that	this	needs	to	be	done.		 See	above	
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	 2	

Abstract	16	

The	soil	moisture	dataset	 that	 is	generated	via	 the	Climate	Change	 Initiative	 (CCI)	of	 the	European	17	

Space	Agency	(ESA)	(ESA	CCI	SM)	is	a	popular	research	product.	It	is	composed	of	observations	from	18	

ten	 different	 satellites	 and	 aims	 to	 exploit	 the	 individual	 strengths	 of	 active	 (radar)	 and	 passive	19	

(radiometer)	sensors,	thereby	providing	surface	soil	moisture	estimates	at	a	spatial	resolution	of	0.25	20	

degrees.	However,	the	annual	updating	cycle	limits	the	use	of	the	ESA	CCI	SM	dataset	for	operational	21	

applications.	 Therefore,	 this	 study	 proposes	 an	 adaptation	 of	 the	 ESA	 CCI	 product	 for	 daily	 global	22	

updates	via	satellite-derived	near	real-time	(NRT)	soil	moisture	observations.	In	order	to	extend	the	23	

ESA	 CCI	 SM	 dataset	 from	 1978	 to	 present	 we	 use	 NRT	 observations	 from	 the	 Advanced	24	

SCATterometer	 on-board	 the	 two	 MetOp	 satellites	 and	 the	 Advanced	 Microwave	 Scanning	25	

Radiometer	 2	 on-board	 GCOM-W.	 Since	 these	 NRT	 observations	 do	 not	 incorporate	 the	 latest	26	

algorithmic	updates,	parameter	databases,	and	intercalibration	efforts,	by	nature	they	offer	a	lower	27	

quality	 than	 reprocessed	offline	datasets.	 In	 addition	 to	 adaptations	of	 the	ESA	CCI	 SM	processing	28	

chain	for	NRT	datasets,	the	quality	of	the	NRT	datasets	is	a	main	source	of	uncertainty.	Our	findings	29	

indicate	that,	despite	issues	in	arid	regions,	the	new	“CCI	NRT”	dataset	shows	a	good	correlation	with	30	

ESA	CCI	SM.	The	average	global	correlation	coefficient	between	CCI	NRT	and	ESA	CCI	SM	(Pearson’s	31	

R)	is	0.80.	An	initial	validation	with	40	in-situ	observations	in	France,	Spain,	Senegal	and	Kenya	yields	32	

an	average	R	of	0.58	and	0.49	 for	ESA	CCI	 SM	and	CCI	NRT	 respectively.	 In	 summary,	 the	CCI	NRT	33	

product	is	nearly	as	accurate	as	the	existing	ESA	CCI	SM	product	and,	therefore,	of	significant	value	34	

for	 operational	 applications	 such	 as	 drought	 and	 flood	 forecasting,	 agricultural	 index	 insurance	 or	35	

weather	forecasting.		36	

Keywords:	Soil	Moisture,	Remote	Sensing,	Global	Analysis	37	
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	 3	

1 Introduction	42	

Soil	moisture,	 the	water	 in	 the	 soils’	 pore	 space,	 is	 one	 of	 very	 few	 environmental	 variables	 that	43	

directly	 link	 atmospheric	 processes	 to	 land	 surface	 conditions	 (Legates	 et	 al.,	 2010;	 Taylor	 et	 al.,	44	

2012).	It	is	a	decisive	or	even	limiting	factor	in	many	processes	related	to	agriculture,	climate	change,	45	

energy	fluxes,	hydrology	and	hydro-climatic	extreme	events	(Brocca	et	al.,	2010;	Greve	et	al.,	2014;	46	

Jung	et	al.,	2010;	Legates	et	al.,	2010;	Qiu	et	al.,	2014;	Seneviratne	et	al.,	2010;	Sheffield	and	Wood,	47	

2008;	 Taylor	 et	 al.,	 2012;	 Trenberth	 et	 al.,	 2014).	 Along	 with	 temperature	 and	 precipitation,	 soil	48	

moisture	 is	 ranked	a	 top	priority	 variable	 in	 all	 societal	 benefit	 areas	 listed	by	 the	Group	on	Earth	49	

Observations	 (agriculture,	 biodiversity,	 climate,	 disasters,	 ecosystems,	 energy,	 health,	 water	 and	50	

weather)	 (Group	 on	 Earth	 Observations,	 2012).	 Also	 aid	 organizations	 or	 developers	 of	 financial	51	

instruments	 (e.g.	 weather	 index	 insurance),	 whose	 potential	 regions	 of	 interest	 may	 encompass	52	

whole	sub-continents,	are	gradually	discovering	the	 importance	of	soil	moisture	for	assessments	of	53	

drought-related	food	insecurity.		54	

	55	

Traditional	 measurements	 of	 soil	 moisture	 relied	 on	 direct	 in-situ	 methods,	 such	 as	 gravimetric	56	

samples	or	time	domain	reflectometry	(Dorigo	et	al.,	2011;	Wagner	et	al.,	2007).	In-situ	observations	57	

are	to	date	the	most	accurate	localized	measurements	of	soil	moisture,	but	only	models	or	satellites	58	

are	 able	 to	 provide	 spatially-consistent	 information	 on	 a	 global	 scale.	 However,	 datasets	 derived	59	

from	space-borne	microwave	sensors	are	not	yet	able	to	capture	variability	at	the	scale	of	metres	at	60	

sub-daily	 intervals.	 Hence,	 the	 concept	 of	 temporal	 stability	 (Brocca	 et	 al.,	 2009;	 Vachaud	 et	 al.,	61	

1985),	 which	 describes	 a	 quasi-linear	 relationship	 between	 soil	 moisture	 variations	 over	 time	 on	62	

different	spatial	scales,	allows	using	coarse	information	acquired	via	satellites	to	understand	local	to	63	

regional	phenomena.		64	

	65	

Satellite	instruments	capable	of	retrieving	information	about	soil	moisture	have	been	available	since	66	

the	 late	 1970s.	 However,	 despite	 the	 existence	 of	 several	 individual	 space-borne	 soil	 moisture	67	

products,	 a	 harmonized	 long-term	 dataset	 was	 missing	 until	 the	 Water	 Cycle	 Multi-mission	68	

Observation	 Strategy	 (WACMOS)	 project	 and	 the	 Climate	 Change	 Initiative	 (CCI)	 of	 the	 European	69	

Space	 Agency	 (ESA)	 released	 the	 first	 multi-sensor	 soil	 moisture	 product	 (Liu	 et	 al.,	 2011a,	 2012;	70	

Wagner	 et	 al.,	 2012).	 This	 ESA	 CCI	 soil	 moisture	 dataset	 (ESA	 CCI	 SM)	 relies	 on	 the	 merging	 of	71	

different	 active	 (radar)	 and	 passive	 (radiometer)	microwave	 instrument	 observations	 into	 a	 single	72	

consistent	 product	 (Dorigo	 et	 al.	 2015)	 based	 on	 uncertainty	 information	 of	 the	 individual	 soil	73	

moisture	products	(Liu	et	al	2011a;	Dorigo	et	al.	2010).	The	latest	official	release	of	the	ESA	CCI	SM	74	

product	 (CCI	 SM	 v02.2)	 covers	 a	 period	 from	 1978	 to	 2014.	 Product	 updates	 that	 extend	 the	75	
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temporal	 coverage	 are	 performed	 every	 year	 by	 incorporating	 new	 observations	 from	 radars	 and	93	

radiometers.		94	

	95	

Since	its	release	in	2012,	the	ESA	CCI	SM	dataset	has	been	used	in	a	wide	variety	of	studies	(Dorigo	96	

and	de	Jeu,	2016).	Yuan	et	al.	(2015),	for	instance,	analysed	the	performance	of	ESA	CCI	SM	to	detect	97	

short-term	(monthly	to	seasonal)	droughts	in	China	with	respect	to	in-situ	observations	and	two	soil	98	

moisture	reanalysis	datasets,	namely	the	Global	Land	Data	Assimilation	System	(GLDAS)	(Rodell	et	al.,	99	

2004)	 and	 ERA	 Interim	 (Dee	 et	 al.,	 2011).	 ESA	 CCI	 SM	 captured	 less	 than	 60	 per	 cent	 of	 drought	100	

months	at	the	scale	of	in-situ	stations.	However,	comparable	to	the	reanalysis	products,	it	performed	101	

well	 with	 regard	 to	 the	 detection	 of	 inter-annual	 variations	 of	 short-term	 drought	 on	 river	 basin	102	

scale,	particularly	in	sparsely	vegetated	areas.	Nicolai-Shaw	et	al.	(2015)	confirm	these	findings	over	103	

North	 America	 by	 comparing	 ESA	 CCI	 SM	 with	 reanalysis	 products	 of	 the	 European	 Centre	 for	104	

Medium	 Range	 Weather	 Forecasting	 (ECMWF)	 and	 in-situ	 observations.	 Regarding	 the	 spatial	105	

representativeness,	ESA	CCI	SM	showed	a	higher	agreement	with	the	in-situ	observations	than	with	106	

the	reanalysis	data.	With	respect	to	the	absolute	values,	however,	the	agreement	between	ESA	CCI	107	

SM	and	 the	 reanalysis	data	was	higher.	McNally	et	al.	 (2015)	 showed	 the	 superiority	of	 the	Water	108	

Requirement	Satisfaction	Index	in	Senegal	and	Niger	when	fed	with	ESA	CCI	SM	instead	of	a	water-109	

balance	model	output.	 Finally,	 ESA	CCI	 SM	was	 also	used	 to	 identify	 global	 trends	 in	 soil	moisture	110	

with	 regard	 to	 vegetation	 (Barichivich	et	 al.,	 2014;	Dorigo	et	 al.,	 2012;	Muñoz	et	 al.,	 2014)	 and	 to	111	

improve	the	understanding	of	the	land-atmosphere	coupling	(Hirschi	et	al.,	2014).		112	

	113	

However,	decision-makers	in	various	applications	and	domains	(e.g.	weather	prediction,	drought	and	114	

flood	 monitoring,	 index-based	 agricultural	 insurance)	 need	 more	 timely	 soil	 moisture	 product	115	

updates	at	daily	or	sometimes	even	sub-daily	 intervals.	 In	case	of	weather	prediction,	 for	 instance,	116	

satellite-derived	 soil	moisture	 is	 usually	 assimilated	 via	 a	 nudging	 scheme	or	 an	 ensemble	 Kalman	117	

filter	approach	at	sub-daily	(e.g.	six-hourly)	 increments	(Drusch,	2007;	Drusch	et	al.,	2009;	Scipal	et	118	

al.,	2008).	 In	 case	of	drought	monitoring,	 satellite-derived	 soil	moisture	can	be	used	 to	 fill	 the	gap	119	

between	satellite-based	estimates	of	rainfall	and	vegetation	vigour	(Enenkel	et	al.,	2014).	However,	120	

the	 current	 ESA	 CCI	 SM	 product	 does	 not	 fulfil	 this	 requirement	 with	 regard	 to	 updates	 at	121	

appropriate	time	steps.	Bridging	this	gap	requires	daily	product	updates	of	the	ESA	CCI	SM	dataset	by	122	

seamlessly	 integrating	 near	 real-time	 (NRT)	 soil	 moisture	 observations.	 Therefore,	 we	 use	123	

observations	 from	 two	 space-based	 sensors:	 One	 of	 these	 sensors	 is	 a	 radar,	 the	 Advanced	124	

Scatterometer	 (ASCAT)	on-board	 the	Meteorological	Operational	 satellites	MetOp-A	and	MetOp-B,	125	

the	other	one	a	radiometer,	 the	Advanced	Microwave	Scanning	Radiometer	 (AMSR2)	on-board	the	126	

Global	 Change	 Observation	 Mission	 for	 Water	 (GCOM-W1)	 satellite.	 NRT	 means	 that	 both	 the	127	
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observations	 from	 ASCAT	 and	 AMSR2	 are	 available	 within	 two	 to	 three	 hours	 after	 the	 satellite	144	

overpass.	The	resulting	dataset	is	called	“CCI	NRT”.		145	

	146	

This	study	has	two	complementary	objectives.	The	first	objective	is	to	describe	how	the	current	ESA	147	

CCI	 processing	 chain	 is	 adapted	 to	 generate	 a	 CCI	 NRT	 soil	 moisture	 product	 by	 discussing	 issues	148	

related	 to	 the	 resampling	 of	 time	 series	 (ASCAT	 offline)	 and	 orbit	 format	 data	 (ASCAT	 NRT)	 to	 a	149	

quarter	 degree	 grid,	missing	 surface	 state	 flags	 for	 snow-covered	 or	 frozen	 soils	 in	 ASCAT	NRT	 or	150	

differences	in	the	masking	of	radio	frequency	interference	(RFI)	in	case	of	AMSR2	(section	3.1).	The	151	

second	objective	is	to	investigate	how	well	the	CCI	NRT	dataset	compares	to	ESA	CCI	SM	on	a	global	152	

scale	 (section	 4).	 In	 addition	 to	 the	 adaptations	 of	 the	 processing	 chain	 we	 highlight	 that	 the	153	

difference	in	the	backscatter	and	calibration	levels	of	the	NRT	input	datasets	(compared	to	the	offline	154	

datasets)	naturally	leads	to	differences	in	soil	moisture	estimates.	Particularly	in	the	case	of	AMSR2	155	

issues	 related	 to	 its	 calibration	 resulted	 in	 different	 product	 versions,	 which	 we	 try	 to	 clarify	 in	156	

section	 2.3.1.	 The	 initial	 sensor	 calibration	 of	 AMSR2	 was	 recently	 improved	 after	 gathering	 a	157	

sufficiently	 large	 overlapping	 dataset	 with	 its	 predecessor	 AMSR-E	 through	 a	 dedicated	 “slow	158	

rotation”	mode.	This	dataset	is	used	to	generate	the	ESA	CCI	SM	dataset.	However,	the	AMSR2	NRT	159	

dataset	does	not	apply	this	calibration,	potentially	affecting	the	level	of	brightness	temperature.	We	160	

try	 to	quantify	 the	errors	 via	 an	 initial	 validation	of	 the	CCI	NRT	and	 the	ESA	CCI	 SM	dataset	with	161	

respect	to	40	in-situ	stations	in	France,	Senegal,	Spain,	and	Kenya.		162	

		163	

2 Datasets	used	164	

Depending	on	the	sensor	and	retrieval	approach,	space-based	soil	moisture	retrievals	show	distinct	165	

variations	 in	 performance	 on	 a	 global	 scale	 (e.g.	 Crow	 et	 al.,	 2010;	 Dorigo	 et	 al.,	 2010).	 In	166	

combination	with	the	TU	WIEN	change	detection	algorithm	C-band	radars	(e.g.	ASCAT),	for	instance,	167	

are	better	suited	to	retrieve	soil	moisture	over	moderate	vegetation	cover	than	radiometers	(Al-Yaari	168	

et	al.,	2014;	Dorigo	et	al.,	2010;	Gruhier	et	al.,	2010;	Rüdiger	et	al.,	2009).	Simultaneously,	radars	are	169	

facing	 challenges	 in	 arid	 regions	 that	 are	 often	 characterized	 by	 sandy	 soils	 (Wagner	 et	 al.,	 2003,	170	

2007)	due	to	volume	scattering	of	the	microwave	beam.	The	following	section	describes	the	general	171	

characteristics	 of	 the	 reprocessed	 ESA	 CCI	 SM	 product,	 as	 well	 as	 the	 operational	 products	 from	172	

ASCAT	 and	 AMSR2	 that	 are	 used	 to	 generate	 the	 extension	 of	 the	 ESA	 CCI	 SM	 dataset	 via	 daily	173	

updates.	174	

	175	

2.1 ESA	CCI	Surface	Soil	Moisture	176	
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The	 ESA	 CCI	 soil	 moisture	 product	 was	 generated	 in	 accordance	 with	 the	 World	 Meteorological	196	

Organization’s	 (2008)	 report	 on	 “Future	 Climate	 Change	 Research	 and	 Observation”.	 The	 report	197	

highlights	 the	 importance	of	collecting,	harmonizing	and	validating	soil	moisture	observations	 from	198	

different	 sources	 to	 extend	 the	 temporal	 and	 spatial	 coverage,	 to	 improve	 data	 quality	 (also	 for	199	

further	data	assimilation),	to	support	the	understanding	of	feedback	mechanisms	and	the	prediction	200	

of	extreme	events.		201	

	202	

The	 ESA	 CCI	 SM	dataset	 incorporates	 the	measurements	 of	 ten	 satellites	 (Fig.	1).	 It	 is	 available	 at	203	

daily	time	steps	and	on	a	0.25°	x	0.25°	latitude/longitude	global	array	of	grid	points	(i.e.	a	global	0.25°	204	

grid).	The	quality	 flags,	which	are	distributed	 in	combination	with	 the	dataset,	provide	 information	205	

about	 the	 sensor	 and	 observation	 frequency	 that	 was	 used	 for	 each	 soil	 moisture	 retrieval,	 the	206	

moment	 of	 the	 measurement,	 ascending	 or	 descending	 orbit	 and	 snow/frozen	 soil	 probability.	207	

According	to	Liu	et	al.	(2011b;	2012),	soil	porosity	values	derived	from	1300	global	samples	are	used	208	

in	the	algorithm	developed	by	the	VU	University	Amsterdam	and	the	National	Aeronautics	and	Space	209	

Administration	 (NASA)	 to	generate	soil	moisture	data	 from	passive	sensors	via	 the	Land	Parameter	210	

Retrieval	Model	 (LPRM)	 (Holmes	et	al.,	2009;	Owe	et	al.,	2008).	The	 same	porosity	values	are	also	211	

applied	 in	GLDAS,	which	 is	 used	 as	 a	 reference	dataset	 to	 rescale	 soil	moisture	 estimates	 from	all	212	

active	and	passive	sensors	shown	 in	Fig.	1	via	cumulative	distribution	 function	matching	 (Liu	et	al.,	213	

2009;	Reichle	and	Koster,	2004).		214	

	215	

	216	

Fig.	1	Satellites	and	sensors	used	for	generating	the	offline	ESA	CCI	SM	dataset	and	the	daily	continuation	via	217	

ASCAT	 and	 AMSR2;	 Dotted,	 yellow	 lines	 indicate	 inactive	 missions;	 Yellow	 arrows	 represent	 passive	218	
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measurements,	 green	 arrows	 represent	 active	measurements;	 The	 ESA	 CCI	 SM	 dataset	 only	 includes	 SSM/I	223	

data	until	2007.			224	

2.2 Active	Microwave	Measurements	from	the	ASCAT	225	

The	ASCAT	sensors	on-board	MetOp	A/B	are	real	aperture	radar	sensors.	Their	soil	moisture	retrieval	226	

is	based	on	the	backscatter	of	microwaves	that	are	sensitive	to	the	dielectric	properties	of	the	water	227	

molecule,	 resulting	 in	 a	 quasi-linear	 increase	 relationship	 between	 increasing	 water	 content	 and	228	

microwave	 backscatter.	 ASCAT	operates	 in	 C-band	 (5.255	GHz),	 scanning	 two	 550	 km	 swaths	with	229	

three	 antennas	on	each	 side.	 Consequently,	 every	 location	 is	 scanned	 from	 three	different	 angles,	230	

enabling	corrections	for	vegetation	cover	by	analysing	measurement	differences	at	different	angles.		231	

This	 principle	 is	 exploited	 by	 the	 TU	 Wien	 Water	 Retrieval	 Package	 (WARP),	 a	 change	 detection	232	

algorithm	 that	 results	 in	 surface	 soil	 moisture	 observations	 in	 relative	 units	 (percent).	 These	233	

observations	 are	 scaled	 between	 the	 historically	 lowest	 and	 highest	 values,	 corresponding	 to	 a	234	

completely	dry	surface	and	soil	saturation	(Bartalis	et	al.,	2005;	Wagner	et	al.,	1999,	2013).		235	

	236	

WARP	 is	 optimized	 to	 estimate	 model	 parameters	 from	 multi-year	 backscatter	 time	 series	 on	 a	237	

discrete	 global	 grid	 (DGG).	 These	 parameters	 help	 to	 understand	 the	 characteristics	 of	 scattering	238	

effects	on	a	global	scale,	which	are	affected	by	surface	roughness	and	vary	with	land	cover.	However,	239	

there	 are	 large	 differences	 between	 soil	 moisture	 derived	 from	 ASCAT	 via	 the	 offline	 WARP	240	

processing	chain	and	its	operational	version	WARP	NRT,	which	result	in	different	backscatter	levels.	241	

While	the	offline	WARP	processor	generates	soil	moisture	on	a	discrete	global	grid,	 the	WARP	NRT	242	

product	is	distributed	from	EUMETSAT	(European	Organisation	for	the	Exploitation	of	Meteorological	243	

Satellites)	in	orbit	geometry.	It	is	available	135	minutes	after	the	overpass	of	the	two	ASCAT	sensors	244	

on	board	 the	MetOp	A	and	MetOp	B	satellites.	An	advantage	of	WARP	NRT	 is	 the	high	 robustness	245	

and	 speed	 of	 the	 processing	 chain	 (less	 than	 a	 minute	 for	 one	 ASCAT	 orbit).	 However,	 updates	246	

related	to	algorithmic	improvements	and	updates	in	the	calibration	of	the	backscatter	measurement	247	

usually	 take	 a	 lot	 of	 time	 (Wagner	 et	 al.,	 2013).	 Several	 parameters,	most	 importantly	 a	 dynamic	248	

mask	 for	 snow-covered/frozen	 soils,	 are	 not	 available	 in	 NRT.	 As	 a	 result,	 the	 quality	 of	 NRT	 soil	249	

moisture	data	lags	behind	the	quality	of	reprocessed,	offline	datasets.	250	

	251	

Validations	 of	 the	 NRT	 soil	 moisture	 product	 disseminated	 via	 EUMETCAST	 (Albergel	 et	 al.,	 2012)	252	

yielded	an	average	 root	mean	squared	difference	 (RMSD)	of	0.08	m3/m3	 for	more	 than	200	 in-situ	253	

stations	 around	 the	 globe.	 	 While	 the	 global	 average	 of	 all	 correlations	 was	 r	 =	 0.50,	 the	 best	254	

correlation	 (r	 =	 0.80)	 was	 achieved	 for	 an	 in-situ	 network	 in	 Australia	 (OZNET).	 In	 general,	 the	255	

correlations	were	higher	during	winter	months.	256	

	257	
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2.3 Passive	Microwave	Measurements	from	the	AMSR2	radiometer	269	

Passive	 soil	moisture	 retrievals	 are	based	on	 the	dielectric	 contrast	between	dry	 and	wet	 soil	 that	270	

leads	to	changes	in	emissivity	from	0.96	for	dry	soils	to	below	0.60	for	wet	soils	(Njoku	and	Li,	1999;	271	

Schmugge	 and	 Jackson,	 1994).	 Being	 very	 similar	 to	 its	 predecessor	AMSR-E,	AMSR2	on-board	 the	272	

GCOM-W1	 satellite	 measures	 brightness	 temperature	 at	 6	 different	 bands	 with	 vertical	 and	273	

horizontal	 polarizations	 at	 each	 frequency.	 In	 addition,	 the	 vertically	 polarized	 Ka-band	 (36.5	GHz)	274	

observations	are	used	to	simultaneously	estimate	land	surface	temperature	(Holmes	et	al.,	2009).	In	275	

contrast	 to	 ASCAT,	 the	AMSR	 sensors	 have	 a	 fixed	 observation	 angle	 at	 55	 degrees,	 resulting	 in	 a	276	

“conically-shaped”	footprint	and	a	swath	width	of	1445	km.	Both	radiometer	observations	in	the	ESA	277	

CCI	SM	dataset	and	its	NRT	equivalent	only	use	night	time	measurements	(Liu	et	al.,	2011),	because	a	278	

smaller	temperature	gradient	between	the	soil	and	vegetation	facilitates	higher	quality	soil	moisture	279	

retrievals	 (de	Jeu	et	al.,	2009).	The	LPRM	transforms	 information	about	the	dielectric	constant	 into	280	

volumetric	 soil	 moisture	 by	 applying	 an	 empirical	 dielectric	 mixing	 model	 (Wang	 and	 Schmugge,	281	

1980).	Similar	 to	ASCAT,	 reliable	measurements	over	 frozen	or	snow-covered	soils	are	not	possible	282	

due	to	the	 immovability	of	 the	water	molecules.	Several	studies	compared	the	performance	of	soil	283	

moisture	products	from	the	AMSR	sensors	and	ASCAT	(Brocca	et	al.,	2011;	Dorigo	et	al.,	2010;	Gruber	284	

et	 al.,	 2016),	 leading	 to	 overall	 comparable	 and	 complementary	 performance.	 An	 intercomparison	285	

over	17	European	sites	(Brocca	et	al.,	2011),	for	instance,	resulted	in	comparable	correlation	values	286	

with	observed	(modelled)	data	of	0.71	(0.74)	for	ASCAT	and	0.62	(0.72)	for	AMSR-E.	The	AMSR2	NRT	287	

dataset	is	distributed	from	NASA	and	the	Japan	Aerospace	Exploration	Agency	(JAXA).	It	is	available	288	

at	NASA’s	Global	Change	Master	Directory:	289	

http://gcmd.gsfc.nasa.gov/r/d/[GCMD]GES_DISC_LPRM_AMSR2_SOILM2_V001	290	

	291	

2.3.1 Issues	related	to	the	intercalibration	of	AMSR-E	and	AMSR2	292	

The	 consistency	 of	 brightness	 temperature	 observations	 from	 AMSR-E	 to	 AMSR2,	 hence	 also	 soil	293	

moisture	retrievals,	is	challenging	due	to	the	lack	of	an	operational	overlapping	period	between	both	294	

sensors.	AMSR-E	was	shut	down	in	October	2011	while	the	AMSR2	soil	moisture	dataset	started	with	295	

July	2012.	As	a	result,	the	first	version	of	AMSR2	data	was	not	perfectly	intercalibrated	with	AMSR-E.	296	

In	 December	 2012,	 AMSR-E	 was	 switched	 on	 again	 in	 a	 special	 slow	 rotation	 mode	 to	297	

get	simultaneous	observations	 of	 the	 sensors.	 Afterwards,	 the	 overlapping	 dataset	 between	 the	298	

operational	AMSR2	and	slow	rotation	AMSR-E	was	sufficiently	large	to	re-calibrate	AMSR2	and	align	299	

those	 measurements	 based	 on	 this	overlapping	 period	300	

(http://global.jaxa.jp/press/2015/12/20151207_amsr-e.html).	Before	JAXA	corrected	for	these	subtle	301	

differences,	a	preliminary	solution	was	developed	by	Parinussa	et	al.	(2015).	This	preliminary	product	302	

was	used	to	generate	the	ESA	CCI	dataset.		303	
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	316	

As	a	consequence,	the	AMSR2	soil	moisture	product	that	was	used	to	create	the	ESA	CCI	SM	dataset	317	

is	 a	 different	 version	 than	 the	 current	 operational	 product	 that	 we	 use	 to	 develop	 the	 CCI	 NRT	318	

product,	but	both	products	are	generally	comparable	(Parinussa	et	al.,	2014).	Just	like	its	predecessor	319	

AMSR-E,	 AMSR2	 needs	 to	 cope	with	 RFI	 which	 is	 capable	 of	 jeopardizing	whole	 satellite	missions	320	

(Oliva	 et	 al.,	 2012).	 Currently,	 the	RFI	masking	 is	 based	on	 a	 decision-tree	 that	 selects	 the	passive	321	

microwave	observations	in	the	lowest	available	frequency	that	is	free	of	RFI	for	each	individual	grid	322	

point	 (Fig.	 A7).	 AMSR2	offers	 an	 important	 advantage	 through	 additional	 observations	 at	 7.3	GHz,	323	

which	is	a	frequency	that	significantly	improves	the	detection	of	RFI.	However,	in	most	cases	the	6.9	324	

GHz	channel	can	be	used.	325	

	326	

2.4 In-situ	Networks	327	

All	 in-situ	 measurements	 used	 for	 this	 study	 were	 obtained	 via	 the	 International	 Soil	 Moisture	328	

Network	 (Dorigo	 et	 al.,	 2011,	 2013).	 The	 single	 probes/networks	 (Fig.	 2)	 were	 selected	 to	 cover	329	

regions	in	which	either	the	active,	passive	and	merged	component	of	the	CCI	NRT	dataset	(explained	330	

in	section	3)	are	used.	331	

	332	
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Fig.	2	Location	of	the	networks	used	for	validation	in	this	study	(Smosmania,	France,	green	dots;	Remedhus,	340	

Spain,	red	rectangle;	Dahra,	Senegal,	blue	dot;	Cosmos,	Kenya,	orange	dot)	341	

	342	

Accordingly,	we	extracted	measurements	from	the	Smosmania	network	(Albergel	et	al.,	2008)	in	the	343	

South	of	France	to	validate	the	active	component	of	the	daily	ESA	CCI	surface	soil	moisture	updates,	344	

from	 the	 Remedhus	 network	 (Sanchez	 et	 al.,	 2012)	 in	 the	West	 of	 Spain	 to	 validate	 the	 merged	345	

active/passive	component,	from	the	Dahra	network	in	Senegal	and	the	Cosmos	network	in	Kenya	to	346	

validate	 the	 passive	 component.	 The	 Smosmania	 (Albergel	 et	 al.,	 2008)	 and	 Dahra	 networks	 are	347	

equipped	 with	 the	 same	 type	 of	 probes	 (ThetaProbe	 ML2X),	 while	 the	 Remedhus	 network	 that	348	

covers	 the	 Duero	 basin	 relies	 on	 Stevens	 HydraProbes.	 The	 Cosmos	 station	 in	 Kenya	 relies	 on	 a	349	

cosmic-ray	probe.	All	 in-situ	observations	were	 filtered	 for	 stations	 that	measure	 the	 soil	moisture	350	

content	 up	 to	 a	 depth	 of	 5	 centimetres	 (respectively	 10	 centimetres	 for	 the	 Cosmos	 station)	 to	351	

ensure	the	comparability	with	the	satellite-derived	surface	soil	moisture	datasets.	352	

3 Methods	353	

The	following	section	is	divided	into	two	parts.	Section	3.1	concentrates	on	the	adaptation	of	the	ESA	354	

CCI	SM	processing	chain	 for	daily	updates.	Section	3.2	explains	 the	corresponding	validation	of	 the	355	

new	dataset	on	a	global	scale.		356	

	357	

3.1 Integrating	NRT	ASCAT	and	AMRS2	into	the	ESA	CCI	SM	dataset	358	

The	integration	of	NRT	ASCAT	and	AMSR2	observations	into	the	ESA	CCI	SM	builds	on	the	procedures		359	

used	to	generate	the	standard	ESA	CCI	SM	products	(Liu	et	al.,	2011a,	2012;	Wagner	et	al.,	2012).	Fig.	360	

3	illustrates	the	main	processing	steps	for	the	integration	of	NRT	soil	moisture	observation	in	a	flow	361	

chart.	 The	 most	 recent	 official	 ESA	 CCI	 SM	 product	 covers	 the	 years	 1978	 to	 2014.	 The	 CCI	 NRT	362	

dataset	extends	this	temporal	coverage	to	the	present	with	an	overlap	for	2013/2014.	363	

	364	

The	aim	is	to	keep	the	processing	chain	of	the	NRT	datasets	as	similar	as	possible	to	the	ESA	CCI	SM	365	

processing	chain.	However,	several	adaptations	are	unavoidable	with	regard	to	the	resampling	and	366	

the	masking	of	snow-covered/frozen	soils.	In	contrast	to	the	offline	soil	moisture	observations	from	367	

ASCAT	 that	 were	 resampled	 to	 a	 quarter	 degree	 as	 time	 series	 to	 generate	 the	 ESA	 CCI	 the	 NRT	368	

ASCAT	data	from	EUMETSAT	have	to	be	resampled	from	orbit	geometry.	Also	the	masking	of	snow-369	

covered/frozen	soils	needed	to	be	adapted.	While	a	surface	state	flag	for	snow-covered/frozen	soils	370	

is	 available	 for	 the	 ASCAT	 observations	 in	 the	 ESA	 CCI	 dataset,	 the	 NRT	 ASCAT	 product	 from	371	

EUMETSAT	 is	based	on	an	older	algorithm	that	 is	 incapable	of	generating	a	surface	state	 flag.	As	a	372	

consequence,	we	apply	 a	mask	based	on	a	daily	 climatology	 (probability)	 for	 snow-covered/frozen	373	
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soils.	In	addition	to	the	snow-flag,	a	second	mask	is	applied	to	the	ASCAT	data	based	on	vegetation	377	

optical	 depth	 (VOD).	 VOD	 is	 a	 dimensionless	 variable	 linked	 to	 the	 vegetation	 water	 content	 and	378	

above	ground	biomass	(Liu	et	al.,	2015).	VOD	has	previously	been	used	as	an	additional	indicator	for	379	

long-term	 vegetation	 dynamics	 (Liu	 et	 al.,	 2011b)	 and	 is	 retrieved	 simultaneously	 to	 soil	moisture	380	

through	the	LPRM.	Retrievals	with	VOD	values	>	0.8	(dense	vegetation)	are	masked.		The	AMSR2	data	381	

are	masked	 for	 soil	 skin	 temperature	 below	 freezing	 (Holmes	 et	 al.	 2009),	 RFI	 and	VOD.	After	 the	382	

spatial	resampling	via	a	regular	hamming	window	to	a	0.25°	grid	we	apply	the	temporal	resampling	383	

to	 00:00	 UTC	 reference	 time	 via	 nearest	 neighbour	 search	 to	 both	 datasets.	 While	 we	 use	 both	384	

ascending	 and	 descending	 orbits	 in	 case	 of	 ASCAT,	 we	 only	 use	 the	 descending	 (night-time)	385	

observations	from	AMSR2	(de	Jeu	et	al.	2009;	Lei	et	al.,	2015).	386	

	387	

Fig.	3	Schematic	flowchart	illustrating	the	methodology	for	extending	the	ESA	CCI	SM	dataset	via	NRT	388	

observations	from	ASCAT	and	AMSR2.	The	GLDAS1-Noah	dataset	is	used	as	a	scaling	reference.		389	

Before	the	active	and	the	passive	datasets	can	be	merged	it	is	vital	to	allow	for	different	observation	390	

frequencies,	observation	principles,	and	retrieval	techniques.	Consequently,	we	rescale	both	datasets	391	

to	a	reference	soil	moisture	dataset	(GLDAS	1-NOAH)	via	piecewise	CDF	matching	(Liu	et	al.,	2011a;	392	

Reichle	et	al.,	2004).	The	rescaling	is	carried	out	for	each	grid	point	individually.	Also	values	outside	393	

the	range	of	the	CDF	curves	can	be	rescaled	by	using	the	linear	CDF	equation	of	the	closest	value.	The	394	

uncertainty	(noise)	of	the	rescaled	soil	moisture	dataset	is	estimated	by	multiplying	the	ratio	of	the	395	

rescaled	and	the	non-rescaled	soil	moisture	value	with	the	original	noise.	Due	to	the	unavailability	of	396	

the	GLDAS	dataset	in	NRT,	we	apply	the	scaling	functions	that	were	used	to	generate	the	original	ESA	397	

CCI	 SM	 dataset.	 This	way	 it	 is	 possible	 to	 preserve	 the	 datasets’	 original,	 relative	 dynamics,	while	398	

adjusting	them	to	the	same	range	and	distribution.	Once	this	step	is	completed,	the	active	and	the	399	

passive	datasets	can	be	merged.	400	

	401	
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Fig.	4	illustrates	the	coverage	of	active,	passive	and	merged	data	on	a	global	scale.	The	passive	LPRM	426	

soil	moisture	product	 is	used	 in	 regions	with	 low	vegetation	density	 (VOD	<	0.24),	whereas	 the	TU	427	

Wien	ASCAT	product	is	applied	in	regions	with	moderate	to	high	vegetation	density	(VOD	0.60).	So-428	

called	 transition	 zones	between	dry	and	humid	climates	are	characterized	by	VOD	values	between	429	

0.24	and	0.60.	 In	these	regions	the	active	and	the	passive	product	agree	well	(R	>	0.65).	Therefore,	430	

both	products	can	be	merged	(green	areas	in	Fig.	4).		431	

	432	

	433	

Fig.	4	Global	blending	map	illustrating	where	active	sensors	(red),	passive	sensors	(yellow)	and	the	average	of	434	

both	(green)	is	used	to	generate	the	ESA	CCI	SM	product	(modified	from	Liu	et	al.	2012)	435	

	436	

3.2 Performance	Metrics	and	Validation	437	

According	 to	Wagner	 et	 al.	 (2013),	 the	 validation	 of	 satellite	 data	 via	 in-situ	 observations	 can	 be	438	

critical	due	to	different	issues,	such	as	the	high	spatio-temporal	variability	of	soil	moisture	(Western	439	

et	al.,	2002)	or	a	lack	of	adequate	reference	datasets	(Crow	et	al.,	2012).	There	are	no	reference	data	440	

that	represent	exactly	the	same	physical	quantity	as	the	satellite	observation.	Acknowledging	these	441	

limitations,	this	study	concentrates	on	the	following	comparative	assessments:	442	

- Calculating	the	Pearson’s	correlation	coefficient	(R)	between	ESA	CCI	SM	and	CCI	NRT	for	an	443	

overlapping	year	(2013)	on	a	global	scale	444	

- Calculating	the	absolute	differences	in	volumetric	soil	moisture	between	both	datasets	for	445	

the	entire	year	of	2013	(including	individual	calculations	for	all	seasons)	on	a	global	scale	446	

- Individual	 validation	 for	 ESA	 CCI	 SM	 and	 CCI	 NRT	 for	 2013	 over	 forty	 in-situ	 soil	moisture	447	

stations	in	France,	Kenya,	Senegal	and	Spain	448	

	449	
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For	each	in-situ	observation	a	nearest	neighbour	search	selects	the	closest	grid	point	in	the	satellite-454	

derived	datasets.	The	performance	metrics	include:		455	

	456	

• Pearson	correlation	(R),	indicating	a	linear	relationship	between	two	variables	457	

• Spearman	correlation	(S),	a	non-parametric	test	that	does	not	rely	on	any	assumption	about	458	

the	distribution	of	the	data	459	

• The	absolute	bias	in	m3/m3		460	

• Unbiased	root	mean	squared	difference	(ubRMSD)	in	m3/m3		461	

	462	

Equation	 (1)	 shows	 that	 the	 bias	!	 is	 expressed	 as	 the	 difference	 between	 the	 time	 series’	!	 and	463	

reference	 !,	 corresponding	 to	 the	 mean	 values	 of	 CCI	 NRT	 and	 ESA	 CCI	 SM/in-situ	 observations,	464	

respectively.	465	

	466	

	 ! = ! − !	 (	1	)		

	467	

As	 the	 name	 suggests,	 the	 unbiased	 RMSD	 considers	 the	 overall	 bias	 related	 to	 the	 quadratic	468	

difference	in	observations	(Taylor,	2001).	Consequently,	the	unbiased	RMSD	!!	in	Eq.	(2)	relates	the	469	

individual	bias	for	each	time	series	to	the	corresponding	observation	values,	whereas	!!	and	!!	again	470	

correspond	to	observations	of	ESA	CCI	SM	and	CCI	NRT.		471	

	472	

	

!! =  1! !! − ! − !! − !  !
!

!!!
 !/!	

(	2	)	

	

	473	

4 Results	474	

The	Pearson	correlation	coefficient	(R)	yields	an	average	correlation	of	0.80	for	ESA	CCI	SM	and	CCI	475	

NRT	on	a	global	scale	(Fig.	55).	Regions	in	which	the	NRT	dataset	does	not	correspond	well	with	the	476	

offline	dataset	include	parts	of	North	Africa	and	the	Sahara,	the	West	coast	of	the	United	States	and	477	

several	 large	 mountain	 ranges	 (e.g.	 the	 Andes	 in	 South	 America).	 Tropical	 forests	 are	 masked,	478	

because	 they	 are	 impenetrable	 to	 radars	 at	 the	 applied	 frequencies	 and	 block	 the	 soil	 moisture	479	

emission	for	radiometers.	480	

	481	

Since	 the	 good	 agreement	 of	 the	 ESA	 CCI	 SM	 and	 the	 CCI	 NRT	 dataset	 is	 only	 meaningful	 if	 it	482	

represents	 actual	 surface	 soil	 moisture	 conditions	 on	 the	 ground,	 we	 calculate	 the	 performance	483	

metrics	 for	 both	 datasets	 related	 to	 daily	 in-situ	 observations	 (Table	 1).	 The	 average	 Pearson	484	
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correlation	coefficient	 for	all	 in-situ	stations	 is	0.58	 (ESA	CCI	SM),	and	0.49	 (CCI	NRT),	 respectively.	492	

The	statistical	scores	for	the	Smosmania	and	the	Remedhus	network	are	comparable	to	the	findings	493	

of	Albergel	et	al.	(2012)		or	Dorigo	et	al.	(2015).	The	bias	and	the	unbiased	RMSD	are	slightly	higher	494	

for	CCI	NRT.		495	

	496	

Fig.	5	Global	correlation	(Pearson’s	R)	for	ESA	CCI	SM	and	CCI	NRT	for	2013	(no	negative	correlations	497	

were	observed);	The	white	triangles	illustrate	the	location	of	the	in-situ	stations/networks.		498	

	499	

The	 validation	 results	 for	 the	 corresponding	 anomalies,	which	were	 calculated	 based	 on	 a	moving	500	

average	with	a	window	size	of	35	days,	are	in	line	with	the	findings	of	Albergel	et	al.	(2013).	Table	2	501	

lists	the	Pearson	correlation	coefficient,	which	 is	on	average	 lower	for	the	anomalies	than	for	their	502	

normal	 time	series	and	also	 lower	 for	CCI	NRT	 than	 for	ESA	CCI	 SM.	 	Again,	both	 the	bias	and	 the	503	

unbiased	RMSD	are	higher	for	CCI	NRT.			504	

	505	

The	Pearson	(P)	and	Spearman	(S)	correlation	coefficients	between	ESA	CCI	SM	and	CCI	NRT	over	the	506	

locations	of	the	in-situ	stations	confirm	the	global	picture	with	an	average	R	of	0.80	and	an	S	of	0.82.	507	

The	best	correlation	is	observed	over	the	location	of	the	“Urgons”	station	in	the	Smosmania	network,	508	

which	is	located	in	a	cultivated	area	in	the	South	of	France.	The	corresponding	Fig.	6	shows	an	R	of	509	

0.93	and	a	S	of	0.96.	However,	in	the	same	network	we	also	observe	the	worst	agreement	(R	=	0.62,	510	

S	=	65)	at	a	station	named	“Savenes”	(not	shown).		511	
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	517	

Fig.	6		Illustration	of	ESA	CCI	SM	and	CCI	NRT	over	the	“Urgons”	station	of	the	Smosmania	network	(R	=	0.93;	S	518	

=	0.96)	519	

	520	

Global	 maps	 of	 the	 absolute	 differences	 between	 both	 datasets	 for	 2013	 (Fig.	 B8)	 and	 the	 four	521	

seasons	(Fig.	B9	to	Fig.	B12	Appendix)	show	a	systematic	positive	bias	in	CCI	NRT	of	up	to	0.30	m3/m3	522	

in	 regions	 like	East	Africa	or	Pakistan.	This	effect	 is	 stronger	 in	spring	and	summer	than	 in	autumn	523	

and	 winter.	 In	 the	 central	 United	 States,	 large	 parts	 of	 Australia	 and	 Southern	 Africa	 the	 bias	524	

overestimation	 is	 smaller.	 Since	 the	 overestimation	 mainly	 appears	 in	 regions	 where	 the	 AMSR2	525	

dataset	is	used	(Fig.	4)	and	to	understand	the	bias	of	soil	moisture	over	Europe	during	winter	2013,	526	

we	also	analyse	the	absolute	difference	between	the	offline	and	the	NRT	ASCAT	and	AMSR2	datasets	527	

(Fig.	 C13	 and	 Fig.	 C14).	 Compared	 to	 the	 offline	 product,	 AMSR2	NRT	 tends	 to	 overestimate	 on	 a	528	

global	 scale,	mainly	 in	 parts	 of	 the	 Horn	 of	 Africa,	 the	 Arabic	 peninsula,	 parts	 of	 Australia,	 South	529	

America	and	Southern	Africa.	The	strong	overestimation	in	the	Horn	of	Africa	is	also	clearly	visible	in	530	

the	CCI	NRT	dataset.	On	the	contrary,	ASCAT	NRT	tends	to	underestimate,	mainly	over	Europe	with	531	

the	 strongest	 signal	 over	 the	 winter	 season,	 parts	 of	 the	Western	 United	 States	 as	 well	 as	 areas	532	

North	 and	 East	 of	 the	 Black	 Sea.	 In	 summary,	 our	 validation	 results	 indicate	 that,	 with	 some	533	

exceptions,	 the	 new	 CCI	 NRT	 dataset	 performs	well	 on	 a	 global	 scale	 in	 comparison	 to	 its	 offline	534	

counterpart.		535	

	536	

5 Discussion	and	Conclusions	537	

The	global	daily	update	of	the	ESA	CCI	SM	surface	soil	moisture	dataset	is	motivated	by	an	increasing	538	

interest	 in	 soil	moisture	products	 that	offer	 long	 (>30	years)	 reference	periods	 for	a	wide	 range	of	539	

applications.	 The	 need	 for	 improved	 and	more	 timely	 soil	moisture	 representations	 in	 agricultural	540	

drought	monitoring	 is	 one	 of	 the	 strongest	motivations	 (Anderson	 et	 al.,	 2012;	 Bolten	 and	 Crow,	541	

2012;	Enenkel	et	al.,	2014;	Hirschi	et	al.,	2014).	Hence,	this	study	concentrated	on	three	main	topics.	542	
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First,	we	analyse	the	challenges	related	to	the	adaptation	of	the	ESA	CCI	SM	processing	chain	for	NRT	561	

soil	moisture	observations	from	ASCAT	and	AMSR2.	Just	like	in	the	case	of	ESA	CCI	SM,	the	CCI	NRT	562	

merging	 scheme	 considers	 each	 sensor’s	 individual	 strengths	 and	 limitations.	 ASCAT,	 for	 instance,	563	

performs	 better	 than	 AMSR2	 at	 higher	 vegetation	 densities,	 while	 one	 strength	 of	 AMSR2	 is	 the	564	

retrieval	over	semi-arid	and	arid	regions	(Liu	et	al.,	2011a).	The	challenges	are	mainly	related	to	the	565	

resampling	 of	 the	 NRT	 data	 to	 a	 common	 quarter	 degree	 grid	 and	 a	 quality	 flag	 for	 snow-566	

covered/frozen	soils,	which	does	not	exist	for	the	NRT	ASCAT	dataset.	Second,	we	identify	the	impact	567	

of	NRT	 soil	moisture	algorithms	and	 intercalibration	 issues	of	AMSR-E/AMSR2	on	 the	 final	merged	568	

CCI	NRT	product.	Third,	we	perform	an	initial	validation	on	a	global	scale	as	well	as	based	on	in-situ	569	

soil	moisture	observations	that	were	selected	based	on	their	reliability,	temporal	coverage	and	ability	570	

to	 reflect	 the	 individual	 components	 (active/passive/combined)	of	 the	CCI	NRT	dataset.	Finally,	we	571	

also	 examine	 the	 agreement	 of	 the	 ESA	 CCI	 SM/CCI	 NRT/in-situ	 anomalies	 and	 the	 absolute	572	

differences	between	ESA	CCI	SM	and	CCI	NRT	on	a	global	scale.	573	

	574	

Our	main	findings	are:	575	

	576	

- There	is	a	high	agreement	between	the	CCI	NRT	dataset	and	the	ESA	CCI	SM	dataset	on	a	577	

global	scale	for	the	entire	year	of	2013	(average	R	=	0.80).	This	finding	also	indicates	a	good	578	

performance	of	NRT	soil	moisture	observations	from	ASCAT	and	AMSR2	and	therefore	the	579	

operational	readiness	of	the	CCI	NRT	algorithm.	Low	correlations	are	for	instance	observed	in	580	

areas	that	permanently	show	low	levels	of	soil	moisture,	e.g.		the	arid	zones	of	Northern	581	

Africa.	The	error	sources	in	the	CCI	NRT	product	are	likely	due	to	the	predominant	use	of	582	

AMSR2	in	the	merged	dataset	for	these	regions:		calibration	differences	exist	between	the	583	

AMSR2	dataset	used	in	ESA	CCI	SM	and	the	latest	AMSR2	NRT	dataset	used	in	CCI	NRT,	584	

causing	differences	between	the	two	merged	products.	Also,	the	challenging	issue	on	585	

aligning	the	brightness	temperatures	of	both	AMSR	sensors	was	only	recently	solved	through	586	

a	slow	rotation	mode	of	AMSR-E	that	was	dedicated	to	intercalibration	(section	2.3.1.).		587	

- The	validation	with	in-situ	observations	in	Spain,	France,	Senegal	and	Kenya	yields	less	588	

accurate	results	for	the	CCI	NRT	dataset	than	for	ESA	CCI	SM.	The	average	Pearson	589	

correlation	coefficient	(R)	for	all	in-situ	stations	is	0.49	(0.58	for	ESA	CCI	SM).	The	unbiased	590	

RMSD	for	CCI	NRT	is	0.008	m3m3	(0.004	m3m3	for	ESA	CCI	SM).	We	observe	hardly	any	591	

difference	in	the	overall	bias	(0.05	m3m3	for	both	datasets).	592	

- The	performance	metrics	for	the	corresponding	anomalies	result	in	an	average	correlation	593	

coefficient	(Pearson)	of	0.44	for	ESA	CCI	SM	and	0.38	for	CCI	NRT,	respectively.	Also	with	594	

regard	to	absolute	difference	the	general	agreement	between	CCI	NRT	and	ESA	CCI	SM	is	595	
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satisfying.	A	comparison	of	both	datasets	for	2013	reveals	a	bias	of	CCI	NRT	over	Europe	616	

during	winter	2013	(Fig.	C13;	Appendix)	and	a	bias	over	several	dry	areas,	e.	g.	over	parts	of	617	

Africa	and	Australia	(Fig.	C14;	Appendix),	which	is	likely	related	to	intercalibration	issues	618	

between	AMSR2	and	its	predecessor	AMSR-E	(Okuyama	and	Imaoka,	2015;	Parinussa	et	al.,	619	

2015).		620	

	621	

We	expect	that,	apart	 from	solving	the	AMSR2	intercalibration	 issues	and	a	dynamic	snow	map	for	622	

ASCAT,	which	should	 improve	the	performance	during	winter,	two	 improvements	 in	the	processing	623	

chain	 could	 lead	 to	 considerable	 improvements	 in	 data	 quality.	 First,	 there	 are	 differences	 in	 the	624	

temporal	coverage	of	 the	MetOp-A	ASCAT	data	used	 to	derive	soil	moisture	model	parameters	 for	625	

the	offline	ASCAT	(2007-2014)	and	ASCAT	NRT	(2007-2012)	products.	The	offline	and	the	NRT	ASCAT	626	

product	used	in	this	study	differ	in	their	absolute	calibration	level	affecting	the	soil	moisture	values.	627	

Despite	 the	 good	 correlation	 between	 both	 products	 it	 is	 likely	 that	 their	 consistency	 can	 be	628	

improved	 by	 reprocessing	 the	 rescaling	 parameters	 in	 the	 CCI	 NRT	 processing	 chain,	 which	 are	629	

currently	based	on	parameters	that	had	been	developed	for	the	offline	ASCAT	product.	Second,	the	630	

currently	static	RFI	map	for	AMSR2	could	be	replaced	by	a	dynamic	map	that	is	based	on	the	average	631	

RFI	values	for	the	previous	six	months	via	a	moving	average.	In	a	recent	study	(de	Nijs	et	al.,	2015),	an	632	

improved	algorithm	 to	detect	RFI	 at	 the	global	 scale	 for	6.9	and	7.3	GHz	AMSR2	observations	was	633	

proposed,	but	remains	to	be	tested	for	 the	specific	 implementation	 in	the	CCI	NRT	product.	This	 is	634	

the	first	method	that	takes	the	additional	7.3	GHz	channel	into	account,	which	was	specifically	added	635	

to	the	AMSR-E	sensor	constellation	and	proved	to	mitigate	issues	related	to	RFI.		636	

	637	

Despite	 these	 issues,	 the	 development	 of	 an	 operational	 processing	 chain	 that	 allows	 daily	 soil	638	

moisture	updates	is	particularly	promising	with	regard	to	applications	that	aim	at	the	confirmation	of	639	

satellite-based	rainfall	estimates	(Brocca	et	al.,	2013)	or	at	closing	the	gap	between	rainfall	estimates	640	

and	 the	 response	 of	 vegetation	 (Enenkel	 et	 al.,	 2014).	 In	 this	 regard,	 the	 integration	 of	 the	 latest	641	

generation	of	soil	moisture	sensors,	such	as	Sentinel-1	of	the	ESA	and	the	European	Commission	(EC)	642	

or	 NASA’s	 SMAP	 (Soil	 Moisture	 Active/Passive),	 whose	 L-band	 radiometer	 is	 still	 active	 after	 the	643	

failure	of	the	radar,	could	lead	to	further	improvements.	These	new	sensors	are	able	to	retrieve	soil	644	

moisture	 at	 a	 far	 higher	 resolution	 than	 ASCAT	 or	 AMSR2	 –	 in	 case	 of	 Sentinel	 1	 around	 one	645	

kilometre	for	operational	products	and	below	100	metres	for	research	products.	Of	course	the	higher	646	

spatial	 resolution	 has	 a	 drawback,	 which	 is	 a	 decrease	 in	 temporal	 resolution.	 While	 ASCAT	 on	647	

MetOp-A	alone	covers	more	than	80	per	cent	of	the	globe	every	day,	the	two	Sentinel-1	satellites	will	648	

take	 6-12	 days	 to	 scan	 the	 total	 global	 land	mass	 in	 the	 default	 interferometric	wide	 swath	 (IWS)	649	
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mode	 (World	Meteorological	Organization,	 2013).	Despite	 the	differences	 in	 spatial	 resolution	 it	 is	656	

possible	to	increase	the	temporal	resolution	of	the	CCI	NRT	dataset	to	fit	various	applications.		657	

	658	

In	 the	 face	 of	 the	 latest	 generation	 of	 space-based	 soil	moisture	 sensors	 it	 seems	 to	 be	 the	most	659	

promising	approach	to	exploit	each	sensor’s	 individual	strength	to	generate	the	most	accurate	and	660	

complete	soil	moisture	dataset.	However,	developing	a	user-friendly	dataset	means	more	than	data	661	

access.	 As	 a	 consequence,	 software	 packages,	 such	 as	 Python	 Open	 Earth	 Observation	 Tools	662	

(Mistelbauer	 et	 al.,	 2014)	 are	 necessary	 to	 enable	 automated	 updates,	 the	 visualization	 of	663	

images/time	series/anomalies	and	the	analysis	of	critical	soil	moisture	thresholds.	A	pre-operational	664	

CCI	 NRT	 dataset	 will	 soon	 be	 available	 via	 the	 Remote	 Sensing	 Research	 Group	 of	 TU	 Wien	665	

(http://rs.geo.tuwien.ac.at/	).	The	global	dataset	will	be	provided	in	NetCDF	file	format.	Updates	are	666	

planned	 for	 every	 10th,	 20th	 and	 last	 day	 of	 every	 month,	 resulting	 in	 a	 quasi-decadal	 (10-daily)	667	

dataset.	668	
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Appendix	A	692	

	693	

	694	

Fig.	A7	Global	map	illustrating	which	frequency	used	by	AMSR2		is	the	least	affected	by	RFI		695	

Appendix	B	696	

	697	

Fig.	B8	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	the	entire	year	of	2013	698	
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	699	

Fig.	B9	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	winter	2013	700	

	701	

Fig.	B10	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	spring	2013	702	
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	705	

Fig.	B11	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	summer	2013	706	

	707	

Fig.	B12	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	autumn	2013	708	
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Appendix	C	711	

	712	

Fig.	C13	Absolute	differences	in	soil	moisture	for	ASCAT	(ASCAT	NRT	minus	ASCAT	offline)	for	the	entire	year	of	713	

2013	(masked	according	to	the	blending	map	in	Fig.	4)	714	
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	716	

Fig.	C14	Absolute	differences	 in	soil	moisture	 for	AMSR2	 	 (AMSR2	 	NRT	minus	AMSR2	 	offline)	 for	 the	entire	717	

year	of	2013	(masked	according	to	the	blending	map	in	Fig.	4)	718	

	 	719	
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Table	 1	 Statistical	 scores	 for	 ESA	 CCI	 SM/CCI	 NRT	 and	 in-situ	 stations/networks	 (maximum	 depth	 0.1	m)	 in	981	

Spain,	France,	Kenya	and	Senegal	for	2013	(for	the	Remedhus	and	Smosmania	networks	the	table	includes	the	982	

bias	range	from	minimum	to	maximum)	983	

In-Situ	
Network		

Number	of	
Stations	

R	for	
ESA	CCI	

R	for	CCI	
NRT	

Bias	for	ESA	
CCI		

BIAS	for	CCI	
NRT	

Unbiased	
RMSD	for	
ESA	CCI	

Unbiased	
RMSD	for	
CCI	NRT	

Remedhus		 19	 0.60	 0.52	 -0,079/0.214	 -0.075/0,207	 0.002	 0.003	
Smosmania		 19	 0.54	 0.46	 -0,129/0.170	 -0,135/0,147	 0.006	 0.012	
Cosmos	 1	 0.66	 0.59	 0.040	 0.028	 0.002	 0.003	
Dahra		 1	 0.65	 0.61	 0.128	 0.155	 0.003	 0.003	

Average	of	all	
Observations	 	 0.58	 0.49	 N.A.	 N.A.	 0.004	 0.008	

	984	

Table	1	Statistical	scores	for	ESA	CCI	SM/CCI	NRT	anomalies	and	in-situ	stations/networks	(maximum	depth	0.1	985	

m)	 in	 Spain,	 France,	 Kenya	 and	 Senegal	 for	 2013	 (for	 the	 Remedhus	 and	 Smosmania	 networks	 the	 table	986	

includes	the	bias	range	from	minimum	to	maximum)	987	

In-Situ	
Network		

Number	of	
Stations	

R	for	
ESA	CCI	

R	for	
CCI	
NRT	

Bias	for	ESA	
CCI	

BIAS	for	CCI	
NRT	

Unbiased	
RMSD	for	
ESA	CCI	

Unbiased	
RMSD	for	
CCI	NRT	

Remedhus		 19	 0.42	 0.39	 0.000/0,003	 0.000/0,005	 0.001	 0.002	
Smosmania		 19	 0.46	 0.39	 -0.002/0,005	 -0.001/0,008	 0.002	 0.003	
Cosmos	 1	 0.46	 0.32	 -0.004	 -0.003	 0.001	 0.002	
Dahra		 1	 0.54	 0.29	 0.000	 0.004	 0.001	 0.001	

Average	of	all	
Observations	 	 0.44	 0.38	 N.A.	 N.A.	 0.002	 0.002	
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