
Dear	Reviewer	#1,	
	
Thanks	a	lot	for	your	valuable	comments.	We	discussed	them	carefully.	
Please	find	our	reply	to	the	comments	below.	
	
#	 Comment	 Reply		 Changes	in	document	
1	

Since the aim of the 
paper is to develop 
a near real time soil 
moisture product, I 
suggest the authors 
improve the title by 
adding ‘near real 
time global soil 
moisture 

We agree that adding 
the term near-real-
time covers well the 
content of the 
manuscript.	

We changed the title into:  
“Combining satellite 
observations to develop a global  
soil moisture product for near 
real-time applications” 

2	
To facilitate 
applications, I 
suggest the authors 
provide the link for 
the access to the 
new CCI NRT 
product. 
	

The CCI NRT 
product is not yet 
generated 
operationally. 
However, we 
included the contact 
to the data providers 
to facilitate access to 
the pre-operational 
product. 
	

We added the following lines to 
the “discussion and conclusions” 
section (first paragraph): A pre-
operational dataset is available 
via the Remote Sensing Research 
Group of Vienna University of 
Technology 
(http://rs.geo.tuwien.ac.at/remote-
sensing/).	

3	
Since SMOS also 
has Near Real Time 
Processing Chain, 
and relevant NRT 
product. 

It would be 
interesting to 
compare your 
product with 
SMOS NRT 
product in future 
study. 
	

We fully agree. This 
could also help to 
understand the 
strengths and 
limitations of both 
datasets better with 
regard to sensor 
technology, 
algorithmic 
processing chains, 
etc. In the long-run 
we plan to integrate 
both SMOS and the 
radiometer on-board 
SMAP.	

No changes in document	

4	
It is good to see the 
current study 
validated the 
satellite estimates 
with in-situ soil 
moisture 
measurements. 

The last section was 
revised with regard to 
the choice of the in-
situ networks. 
	

The following lines were added 
to the “discussion and 
conclusions” section (first 
paragraph): A first validation is 
carried out, looking at the 
correlation of ESA CCI SM and 
the new CCI NRT dataset on a 
global scale and their agreement 



However, the 
number of the sites 
(networks) are very 
limited. 

I understand it was 
due to the coverage 
problem. 
Nevertheless, I 
suggest the authors 
add a few sentences 
in the Discussion 
and conclusions 
section, to discuss 
this issue. 
	

over in-situ stations that had been 
selected based on their reliability, 
temporal coverage and ability to 
reflect the individual components 
(active/passive/combined) of the 
CCI NRT dataset.  	

5	 P11552 L4-5: The 
CCI SM v02.2 has 
been released, 
please update here.	

Thanks for the 
comment.  

	

The introduction was updated 
(third paragraph) with regard to 
V02.2	

6	
P11558, L7-8: The 
description needs to 
be improved: do 
you use a flag here 
for RFI 

and VOD? What 
are the thresholds? 
	

The manuscript was 
revised with regard to 
the choice of channels 
to minimize RFI 
(currently a simple 
decision-tree). In 
addition, we 
explained the VOD 
masking that finally 
decides where to use 
the 
active/passive/merged 
component in greater 
detail. 
	

Section 2.3 (Passive observations 
based on AMSR-2) was updated 
with information about the 
decision tree and Fig. A7. 
 
Section 3.1. (fourth paragraph) 
was updated with regard to 
specific VOD thresholds for the 
active/passive components of 
CCI NRT.	

7	
P11564 L15-16:  
The SMAP active 
sensor can not 
provide data 
anymore, please 
update here. 
	

The manuscript was 
revised with regard to 
the radiometer on-
board SMAP. 
	

The next-to-last paragraph in the 
“discussion and conclusions” was 
updated: ...NASA’s SMAP (Soil 
Moisture Active/Passive), whose 
L-band radiometer is still active 
after the failure of the radar	

	



Dear	Reviewer	#2,	
	
Thanks	a	lot	for	your	valuable	comments.	We	discussed	them	carefully.	
Please	find	our	reply	to	the	comments	below.	
	
#	 Comment	 Reply		 Changes	in	

document	
1	

The “main 
findings” listed in 
Section 5 read 
more like internal 
technical notes 
for the CCI RT 
development team 
than findings 
appropriate for a 
peer-reviewed 
publication 
(especially the 
first one and the 
last one). Why are 
these findings of 
interest to a 
broader audience? 
	

Thank you for this comment. We 
expect the readership of HESS to 
be interested in both the technical 
details and their implications for 
practical applications. In line with 
this argument, the motivation for 
this manuscript comes from both a 
technical demand, which 
necessarily focuses on the 
performance of the near real-time 
sensors and their comparison with 
the offline product, and a practical 
demand that concentrates on the 
lack of a comparable product for 
operational purposes. We agree 
that the latter part is 
underrepresented in the current 
version of the manuscript. As a 
consequence, we decided to 
complement the list of main 
findings in section 5 with 
modifications in the sections that 
aim more at the perspective of 
practitioners. 

Section 5 was 
revised.	

2	
Provide a clearer 
description of 
how the RT soil 
moisture retrieval 
algorithms 
actually differ 
from their 
retrospective 
equivalents in the 
existing 
“research” ESA 
CCI product. 

As currently 
written, the 
manuscript 
describes these 
differences only 

The main difference between the 
ESA CCI SM and the CCI NRT 
dataset indeed comes from the 
input datasets.  
On the one hand, there is a long 
temporal lag until the algorithms 
used to generate NRT datasets are 
updated. On the other hand, NRT 
data (orbit) must be handled 
differently than offline data (grid 
format).  
 
Also Wagner et al. (2013) 
highlights this issue: “…main 
drawback is that updates related to 
algorithmic improvements and 
updates in the calibration of the 
backscatter measurement usually 

Section 2.2 was 
updated	



in very high-level 
terms.  Therefore, 
it’s difficult for 
the reader to get 
anything out of 
the conclusion 
that “the research 
and near-RT 
products do not 
differ much” 
when we really 
don’t understand 
the underlying 
retrieval 
algorithm 
differences.   For 
example – if the 
algorithm 
differences are 
relatively small – 
then this 
conclusion seems 
almost trivial.  I 
understand that 
these differences 
might be highly 
technical, but 
some context is 
needed for the 
reader to extract 
anything 
meaningful out of 
the manuscript’s 
comparisons 
between the ESA 
CCI and CCI RT 
products. 
	

take a lot of time. As a result, the 
quality of NRT soil moisture data 
lags behind the quality of 
reprocessed datasets.” 
 
In addition, the bias in the CCI 
NRT dataset is sometimes strongly 
affected by the historically 
determined scaling parameters. As 
a consequence, the retrospective 
processing likely outperforms the 
NRT processing, even though 
NRT processing operates 
satisfactorily (as we showed in this 
manuscript). 
	

3	
Since SMOS also 
has Near Real 
Time Processing 
Chain, and 
relevant NRT 
product. 

It would be 
interesting to 
compare your 
product with 
SMOS NRT 

We fully agree. This could also 
help to understand the strengths 
and limitations of both datasets 
better with regard to sensor 
technology, algorithmic 
processing chains, etc. In the long-
run we plan to integrate both 
SMOS and the radiometer on-
board SMAP.	

No changes in 
document	



product in future 
study. 
	

4	
The key issue 
here is data 
latency, not 
temporal 
frequency, so that 
title should be 
changed to reflect 
this. Replace 
“daily global” 
with “global near 
real-time” in title? 
	

We totally agree.  
	

The title was 
adapted 

5	
I’d rethink the last 
sentence of the 
abstract...it should 
reflect the key 
results presented 
above...maybe 
something like 
“In summary, the 
CCI NRT product 
is expected to be 
nearly as accurate 
as the existing 
ESA CCI SM 
product and, 
therefore, of 
significant value 
for operational 
uses such as....” 

The last sentence tried to address 
the user community along with a 
more technical community. 
However, your suggestion makes 
sense.  
	

The last sentence of 
the abstract was 
rephrased. 

6	
Line 25 “per 
mille” is not 
commonly used 
in English...it also 
not clear what the 
fraction 

actually 
represents the 
total contribution 
of soil moisture to 
all water or fresh 
water 

storage or non-ice 

Thanks for your comment. We 
decided that the information about 
the soil moisture share in the total 
global water budget is actually not 
relevant for the study.  

Part of sentence 
deleted (line 40) 



fresh water 
storage volumes? 
Consider re-
phrasing and 
clarifying. 
	

7	
Section 5 – first 
sentence.  The 
issue is not the 
performance of 
“operational” 
sensors, the issue 
is the 
performance of 
“operational” 
retrieval 
algorithms.  
Considering 

re-wording this 
sentence. 
	

Thank you for this comment.  
	

The first sentence 
in section 5 was 
rephrased: “The 
global daily update 
of the ESA CCI 
SM surface soil 
moisture dataset is 
motivated by 
uncertainties in the 
performance of 
operational 
retrieval algorithms 
for 
radars/radiometers 
(in our case 
ASCAT and 
AMSR-2) and by 
an increasing 
interest in remotely 
sensed soil 
moisture across a 
wide range of 
applications.” 

8	
Section 5 (p 
11562) – lines 24-
26.   Basically,  
that author’s are 
suggesting a role 

for non-
stationarity in the 
GLDAS/AMSR2 
rescaling statistics 
(such that the 
GLDAS 

rescaling 
parameters 
sample <2013 and 
applied in the 
ESA CCI SM are 
not applicable 

Thanks for this comment. We will 
try to elaborate further on this 
topic:  
 
First, the mentioned issues in very 
arid regions very likely influence 
our results.  
These issues include low soil 
moisture variability and high 
errors in re-analysis models in 
such extreme environments. 
 
Second, the rescaling was 
performed on a relatively small 
sample (as AMSR2 is only 
available from July 2012). We 
expect that larger samples will 
(partially) resolve such issues. 
	
	

No changes in the 
document 
	



in the current 
product). Two 
points here: first, 
it’s not clear how 
re-scaling 
statistics can 

impact 
correlations 
results (res-
scaling is a linear 
operation which 
should impact 
correlation 
attributes). 
Second, it would 
be relatively 
straight forward 
to look for 
evidence of 

this non-
stationary. Non-
stationarity in 
rescaling statistics 
is a major 
challenges in near 

RT soil moisture 
production.  
Expanding a bit 
more on this 
would help the 
technical 

contribution of 
the paper (see my 
major points 
above). 
	

	
Section 5 (p 
11563) – lines 10-
25.   This 
discussion refers 
to differences (in 
e.g. 

AMSR-2 product 
versions) that are 
of very narrow 

It will hardly be possible to open 
this indeed very narrow technical 
detail to a broader audience. Our 
compromise solution is the 
attempt to shortly discuss this 
issue in a more "approachable" 
way. 
 

Section 5 (incl. the 
AMSR-2 product 
versions) was 
revised with regard 
to more 
application-
oriented 
conclusions.  



technical interest 
and would seem 

more appropriate 
for a internal 
technical 
discussion (rather 
than an external 
journal 
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Abstract	15	

The	 soil	moiture	 dataset	 that	 is	 generated	 via	 the	Climate	 Change	 Initiative	 (CCI)	 of	 the	 European	16	

Space	Agency	(ESA)	(ESA	CCI	SM)	is	a	popular	research	product.	It	is	composed	of	observations	from	17	

ten	 different	 satellites	 and	 aims	 to	 exploit	 the	 individual	 strengths	 of	 active	 (radar)	 and	 passive	18	

(radiometer)	sensors,	thereby	providing	surface	soil	moisture	estimates	at	a	spatial	resolution	of	0.25	19	

degrees.	However,	the	annual	updating	cycle	limits	the	use	of	the	ESA	CCI	SM	dataset	for	operational	20	

applications.	 Therefore,	 this	 study	 proposes	 an	 adaptation	 of	 the	 ESA	 CCI	 product	 for	 daily	 global	21	

updates	via	satellite-derived	near	real-time	(NRT)	soil	moisture	observations.	In	order	to	extend	the	22	

ESA	 CCI	 SM	 dataset	 from	 1978	 to	 present	 we	 use	 NRT	 observations	 from	 the	 Advanced	23	

SCATterometer	 on-board	 the	 two	 MetOp	 satellites	 and	 the	 Advanced	 Microwave	 Scanning	24	

Radiometer	 2	 on-board	 GCOM-W.	 Since	 these	 NRT	 observations	 do	 not	 incorporate	 the	 latest	25	

algorithmic	updates,	parameter	databases,	and	intercalibration	efforts,	by	nature	they	offer	a	lower	26	

quality	 than	 reprocessed	offline	datasets.	Our	 findings	 indicate	 that,	despite	 issues	 in	 arid	 regions,	27	

the	new	“CCI	NRT”	dataset	shows	a	good	correlation	with	ESA	CCI	SM.	The	average	global	correlation	28	

coefficient	between	CCI	NRT	and	ESA	CCI	SM	(Pearson’s	R)	is	0.8.	An	initial	validation	with	40	in-situ	29	

observations	 in	France,	Kenya,	Senegal	and	Kenya	yields	an	average	R	of	0.58	and	0.49	for	ESA	CCI	30	

SM	and	CCI	NRT	respectively.	In	summary,	the	CCI	NRT	product	is	nearly	as	accurate	as	the	existing	31	

ESA	CCI	SM	product	and,	therefore,	of	significant	value	for	operational	applications	such	as	drought	32	

and	flood	forecasting,	agricultural	index	insurance	or	weather	forecasting.		33	

Keywords:	Soil	Moisture,	Remote	Sensing,	Global	Analysis	34	
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	 2	

1 Introduction	51	

Soil	moisture,	 the	water	 in	 the	 soils’	 pore	 space,	 is	 one	 of	 very	 few	 environmental	 variables	 that	52	

directly	 link	 atmospheric	 processes	 to	 land	 surface	 conditions	 (Legates	 et	 al.,	 2010;	 Taylor	 et	 al.,	53	

2012).	It	is	a	decisive	or	even	limiting	factor	in	many	processes	related	to	agriculture,	climate	change,	54	

energy	fluxes,	hydrology	and	hydro-climatic	extreme	events	(Brocca	et	al.,	2010;	Greve	et	al.,	2014;	55	

Jung	et	al.,	2010;	Legates	et	al.,	2010;	Qiu	et	al.,	2014;	Seneviratne	et	al.,	2010;	Sheffield	and	Wood,	56	

2008;	Taylor	et	al.,	2012,	p.201;	Trenberth	et	al.,	2014).	Along	with	 temperature	and	precipitation,	57	

soil	moisture	is	ranked	a	top	priority	variable	in	all	societal	benefit	areas	listed	by	the	Group	on	Earth	58	

Observations	 (agriculture,	 biodiversity,	 climate,	 disasters,	 ecosystems,	 energy,	 health,	 water	 and	59	

weather)	 (Group	 on	 Earth	Observations,	 2012).	 Also	 aid	 organizations,	whose	 potential	 regions	 of	60	

interest	 may	 encompass	 whole	 sub-continents,	 are	 gradually	 discovering	 the	 importance	 of	 soil	61	

moisture	 for	 assessments	 of	 drought-related	 food	 insecurity.	 The	 complexity	 of	 processes	 that	62	

involve	soil	moisture	becomes	obvious	when	atmospheric	feedback	loops	are	analysed.	Koster	et	al.	63	

(2004),	 for	 instance,	 found	 that	 	 the	 response	 of	 the	 atmosphere	 to	 changes	 in	 soil	 moisture	 is	64	

neither	 linear,	 nor	 unidirectional.	 Additionally,	 the	 distribution	 of	 soil	 moisture	 is	 by	 nature	 very	65	

heterogeneous	(Western	et	al.,	2004)	and	changes	can	appear	rapidly.		66	

	67	

Traditional	 measurements	 of	 soil	 moisture	 relied	 on	 direct	 in-situ	 methods,	 such	 as	 gravimetric	68	

samples	or	time	domain	reflectometry	(Dorigo	et	al.,	2011;	Wagner	et	al.,	2007).	In-situ	observations	69	

are	to	date	the	most	accurate	localized	measurement	of	soil	moisture,	but	only	models	or	satellites	70	

are	 able	 to	 provide	 spatially-consistent	 information	 on	 a	 global	 scale.	 However,	 datasets	 derived	71	

from	space-borne	microwave	sensors	are	not	yet	able	to	capture	variability	at	the	scale	of	metres	at	72	

sub-daily	 intervals.	 Hence,	 the	 concept	 of	 temporal	 stability	 (Brocca	 et	 al.,	 2009;	 Vachaud	 et	 al.,	73	

1985),	 which	 describes	 a	 quasi-linear	 relationship	 between	 soil	 moisture	 variations	 over	 time	 on	74	

different	spatial	scales,	allows	using	coarse	information	acquired	via	satellites	to	understand	local	to	75	

regional	phenomena.		76	

	77	

Satellite	instruments	capable	of	retrieving	information	about	soil	moisture	have	been	available	since	78	

the	 late	 1970s.	 However,	 despite	 the	 existence	 of	 several	 individual	 space-borne	 soil	 moisture	79	

products,	 a	 harmonized	 long-term	 dataset	 was	 missing	 until	 the	 Water	 Cycle	 Multi-mission	80	

Observation	 Strategy	 (WACMOS)	 project	 and	 the	 Climate	 Change	 Initiative	 (CCI)	 of	 the	 European	81	

Space	 Agency	 (ESA)	 released	 the	 first	 multi-sensor	 soil	 moisture	 product	 (Liu	 et	 al.,	 2011a,	 2012;	82	

Wagner	 et	 al.,	 2012).	 The	 ESA	 CCI	 soil	 moisture	 dataset	 (ESA	 CCI	 SM)	 relies	 on	 the	 merging	 of	83	

different	 active	 (radar)	 and	 passive	 (radiometer)	microwave	 instrument	 observations	 into	 a	 single	84	

consistent	product	(Dorigo	et	al.	2015).	The	latest	official	release	of	the	ESA	CCI	SM	product	(CCI	SM	85	
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v02.2)	covers	a	period	from	1978	to	2014.	Product	updates	that	extend	the	temporal	coverage	are	92	

performed	every	year	by	incorporating	new	observations	from	radars	and	radiometers.		93	

	94	

Since	its	release	in	2012,	the	ESA	CCI	SM	dataset	has	been	used	in	a	wide	variety	of	studies	(Dorigo	95	

and	De	Jeu	2016).	Yuan	et	al.	(2015),	for	instance,	analysed	the	performance	of	ESA	CCI	SM	to	detect	96	

short-term	(monthly	to	seasonal)	droughts	in	China	with	respect	to	in-situ	observations	and	two	soil	97	

moisture	reanalysis	datasets,	namely	the	Global	Land	Data	Assimilation	System	(GLDAS)	(Rodell	et	al.,	98	

2004)	 and	 ERA	 Interim	 (Dee	 et	 al.,	 2011).	 ESA	 CCI	 SM	 captured	 less	 than	 60	 per	 cent	 of	 drought	99	

months	at	the	scale	of	in-situ	stations.	However,	comparable	to	the	reanalysis	products,	it	performed	100	

well	 with	 regard	 to	 the	 detection	 of	 inter-annual	 variations	 of	 short-term	 drought	 on	 river	 basin	101	

scale,	particularly	in	sparsely	vegetated	areas.	Nicolai-Shaw	et	al.	(2015)	confirm	these	findings	over	102	

North	 America	 by	 comparing	 ESA	 CCI	 SM	 with	 reanalysis	 products	 of	 the	 European	 Centre	 for	103	

Medium	 Range	 Weather	 Forecasting	 (ECMWF)	 and	 in-situ	 observations.	 Regarding	 the	 spatial	104	

representativeness,	ESA	CCI	SM	showed	a	higher	agreement	with	 the	 in-situ	observations	 than	the	105	

reanalysis	data.	With	respect	to	the	absolute	values,	however,	the	agreement	between	ESA	CCI	SM	106	

and	 the	 reanalysis	 data	 was	 higher.	 McNally	 et	 al.	 (2015)	 showed	 the	 superiority	 of	 the	 Water	107	

Requirement	Satisfaction	Index	in	Senegal	and	Niger	when	fed	with	ESA	CCI	SM	instead	of	a	water-108	

balance	model	output.	 Finally,	 ESA	CCI	 SM	was	 also	used	 to	 identify	 global	 trends	 in	 soil	moisture	109	

with	 regard	 to	 vegetation	 (Barichivich	et	 al.,	 2014;	Dorigo	et	 al.,	 2012;	Muñoz	et	 al.,	 2014)	 and	 to	110	

improve	the	understanding	of	the	land-atmosphere	coupling	(Hirschi	et	al.,	2014).		111	

	112	

However,	 decision-makers	 in	 various	 applications	 and	 domains	 (e.	 g.	 weather	 prediction,	 drought	113	

and	 flood	monitoring,	 index-based	 agricultural	 insurance)	 need	more	 timely	 soil	moisture	 product	114	

updates	at	daily	or	sometimes	even	sub-daily	 intervals.	 In	case	of	weather	prediction,	 for	 instance,	115	

satellite-derived	 soil	moisture	 is	 usually	 assimilated	 via	 a	 nudging	 scheme	or	 an	 ensemble	 Kalman	116	

filter	approach	at	sub-daily	(e.g.	six-hourly)	 increments	(Drusch,	2007;	Drusch	et	al.,	2009;	Scipal	et	117	

al.,	 2008).	 In	 case	 of	 drought	 monitoring,	 it	 can	 be	 used	 to	 fill	 the	 gap	 between	 satellite-based	118	

estimates	of	 rainfall	 and	 vegetation	 vigor	 (Enenkel	 et	 al.,	 2014).	However,	 the	 current	 ESA	CCI	 SM	119	

product	does	not	fulfil	this	requirement	with	regard	to	updates	at	appropriate	time	steps.	To	bridge	120	

this	gap,	this	study	concentrates	on	the	quality	assessment	of	a	soil	moisture	dataset	that	is	based	on	121	

the	 adaptation	of	 the	 ESA	CCI	 soil	moisture	 processing	 chain	 to	 perform	daily	 product	 updates	 by	122	

seamlessly	 integrating	 near	 real-time	 (NRT)	 soil	 moisture	 observations	 from	 two	 space-based	123	

sensors.	One	of	these	sensors	is	a	radar,	the	Advanced	Scatterometer	(ASCAT)	on-board	the	MetOp-A	124	

and	MetOp-B	satellites,	 the	other	one	a	 radiometer,	 the	Avanced	Microwave	Scanning	Radiometer	125	

(AMSR2	)	on-board	GCOM-W1	(Global	Change	Observation	Mission	-	Water).	NRT	means	that	both	126	
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the	observations	from	ASCAT	and	AMSR2		are	available	within	two	to	three	hours	after	the	satellite	144	

overpass.	 The	 resulting	 dataset	 is	 called	 “CCI	 NRT”.	 It	 is	 intended	 to	 extend	 the	 35	 years	 of	 soil	145	

moisture	 observations	 available	 via	 the	 ESA	 CCI	 SM	 dataset	 on	 a	 daily	 basis.	 This	 study	 has	 two	146	

objectives.	 First,	 we	 analyse	 which	 adaptations	 of	 the	 current	 processing	 chain	 are	 required	 to	147	

generate	a	CCI	NRT	soil	moisture	product	and	implement	these	adaptations.	A	main	challenge	for	this	148	

task	is	the	qualitative	difference	in	offline	and	NRT	observations	(section	2)	and	their	manifestation	in	149	

the	CCI	NRT	processing	chain.	Second,	we	investigate	how	well	the	CCI	NRT	dataset	compares	to	ESA	150	

CCI	SM	on	a	global	scale.	An	initial	validation	of	the	CCI	NRT	and	the	ESA	CCI	SM	dataset	is	carried	out	151	

with	respect	to	40	in-situ	stations	in	France,	Senegal,	Spain	and	Kenya.		152	

		153	

2 Datasets	used	154	

Depending	on	the	sensor,	space-based	soil	moisture	retrievals	show	large	variations	in	performance	155	

on	a	global	scale.	C-band	radars	(e.g.	ASCAT),	for	instance,	are	better	suited	to	retrieve	soil	moisture	156	

over	moderate	vegetation	cover	than	radiometers	(Al-Yaari	et	al.,	2014;	Dorigo	et	al.,	2010;	Gruhier	157	

et	al.,	2010;	Rüdiger	et	al.,	2009).	Simultaneously,	radars	are	facing	challenges	in	super-arid	regions	158	

that	are	often	characterized	by	sandy	soils	 (Wagner	et	al.,	2003,	2007)	due	to	volume	scattering	of	159	

the	microwave	beam.	The	following	section	describes	the	general	characteristics	of	the	reprocessed	160	

ESA	CCI	SM	product,	as	well	 as	 the	operational	products	 from	ASCAT	and	AMSR2	 that	are	used	 to	161	

generate	the	extension	of	the	ESA	CCI	SM	dataset	via	daily	updates.	162	

	163	

2.1 ESA	CCI	Surface	Soil	Moisture	164	

The	 ESA	 CCI	 soil	 moisture	 product	 was	 generated	 in	 accordance	 with	 the	 World	 Meteorological	165	

Organization’s	 (2008)	 report	 on	 “Future	 Climate	 Change	 Research	 and	 Observation”.	 The	 report	166	

highlights	 the	 importance	of	collecting,	harmonizing	and	validating	soil	moisture	observations	 from	167	

different	 sources	 to	 extend	 the	 temporal	 and	 spatial	 coverage,	 to	 improve	 data	 quality	 (also	 for	168	

further	data	assimilation),	to	support	the	understanding	of	feedback	mechanisms	and	the	prediction	169	

of	extreme	events.		170	

	171	

The	 ESA	 CCI	 SM	dataset	 incorporates	 the	measurements	 of	 ten	 satellites	 (Fig.	1).	 It	 is	 available	 at	172	

daily	time	steps	and	on	a	0.25°	x	0.25°	latitude/longitude	global	array	of	grid	points.	The	quality	flags,	173	

which	 are	 distributed	 in	 combination	with	 the	 dataset,	 provide	 information	 about	 the	 sensor	 and	174	

observation	 frequency	 that	 was	 used	 for	 the	 retrieval	 of	 soil	 moisture,	 the	 moment	 of	 the	175	

measurement,	ascending	or	descending	orbit	and	snow/frozen	soil	probability.	According	to	Liu	et	al.	176	

(2011b;	 2012),	 soil	 porosity	 values	 derived	 from	 1300	 global	 samples	 are	 used	 in	 the	 algorithm	177	
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developed	by	the	VU	University	Amsterdam	and	the	National	Aeronautics	and	Space	Administration	210	

(NASA)	to	generate	soil	moisture	data	from	passive	sensors	via	the	Land	Parameter	Retrieval	Model	211	

(LPRM)	(Holmes	et	al.,	2009;	Owe	et	al.,	2008)	The	same	porosity	values	are	also	applied	in	GLDAS,	212	

which	 is	used	as	a	 reference	dataset	 to	 rescale	 soil	moisture	estimates	 from	all	active	and	passive	213	

sensors	 in	Fig.	1	via	cumulative	distribution	 function	matching	 (Liu	et	al.,	2009;	Reichle	and	Koster,	214	

2004).		215	

	216	

	217	

Fig.	1	Satellites	and	sensors	used	for	generating	the	offline	ESA	CCI	SM	dataset	and	the	daily	continuation	via	218	

ASCAT	 and	 AMSR2;	 Dotted	 lines	 indicate	 inactive	missions;	 Yellow	 arrows	 represent	 passive	measurements,	219	

green	arrows	represent	active	measurements;	The	ESA	CCI	SM	dataset	only	includes	SSM/I	data	until	2007.			220	

2.2 Active	Microwave	Measurements	from	the	ASCAT	scatterometer	221	

The	ASCAT	sensors	on-board	MetOp	A/B	are	real	aperture	radar	sensors.	Their	soil	moisture	retrieval	222	

is	based	on	the	backscatter	of	microwaves	that	are	sensitive	to	the	dielectric	properties	of	the	water	223	

molecule,	 resulting	 in	 a	 quasi-linear	 increase	 relationship	 between	 increasing	 water	 content	 and	224	

microwave	 backscatter.	 ASCAT	operates	 in	 C-band	 (5,255	GHz),	 scanning	 two	 550	 km	 swaths	with	225	

three	 antennas	on	each	 side.	 Consequently,	 every	 location	 is	 scanned	 from	 three	different	 angles,	226	

enabling	corrections	for	vegetation	cover	by	analysing	measurement	differences	at	different	angles.		227	

This	 principle	 is	 exploited	 by	 the	 TU	 Wien	 Water	 Retrieval	 Package	 (WARP),	 a	 change	 detection	228	

algorithm	 that	 results	 in	 relative	 surface	 soil	moisture	observations.	 These	observations	 are	 scaled	229	

between	 the	historically	 lowest	and	highest	values,	 corresponding	 to	a	 completely	dry	 surface	and	230	

soil	saturation	(Bartalis	et	al.,	2005;	Wagner	et	al.,	1999,	2013).		231	

	232	
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WARP	 is	 optimized	 to	 estimate	 model	 parameters	 from	 multi-year	 backscatter	 time	 series	 on	 a	257	

discrete	 global	 grid	 (DGG).	 These	 parameters	 help	 to	 understand	 the	 characteristics	 of	 scattering	258	

effects	on	a	global	 scale,	which	are	affected	by	 land	cover,	 surface	roughness,	etc.	However,	 there	259	

are	 large	 differences	 between	 soil	 moisture	 derived	 from	 ASCAT	 via	 the	 offline	WARP	 processing	260	

chain	 and	 its	 operational	 version	 WARP	 NRT.	 While	 the	 offline	 WARP	 processor	 	 generates	 soil	261	

moisture	on	a	discrete	global	grid,	the	WARP	NRT	product	is	distributed	from	EUMETSAT	(European	262	

Organisation	 for	 the	Exploitation	of	Meteorological	 Satellites)	 in	orbit	 geometry.	 It	 is	 available	135	263	

minutes	after	the	overpass	of	the	two	ASCAT	sensors	on	board	the	MetOp	A	and	MetOp	B	satellites.	264	

An	advantage	of	WARP	NRT	 is	 the	high	 robustness	 and	 speed	of	 the	processing	 chain	 (less	 than	a	265	

minute	for	one	ASCAT	orbit).	However,	updates	related	to	algorithmic	improvements	and	updates	in	266	

the	calibration	of	the	backscatter	measurement	usually	take	a	lot	of	time	(Wagner	et	al.,	2013).	As	a	267	

result,	the	quality	of	NRT	soil	moisture	data	lags	behind	the	quality	of	reprocessed	datasets.		268	

	269	

Validations	 of	 the	 NRT	 soil	 moisture	 product	 disseminated	 via	 EUMETCAST	 (Albergel	 et	 al.,	 2012)	270	

yielded	an	average	 root	mean	squared	difference	 (RMSD)	of	0.08	m3/m3	 for	more	 than	200	 in-situ	271	

stations	 around	 the	 globe.	 	 While	 the	 global	 average	 of	 all	 correlations	 was	 r	 =	 0.5,	 the	 best	272	

correlation	 (r	 =	 0.8)	 was	 achieved	 for	 an	 in-situ	 network	 in	 Australia	 (OZNET).	 In	 general,	 the	273	

correlations	were	higher	during	winter	months.	274	

	275	

2.3 Passive	Microwave	Measurements	from	the	AMSR2	radiometer	276	

Passive	retrievals	are	based	on	the	dielectric	contrast	between	dry	and	wet	soil	that	leads	to	changes	277	

in	emissivity	from	0.96	for	dry	soils	and	below	0.6	for	wet	soils	 (Njoku	and	Li,	1999;	Schmugge	and	278	

Jackson,	 1994).	 Being	 very	 similar	 to	 its	 predecessor	 AMSR-E,	 AMSR2	 on-board	 the	 GCOM-W1	279	

satellite	measures	brightness	temperature	at	different	bands	(C-,	X-	and	Ku-band)	with	vertical	and	280	

horizontal	polarizations	at	each	frequency.	In	addition,	the	Ka-band	(36.5/37	GHz)	is	used	to	estimate	281	

brightness	temperature	(Holmes	et	al.,	2009).	 In	contrast	to	ASCAT,	the	AMSR	sensors	have	a	fixed	282	

observation	 angle	 at	 55	 degrees,	 resulting	 in	 a	 “conically-shaped”	 footprint	 and	 a	 swath	width	 of	283	

1445	km.	Both	radiometer	observations	 in	the	ESA	CCI	SM	dataset	and	 its	NRT	equivalent	only	use	284	

night	time	measurements	(Liu	et	al.,	2011),	because	a	smaller	temperature	gradient	between	the	soil	285	

and	 vegetation	 facilitates	 more	 precise	 observations	 (de	 Jeu	 et	 al.,	 2014).	 The	 LPRM	 transforms	286	

information	 about	 the	 dielectric	 constant	 into	 volumetric	 soil	 moisture	 by	 applying	 an	 empirical	287	

model	 (Wang	and	Schmugge,	1980).	Similar	 to	ASCAT,	measurements	over	 frozen	or	snow-covered	288	

soils	are	not	possible	due	to	the	immovability	of	the	water	molecules.	Several	studies	compared	the	289	

performance	 of	 soil	 moisture	 products	 from	 the	 AMSR	 sensors	 and	 ASCAT	 (Brocca	 et	 al.,	 2011;	290	

Dorigo	 et	 al.,	 2010;	 Gruber	 et	 al.,	 2016),	 leading	 to	 overall	 comparable	 performance.	 An	291	
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intercomparison	over	 17	 European	 sites	 (Brocca	et	 al.,	 2011),	 for	 instance,	 resulted	 in	 comparable	307	

correlation	values	with	observed	(modelled)	data	of	0.71	(0.74)	for	ASCAT	and	0.62	(0.72)	for	AMSR-308	

E.	The	AMSR2	 	NRT	dataset	 is	distributed	 from	NASA	and	 the	 Japan	Aerospace	Exploration	Agency	309	

(JAXA).	It	is	available	at	NASA’s	Global	Change	Master	Directory:	310	

http://gcmd.gsfc.nasa.gov/r/d/[GCMD]GES_DISC_LPRM_AMSR2_SOILM2_V001	311	

	312	

The	 	 AMSR2	 soil	moisture	 product	 that	was	 used	 to	 create	 the	 ESA	 CCI	 SM	 dataset	 is	 a	 different	313	

version	than	the	current	operational	product	that	we	use	to	develop	the	CCI	NRT	product,	but	both	314	

products	are	comparable	(Parinussa	et	al.,	2014).	However,	just	like	its	predecessor	AMSR-E,	AMSR2	315	

needs	to	cope	with	radio	frequency	interference	(RFI)	that	is	capable	of	jeopardizing	whole	satellite	316	

missions	 (Oliva	et	al.,	2012).	Currently,	 the	RFI	masking	 is	based	on	a	decision-tree	that	selects	 the	317	

passive	 microwave	 observations	 in	 the	 lowest	 available	 frequency	 that	 is	 free	 of	 RFI	 for	 each	318	

individual	grid	point	(Fig.	A7).	In	most	cases	the	6.9	GHz	channel	can	be	used.	319	

	320	

2.4 In-situ	Networks	321	

All	 in-situ	 measurements	 used	 for	 this	 study	 were	 obtained	 via	 the	 International	 Soil	 Moisture	322	

Network	 (Dorigo	 et	 al.,	 2011,	 2013).	 The	 single	 probes/networks	 (Fig.	 2)	 were	 selected	 to	 cover	323	

regions	in	which	either	the	active,	passive	and	merged	component	of	the	CCI	NRT	dataset	(explained	324	

in	section	3),	are	used.	325	
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	345	

Fig.	2	Location	of	the	networks	used	for	validation	in	this	study	(Smosmania,	France,	green	dots;	Remedhus,	346	

Spain,	red	rectangle;	Dahra,	Senegal,	blue	dot;	Cosmos,	Kenya,	orange	dot)	347	

	348	

Accordingly,	we	extracted	measurements	from	the	Smosmania	network	(Albergel	et	al.,	2008)	in	the	349	

South	of	France	to	validate	the	active	component	of	the	daily	ESA	CCI	surface	soil	moisture	updates,	350	

from	 the	 Remedhus	 network	 (Sanchez	 et	 al.,	 2012)	 in	 the	West	 of	 Spain	 to	 validate	 the	 merged	351	

active/passive	component,	from	the	Dahra	network	in	Senegal	and	the	Cosmos	network	in	Kenya	to	352	

validate	 the	 passive	 component.	 The	 Smosmania	 (Albergel	 et	 al.,	 2008)	 and	 Dahra	 networks	 are	353	

equipped	 with	 the	 same	 type	 of	 probes	 (ThetaProbe	 ML2X),	 while	 the	 Remedhus	 network	 that	354	

covers	 the	 Duero	 basin	 relies	 on	 Stevens	 HydraProbes.	 The	 Cosmos	 station	 in	 Kenya	 relies	 on	 a	355	

cosmic-ray	probe.	All	 in-situ	observations	were	 filtered	 for	 stations	 that	measure	 the	 soil	moisture	356	

content	 up	 to	 a	 depth	 of	 5	 centimetres	 (respectively	 10	 centimetres	 for	 the	 Cosmos	 station)	 to	357	

ensure	the	comparability	with	the	satellite-derived	surface	soil	moisture	datasets.	358	
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3 Methods	359	

The	following	section	is	divided	into	two	parts.	Section	3.1	concentrates	on	the	extension	of	the	ESA	360	

CCI	SM	processing	chain	 for	daily	updates.	Section	3.2	explains	 the	corresponding	validation	of	 the	361	

new	dataset	on	a	global	scale.		362	

	363	

3.1 Integrating	NRT	ASCAT	and	AMRS2	into	the	ESA	CCI	SM	dataset	364	

The	integration	of	NRT	ASCAT	and	AMSR2	observations	into	the	ESA	CCI	SM	builds	on	the	procedures		365	

used	to	generate	the	standard	ESA	CCI	SM	products	(Liu	et	al.,	2011a,	2012;	Wagner	et	al.,	2012).	Fig.	366	

3	illustrates	the	main	processing	steps	for	the	integration	of	NRT	soil	moisture	observation	in	a	flow	367	

chart.	 The	most	 recent	 ESA	 CCI	 SM	 product	 covers	 the	 years	 1978	 to	 2014.	 The	 CCI	 NRT	 dataset	368	

extends	this	temporal	coverage	to	the	present	with	an	overlap	for	2013/2014.	369	

	370	

	371	

Fig.	3	Schematic	flowchart	illustrating	the	methodology	for	extending	the	ESA	CCI	SM	dataset	via	NRT	372	

observations	from	ASCAT	and	AMSR2.	The	GLDAS1-Noah	dataset	is	used	as	a	scaling	reference.		373	

As	 for	 the	 ESA	 CCI	 SM	 processing	 chain	 all	 ASCAT	 level	 2	 data	 (surface	 soil	 moisture	 in	 orbit	374	

geometry)	are	first	masked	according	to	snow-covered/frozen	conditions	based	on	the	ECMWF	ERA	375	

Interim	Re-Analysis	product	and	vegetation	density	based	on	vegetation	optical	depth	(VOD).	VOD	is	376	

a	dimensionless	variable	 linked	 to	 the	vegetation	water	content	and	above	ground	biomass	 (Liu	et	377	

al.,	 2015).	 VOD	 has	 previously	 been	 used	 as	 an	 additional	 indicator	 for	 long-term	 vegetation	378	

dynamics	(Liu	et	al.,	2011b).	It	is	retrieved	simultaneously	to	soil	moisture	through	the	LPRM.		379	

	380	

The	 AMSR2	 data	 are	masked	 for	 soil	 skin	 temperature	 below	 0°C,	 RFI	 and	 VOD.	 After	 the	 spatial	381	

resampling	via	a	regular	hamming	window	to	a	0.25°	grid	we	apply	the	temporal	resampling	to	00:00	382	
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UTC	reference	time	via	nearest	neighbour	search.	In	contrast	to	ASCAT,	from	which	both	ascending	408	

and	descending	orbits	are	used,	we	only	use	the	descending	(night-time)	observations	from	AMSR2	409	

(Lei	et	al.,	2015).	Both		datasets	are	rescaled	to	the	reference	soil	moisture	dataset	(GLDAS	1-NOAH)	410	

via	piecewise	linear	CDF	matching	(Liu	et	al.,	2011a).	Due	to	the	unavailability	of	the	GLDAS	dataset	411	

in	NRT,	we	apply	the	scaling	functions	that	were	used	to	generate	the	original	ESA	CCI	SM	dataset.	412	

This	way	 it	 is	possible	to	preserve	the	datasets’	original,	relative	dynamics,	while	adjusting	them	to	413	

the	same	range	and	distribution.		414	

	415	

Fig.	4	illustrates	the	coverage	of	active,	passive	and	merged	data	on	a	global	scale.	The	passive	LPRM	416	

soil	moisture	product	 is	used	in	regions	with	 low	vegetation	density	(VOD	<	0.24),	whereas	the	TU-417	

Wien	ASCAT	product	is	applied	in	regions	with	moderate	to	high	vegetation	density	(VOD	0.60).	So-418	

called	transition	zones	between	dry	 	and	humid	climates	are	characterized	by	VOD	values	between	419	

0.24	and	0.60.	 In	these	regions	the	active	and	the	passive	product	agree	well	(R	>	0.65).	Therefore,	420	

both	products	can	be	merged	(green	areas	in	Fig.	4).		421	

	422	

	423	

Fig.	4	Global	blending	map	illustrating	where	active	sensors	(red),	passive	sensors	(yellow)	and	the	average	of	424	

both	(green)	is	used	to	generate	the	ESA	CCI	SM	product	(modified	from	Liu	et	al.	2012)	425	

	426	

3.2 Performance	Metrics	and	Validation	427	

According	 to	 Wagner	 et	 al.	 (2013)	 the	 validation	 of	 satellite	 data	 via	 in-situ	 observations	 can	 be	428	

critical	due	to	different	issues,	such	as	the	high	spatio-temporal	variability	of	soil	moisture	(Western	429	

et	al.,	2002)	or	a	lack	of	adequate	reference	datasets	(Crow	et	al.,	2012).	There	are	no	reference	data	430	

that	represent	exactly	the	same	physical	quantity	as	the	satellite	observation.	Acknowledging	these	431	

limitations,	this	study	concentrates	on	the	following	comparative	assessments:	432	
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- Calculating	the	Pearson’s	correlation	coefficient	(R)	between	ESA	CCI	SM	and	CCI	NRT	for	an	464	

overlapping	year	(2013)	on	a	global	scale	465	

- Calculating	the	absolute	differences	in	volumetric	soil	moisture	between	both	datasets	for	466	

the	entire	year	of	2013	(including	individual	calculations	for	all	seasons)	on	a	global	scale	467	

- Individual	 validation	 for	 ESA	 CCI	 SM	 and	 CCI	 NRT	 for	 2013	 over	 forty	 in-situ	 soil	moisture	468	

stations	in	France,	Kenya,	Senegal	and	Spain	469	

	470	

For	each	in-situ	observation	a	nearest	neighbour	search	selects	the	closest	grid	point	in	the	satellite-471	

derived	datasets.	The	performance	metrics	include:		472	

	473	

• Pearson	correlation	(R),	indicating	a	linear	relationship	between	two	variables	474	

• Spearman	correlation	(S),	a	non-parametric	test	that	does	not	rely	on	any	assumption	about	475	

the	distribution	of	the	data	476	

• The	absolute	bias	in	m3/m3		477	

• Unbiased	root	mean	squared	difference	(ubRMSD)	in	m3/m3		478	

	479	

Equation	 (1)	 shows	 that	 the	 bias	!	 is	 expressed	 as	 the	 difference	 between	 the	 time	 series’	!	 and	480	

reference	 !,	 corresponding	 to	 the	 mean	 values	 of	 CCI	 NRT	 and	 ESA	 CCI	 SM/in-situ	 observations,	481	

respectively.	482	

	483	

	 ! = ! − !	 (	1	)		

	484	

As	 the	 name	 suggests,	 the	 unbiased	 RMSD	 considers	 the	 overall	 bias	 related	 to	 the	 quadratic	485	

difference	in	observations	(Taylor,	2001).	Consequently,	the	unbiased	RMSD	!!	in	Eq.	(2)	relates	the	486	

individual	bias	for	each	time	series	to	the	corresponding	observation	values,	whereas	!!	and	!!	again	487	

correspond	to	observations	of	ESA	CCI	SM	and	CCI	NRT.		488	

	489	

	

!! =  1! !! − ! − !! − !  !
!

!!!
 !/!	

(	2	)	

	

	490	

4 Results	491	

The	Pearson	correlation	coefficient	(R)	yields	an	average	correlation	of	0.80	for	ESA	CCI	SM	and	CCI	492	

NRT	on	a	global	scale	(Fig.	5).	Regions	 in	which	the	NRT	dataset	does	not	correspond	well	with	the	493	

offline	datasets	 include	parts	of	North	Africa	 and	 the	Sahara,	 the	US	West	 coast	 and	 several	 large	494	
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mountain	ranges	(e.	g.	the	Andes	 in	South	America).	Tropical	 forests	are	masked,	because	they	are	501	

impenetrable	 to	 radars	 at	 the	 applied	 frequencies	 and	 block	 the	 soil	 moisture	 emission	 for	502	

radiometers.	503	

	504	

	505	

Fig.	 5	Global	 correlation	 (Pearson’s	 R)	 for	 ESA	 CCI	 SM	 and	CCI	NRT	 for	 2013	 (no	 negative	 correlations	were	506	

observed);	The	white	triangles	illustrate	the	location	of	the	in-situ	stations/networks	507	

Since	 the	 good	 agreement	 of	 the	 ESA	 CCI	 SM	 and	 the	 CCI	 NRT	 dataset	 is	 only	 meaningful	 if	 it	508	

represents	 actual	 surface	 soil	 moisture	 conditions	 on	 the	 ground	 we	 calculate	 the	 performance	509	

metrics	 for	 both	 datasets	 related	 to	 daily	 in-situ	 observations	 (Table	 1).	 The	 average	 Pearson	510	

correlation	coefficient	 for	all	 in-situ	stations	 is	0.58	 (ESA	CCI	SM),	and	0.49	 (CCI	NRT),	 respectively.	511	

The	statistical	scores	for	the	Smosmania	and	the	Remedhus	network	are	comparable	to	the	findings	512	

of	Albergel	et	al.	(2012)		or	Dorigo	et	al.	(2015).	The	bias	and	the	unbiased	RMSD	are	slightly	higher	513	

for	CCI	NRT.		514	

	515	

The	 validation	 results	 for	 the	 corresponding	 anomalies,	which	were	 calculated	 based	 on	 a	moving	516	

average	with	a	window	size	of	35	days,	are	in	line	with	the	findings	Albergel	et	al.	(2013).	Table	2	lists	517	

the	 Pearson	 correlation	 coefficient,	 which	 is	 on	 average	 lower	 for	 the	 anomalies	 than	 for	 their	518	

normal	 time	series	and	also	 lower	 for	CCI	NRT	 than	 for	ESA	CCI	 SM.	 	Again,	both	 the	bias	and	 the	519	

unbiased	RMSD	are	higher	for	CCI	NRT.			520	

	521	
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The	 Pearson	 and	 Spearman	 correlation	 coefficients	 between	 ESA	 CCI	 SM	 and	 CCI	 NRT	 over	 the	530	

location	of	the	in-situ	stations	confirm	the	global	picture	with	an	average	R	of	0.80	and	an	S	of	0.82.	531	

The	best	correlation	is	observed	over	the	location	of	the	“Urgons”	station	in	the	Smosmania	network,	532	

which	is	located	in	a	cultivated	area	in	the	South	of	France.	The	corresponding	Fig.	6	shows	an	R	of	533	

0.93	 and	 a	 Spearman’s	 correlation	 coefficient	 (S)	 of	 0.96.	 However,	 in	 the	 same	 network	we	 also	534	

observe	the	worst	agreement	(R	=	0.62,	S	=	65)	at	a	station	named	“Savenes”	(not	shown).		535	

	536	

Fig.	6		Illustration	of	ESA	CCI	SM	and	CCI	NRT	over	the	“Urgons”	station	of	the	Smosmania	network	(R	=	0.93;	S	537	

=	0.96)	538	

	539	

Global	 maps	 of	 the	 absolute	 differences	 between	 both	 datasets	 for	 2013	 (Fig.	 B8)	 and	 the	 four	540	

seasons	(Fig.	B9	to	Fig.	B12	Appendix)	show	a	systematic	positive	bias	in	CCI	NRT	of	up	to	0.30	m3/m3	541	

in	regions	like	East	Africa	or	Pakistan.	compared	to	ESA	CCI	SM	in	regions	such	as	East	Africa,	parts	of	542	

the	Sahel	and	Pakistan.	This	effect	 is	stronger	 in	spring	and	summer	than	 in	autumn	and	winter.	 In	543	

the	 central	 United	 States,	 large	 parts	 of	 Australia	 and	 Southern	 Africa	 the	 bias	 overestimation	 is	544	

smaller.	Since	the	overestimation	mainly	appears	in	regions	where	the	AMSR2	dataset	is	used	(Fig.	4)	545	

and	 to	 understand	 the	 bias	 of	 soil	 moisture	 over	 Europe	 during	 winter	 2013	we	 also	 analyse	 the	546	

absolute	difference	between	the	offline	and	the	NRT	ASCAT	and	AMSR2		datasets	(Fig.	C13	and	Fig.	547	

C14).	Compared	to	the	offline	product,	AMSR2	NRT	tends	to	overestimate	on	a	global	scale,	mainly	in	548	

parts	 of	 the	 Horn	 of	 Africa,	 the	 Arabic	 peninsula,	 parts	 of	 Australia,	 South	 America	 and	 Southern	549	

Africa.	The	strong	overestimation	in	the	Horn	of	Africa	is	also	clearly	visible	in	the	CCI	NRT	dataset.	550	

On	the	contrary,	ASCAT	NRT	 tends	 to	underestimate,	mainly	over	Europe	with	 the	strongest	 signal	551	

over	Winter,	parts	of	the	Western	United	States	as	well	as	areas	North	and	East	of	the	Black	Sea.	In	552	

summary,	 our	 validation	 results	 indicate	 that,	 with	 some	 exceptions,	 the	 new	 CCI	 NRT	 dataset	553	

performs	well	on	a	global	scale	in	comparison	to	its	offline	counterpart.		554	

	555	
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5 Discussion	and	Conclusions	582	

The	global	daily	update	of	the	ESA	CCI	SM	surface	soil	moisture	dataset	is	motivated	by	uncertainties	583	

in	the	performance	of	operational	retrieval	algorithms	for	radars/radiometers	(in	our	case	ASCAT	and	584	

AMSR2)	 and	 by	 an	 increasing	 interest	 in	 multi-sensor	 soil	 moisture	 across	 a	 wide	 range	 of	585	

applications.	 The	 need	 for	 improved	 and	more	 timely	 soil	moisture	 representations	 in	 agricultural	586	

drought	monitoring	 is	 one	 of	 the	 strongest	motivations	 (Anderson	 et	 al.,	 2012;	 Bolten	 and	 Crow,	587	

2012;	Enenkel	et	al.,	2014;	Hirschi	et	al.,	2014).	The	CCI	NRT	dataset	was	generated	by	adapting	the	588	

ESA	 CCI	 SM	 processing	 chain	 for	 operational	 NRT	 soil	 moisture	 retrievals.	 Just	 like	 in	 the	 offline	589	

product	the	merging	scheme	considers	each	sensor’s	individual	strengths	and	limitations.	ASCAT,	for	590	

instance,	performs	better	than	AMSR2	at	higher	vegetation	densities,	while	one	strength	of	AMSR2		591	

is	 the	 retrieval	 over	 semi-arid	 and	 arid	 regions	 (Liu	 et	 al.,	 2011a).	 A	 first	 validation	 is	 carried	 out,	592	

looking	at	 the	 correlation	of	 ESA	CCI	 SM	and	 the	new	CCI	NRT	dataset	on	a	 global	 scale	 and	 their	593	

agreement	over	in-situ	stations	that	had	been	selected	based	on	their	reliability,	temporal	coverage	594	

and	ability	to	reflect	the	individual	components	(active/passive/combined)	of	the	CCI	NRT	dataset.	In	595	

addition,	we	analyse	the	agreement	of	the	ESA	CCI	SM/CCI	NRT/in-situ	anomalies	and	we	calculate	596	

the	absolute	differences	between	both	datasets	on	a	global	scale.		597	

	598	

Our	main	findings	are:	599	

	600	

- There	is	a	high	agreement	between	the	CCI	NRT	dataset	and	the	ESA	CCI	SM	dataset	on	a	601	

global	scale	for	the	entire	year	of	2013	(average	R	=	0.8).	This	finding	also	indicates	a	good	602	

performance	of	soil	moisture	observations	from	ASCAT	and	AMSR2	and	therefore	the	603	

operational	readiness	of	the	CCI	NRT	algorithm.	Low	correlations	are	for	instance	observed	in	604	

areas	that	permanently	show	low	levels	of	soil	moisture,	such	as	the	arid	zones	of	Northern	605	

Africa,	which	show	a	high	sensitivity	for	rainfall	events.	Since	most	of	these	regions	are	606	

covered	by	AMSR2,	the	most	likely	error	sources	are	the	GLDAS-based	rescaling	parameters.		607	

- The	validation	with	in-situ	observations	in	Spain,	France,	Senegal	and	Kenya	yields	less	608	

accurate	results	for	the	CCI	NRT	dataset	than	for	ESA	CCI	SM.	The	average	Pearson	609	

correlation	coefficient	(R)	for	all	in-situ	stations	is	0.49	(0.58	for	ESA	CCI	SM).	The	unbiased	610	

RMSD	for	CCI	NRT	is	0.008	(0.004	for	ESA	CCI	SM).	We	observe	hardly	any	difference	in	the	611	

overall	bias	(0.05	m3m3	for	both	datasets).	612	

- The	performance	metrics	for	the	corresponding	anomalies	result	in	an	average	correlation	613	

coefficient	(Pearson)	of	0.44	for	ESA	CCI	SM	and	0.38	for	CCI	NRT,	respectively.		614	

Also	with	regard	to	absolute	difference	the	general	agreement	between	CCI	NRT	and	ESA	CCI	615	

SM	is	satisfying.	A	comparison	of	both	datasets	for	2013	reveals	a	bias	of	CCI	NRT	over	616	
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Europe	during	Winter	2013		(Fig.	C13;	Appendix)	and	an	bias	over	several	dry	areas,	e.	g.	over	651	

parts	of	Africa	and	Australia	(Fig.	C14;	Appendix),	which	is	likely	related	to	intercalibration	652	

issues	between	AMSR2	and	its	predecessor	AMSR-E	(Okuyama	and	Imaoka,	2015).		653	
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proposed,	but	remains	to	be	tested	for	 the	specific	 implementation	 in	the	CCI	NRT	product.	This	 is	667	

the	first	method	that	takes	the	additional	7.3	GHz	channel	into	account,	which	was	specifically	added	668	

to	the	AMSR-E	sensor	constellation	and	proved	to	mitigate	issues	related	to	RFI.	669	
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Despite	 these	 issues,	 the	 development	 of	 an	 operational	 processing	 chain	 that	 allows	 daily	 soil	671	
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In	the	face	of	the	upcoming	generation	of	space-based	soil	moisture	sensors	it	seems	to	be	the	most	749	

promising	approach	to	exploit	each	sensor’s	 individual	strength	to	generate	the	most	accurate	and	750	

complete	soil	moisture	dataset.	However,	developing	a	user-friendly	dataset	means	more	than	data	751	

access.	 As	 a	 consequence,	 software	 packages,	 such	 as	 Python	 Open	 Earth	 Observation	 Tools	752	

(Mistelbauer	 et	 al.,	 2014)	 are	 necessary	 to	 enable	 automated	 updates,	 the	 visualization	 of	753	

images/time	series/anomalies	and	the	analysis	of	critical	soil	moisture	thresholds.	A	pre-operational	754	

dataset	will	 soon	be	 available	 via	 the	Remote	 Sensing	Research	Group	of	 the	Vienna	University	of	755	

Technology	(http://rs.geo.tuwien.ac.at/	)		756	
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Appendix	A	787	

	788	

	789	

Fig.	A7	Global	map	illustrating	which	frequency	used	by	AMSR2		is	the	least	affected	by	RFI		790	

Appendix	B	791	

	792	

Fig.	B8	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	the	entire	year	of	2013	793	
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	795	

Fig.	B9	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Winter	2013	796	

	797	

Fig.	B10	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Spring	2013	798	
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	799	

Fig.	B11	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Summer	2013	800	

	801	

Fig.	B12	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Autumn	2013	802	
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Appendix	C	803	

	804	

Fig.	C13	Absolute	differences	in	soil	moisture	for	ASCAT	(ASCAT	NRT	minus	ASCAT	offline)	for	the	entire	year	of	805	

2013	(masked	according	to	the	blending	map	in	Fig.	4)	806	
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	808	

Fig.	C14	Absolute	differences	 in	soil	moisture	 for	AMSR2	 	 (AMSR2	 	NRT	minus	AMSR2	 	offline)	 for	 the	entire	809	

year	of	2013	(masked	according	to	the	blending	map	in	Fig.	4)	810	
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Table	 1	 Statistical	 scores	 for	 ESA	 CCI	 SM/CCI	 NRT	 and	 in-situ	 stations/networks	 (maximum	 depth	 0.1	m)	 in	1086	

Spain,	France,	Kenya	and	Senegal	for	2013	(for	the	Remedhus	and	Smosmania	networks	the	table	includes	the	1087	

bias	range	from	minimum	to	maximum)	1088	

In-Situ	
Network		

Number	of	
Stations	

R	for	
ESA	CCI	

R	for	CCI	
NRT	

Bias	for	ESA	
CCI		

BIAS	for	CCI	
NRT	

Unbiased	
RMSD	for	
ESA	CCI	

Unbiased	
RMSD	for	
CCI	NRT	

Remedhus		 19	 0.60	 0.52	 -0,079/0.214	 -0.075/0,207	 0.002	 0.003	
Smosmania		 19	 0.54	 0.46	 -0,129/0.170	 -0,135/0,147	 0.006	 0.012	
Cosmos	 1	 0.66	 0.59	 0.040	 0.028	 0.002	 0.003	
Dahra		 1	 0.65	 0.61	 0.128	 0.155	 0.003	 0.003	

Average	of	all	
Observations	 	 0.58	 0.49	 N.A.	 N.A.	 0.004	 0.008	

	1089	

Table	1	Statistical	scores	for	ESA	CCI	SM/CCI	NRT	anomalies	and	in-situ	stations/networks	(maximum	depth	0.1	1090	

m)	 in	 Spain,	 France,	 Kenya	 and	 Senegal	 for	 2013	 (for	 the	 Remedhus	 and	 Smosmania	 networks	 the	 table	1091	

includes	the	bias	range	from	minimum	to	maximum)	1092	

In-Situ	
Network		

Number	of	
Stations	

R	for	
ESA	CCI	

R	for	
CCI	
NRT	

Bias	for	ESA	
CCI	

BIAS	for	CCI	
NRT	

Unbiased	
RMSD	for	
ESA	CCI	

Unbiased	
RMSD	for	
CCI	NRT	

Remedhus		 19	 0.42	 0.39	 0.000/0,003	 0.000/0,005	 0.001	 0.002	
Smosmania		 19	 0.46	 0.39	 -0.002/0,005	 -0.001/0,008	 0.002	 0.003	
Cosmos	 1	 0.46	 0.32	 -0.004	 -0.003	 0.001	 0.002	
Dahra		 1	 0.54	 0.29	 0.000	 0.004	 0.001	 0.001	

Average	of	all	
Observations	 	 0.44	 0.38	 N.A.	 N.A.	 0.002	 0.002	

	1093	
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