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Abstract	15	

The	 soil	moiture	 dataset	 that	 is	 generated	 via	 the	Climate	 Change	 Initiative	 (CCI)	 of	 the	 European	16	

Space	Agency	(ESA)	(ESA	CCI	SM)	is	a	popular	research	product.	It	is	composed	of	observations	from	17	

ten	 different	 satellites	 and	 aims	 to	 exploit	 the	 individual	 strengths	 of	 active	 (radar)	 and	 passive	18	

(radiometer)	sensors,	thereby	providing	surface	soil	moisture	estimates	at	a	spatial	resolution	of	0.25	19	

degrees.	However,	the	annual	updating	cycle	limits	the	use	of	the	ESA	CCI	SM	dataset	for	operational	20	

applications.	 Therefore,	 this	 study	 proposes	 an	 adaptation	 of	 the	 ESA	 CCI	 product	 for	 daily	 global	21	

updates	via	satellite-derived	near	real-time	(NRT)	soil	moisture	observations.	In	order	to	extend	the	22	

ESA	 CCI	 SM	 dataset	 from	 1978	 to	 present	 we	 use	 NRT	 observations	 from	 the	 Advanced	23	

SCATterometer	 on-board	 the	 two	 MetOp	 satellites	 and	 the	 Advanced	 Microwave	 Scanning	24	

Radiometer	 2	 on-board	 GCOM-W.	 Since	 these	 NRT	 observations	 do	 not	 incorporate	 the	 latest	25	

algorithmic	updates,	parameter	databases,	and	intercalibration	efforts,	by	nature	they	offer	a	lower	26	

quality	 than	 reprocessed	offline	datasets.	Our	 findings	 indicate	 that,	despite	 issues	 in	 arid	 regions,	27	

the	new	“CCI	NRT”	dataset	shows	a	good	correlation	with	ESA	CCI	SM.	The	average	global	correlation	28	

coefficient	between	CCI	NRT	and	ESA	CCI	SM	(Pearson’s	R)	is	0.8.	An	initial	validation	with	40	in-situ	29	

observations	 in	France,	Kenya,	Senegal	and	Kenya	yields	an	average	R	of	0.58	and	0.49	for	ESA	CCI	30	

SM	and	CCI	NRT	respectively.	In	summary,	the	CCI	NRT	product	is	nearly	as	accurate	as	the	existing	31	

ESA	CCI	SM	product	and,	therefore,	of	significant	value	for	operational	applications	such	as	drought	32	

and	flood	forecasting,	agricultural	index	insurance	or	weather	forecasting.		33	
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1 Introduction	35	

Soil	moisture,	 the	water	 in	 the	 soils’	 pore	 space,	 is	 one	 of	 very	 few	 environmental	 variables	 that	36	

directly	 link	 atmospheric	 processes	 to	 land	 surface	 conditions	 (Legates	 et	 al.,	 2010;	 Taylor	 et	 al.,	37	

2012).	It	is	a	decisive	or	even	limiting	factor	in	many	processes	related	to	agriculture,	climate	change,	38	

energy	fluxes,	hydrology	and	hydro-climatic	extreme	events	(Brocca	et	al.,	2010;	Greve	et	al.,	2014;	39	

Jung	et	al.,	2010;	Legates	et	al.,	2010;	Qiu	et	al.,	2014;	Seneviratne	et	al.,	2010;	Sheffield	and	Wood,	40	

2008;	Taylor	et	al.,	2012,	p.201;	Trenberth	et	al.,	2014).	Along	with	 temperature	and	precipitation,	41	

soil	moisture	is	ranked	a	top	priority	variable	in	all	societal	benefit	areas	listed	by	the	Group	on	Earth	42	

Observations	 (agriculture,	 biodiversity,	 climate,	 disasters,	 ecosystems,	 energy,	 health,	 water	 and	43	

weather)	 (Group	 on	 Earth	Observations,	 2012).	 Also	 aid	 organizations,	whose	 potential	 regions	 of	44	

interest	 may	 encompass	 whole	 sub-continents,	 are	 gradually	 discovering	 the	 importance	 of	 soil	45	

moisture	 for	 assessments	 of	 drought-related	 food	 insecurity.	 The	 complexity	 of	 processes	 that	46	

involve	soil	moisture	becomes	obvious	when	atmospheric	feedback	loops	are	analysed.	Koster	et	al.	47	

(2004),	 for	 instance,	 found	 that	 	 the	 response	 of	 the	 atmosphere	 to	 changes	 in	 soil	 moisture	 is	48	

neither	 linear,	 nor	 unidirectional.	 Additionally,	 the	 distribution	 of	 soil	 moisture	 is	 by	 nature	 very	49	

heterogeneous	(Western	et	al.,	2004)	and	changes	can	appear	rapidly.		50	

	51	

Traditional	 measurements	 of	 soil	 moisture	 relied	 on	 direct	 in-situ	 methods,	 such	 as	 gravimetric	52	

samples	or	time	domain	reflectometry	(Dorigo	et	al.,	2011;	Wagner	et	al.,	2007).	In-situ	observations	53	

are	to	date	the	most	accurate	localized	measurement	of	soil	moisture,	but	only	models	or	satellites	54	

are	 able	 to	 provide	 spatially-consistent	 information	 on	 a	 global	 scale.	 However,	 datasets	 derived	55	

from	space-borne	microwave	sensors	are	not	yet	able	to	capture	variability	at	the	scale	of	metres	at	56	

sub-daily	 intervals.	 Hence,	 the	 concept	 of	 temporal	 stability	 (Brocca	 et	 al.,	 2009;	 Vachaud	 et	 al.,	57	

1985),	 which	 describes	 a	 quasi-linear	 relationship	 between	 soil	 moisture	 variations	 over	 time	 on	58	

different	spatial	scales,	allows	using	coarse	information	acquired	via	satellites	to	understand	local	to	59	

regional	phenomena.		60	

	61	

Satellite	instruments	capable	of	retrieving	information	about	soil	moisture	have	been	available	since	62	

the	 late	 1970s.	 However,	 despite	 the	 existence	 of	 several	 individual	 space-borne	 soil	 moisture	63	

products,	 a	 harmonized	 long-term	 dataset	 was	 missing	 until	 the	 Water	 Cycle	 Multi-mission	64	

Observation	 Strategy	 (WACMOS)	 project	 and	 the	 Climate	 Change	 Initiative	 (CCI)	 of	 the	 European	65	

Space	 Agency	 (ESA)	 released	 the	 first	 multi-sensor	 soil	 moisture	 product	 (Liu	 et	 al.,	 2011a,	 2012;	66	

Wagner	 et	 al.,	 2012).	 The	 ESA	 CCI	 soil	 moisture	 dataset	 (ESA	 CCI	 SM)	 relies	 on	 the	 merging	 of	67	

different	 active	 (radar)	 and	 passive	 (radiometer)	microwave	 instrument	 observations	 into	 a	 single	68	

consistent	product	(Dorigo	et	al.	2015).	The	latest	official	release	of	the	ESA	CCI	SM	product	(CCI	SM	69	
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v02.2)	covers	a	period	from	1978	to	2014.	Product	updates	that	extend	the	temporal	coverage	are	70	

performed	every	year	by	incorporating	new	observations	from	radars	and	radiometers.		71	

	72	

Since	its	release	in	2012,	the	ESA	CCI	SM	dataset	has	been	used	in	a	wide	variety	of	studies	(Dorigo	73	

and	De	Jeu	2016).	Yuan	et	al.	(2015),	for	instance,	analysed	the	performance	of	ESA	CCI	SM	to	detect	74	

short-term	(monthly	to	seasonal)	droughts	in	China	with	respect	to	in-situ	observations	and	two	soil	75	

moisture	reanalysis	datasets,	namely	the	Global	Land	Data	Assimilation	System	(GLDAS)	(Rodell	et	al.,	76	

2004)	 and	 ERA	 Interim	 (Dee	 et	 al.,	 2011).	 ESA	 CCI	 SM	 captured	 less	 than	 60	 per	 cent	 of	 drought	77	

months	at	the	scale	of	in-situ	stations.	However,	comparable	to	the	reanalysis	products,	it	performed	78	

well	 with	 regard	 to	 the	 detection	 of	 inter-annual	 variations	 of	 short-term	 drought	 on	 river	 basin	79	

scale,	particularly	in	sparsely	vegetated	areas.	Nicolai-Shaw	et	al.	(2015)	confirm	these	findings	over	80	

North	 America	 by	 comparing	 ESA	 CCI	 SM	 with	 reanalysis	 products	 of	 the	 European	 Centre	 for	81	

Medium	 Range	 Weather	 Forecasting	 (ECMWF)	 and	 in-situ	 observations.	 Regarding	 the	 spatial	82	

representativeness,	ESA	CCI	SM	showed	a	higher	agreement	with	 the	 in-situ	observations	 than	the	83	

reanalysis	data.	With	respect	to	the	absolute	values,	however,	the	agreement	between	ESA	CCI	SM	84	

and	 the	 reanalysis	 data	 was	 higher.	 McNally	 et	 al.	 (2015)	 showed	 the	 superiority	 of	 the	 Water	85	

Requirement	Satisfaction	Index	in	Senegal	and	Niger	when	fed	with	ESA	CCI	SM	instead	of	a	water-86	

balance	model	output.	 Finally,	 ESA	CCI	 SM	was	 also	used	 to	 identify	 global	 trends	 in	 soil	moisture	87	

with	 regard	 to	 vegetation	 (Barichivich	et	 al.,	 2014;	Dorigo	et	 al.,	 2012;	Muñoz	et	 al.,	 2014)	 and	 to	88	

improve	the	understanding	of	the	land-atmosphere	coupling	(Hirschi	et	al.,	2014).		89	

	90	

However,	 decision-makers	 in	 various	 applications	 and	 domains	 (e.	 g.	 weather	 prediction,	 drought	91	

and	 flood	monitoring,	 index-based	 agricultural	 insurance)	 need	more	 timely	 soil	moisture	 product	92	

updates	at	daily	or	sometimes	even	sub-daily	 intervals.	 In	case	of	weather	prediction,	 for	 instance,	93	

satellite-derived	 soil	moisture	 is	 usually	 assimilated	 via	 a	 nudging	 scheme	or	 an	 ensemble	 Kalman	94	

filter	approach	at	sub-daily	(e.g.	six-hourly)	 increments	(Drusch,	2007;	Drusch	et	al.,	2009;	Scipal	et	95	

al.,	 2008).	 In	 case	 of	 drought	 monitoring,	 it	 can	 be	 used	 to	 fill	 the	 gap	 between	 satellite-based	96	

estimates	of	 rainfall	 and	 vegetation	 vigor	 (Enenkel	 et	 al.,	 2014).	However,	 the	 current	 ESA	CCI	 SM	97	

product	does	not	fulfil	this	requirement	with	regard	to	updates	at	appropriate	time	steps.	To	bridge	98	

this	gap,	this	study	concentrates	on	the	quality	assessment	of	a	soil	moisture	dataset	that	is	based	on	99	

the	 adaptation	of	 the	 ESA	CCI	 soil	moisture	 processing	 chain	 to	 perform	daily	 product	 updates	 by	100	

seamlessly	 integrating	 near	 real-time	 (NRT)	 soil	 moisture	 observations	 from	 two	 space-based	101	

sensors.	One	of	these	sensors	is	a	radar,	the	Advanced	Scatterometer	(ASCAT)	on-board	the	MetOp-A	102	

and	MetOp-B	satellites,	 the	other	one	a	 radiometer,	 the	Avanced	Microwave	Scanning	Radiometer	103	

(AMSR2	)	on-board	GCOM-W1	(Global	Change	Observation	Mission	-	Water).	NRT	means	that	both	104	
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the	observations	from	ASCAT	and	AMSR2		are	available	within	two	to	three	hours	after	the	satellite	105	

overpass.	 The	 resulting	 dataset	 is	 called	 “CCI	 NRT”.	 It	 is	 intended	 to	 extend	 the	 35	 years	 of	 soil	106	

moisture	 observations	 available	 via	 the	 ESA	 CCI	 SM	 dataset	 on	 a	 daily	 basis.	 This	 study	 has	 two	107	

objectives.	 First,	 we	 analyse	 which	 adaptations	 of	 the	 current	 processing	 chain	 are	 required	 to	108	

generate	a	CCI	NRT	soil	moisture	product	and	implement	these	adaptations.	A	main	challenge	for	this	109	

task	is	the	qualitative	difference	in	offline	and	NRT	observations	(section	2)	and	their	manifestation	in	110	

the	CCI	NRT	processing	chain.	Second,	we	investigate	how	well	the	CCI	NRT	dataset	compares	to	ESA	111	

CCI	SM	on	a	global	scale.	An	initial	validation	of	the	CCI	NRT	and	the	ESA	CCI	SM	dataset	is	carried	out	112	

with	respect	to	40	in-situ	stations	in	France,	Senegal,	Spain	and	Kenya.		113	

		114	

2 Datasets	used	115	

Depending	on	the	sensor,	space-based	soil	moisture	retrievals	show	large	variations	in	performance	116	

on	a	global	scale.	C-band	radars	(e.g.	ASCAT),	for	instance,	are	better	suited	to	retrieve	soil	moisture	117	

over	moderate	vegetation	cover	than	radiometers	(Al-Yaari	et	al.,	2014;	Dorigo	et	al.,	2010;	Gruhier	118	

et	al.,	2010;	Rüdiger	et	al.,	2009).	Simultaneously,	radars	are	facing	challenges	in	super-arid	regions	119	

that	are	often	characterized	by	sandy	soils	 (Wagner	et	al.,	2003,	2007)	due	to	volume	scattering	of	120	

the	microwave	beam.	The	following	section	describes	the	general	characteristics	of	the	reprocessed	121	

ESA	CCI	SM	product,	as	well	 as	 the	operational	products	 from	ASCAT	and	AMSR2	 that	are	used	 to	122	

generate	the	extension	of	the	ESA	CCI	SM	dataset	via	daily	updates.	123	

	124	

2.1 ESA	CCI	Surface	Soil	Moisture	125	

The	 ESA	 CCI	 soil	 moisture	 product	 was	 generated	 in	 accordance	 with	 the	 World	 Meteorological	126	

Organization’s	 (2008)	 report	 on	 “Future	 Climate	 Change	 Research	 and	 Observation”.	 The	 report	127	

highlights	 the	 importance	of	collecting,	harmonizing	and	validating	soil	moisture	observations	 from	128	

different	 sources	 to	 extend	 the	 temporal	 and	 spatial	 coverage,	 to	 improve	 data	 quality	 (also	 for	129	

further	data	assimilation),	to	support	the	understanding	of	feedback	mechanisms	and	the	prediction	130	

of	extreme	events.		131	

	132	

The	 ESA	 CCI	 SM	dataset	 incorporates	 the	measurements	 of	 ten	 satellites	 (Fig.	1).	 It	 is	 available	 at	133	

daily	time	steps	and	on	a	0.25°	x	0.25°	latitude/longitude	global	array	of	grid	points.	The	quality	flags,	134	

which	 are	 distributed	 in	 combination	with	 the	 dataset,	 provide	 information	 about	 the	 sensor	 and	135	

observation	 frequency	 that	 was	 used	 for	 the	 retrieval	 of	 soil	 moisture,	 the	 moment	 of	 the	136	

measurement,	ascending	or	descending	orbit	and	snow/frozen	soil	probability.	According	to	Liu	et	al.	137	

(2011b;	 2012),	 soil	 porosity	 values	 derived	 from	 1300	 global	 samples	 are	 used	 in	 the	 algorithm	138	
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developed	by	the	VU	University	Amsterdam	and	the	National	Aeronautics	and	Space	Administration	139	

(NASA)	to	generate	soil	moisture	data	from	passive	sensors	via	the	Land	Parameter	Retrieval	Model	140	

(LPRM)	(Holmes	et	al.,	2009;	Owe	et	al.,	2008)	The	same	porosity	values	are	also	applied	in	GLDAS,	141	

which	 is	used	as	a	 reference	dataset	 to	 rescale	 soil	moisture	estimates	 from	all	active	and	passive	142	

sensors	 in	Fig.	1	via	cumulative	distribution	 function	matching	 (Liu	et	al.,	2009;	Reichle	and	Koster,	143	

2004).		144	

	145	

	146	

Fig.	1	Satellites	and	sensors	used	for	generating	the	offline	ESA	CCI	SM	dataset	and	the	daily	continuation	via	147	

ASCAT	 and	 AMSR2;	 Dotted	 lines	 indicate	 inactive	missions;	 Yellow	 arrows	 represent	 passive	measurements,	148	

green	arrows	represent	active	measurements;	The	ESA	CCI	SM	dataset	only	includes	SSM/I	data	until	2007.			149	

2.2 Active	Microwave	Measurements	from	the	ASCAT	scatterometer	150	

The	ASCAT	sensors	on-board	MetOp	A/B	are	real	aperture	radar	sensors.	Their	soil	moisture	retrieval	151	

is	based	on	the	backscatter	of	microwaves	that	are	sensitive	to	the	dielectric	properties	of	the	water	152	

molecule,	 resulting	 in	 a	 quasi-linear	 increase	 relationship	 between	 increasing	 water	 content	 and	153	

microwave	 backscatter.	 ASCAT	operates	 in	 C-band	 (5,255	GHz),	 scanning	 two	 550	 km	 swaths	with	154	

three	 antennas	on	each	 side.	 Consequently,	 every	 location	 is	 scanned	 from	 three	different	 angles,	155	

enabling	corrections	for	vegetation	cover	by	analysing	measurement	differences	at	different	angles.		156	

This	 principle	 is	 exploited	 by	 the	 TU	 Wien	 Water	 Retrieval	 Package	 (WARP),	 a	 change	 detection	157	

algorithm	 that	 results	 in	 relative	 surface	 soil	moisture	observations.	 These	observations	 are	 scaled	158	

between	 the	historically	 lowest	and	highest	values,	 corresponding	 to	a	 completely	dry	 surface	and	159	

soil	saturation	(Bartalis	et	al.,	2005;	Wagner	et	al.,	1999,	2013).		160	

	161	
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WARP	 is	 optimized	 to	 estimate	 model	 parameters	 from	 multi-year	 backscatter	 time	 series	 on	 a	162	

discrete	 global	 grid	 (DGG).	 These	 parameters	 help	 to	 understand	 the	 characteristics	 of	 scattering	163	

effects	on	a	global	 scale,	which	are	affected	by	 land	cover,	 surface	roughness,	etc.	However,	 there	164	

are	 large	 differences	 between	 soil	 moisture	 derived	 from	 ASCAT	 via	 the	 offline	WARP	 processing	165	

chain	 and	 its	 operational	 version	 WARP	 NRT.	 While	 the	 offline	 WARP	 processor	 	 generates	 soil	166	

moisture	on	a	discrete	global	grid,	the	WARP	NRT	product	is	distributed	from	EUMETSAT	(European	167	

Organisation	 for	 the	Exploitation	of	Meteorological	 Satellites)	 in	orbit	 geometry.	 It	 is	 available	135	168	

minutes	after	the	overpass	of	the	two	ASCAT	sensors	on	board	the	MetOp	A	and	MetOp	B	satellites.	169	

An	advantage	of	WARP	NRT	 is	 the	high	 robustness	 and	 speed	of	 the	processing	 chain	 (less	 than	a	170	

minute	for	one	ASCAT	orbit).	However,	updates	related	to	algorithmic	improvements	and	updates	in	171	

the	calibration	of	the	backscatter	measurement	usually	take	a	lot	of	time	(Wagner	et	al.,	2013).	As	a	172	

result,	the	quality	of	NRT	soil	moisture	data	lags	behind	the	quality	of	reprocessed	datasets.		173	

	174	

Validations	 of	 the	 NRT	 soil	 moisture	 product	 disseminated	 via	 EUMETCAST	 (Albergel	 et	 al.,	 2012)	175	

yielded	an	average	 root	mean	squared	difference	 (RMSD)	of	0.08	m3/m3	 for	more	 than	200	 in-situ	176	

stations	 around	 the	 globe.	 	 While	 the	 global	 average	 of	 all	 correlations	 was	 r	 =	 0.5,	 the	 best	177	

correlation	 (r	 =	 0.8)	 was	 achieved	 for	 an	 in-situ	 network	 in	 Australia	 (OZNET).	 In	 general,	 the	178	

correlations	were	higher	during	winter	months.	179	

	180	

2.3 Passive	Microwave	Measurements	from	the	AMSR2	radiometer	181	

Passive	retrievals	are	based	on	the	dielectric	contrast	between	dry	and	wet	soil	that	leads	to	changes	182	

in	emissivity	from	0.96	for	dry	soils	and	below	0.6	for	wet	soils	 (Njoku	and	Li,	1999;	Schmugge	and	183	

Jackson,	 1994).	 Being	 very	 similar	 to	 its	 predecessor	 AMSR-E,	 AMSR2	 on-board	 the	 GCOM-W1	184	

satellite	measures	brightness	temperature	at	different	bands	(C-,	X-	and	Ku-band)	with	vertical	and	185	

horizontal	polarizations	at	each	frequency.	In	addition,	the	Ka-band	(36.5/37	GHz)	is	used	to	estimate	186	

brightness	temperature	(Holmes	et	al.,	2009).	 In	contrast	to	ASCAT,	the	AMSR	sensors	have	a	fixed	187	

observation	 angle	 at	 55	 degrees,	 resulting	 in	 a	 “conically-shaped”	 footprint	 and	 a	 swath	width	 of	188	

1445	km.	Both	radiometer	observations	 in	the	ESA	CCI	SM	dataset	and	 its	NRT	equivalent	only	use	189	

night	time	measurements	(Liu	et	al.,	2011),	because	a	smaller	temperature	gradient	between	the	soil	190	

and	 vegetation	 facilitates	 more	 precise	 observations	 (de	 Jeu	 et	 al.,	 2014).	 The	 LPRM	 transforms	191	

information	 about	 the	 dielectric	 constant	 into	 volumetric	 soil	 moisture	 by	 applying	 an	 empirical	192	

model	 (Wang	and	Schmugge,	1980).	Similar	 to	ASCAT,	measurements	over	 frozen	or	snow-covered	193	

soils	are	not	possible	due	to	the	immovability	of	the	water	molecules.	Several	studies	compared	the	194	

performance	 of	 soil	 moisture	 products	 from	 the	 AMSR	 sensors	 and	 ASCAT	 (Brocca	 et	 al.,	 2011;	195	

Dorigo	 et	 al.,	 2010;	 Gruber	 et	 al.,	 2016),	 leading	 to	 overall	 comparable	 performance.	 An	196	
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intercomparison	over	 17	 European	 sites	 (Brocca	et	 al.,	 2011),	 for	 instance,	 resulted	 in	 comparable	197	

correlation	values	with	observed	(modelled)	data	of	0.71	(0.74)	for	ASCAT	and	0.62	(0.72)	for	AMSR-198	

E.	The	AMSR2	 	NRT	dataset	 is	distributed	 from	NASA	and	 the	 Japan	Aerospace	Exploration	Agency	199	

(JAXA).	It	is	available	at	NASA’s	Global	Change	Master	Directory:	200	

http://gcmd.gsfc.nasa.gov/r/d/[GCMD]GES_DISC_LPRM_AMSR2_SOILM2_V001	201	

	202	

The	 	 AMSR2	 soil	moisture	 product	 that	was	 used	 to	 create	 the	 ESA	 CCI	 SM	 dataset	 is	 a	 different	203	

version	than	the	current	operational	product	that	we	use	to	develop	the	CCI	NRT	product,	but	both	204	

products	are	comparable	(Parinussa	et	al.,	2014).	However,	just	like	its	predecessor	AMSR-E,	AMSR2	205	

needs	to	cope	with	radio	frequency	interference	(RFI)	that	is	capable	of	jeopardizing	whole	satellite	206	

missions	 (Oliva	et	al.,	2012).	Currently,	 the	RFI	masking	 is	based	on	a	decision-tree	that	selects	 the	207	

passive	 microwave	 observations	 in	 the	 lowest	 available	 frequency	 that	 is	 free	 of	 RFI	 for	 each	208	

individual	grid	point	(Fig.	A7).	In	most	cases	the	6.9	GHz	channel	can	be	used.	209	

	210	

2.4 In-situ	Networks	211	

All	 in-situ	 measurements	 used	 for	 this	 study	 were	 obtained	 via	 the	 International	 Soil	 Moisture	212	

Network	 (Dorigo	 et	 al.,	 2011,	 2013).	 The	 single	 probes/networks	 (Fig.	 2)	 were	 selected	 to	 cover	213	

regions	in	which	either	the	active,	passive	and	merged	component	of	the	CCI	NRT	dataset	(explained	214	

in	section	3),	are	used.	215	
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	216	

Fig.	2	Location	of	the	networks	used	for	validation	in	this	study	(Smosmania,	France,	green	dots;	Remedhus,	217	

Spain,	red	rectangle;	Dahra,	Senegal,	blue	dot;	Cosmos,	Kenya,	orange	dot)	218	

	219	

Accordingly,	we	extracted	measurements	from	the	Smosmania	network	(Albergel	et	al.,	2008)	in	the	220	

South	of	France	to	validate	the	active	component	of	the	daily	ESA	CCI	surface	soil	moisture	updates,	221	

from	 the	 Remedhus	 network	 (Sanchez	 et	 al.,	 2012)	 in	 the	West	 of	 Spain	 to	 validate	 the	 merged	222	

active/passive	component,	from	the	Dahra	network	in	Senegal	and	the	Cosmos	network	in	Kenya	to	223	

validate	 the	 passive	 component.	 The	 Smosmania	 (Albergel	 et	 al.,	 2008)	 and	 Dahra	 networks	 are	224	

equipped	 with	 the	 same	 type	 of	 probes	 (ThetaProbe	 ML2X),	 while	 the	 Remedhus	 network	 that	225	

covers	 the	 Duero	 basin	 relies	 on	 Stevens	 HydraProbes.	 The	 Cosmos	 station	 in	 Kenya	 relies	 on	 a	226	

cosmic-ray	probe.	All	 in-situ	observations	were	 filtered	 for	 stations	 that	measure	 the	 soil	moisture	227	

content	 up	 to	 a	 depth	 of	 5	 centimetres	 (respectively	 10	 centimetres	 for	 the	 Cosmos	 station)	 to	228	

ensure	the	comparability	with	the	satellite-derived	surface	soil	moisture	datasets.	229	
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3 Methods	230	

The	following	section	is	divided	into	two	parts.	Section	3.1	concentrates	on	the	extension	of	the	ESA	231	

CCI	SM	processing	chain	 for	daily	updates.	Section	3.2	explains	 the	corresponding	validation	of	 the	232	

new	dataset	on	a	global	scale.		233	

	234	

3.1 Integrating	NRT	ASCAT	and	AMRS2	into	the	ESA	CCI	SM	dataset	235	

The	integration	of	NRT	ASCAT	and	AMSR2	observations	into	the	ESA	CCI	SM	builds	on	the	procedures		236	

used	to	generate	the	standard	ESA	CCI	SM	products	(Liu	et	al.,	2011a,	2012;	Wagner	et	al.,	2012).	Fig.	237	

3	illustrates	the	main	processing	steps	for	the	integration	of	NRT	soil	moisture	observation	in	a	flow	238	

chart.	 The	most	 recent	 ESA	 CCI	 SM	 product	 covers	 the	 years	 1978	 to	 2014.	 The	 CCI	 NRT	 dataset	239	

extends	this	temporal	coverage	to	the	present	with	an	overlap	for	2013/2014.	240	

	241	

	242	

Fig.	3	Schematic	flowchart	illustrating	the	methodology	for	extending	the	ESA	CCI	SM	dataset	via	NRT	243	

observations	from	ASCAT	and	AMSR2.	The	GLDAS1-Noah	dataset	is	used	as	a	scaling	reference.		244	

As	 for	 the	 ESA	 CCI	 SM	 processing	 chain	 all	 ASCAT	 level	 2	 data	 (surface	 soil	 moisture	 in	 orbit	245	

geometry)	are	first	masked	according	to	snow-covered/frozen	conditions	based	on	the	ECMWF	ERA	246	

Interim	Re-Analysis	product	and	vegetation	density	based	on	vegetation	optical	depth	(VOD).	VOD	is	247	

a	dimensionless	variable	 linked	 to	 the	vegetation	water	content	and	above	ground	biomass	 (Liu	et	248	

al.,	 2015).	 VOD	 has	 previously	 been	 used	 as	 an	 additional	 indicator	 for	 long-term	 vegetation	249	

dynamics	(Liu	et	al.,	2011b).	It	is	retrieved	simultaneously	to	soil	moisture	through	the	LPRM.		250	

	251	

The	 AMSR2	 data	 are	masked	 for	 soil	 skin	 temperature	 below	 0°C,	 RFI	 and	 VOD.	 After	 the	 spatial	252	

resampling	via	a	regular	hamming	window	to	a	0.25°	grid	we	apply	the	temporal	resampling	to	00:00	253	
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UTC	reference	time	via	nearest	neighbour	search.	In	contrast	to	ASCAT,	from	which	both	ascending	254	

and	descending	orbits	are	used,	we	only	use	the	descending	(night-time)	observations	from	AMSR2	255	

(Lei	et	al.,	2015).	Both		datasets	are	rescaled	to	the	reference	soil	moisture	dataset	(GLDAS	1-NOAH)	256	

via	piecewise	linear	CDF	matching	(Liu	et	al.,	2011a).	Due	to	the	unavailability	of	the	GLDAS	dataset	257	

in	NRT,	we	apply	the	scaling	functions	that	were	used	to	generate	the	original	ESA	CCI	SM	dataset.	258	

This	way	 it	 is	possible	to	preserve	the	datasets’	original,	relative	dynamics,	while	adjusting	them	to	259	

the	same	range	and	distribution.		260	

	261	

Fig.	4	illustrates	the	coverage	of	active,	passive	and	merged	data	on	a	global	scale.	The	passive	LPRM	262	

soil	moisture	product	 is	used	in	regions	with	 low	vegetation	density	(VOD	<	0.24),	whereas	the	TU-263	

Wien	ASCAT	product	is	applied	in	regions	with	moderate	to	high	vegetation	density	(VOD	0.60).	So-264	

called	transition	zones	between	dry	 	and	humid	climates	are	characterized	by	VOD	values	between	265	

0.24	and	0.60.	 In	these	regions	the	active	and	the	passive	product	agree	well	(R	>	0.65).	Therefore,	266	

both	products	can	be	merged	(green	areas	in	Fig.	4).		267	

	268	

	269	

Fig.	4	Global	blending	map	illustrating	where	active	sensors	(red),	passive	sensors	(yellow)	and	the	average	of	270	

both	(green)	is	used	to	generate	the	ESA	CCI	SM	product	(modified	from	Liu	et	al.	2012)	271	

	272	

3.2 Performance	Metrics	and	Validation	273	

According	 to	 Wagner	 et	 al.	 (2013)	 the	 validation	 of	 satellite	 data	 via	 in-situ	 observations	 can	 be	274	

critical	due	to	different	issues,	such	as	the	high	spatio-temporal	variability	of	soil	moisture	(Western	275	

et	al.,	2002)	or	a	lack	of	adequate	reference	datasets	(Crow	et	al.,	2012).	There	are	no	reference	data	276	

that	represent	exactly	the	same	physical	quantity	as	the	satellite	observation.	Acknowledging	these	277	

limitations,	this	study	concentrates	on	the	following	comparative	assessments:	278	
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- Calculating	the	Pearson’s	correlation	coefficient	(R)	between	ESA	CCI	SM	and	CCI	NRT	for	an	279	

overlapping	year	(2013)	on	a	global	scale	280	

- Calculating	the	absolute	differences	in	volumetric	soil	moisture	between	both	datasets	for	281	

the	entire	year	of	2013	(including	individual	calculations	for	all	seasons)	on	a	global	scale	282	

- Individual	 validation	 for	 ESA	 CCI	 SM	 and	 CCI	 NRT	 for	 2013	 over	 forty	 in-situ	 soil	moisture	283	

stations	in	France,	Kenya,	Senegal	and	Spain	284	

	285	

For	each	in-situ	observation	a	nearest	neighbour	search	selects	the	closest	grid	point	in	the	satellite-286	

derived	datasets.	The	performance	metrics	include:		287	

	288	

• Pearson	correlation	(R),	indicating	a	linear	relationship	between	two	variables	289	

• Spearman	correlation	(S),	a	non-parametric	test	that	does	not	rely	on	any	assumption	about	290	

the	distribution	of	the	data	291	

• The	absolute	bias	in	m3/m3		292	

• Unbiased	root	mean	squared	difference	(ubRMSD)	in	m3/m3		293	

	294	

Equation	 (1)	 shows	 that	 the	 bias	𝐸	 is	 expressed	 as	 the	 difference	 between	 the	 time	 series’	𝑓	 and	295	

reference	 𝑟,	 corresponding	 to	 the	 mean	 values	 of	 CCI	 NRT	 and	 ESA	 CCI	 SM/in-situ	 observations,	296	

respectively.	297	

	298	

	 𝐸 = 𝑓 − 𝑟	 (	1	)		

	299	

As	 the	 name	 suggests,	 the	 unbiased	 RMSD	 considers	 the	 overall	 bias	 related	 to	 the	 quadratic	300	

difference	in	observations	(Taylor,	2001).	Consequently,	the	unbiased	RMSD	𝐸!	in	Eq.	(2)	relates	the	301	

individual	bias	for	each	time	series	to	the	corresponding	observation	values,	whereas	𝑓!	and	𝑟!	again	302	

correspond	to	observations	of	ESA	CCI	SM	and	CCI	NRT.		303	

	304	

	

𝐸! =  
1
𝑁

𝑓! − 𝑓 − 𝑟! − 𝑟  !
!

!!!

 !/!	
(	2	)	

	

	305	

4 Results	306	

The	Pearson	correlation	coefficient	(R)	yields	an	average	correlation	of	0.80	for	ESA	CCI	SM	and	CCI	307	

NRT	on	a	global	scale	(Fig.	5).	Regions	 in	which	the	NRT	dataset	does	not	correspond	well	with	the	308	

offline	datasets	 include	parts	of	North	Africa	 and	 the	Sahara,	 the	US	West	 coast	 and	 several	 large	309	
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mountain	ranges	(e.	g.	the	Andes	 in	South	America).	Tropical	 forests	are	masked,	because	they	are	310	

impenetrable	 to	 radars	 at	 the	 applied	 frequencies	 and	 block	 the	 soil	 moisture	 emission	 for	311	

radiometers.	312	

	313	

	314	

Fig.	 5	Global	 correlation	 (Pearson’s	 R)	 for	 ESA	 CCI	 SM	 and	CCI	NRT	 for	 2013	 (no	 negative	 correlations	were	315	

observed);	The	white	triangles	illustrate	the	location	of	the	in-situ	stations/networks	316	

Since	 the	 good	 agreement	 of	 the	 ESA	 CCI	 SM	 and	 the	 CCI	 NRT	 dataset	 is	 only	 meaningful	 if	 it	317	

represents	 actual	 surface	 soil	 moisture	 conditions	 on	 the	 ground	 we	 calculate	 the	 performance	318	

metrics	 for	 both	 datasets	 related	 to	 daily	 in-situ	 observations	 (Table	 1).	 The	 average	 Pearson	319	

correlation	coefficient	 for	all	 in-situ	stations	 is	0.58	 (ESA	CCI	SM),	and	0.49	 (CCI	NRT),	 respectively.	320	

The	statistical	scores	for	the	Smosmania	and	the	Remedhus	network	are	comparable	to	the	findings	321	

of	Albergel	et	al.	(2012)		or	Dorigo	et	al.	(2015).	The	bias	and	the	unbiased	RMSD	are	slightly	higher	322	

for	CCI	NRT.		323	

	324	

The	 validation	 results	 for	 the	 corresponding	 anomalies,	which	were	 calculated	 based	 on	 a	moving	325	

average	with	a	window	size	of	35	days,	are	in	line	with	the	findings	Albergel	et	al.	(2013).	Table	2	lists	326	

the	 Pearson	 correlation	 coefficient,	 which	 is	 on	 average	 lower	 for	 the	 anomalies	 than	 for	 their	327	

normal	 time	series	and	also	 lower	 for	CCI	NRT	 than	 for	ESA	CCI	 SM.	 	Again,	both	 the	bias	and	 the	328	

unbiased	RMSD	are	higher	for	CCI	NRT.			329	

	330	
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The	 Pearson	 and	 Spearman	 correlation	 coefficients	 between	 ESA	 CCI	 SM	 and	 CCI	 NRT	 over	 the	331	

location	of	the	in-situ	stations	confirm	the	global	picture	with	an	average	R	of	0.80	and	an	S	of	0.82.	332	

The	best	correlation	is	observed	over	the	location	of	the	“Urgons”	station	in	the	Smosmania	network,	333	

which	is	located	in	a	cultivated	area	in	the	South	of	France.	The	corresponding	Fig.	6	shows	an	R	of	334	

0.93	 and	 a	 Spearman’s	 correlation	 coefficient	 (S)	 of	 0.96.	 However,	 in	 the	 same	 network	we	 also	335	

observe	the	worst	agreement	(R	=	0.62,	S	=	65)	at	a	station	named	“Savenes”	(not	shown).		336	

	337	

Fig.	6		Illustration	of	ESA	CCI	SM	and	CCI	NRT	over	the	“Urgons”	station	of	the	Smosmania	network	(R	=	0.93;	S	338	

=	0.96)	339	

	340	

Global	 maps	 of	 the	 absolute	 differences	 between	 both	 datasets	 for	 2013	 (Fig.	 B8)	 and	 the	 four	341	

seasons	(Fig.	B9	to	Fig.	B12	Appendix)	show	a	systematic	positive	bias	in	CCI	NRT	of	up	to	0.30	m3/m3	342	

in	regions	like	East	Africa	or	Pakistan.	compared	to	ESA	CCI	SM	in	regions	such	as	East	Africa,	parts	of	343	

the	Sahel	and	Pakistan.	This	effect	 is	stronger	 in	spring	and	summer	than	 in	autumn	and	winter.	 In	344	

the	 central	 United	 States,	 large	 parts	 of	 Australia	 and	 Southern	 Africa	 the	 bias	 overestimation	 is	345	

smaller.	Since	the	overestimation	mainly	appears	in	regions	where	the	AMSR2	dataset	is	used	(Fig.	4)	346	

and	 to	 understand	 the	 bias	 of	 soil	 moisture	 over	 Europe	 during	 winter	 2013	we	 also	 analyse	 the	347	

absolute	difference	between	the	offline	and	the	NRT	ASCAT	and	AMSR2		datasets	(Fig.	C13	and	Fig.	348	

C14).	Compared	to	the	offline	product,	AMSR2	NRT	tends	to	overestimate	on	a	global	scale,	mainly	in	349	

parts	 of	 the	 Horn	 of	 Africa,	 the	 Arabic	 peninsula,	 parts	 of	 Australia,	 South	 America	 and	 Southern	350	

Africa.	The	strong	overestimation	in	the	Horn	of	Africa	is	also	clearly	visible	in	the	CCI	NRT	dataset.	351	

On	the	contrary,	ASCAT	NRT	 tends	 to	underestimate,	mainly	over	Europe	with	 the	strongest	 signal	352	

over	Winter,	parts	of	the	Western	United	States	as	well	as	areas	North	and	East	of	the	Black	Sea.	In	353	

summary,	 our	 validation	 results	 indicate	 that,	 with	 some	 exceptions,	 the	 new	 CCI	 NRT	 dataset	354	

performs	well	on	a	global	scale	in	comparison	to	its	offline	counterpart.		355	

	356	
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5 Discussion	and	Conclusions	357	

The	global	daily	update	of	the	ESA	CCI	SM	surface	soil	moisture	dataset	is	motivated	by	uncertainties	358	

in	the	performance	of	operational	retrieval	algorithms	for	radars/radiometers	(in	our	case	ASCAT	and	359	

AMSR2)	 and	 by	 an	 increasing	 interest	 in	 multi-sensor	 soil	 moisture	 across	 a	 wide	 range	 of	360	

applications.	 The	 need	 for	 improved	 and	more	 timely	 soil	moisture	 representations	 in	 agricultural	361	

drought	monitoring	 is	 one	 of	 the	 strongest	motivations	 (Anderson	 et	 al.,	 2012;	 Bolten	 and	 Crow,	362	

2012;	Enenkel	et	al.,	2014;	Hirschi	et	al.,	2014).	The	CCI	NRT	dataset	was	generated	by	adapting	the	363	

ESA	 CCI	 SM	 processing	 chain	 for	 operational	 NRT	 soil	 moisture	 retrievals.	 Just	 like	 in	 the	 offline	364	

product	the	merging	scheme	considers	each	sensor’s	individual	strengths	and	limitations.	ASCAT,	for	365	

instance,	performs	better	than	AMSR2	at	higher	vegetation	densities,	while	one	strength	of	AMSR2		366	

is	 the	 retrieval	 over	 semi-arid	 and	 arid	 regions	 (Liu	 et	 al.,	 2011a).	 A	 first	 validation	 is	 carried	 out,	367	

looking	at	 the	 correlation	of	 ESA	CCI	 SM	and	 the	new	CCI	NRT	dataset	on	a	 global	 scale	 and	 their	368	

agreement	over	in-situ	stations	that	had	been	selected	based	on	their	reliability,	temporal	coverage	369	

and	ability	to	reflect	the	individual	components	(active/passive/combined)	of	the	CCI	NRT	dataset.	In	370	

addition,	we	analyse	the	agreement	of	the	ESA	CCI	SM/CCI	NRT/in-situ	anomalies	and	we	calculate	371	

the	absolute	differences	between	both	datasets	on	a	global	scale.		372	

	373	

Our	main	findings	are:	374	

	375	

- There	is	a	high	agreement	between	the	CCI	NRT	dataset	and	the	ESA	CCI	SM	dataset	on	a	376	

global	scale	for	the	entire	year	of	2013	(average	R	=	0.8).	This	finding	also	indicates	a	good	377	

performance	of	soil	moisture	observations	from	ASCAT	and	AMSR2	and	therefore	the	378	

operational	readiness	of	the	CCI	NRT	algorithm.	Low	correlations	are	for	instance	observed	in	379	

areas	that	permanently	show	low	levels	of	soil	moisture,	such	as	the	arid	zones	of	Northern	380	

Africa,	which	show	a	high	sensitivity	for	rainfall	events.	Since	most	of	these	regions	are	381	

covered	by	AMSR2,	the	most	likely	error	sources	are	the	GLDAS-based	rescaling	parameters.		382	

- The	validation	with	in-situ	observations	in	Spain,	France,	Senegal	and	Kenya	yields	less	383	

accurate	results	for	the	CCI	NRT	dataset	than	for	ESA	CCI	SM.	The	average	Pearson	384	

correlation	coefficient	(R)	for	all	in-situ	stations	is	0.49	(0.58	for	ESA	CCI	SM).	The	unbiased	385	

RMSD	for	CCI	NRT	is	0.008	(0.004	for	ESA	CCI	SM).	We	observe	hardly	any	difference	in	the	386	

overall	bias	(0.05	m3m3	for	both	datasets).	387	

- The	performance	metrics	for	the	corresponding	anomalies	result	in	an	average	correlation	388	

coefficient	(Pearson)	of	0.44	for	ESA	CCI	SM	and	0.38	for	CCI	NRT,	respectively.		389	

Also	with	regard	to	absolute	difference	the	general	agreement	between	CCI	NRT	and	ESA	CCI	390	

SM	is	satisfying.	A	comparison	of	both	datasets	for	2013	reveals	a	bias	of	CCI	NRT	over	391	
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Europe	during	Winter	2013		(Fig.	C13;	Appendix)	and	an	bias	over	several	dry	areas,	e.	g.	over	392	

parts	of	Africa	and	Australia	(Fig.	C14;	Appendix),	which	is	likely	related	to	intercalibration	393	

issues	between	AMSR2	and	its	predecessor	AMSR-E	(Okuyama	and	Imaoka,	2015).		394	

	395	

We	expect	that,	apart	from	solving	the	AMSR2		intercalibration	issues	and	a	dynamic	snow	map	for	396	

ASCAT,	which	should	 improve	the	performance	during	winter,	 two	 improvements	 in	the	processing	397	

chain	 could	 lead	 to	 considerable	 improvements	 in	 data	 quality.	 First,	 there	 are	 differences	 in	 the	398	

temporal	coverage	of	 the	MetOp-A	ASCAT	data	used	 to	derive	soil	moisture	model	parameters	 for	399	

the	offline	ASCAT	(2007-2014)	and	ASCAT	NRT	(2007-2012)	products.	The	offline	and	the	NRT	ASCAT	400	

product	used	in	this	study	differ	in	their	absolute	calibration	level	affecting	the	soil	moisture	values.	401	

Despite	 the	 good	 correlation	 between	 both	 products	 it	 is	 likely	 that	 their	 consistency	 can	 be	402	

improved	 by	 reprocessing	 the	 rescaling	 parameters	 in	 the	 CCI	 NRT	 processing	 chain,	 which	 are	403	

currently	based	on	parameters	that	had	been	developed	for	the	offline	ASCAT	product.	Second,	the	404	

currently	static	RFI	map	for	AMSR2	could	be	replaced	by	a	dynamic	map	that	is	based	on	the	average	405	

RFI	values	for	the	previous	six	months	via	a	moving	average.	In	a	recent	study	(de	Nijs	et	al.,	2015),	an	406	

improved	algorithm	 to	detect	RFI	 at	 the	global	 scale	 for	6.9	and	7.3	GHz	AMSR2	observations	was	407	

proposed,	but	remains	to	be	tested	for	 the	specific	 implementation	 in	the	CCI	NRT	product.	This	 is	408	

the	first	method	that	takes	the	additional	7.3	GHz	channel	into	account,	which	was	specifically	added	409	

to	the	AMSR-E	sensor	constellation	and	proved	to	mitigate	issues	related	to	RFI.	410	

	411	

Despite	 these	 issues,	 the	 development	 of	 an	 operational	 processing	 chain	 that	 allows	 daily	 soil	412	

moisture	updates	is	particularly	promising	with	regard	to	applications	that	aim	at	the	confirmation	of	413	

satellite-based	rainfall	estimates	(Brocca	et	al.,	2013)	or	at	closing	the	gap	between	rainfall	estimates	414	

and	 the	 response	 of	 vegetation	 (Enenkel	 et	 al.,	 2014).	 In	 this	 regard,	 the	 integration	 of	 the	 latest	415	

generation	of	soil	moisture	sensors,	such	as	Sentinel-1	of	the	ESA	and	the	European	Commission	(EC)	416	

or	 NASA’s	 SMAP	 (Soil	 Moisture	 Active/Passive),	 whose	 L-band	 radiometer	 is	 still	 active	 after	 the	417	

failure	of	the	radar,	could	lead	to	further	improvements.	These	new	sensors	are	able	to	retrieve	soil	418	

moisture	 at	 a	 far	 higher	 resolution	 than	 ASCAT	 or	 AMSR2	 –	 in	 case	 of	 Sentinel	 1	 around	 one	419	

kilometre	for	operational	products	and	below	100	metres	for	research	products.	Of	course	the	higher	420	

spatial	 resolution	 has	 a	 drawback,	 which	 is	 a	 decrease	 in	 temporal	 resolution.	 While	 ASCAT	 on	421	

MetOp-A	alone	covers	more	than	80	per	cent	of	the	globe	every	day,	the	two	Sentinel-1	satellites	will	422	

take	 6-12	 days	 to	 scan	 the	 total	 global	 land	mass	 in	 the	 default	 interferometric	wide	 swath	 (IWS)	423	

mode	 (World	Meteorological	Organization,	 2013).	Despite	 the	differences	 in	 spatial	 resolution	 it	 is	424	

possible	to	increase	the	temporal	resolution	of	the	CCI	NRT	dataset	to	fit	various	applications.		425	

	426	
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In	the	face	of	the	upcoming	generation	of	space-based	soil	moisture	sensors	it	seems	to	be	the	most	427	

promising	approach	to	exploit	each	sensor’s	 individual	strength	to	generate	the	most	accurate	and	428	

complete	soil	moisture	dataset.	However,	developing	a	user-friendly	dataset	means	more	than	data	429	

access.	 As	 a	 consequence,	 software	 packages,	 such	 as	 Python	 Open	 Earth	 Observation	 Tools	430	

(Mistelbauer	 et	 al.,	 2014)	 are	 necessary	 to	 enable	 automated	 updates,	 the	 visualization	 of	431	

images/time	series/anomalies	and	the	analysis	of	critical	soil	moisture	thresholds.	A	pre-operational	432	

dataset	will	 soon	be	 available	 via	 the	Remote	 Sensing	Research	Group	of	 the	Vienna	University	of	433	

Technology	(http://rs.geo.tuwien.ac.at/	)		434	
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Appendix	A	455	

	456	

	457	

Fig.	A7	Global	map	illustrating	which	frequency	used	by	AMSR2		is	the	least	affected	by	RFI		458	

Appendix	B	459	

	460	

Fig.	B8	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	the	entire	year	of	2013	461	
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	462	

Fig.	B9	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Winter	2013	463	

	464	

Fig.	B10	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Spring	2013	465	
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	466	

Fig.	B11	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Summer	2013	467	

	468	

Fig.	B12	Absolute	differences	in	soil	moisture	(ESA	CCI	SM	minus	CCI	NRT)	for	Autumn	2013	469	
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Appendix	C	470	

	471	

Fig.	C13	Absolute	differences	in	soil	moisture	for	ASCAT	(ASCAT	NRT	minus	ASCAT	offline)	for	the	entire	year	of	472	

2013	(masked	according	to	the	blending	map	in	Fig.	4)	473	
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	474	

Fig.	C14	Absolute	differences	 in	soil	moisture	 for	AMSR2	 	 (AMSR2	 	NRT	minus	AMSR2	 	offline)	 for	 the	entire	475	

year	of	2013	(masked	according	to	the	blending	map	in	Fig.	4)	476	

	 	477	
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Table	 1	 Statistical	 scores	 for	 ESA	 CCI	 SM/CCI	 NRT	 and	 in-situ	 stations/networks	 (maximum	 depth	 0.1	m)	 in	739	

Spain,	France,	Kenya	and	Senegal	for	2013	(for	the	Remedhus	and	Smosmania	networks	the	table	includes	the	740	

bias	range	from	minimum	to	maximum)	741	

In-Situ	
Network		

Number	of	
Stations	

R	for	
ESA	CCI	

R	for	CCI	
NRT	

Bias	for	ESA	
CCI		

BIAS	for	CCI	
NRT	

Unbiased	
RMSD	for	
ESA	CCI	

Unbiased	
RMSD	for	
CCI	NRT	

Remedhus		 19	 0.60	 0.52	 -0,079/0.214	 -0.075/0,207	 0.002	 0.003	
Smosmania		 19	 0.54	 0.46	 -0,129/0.170	 -0,135/0,147	 0.006	 0.012	
Cosmos	 1	 0.66	 0.59	 0.040	 0.028	 0.002	 0.003	
Dahra		 1	 0.65	 0.61	 0.128	 0.155	 0.003	 0.003	

Average	of	all	
Observations	 	 0.58	 0.49	 N.A.	 N.A.	 0.004	 0.008	

	742	

Table	1	Statistical	scores	for	ESA	CCI	SM/CCI	NRT	anomalies	and	in-situ	stations/networks	(maximum	depth	0.1	743	

m)	 in	 Spain,	 France,	 Kenya	 and	 Senegal	 for	 2013	 (for	 the	 Remedhus	 and	 Smosmania	 networks	 the	 table	744	

includes	the	bias	range	from	minimum	to	maximum)	745	

In-Situ	
Network		

Number	of	
Stations	

R	for	
ESA	CCI	

R	for	
CCI	
NRT	

Bias	for	ESA	
CCI	

BIAS	for	CCI	
NRT	

Unbiased	
RMSD	for	
ESA	CCI	

Unbiased	
RMSD	for	
CCI	NRT	

Remedhus		 19	 0.42	 0.39	 0.000/0,003	 0.000/0,005	 0.001	 0.002	
Smosmania		 19	 0.46	 0.39	 -0.002/0,005	 -0.001/0,008	 0.002	 0.003	
Cosmos	 1	 0.46	 0.32	 -0.004	 -0.003	 0.001	 0.002	
Dahra		 1	 0.54	 0.29	 0.000	 0.004	 0.001	 0.001	

Average	of	all	
Observations	 	 0.44	 0.38	 N.A.	 N.A.	 0.002	 0.002	

	746	
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