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Abstract 12 

Monitoring stations have been used for decades to properly measure hydrological variables and 13 

better predict floods. To this end, methods to incorporate such observations into mathematical 14 

water models have also being developed, including data assimilation. Besides, in recent years, 15 

the continued technological improvement has stimulated the spread of low-cost sensors that 16 

allow for employing crowdsourced and obtain observations of hydrological variables in a more 17 

distributed way than the classic static physical sensors allow. However, such measurements 18 

have the main disadvantage to have asynchronous arrival frequency and variable accuracy. For 19 

this reason, this is one of the first studies that aims to demonstrate that crowdsourced streamflow 20 

observations can improve flood prediction if integrated in hydrological models. Two different 21 

types of hydrological models, applied to four case studies, are considered. Realistic (albeit 22 

synthetic) streamflow observations are used to represent crowdsourced streamflow 23 

observations in both case studies. Consistent results are found across the all case studies. It is 24 

found that the accuracy of the observations influences the model results more than the actual 25 

(irregular) moments in which the streamflow observations are assimilated into the hydrological 26 

models. This study demonstrates how networks of low-cost sensors can complement traditional 27 

networks of physical sensors and improve the accuracy of flood forecasting. 28 
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1 Introduction 29 

Observations of hydrological variables measured by physical sensors have been increasingly 30 

integrated into mathematical models by means of model updating methods. The use of these 31 

techniques allows for the reduction of intrinsic model uncertainty and improves the flood 32 

forecasting accuracy (Todini et al., 2005). The main idea behind model updating techniques is 33 

to either update model input, states, parameters or outputs as new observations become 34 

available (Refsgaard, 1997; WMO, 1992). Input update is the classical method used in 35 

operational forecasting as uncertainties of the input data can be considered as the main source 36 

of uncertainty (Bergström, 1991; Canizares et al., 1998; Todini et al., 2005). Regarding the state 37 

updating, Kalman filtering approaches such as Kalman filter (Kalman, 1960), extended Kalman 38 

filter (Aubert et al., 2003; Kalman, 1960; Madsen and Cañizares, 1999; Verlaan, 1998) or 39 

Ensemble Kalman filter (EnKF, Evensen, 2006) are ones of the most used when new 40 

observations are available. 41 

Due to the complex nature of the hydrological processes, spatially and temporally distributed 42 

measurements are needed in the model updating procedures to ensure a proper flood prediction 43 

(Clark et al., 2008; Mazzoleni et al., 2015; Rakovec et al., 2012). However, traditional physical 44 

sensors require proper maintenance and personnel which can be very expensive in case of a 45 

vast network. For this reason, the technological improvement led to the spread of low-cost 46 

sensors used to measure hydrological variables such as water level or precipitation in a 47 

distributed way. An example of such sensors, defined in the following as “social sensor”, is a 48 

smart-phone camera used to measure the water level at a staff gauge with an associate QR code 49 

used to infer the spatial location of the measurement (see Figure 1). The main advance of using 50 

these type of sensors is that they can be used not only by technicians but also by regular citizens, 51 

and that due to their reduced cost a more spatially distributed coverage can be achieved. The 52 

idea of designing such alternative networks of low-cost social sensors and using the obtained 53 

crowdsourced observations is the base of the EU-FP7 WeSenseIt project (2012-2016), which 54 

also sponsors this research. Various other projects have also been initiated in order to assess the 55 

usefulness of crowdsourced observations inferred by low-cost sensors owned by citizens. For 56 

instance, in the project CrowdHydrology (Lowry and Fienen, 2013), a method to monitor 57 

stream stage at designated gauging staffs using crowd source-based text messages of water 58 

levels is developed using untrained observers. Cifelli et al. (2005) described a community-based 59 

network of volunteers (CoCoRaHS), engaged in collecting precipitation measurements of rain, 60 



 3

hail and snow. An example of hydrological monitoring, established in 2009, of rainfall and 61 

streamflow values within the Andean ecosystems of Piura, Peru, based on citizen observations 62 

is reported in Célleri et al. (2009). Degrossi et al. (2013) used a network of wireless sensors in 63 

order to map the water level in two rivers passing by Sao Carlos, Brazil. Recently, the iSPUW 64 

Project is aims to integrate data from advanced weather radar systems, innovative wireless 65 

sensors and crowdsourcing of data via mobile applications in order to better predict flood events 66 

in the urban water systems of the Dallas-Fort Worth Metroplex (ISPUW, 2015; Seo et al., 67 

2014). Other examples of crowdsourced water-related water-related information include the so-68 

called Crowdmap platform for collecting and communicating the information about the floods 69 

in Australia in 2011 (ABC, 2011), and informing citizens about the proper time for water supply 70 

in an intermittent water system (Alfonso, 2006; Au et al., 2000; Roy et al., 2012). A detailed 71 

and interesting review of the examples of citizen science applications in hydrology and water 72 

resources science is provided by Buytaert et al. (2014). In this review study, the potential of 73 

citizen science, based on robust, cheap, and low-maintenance sensing equipment, to 74 

complement more traditional ways of scientific data collection for hydrological sciences and 75 

water resources management is explored. In order to study the challenges and opportunities in 76 

the integration of hydrologically-oriented citizen science in water resources management, four 77 

case studies from remote mountain region (e.g. the Peruvian Andes) are considered. 78 

The traditional hydrological observations from physical sensors have a well-defined structure 79 

in terms of frequency and accuracy. On the other hand, crowdsourced observations are provided 80 

by citizens with varying experience of measuring environmental data and little connections 81 

between each other, and the consequence is that the low correlation between the measurements 82 

might be observed. So far, in operational hydrology practice, the added value of crowdsourced 83 

data it is not integrated into the forecasting models but just used to compare the model results 84 

with the observations in a post-event analysis. This can be related to the intrinsic variable 85 

accuracy, due to the lack of confidence in the data quality from such heterogeneous sensors, 86 

and the variable life-span of the crowdsourced observations. 87 

Regarding data quality, Bordogna et al. (2014) and Tulloch and Szabo (2012) stated that quality 88 

control mechanisms should consider contextual conditions to deduce indicators about reliability 89 

(expertise level), credibility (volunteer group) and performance of volunteers such as accuracy, 90 

completeness and precision level. Bird et al. (2014) addressed the issue of data quality in 91 

conservation ecology by means of new statistical tools to assess random error and bias in such 92 
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observations. Cortes et al. (2014) evaluated data quality by distinguishing the in-situ data 93 

collected between a volunteer and a technician and comparing the most frequent value reported 94 

at a given location. They also gave some range of precision according to the rating scales. With 95 

in-situ exercises, it might be possible to have an indication of the reliability of data collected 96 

(expertise level). However, this indication does not necessarily lead to a conclusion of high, 97 

medium or low accuracy every time a streamflow observation of a contributor is received. In 98 

addition, such approach is not enough at operational level to define accuracy in data quality. In 99 

fact, every time a crowdsourced observation is received in real-time, the reliability and accuracy 100 

of observations should be identified. To do so, one possible approach could be to filter out the 101 

measurements following a geographic approach which defines semantic rules governing what 102 

can occur at a given location (e.g. Vandecasteele and Devillers, 2013). Another approach could 103 

be to compare measurements collected within a pre-defined time-window in order to calculate 104 

the most frequent value, the mean and the standard deviation. 105 

Regarding the variable life-span, crowdsourced observations can be defined as asynchronous 106 

because do not have predefined rules about the arrival frequency (the observation might be sent 107 

just once, occasionally or at irregular time steps which can be smaller than the model time step) 108 

and accuracy. In a recent paper, Mazzoleni et al. (2015) presented results of the study of the 109 

effects of distributed synthetic streamflow observations having synchronous intermittent 110 

temporal behaviour and variable accuracy in a semi-distributed hydrological model. It has been 111 

shown that the integration of distributed uncertain intermittent observations with single 112 

measurements coming from physical sensors would allow for the further improvements in 113 

model accuracy. However, we have not considered the possibility that the asynchronous 114 

observations might be coming at the moments not coordinated with the model time steps. A 115 

possible solution to handle asynchronous observations in time with EnKF is to assimilate them 116 

at the moments coinciding with the model time steps (Sakov et al., 2010). However, as these 117 

authors mention, this approach requires the disruption of the ensemble integration, the ensemble 118 

update and a restart, which may not feasible for large-scale forecasting applications. Continuous 119 

approaches, such as 3D-Var or 4D-Var methods, are usually implemented in oceanographic 120 

modeling in order to integrate asynchronous observations at their corresponding arrival moments 121 

(Derber and Rosati, 1989; Huang et al., 2002; Macpherson, 1991; Ragnoli et al., 2012). In fact, 122 

oceanographic observations are commonly collected at not pre-determined, or asynchronous, 123 

times. For this reason, in variational data assimilation, the past asynchronous observations are 124 

simultaneously used to minimize the cost function that measures the weighted difference 125 
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between background states and observations over the time interval, and identify the best 126 

estimate of the initial state condition (Drecourt, 2004; Ide et al., 1997; Li and Navon, 2001). In 127 

addition to the 3D-Var and 4D-Var methods, Hunt et al. (2004) proposed a Four Dimensional 128 

Ensemble Kalman Filter (4DEnKF) which adapts EnKF to handle observations that have 129 

occurred at non-assimilation times. In this method the linear combinations of the ensemble 130 

trajectories are used to quantify how well a model state at the assimilation time fits the 131 

observations at the appropriate time. Furthermore, in case of linear dynamics 4DEnKF is 132 

equivalent to instantaneous assimilation of the measured data (Hunt et al., 2004). Similarly to 133 

4DEnKF, Sakov et al. (2010) proposed the Asynchronous Ensemble Kalman Filter (AEnKF), 134 

a modification of the EnKF, mainly equivalent to 4DEnKF, used to assimilate asynchronous 135 

observations (Rakovec et al., 2015). Contrary to the EnKF, in the AEnKF current and past 136 

observations are simultaneously assimilated at a single analysis step without the use of adjoint 137 

model. Yet another approach to assimilate asynchronous observations in models is the so-called 138 

First-Guess at the Appropriate Time (FGAT) method. Like in 4D-Var, the FGAT compares the 139 

observations with the model at the observation time. However, in FGAT the innovations are 140 

assumed constant in time and remain the same within the assimilation window (Massart et al., 141 

2010). Having reviewed all the described approaches, in this study we have decided to use a 142 

straightforward and pragmatic method, due to the linearity of the hydrological models 143 

implemented in this study, similar to the AEnKF to assimilate the asynchronous crowdsourced 144 

observations. 145 

The main objective of this novel study is to assess the potential use of crowdsourced 146 

observations within hydrological modelling. In particular, the specific objectives of this study 147 

are to a) assess the influence of different arrival frequency of the crowdsourced observations 148 

and their related accuracy on the assimilation performances in case of a single social sensor; b) 149 

to integrate the distributed low-cost social sensors with a single physical sensor to assess the 150 

improvement in the flood prediction performances in an early warning system. The 151 

methodology is applied in the Brue (UK), Sieve (Italy), Alzette (Luxemburg) and Bacchiglione 152 

(Italy) catchments, considering lumped and semi-distributed hydrological models respectively. 153 

Due to the fact that streamflow observations from social sensors are not available in the Brue, 154 

Sieve and Alzette catchments while in the Bacchiglione catchment the sensors are being 155 

recently installed, the synthetic time series, asynchronous in time and with random accuracy, 156 

that imitate the crowdsourced observations, are generated and used. 157 
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The study is organized as follows. Firstly, the case studies and the datasets used are presented. 158 

Secondly, the hydrological models used are described. Then, the procedure used to integrate 159 

the crowdsourced observations is reported. Finally, the results, discussion and conclusions are 160 

presented. 161 

2 Case studies and datasets 162 

In this paper we choose four different case studies in order to validate the obtained results for 163 

areas having diverse topographical and hydrometeorological features and represented by two 164 

different hydrological models. The Brue, Sieve and Alzette catchments are considered because 165 

of the availability of precipitation and streamflow data, while the Bacchiglione river is one of 166 

the official case studies of the WeSenseIt Project (Huwald et al., 2013), which is funding this 167 

research. 168 

2.1 Brue catchment 169 

The first case study is located in the Brue catchment (Figure 2), in Somerset, with a drainage 170 

area of about 135 km2 at the catchment outlet in Lovington. Using the SRTM DEM with the 171 

90m resolution it is possible to derive the topographical characteristics, streamflow network 172 

and the consequent time of concentration, by means of the Giandotti equations (Giandotti, 173 

1933), which is about 10 hours. The hourly precipitation (49 rainfall stations) and streamflow 174 

data used in this study are supplied by the British Atmospheric Data Centre from the HYREX 175 

(Hydrological Radar Experiment) project (Moore et al., 2000; Wood et al., 2000). The average 176 

precipitation value in the catchment is estimated using the Ordinary Kriging (Matheron, 1963). 177 

2.2 Sieve catchment 178 

The second case study is the Sieve catchment (see Figure 2), a tributary of the Arno River 179 

located in the Central Italian Apennines, Italy. The catchment has a drainage area of about 180 

822km2 with a length of 56 km and it covers mostly hills and mountainous areas with an average 181 

elevation of 470 m above sea level. The time of concentration of the Sieve catchment is about 182 

12 hours. Hourly discharge observations are provided by the Centro Funzionale di 183 

Monitoraggio Meteo Idrologico-Idralico of the Tuscany Region at the outlet section of the 184 

catchment at Fornacina. The mean areal precipitation is calculated by Thiessen polygon method 185 

using 11 rainfall stations (Solomatine and Dulal, 2003). 186 
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2.3 Alzette catchment 187 

The third case study is the Alzette catchment, located in the large part of the Grand-Duchy in 188 

Luxembourg. The drainage area of the catchment is about 288km2 and the river has a length of 189 

73 km along France and Luxembourg. The catchment covers cultivated land, grassland, 190 

forestland and urbanized land (Fenicia et al., 2007). Thiessen polygon method is used for 191 

averaging the series at the individual stations and calculate hourly rainfall series (Fenicia et al., 192 

2007), while streamflows data are available measured at the Hesperange gauging station. 193 

2.4 Bacchiglione catchment 194 

The last case study is the upstream part of the Bacchiglione River basin, located in the North-195 

East of Italy, and tributary of the River Brenta which flows into the Adriatic Sea at the South 196 

of the Venetian Lagoon and at the North of the River Po delta. The study area has an overall 197 

extent and river length of about 400 km2 and 50 km (Ferri et al., 2012).  The main urban area 198 

located in the downstream part of the study area is Vicenza.  The analysed part of the 199 

Bacchiglione River has four main tributaries. On the Western side the confluences with the 200 

Bacchiglione are the Leogra, the Orolo and the Retrone River, whose junction is located in the 201 

urban area itself. In Figure 3 the Retrone River it is not shown since it does not influence the 202 

water level measured at the gauged station of Vicenza (Ponte degli Angeli in Figure 3). On the 203 

Eastern side there is the Timonchio River (see Figure 3). The Alto Adriatico Water Authority 204 

(AAWA) has implemented an Early Warning System to properly forecast the possible future 205 

flood events. Recently, within the activities of the WeSenseIt Project (Huwald et al., 2013), , 206 

one physical sensor and three staff gauges complemented by a QR code (social sensor, as 207 

represented in Figure 1) were installed in the Bacchiglione River to measure the water level. In 208 

particular, the physical sensor is located at the outlet of the Leogra catchment while the three 209 

social sensors are located at the Timonchio, Leogra and Orolo catchments outlet respectively 210 

(see Figure 3). 211 

2.5 Datasets 212 

Three flood events for each one of the four described catchments are considered to assess the 213 

assimilation of crowdsourced observations in hydrological modelling. The observed 214 

precipitation values are treated as the “perfect forecasts” and are fed into the hydrological 215 

model. For the Brue catchment, a 2 years’ time series (June 1994 to May 1996) of observed 216 
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streamflow and precipitation data are available for model calibration and validation. On the 217 

other hand, for the Sieve catchment only 3 months of hourly runoff discharge and precipitation 218 

data (December 1959 to February 1960) are available (Solomatine and Dulal, 2003). For the 219 

Alzette catchment, two-year hourly data (July 2000 to June 2002) are used for the model 220 

calibration and validation (Fenicia et al., 2007). 221 

In case of Bacchiglione catchment, three flood events occurred in 2013, 2014 and 2016 are 222 

considered. In particular, the one of 2013 had high intensity and resulted in several traffic 223 

disruptions at various locations upstream Vicenza. For flood forecasting, AAWA uses the 3-224 

day weather forecast as the input to the hydrological model. The observed values of streamflow 225 

and water level at Ponte degli Angeli are used to assess the performance of the hydrological 226 

model. 227 

 228 

3 Hydrological modelling 229 

3.1 Lumped model 230 

A lumped conceptual hydrological model is implemented to estimate the flood hydrograph at 231 

the outlet section of the Brue, Sieve and Alzette catchments. The choice of the model is based 232 

on previous studies performed on the Brue catchment in case of assimilation of streamflow 233 

observations from dynamic sensors (Mazzoleni et al., 2015). Direct runoff is used as input in 234 

the conceptual model and assessed by means of the Soil Conservation Service Curve Number 235 

(SCS-CN) method (Mazzoleni et al., 2015). The average value of CN within the catchment is 236 

calibrated by minimizing the difference between the simulated volume and observed quickflow, 237 

using the method proposed by Eckhardt (2005), at the outlet section. 238 

The main module of the hydrological model is based on the Kalinin-Milyukov-Nash (KMN), 239 

Szilagyi and Szollosi-Nagy (2010), equation:  240 
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dtIe
knk

tQ
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/
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)!1(

11        (1) 241 

where I is the model forcing (in this case direct runoff), n (number of storage elements) and k 242 

(storage capacity expressed in hours) are the two parameters of the model and Q is the model 243 

output (streamflow). In this study, the parameter k is assumed as a linear function between the 244 

time of concentration, assessed using the Giandotti equation (Giandotti, 1933) and a coefficient 245 
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ck. Szilagyi and Szollosi-Nagy (2010) derived the discrete state-space system of Eq. (1) that is 246 

used in this study in order to apply the data assimilation (DA) approach (Mazzoleni et al., 2014, 247 

2015). 248 

The model calibration is performed maximizing the NSE and correlation between the simulated 249 

and observed value of discharge, at the outlet point of the Brue, Sieve and Alzette catchments, 250 

using historical time series. The results of such calibration provided a value of the parameters 251 

n and ck equal to 4 and 0.026, 1 and 0.0055, and 1 and 0.00064 for the Brue, Sieve and Alzette 252 

catchments respectively.  253 

3.2 Semi-distributed model 254 

The hydrological and routing models used in this study are based on the early warning system 255 

implemented by the AAWA and described in Ferri et al. (2012). One the main goal of this study 256 

is also to test our methodology using synthetic observations to then apply it, in the framework 257 

of the WeSenseIt Project, on the existing early warning system implemented by AAWA on the 258 

Bacchiglione catchment. 259 

In the schematization of the Bacchiglione catchment, the location of physical and social sensors 260 

corresponds to the outlet section of three main sub- catchment s, Timonchio, Leogra and Orolo, 261 

while the remaining sub-catchments are considered as inter-catchment. For both sub-262 

catchments and inter-catchments, a conceptual hydrological model, described below, is used to 263 

estimate the outflow hydrograph. The outflow hydrograph of the three main sub-catchments is 264 

considered as upstream boundary conditions of a hydraulic model used to estimate water level 265 

in the main river channel (see Figure 3), while the outflow from the inter-catchment is 266 

considered as internal boundary condition to account for their corresponding drained area. In 267 

the following, a brief description of the main components of the hydrological and routing 268 

models is provided. 269 

The input for the hydrological model consists of precipitation only. The hydrological response 270 

of the catchment is estimated using a hydrological model that considers the routines for runoff 271 

generation and a simple routing procedure. The processes related to runoff generation (surface, 272 

sub-surface and deep flow) are modelled mathematically by applying the water balance to a 273 

control volume representative of the active soil at the sub-catchment scale. The water content 274 

Sw in the soil is updated at each calculation step dt using the following balance equation:  275 
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tttsubtsurttdtt ETLRRPSwSw  ,,        (2) 276 

where P and ET are the components of precipitation and evapotranspiration, while Rsur, Rsub and 277 

L are the surface runoff, sub-surface runoff and deep percolation model states respectively (see 278 

Figure 3). The surface runoff is expressed by the equation based on specifying the critical 279 

threshold beyond which the mechanism of dunnian flow (saturation excess mechanism) 280 

prevails: 281 
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where C is a coefficient of soil saturation obtained by calibration, and Swmax is the content of 283 

water at saturation point which depends on the nature of the soil and on its use. 284 

The sub-surface flow is considered proportional to the difference between the water content 285 

Sw(t) at time t and that at soil capacity Sc: 286 

 cttsub SSwcR , .          (4) 287 

while the estimated deep flow is evaluated according to the expression proposed by Laio et al. 288 

(2001): 289 
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where, Ks is the hydraulic conductivity of the soil in saturation conditions, β is a dimensionless 291 

exponent characteristic of the size and distribution of pores in the soil. The evaluation of the 292 

real evapotranspiration is performed assuming it as a function of the water content in the soil 293 

and potential evapotranspiration, calculated using the formulation of Hargreaves and Samani 294 

(1982). 295 

Knowing the values of Rsur, Rsub and L, it is possible to model the surface Qsur, sub-surface Qsub 296 

and deep flow Qg routed contributes according to the conceptual framework of the linear 297 

reservoir at the closing section of the single sub-catchment. In particular, in case of Qsur the 298 

value of the parameter k, which is a function of the residence time in the catchment slopes, is 299 

estimated relating the slopes velocity of the surface runoff to the average slopes length L. 300 

However, one of difficulties involved is the proper estimation of the surface velocity, which 301 
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should be calculated for each flood event (Rinaldo and Rodriguez-Iturbe, 1996). According to 302 

Rodríguez-Iturbe et al. (1982), such velocity is a function of the effective rainfall intensity and 303 

event duration. In this study, the estimate of the surface velocity is performed using the relation 304 

between velocity and intensity of rainfall excess proposed in Kumar et al. (2002). In this way 305 

it is possible to estimate the average time travel and the consequent parameter k. However, such 306 

formulation is applied in a lumped way for a given sub-catchment. As reported in McDonnell 307 

and Beven (2014) more reliable and distributed models should be used to reproduce the spatial 308 

variability of the residence times within the catchment over the time. That is why, in the 309 

advanced version of the model implemented by AAWA, in each sub-catchment the 310 

runoff propagation is carried out according to the geomorphological theory of the hydrologic 311 

response. In such model, the overall catchment travel time distributions is considered as nested 312 

convolutions of statistically independent travel time distributions along sequentially connected, 313 

and objectively identified, smaller sub-catchments. The parameter k assumes different values 314 

for each time step as the rainfall changes. In fact, the variability of residence time is considered 315 

according to Rodríguez-Iturbe et al. (1982) by assuming the surface velocity as a function of 316 

the effective rainfall intensity (Kumar et al., 2002). Anyway, the correct estimation of the 317 

residence time should be derived considering the latest findings reported in McDonnell and 318 

Beven (2014). In case of Qsub and Qg the value of k is calibrated comparing the observed and 319 

simulated discharge at Vicenza as previously described. 320 

In the early warning system implemented by AAWA in the Bacchiglione catchment, the flood 321 

propagation along the main river channel is represented one-dimensional hydrodynamic model, 322 

MIKE 11 (DHI, 2005). This model solves the Saint Venant Equations in case of unsteady flow 323 

based on an implicit finite difference scheme proposed by Abbott and Ionescu (1967). However, 324 

in order to reduce the computational time required by the analysis performed in this study 325 

MIKE11 is replaced by a hydrological routing Muskingum-Cunge model (see, e.g. Todini 326 

2007), considering river cross-sections as rectangular for the estimation of hydraulic radios, 327 

wave celerity and the other hydraulic variables.  328 

Calibration of the hydrological and hydrodynamic model parameters is performed by AAWA, 329 

and described in Ferri et al. (2012), considering the time series of precipitation from 2000 to 330 

2010 in order to minimize the root mean square error between observed and simulated values 331 

of water level at Ponte degli Angeli gauged station. In order to stay as close as possible to the 332 
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early warning system implemented by AAWA, we used the same calibrated model parameters 333 

proposed by Ferri et al. (2012). 334 

4 Data assimilation procedure 335 

4.1 Kalman Filter 336 

In Data Assimilation (DA) it is typically assumed that the dynamic system can be represented 337 

in the state-space as follows: 338 

   tttttt ~NwwIM Sxx ,0       ,,1    .        (6) 339 

   ttttt R~NvvH ,0      ,  xz .         (7) 340 

where, xt and xt-1 are state vectors at time t and t-1, M is the model operator that propagates the 341 

states x from its previous condition to the new one as a response to the inputs It, while H is the 342 

operator which maps the model states into output zt. The system and measurements errors wt 343 

and vt are assumed to be normally distributed with zero mean and covariance S and R. In a 344 

hydrological modelling system, these states can represent the water stored in the soil (soil 345 

moisture, groundwater) or on the earth surface (snow pack). These states are one of the 346 

governing factors that determine the hydrograph response to the inputs into the catchment. 347 

In case of the linear systems used in this study, the discrete state-space system of Eq. (1) can 348 

be represented as follows (Szilagyi and Szollosi-Nagy, 2010): 349 

tttt wI   ΓΦxx 1 .          (8) 350 

ttt vQ Hx .           (9) 351 

where t is the time step, x is vector of the model states (stored water volume in m3),  is the 352 

state-transition matrix (function of the model parameters n and k),  is the input-transition 353 

matrix, H is the output matrix, and I and Q are the input (forcing) and model output (discharge 354 

in this case).For example, for n=3 the matrix H is expressed as  k00H . Expressions for 355 

matrices  and can be found in Szilagyi and Szollosi-Nagy (2010). 356 

For the Bacchiglione model, the preliminary sensitivity analysis on the model states (soil 357 

content S and the storage water xsur, xsub and xL related to Qsur, Qsub and Qg) is performed in 358 

order to decide on which of the states to update. The results of this analysis (shown in the next 359 

section) pointed out that the stored water volume xsur (estimated using Eq. (8) with n=1, H=k 360 
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and It replaced by Rsur) is the most sensitive state and for this reason we decided to update only 361 

this state. 362 

The Kalman Filter (KF, Kalman, 1960) is a mathematical tool which allows estimating, in an 363 

efficient computational (recursive) way, the state of a process which is governed by a linear 364 

stochastic difference equation. KF is optimal under the assumption that the error in the process 365 

is Gaussian; in this case KF is derived by minimizing the variance of the system error (error in 366 

state) assuming that the model state estimate is unbiased. In an attempt to overcome these 367 

limitations, various variants of the Kalman filter, such as the extended Kalman filter (EKF), 368 

unscented Kalman filter and ensemble Kalman filter (EnKF) have been proposed.  369 

Kalman filter procedure can be divided in two steps, namely forecast equations, (Eqs. (10) and 370 

(11)), and update (or analysis) equations (Eqs. (12), (13) and (14)): 371 

ttt ΓIΦxx  



1 .           (10) 372 

SΦΦPP  


 T
tt 1 .           (11) 373 

  1  RT
t

T
tt HHPHPK .           (12) 374 

   t
o

tttt Q Hxxx K .          (13) 375 

    ttt PHKIP .           (14) 376 

where Kt is the Kalman gain matrix, P is the error covariance matrix and Q0 is the new 377 

observation. The prior model states x at time t are updated, as the response to the new available 378 

observations, using the analysis equations Eqs. (12) to (14). This allows for estimation of the 379 

updated states values (with superscript +) and then assessing the background estimates (with 380 

superscript –) for the next time step using the time update equations Eqs. (10) and (11). The 381 

proper characterization of the model covariance matrix S is a fundamental issue in Kalman 382 

filter. In this study, in order to evaluate the effect of assimilating crowdsourced observations, 383 

the model is considered more accurate than the observations. For this reason, a different value 384 

of the covariance matrix S is considered for each case study. In fact, a covariance matrix S with 385 

diagonal values of 1m6/s2, 25m6/s2 and 1m6/s2 are considered for the Brue, Sieve and Alzette 386 

catchments. The bigger value of S in the Sieve catchment is due to the higher flow magnitude 387 

in such catchment if compared to the other two. A sensitivity analysis of model performances 388 

depending on the value of S is reported in the Results section. In case of the Bacchiglione 389 
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catchment, S is estimated, for each given flood event, as the variance between observed and 390 

simulated flow values. 391 

4.2 Assimilation of asynchronous streamflow observations with irregular accuracy 392 

In most of the hydrological applications of DA, observations from physical sensors are 393 

integrated into water models at a regular, synchronous, time step. However, a social sensor can 394 

be used by different operators, having different accuracy, to measure water level at a specific 395 

point. For this reason, social sensors provide crowdsourced observations which are 396 

asynchronous in time and with a higher degree of uncertainty than the one of observations from 397 

physical sensors. In particular, crowdsourced observations have three main characteristics: a) 398 

irregular arrival frequency (asynchronicity); b) random accuracy; c) random number of 399 

observations received by the static device within two model time steps.  400 

As described in the Introduction, various methods have been proposed in order to include 401 

asynchronous observations in models. Having reviewed them, in this study we are proposing a 402 

somewhat simpler DA approach for integrating Crowdsourced Observations into hydrological 403 

models (DACO). This method is based on the assumption that the change in the model states 404 

and in the error covariance matrices within the two consecutive model time steps t0 and t 405 

(observation window) is linear, while the inputs are assumed constant. All the data received 406 

during the observation window are assimilated in order to update the model states and output 407 

at time t. Therefore, assuming that one observation would be available at time t0
*, the first step 408 

of such a filter (A in Figure 4) is the definition of the model states and error covariance matrix 409 

at t0
* as: 410 

 
0

0
*
0

00*
0 tt

tt
tttt 


  xxxx .          (15) 411 

 
0

0
*
0

00*
0 tt

tt
tttt 


  PPPP           (16) 412 

The second step (B in Figure 4) is the estimation of the updated model states and error 413 

covariance matrix, as the response to the streamflow observation o

t
Q *

0
. The estimation of the 414 

posterior values of 
*
0t

x  and 
*
0t

P  is performed by Eqs. (13) and (14) respectively. The Kalman 415 

gain is estimated by Eq. (12), where the prior values of model states and error covariance matrix 416 
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at t0
* are used. Knowing the posterior value  

*
0t

x  and 
*
0t

P  it is possible to predict the value of 417 

states and covariance matrix at one model step ahead, t* (C in Figure 4) using the model forecast 418 

equations Eqs. (10) and (11). 419 

The last step (D in Figure 4) is the estimation of the interpolated value of x and P at time step 420 

t. This is performed by means of a linear interpolation between the current values of x and P at 421 

t0
* and t*: 422 

 
*
0

*

*
0

*
0

**
0

~
tt

tt
tttt 


  xxxx .          (17) 423 

 
*
0

*

*
0

*
0

**
0

~

tt

tt
tttt 


  PPPP .         (18) 424 

The symbol ~ is added on the new matrices x and P in order to differentiate them from the 425 

original forecasted values in t. Assuming that a new streamflow observation is available at an 426 

intermediate time t1
* (between t0

* and t), the procedure is repeated considering the values at t0
* 427 

and t for the linear interpolation. Then, in case when no more observations are available, the 428 

updated value of 
tx~ is used to predict the model states and output at t+1 (Eqs. (10) and (11)). 429 

Finally, in order to account for the intermittent behaviour of such observations, the approach 430 

proposed by Mazzoleni et al. (2015) is applied. In this method, the model states matrix x is 431 

updated and forecasted when observations are available, while without observations the model 432 

is run using Eq. (10) and covariance matrix P propagated at the next time step using Eq. (11) 433 

4.3 Observation accuracy 434 

In this section, the uncertainty related to the streamflow crowdsourced observations is 435 

characterised. The observational error is assumed to be the normally distributed noise with zero 436 

mean and given standard deviation:  437 

true
tt

Q
t Q            (19) 438 

where the coefficient  is related to the degree of uncertainty of the measurement (Weerts and 439 

El Serafy, 2006).  440 

One of the main and obvious issues in citizen-based observations is to maintain the quality 441 

control of the water observations (Cortes et al., 2014; Engel and Voshell, 2002).  In Introduction 442 
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a number of methods to estimate (calibrate) the model of observational uncertainty have been 443 

referred to. In this study coefficient α is assumed a random variable uniformly distributed 444 

between 0.1 and 0.3, so we leave more thorough investigation of uncertainty level of the 445 

crowdsourced data for future studies. Cortes et al. (2014) argue (and this is a reasonable 446 

suggestion) that the uncertainty of a measurement provided by a well-trained technician is 447 

smaller than the one coming from a normal citizen. For this reason we assumed that the 448 

maximum value of  is three times higher than the uncertainty coming from the physical 449 

sensors. The value of Qtrue
 is the streamflow value measured at a asynchronous time step and it 450 

is described in the next section.  451 

 452 

5 Experimental setup 453 

In this section, two sets of experiments are performed in order to test the proposed method and 454 

assess the benefit to integrate crowdsourced observations, asynchronous in time and with 455 

variable accuracy, in real-time flood forecasting. 456 

In the first set of experiments, called “Experiments 1”, assimilation of streamflow observations 457 

at one social sensor location is carried out to understand the sensitivity of the employed 458 

hydrological model (KMN) under various scenarios of such observations. 459 

In the second set of experiments, called “Experiments 2”, the distributed observations coming 460 

from social and physical sensors, at four locations within the Bacchiglione catchment, are 461 

considered, with the aim of assessing the improvement in the flood forecasting accuracy. The 462 

social sensors, showed in Figure 1, were installed in the summer of 2014 within the framework 463 

of the WeSenseIt project. 464 

5.1 Experiments 1: Assimilation of crowdsourced observations from one social 465 

sensor 466 

The focus of Experiments 1 is to study the performance of the hydrological model (KMN) 467 

assimilating crowdsourced observations, having lower arrival frequencies than the model time 468 

step and random accuracies, coming from a social sensor located at the outlet point of the Brue, 469 

Sieve and Alzette catchments.  470 

Due to the fact that crowdsourced observations are not available in these case studies at the 471 

moment of this study, realistic synthetic streamflow observations having different 472 
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characteristics are generated. For this reason, observed hourly streamflow observations at the 473 

catchments outlet are interpolated to represent observations coming at arrival frequency higher 474 

than hourly. A similar approach, termed “observing system simulation experiment” (OSSE), is 475 

commonly used in meteorology to estimate synthetic “true” states and measurements by 476 

introducing random errors in the state and measurement equations (Arnold and Dey, 1986; 477 

Errico et al., 2013; Errico and Privé, 2014). OSSEs have the advantage of making it possible to 478 

directly compare estimates to “true” states and they are often used for validating DA algorithms. 479 

To analyse all possible combinations of arrival frequency, number of observations within the 480 

observation window (1 hour) and accuracy, a set of scenarios are considered (Figure 5), 481 

changing from regular arrival frequency of observations with high accuracy (scenario 1) to 482 

random and chaotic asynchronous observations with variable accuracy (scenario 11). In each 483 

scenario a varying the number of observations from 1 to 100 is considered. It is worth noting 484 

that in case of one observation per hour and regular arrival time, scenario 1 corresponds to the 485 

case of physical sensors with an observation arrival frequency of one hour. 486 

Scenario 2 corresponds to the case of observations having fixed accuracy ( equal to 0.1) and 487 

irregular arrival moments, but in which at least one observation coincides with the model time 488 

step. In particular, scenario 1 and 2 are exactly the same in case of one observation available 489 

within the observation window since it is assumed that the arrival frequency of that observation 490 

has to coincide with the model time step. On the other hand, the arrival frequency of the 491 

observations in scenario 3 is assumed to be random and observations might not arrive at the 492 

model time step. 493 

Scenario 4 considers observations with regular frequency but random accuracy at different 494 

moments within the observation window, whereas in scenario 5 observations have irregular 495 

arrival frequency and random accuracy. In all the previous scenarios the arrival frequency, the 496 

number and accuracy of the observations are assumed to be periodic, i.e. repeated between 497 

consecutive observation windows along all the time series. However such periodic 498 

repetitiveness might not occur in real-life, and for this reason, a non-periodic behaviour is 499 

assumed in scenarios 6, 7, 8 and 9. The non-periodicity assumptions of the arrival frequency 500 

and accuracy are the only factors that differentiate scenarios 6, 7, 8 and 9 from the scenarios 2, 501 

3, 4, and 5 respectively. In addition, the non-periodicity of the number of observations within 502 

the observation window is introduced in scenario 10.  503 
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Finally, in scenario 11 the observations, in addition to all the previous characteristics, might 504 

have an intermittent behaviour, i.e. not being available for one or more observation windows. 505 

5.2 Experiments 2: Spatially distributed physical and social sensors 506 

Synthetic hourly streamflow observations are calculated using measured precipitation recorded 507 

during the 2013, 2014 and 2016 flood events (post-event simulation) as input in the 508 

hydrological model of the Bacchiglione catchment. Interpolated streamflow observations 509 

having characteristics reported in scenarios 10 and 11, in Experiments 1, are generated due to 510 

the unavailability of crowdsourced observations at the moment of this study. In order to 511 

evaluate the model performances, observed and simulated streamflows are compared, for 512 

different lead times.  513 

Streamflow observations from physical sensors are assimilated in the hydrological model of 514 

AMICO system at an hourly frequency, while crowdsourced observations from social sensors 515 

are assimilated using the DACO method previously described. The updated hydrograph 516 

estimated by the hydrological model is used as the input into Muskingum-Cunge model used 517 

to propagate the flow downstream, to the gauged station at Ponte degli Angeli, Vicenza. 518 

The main goal of Experiments 2 is to understand the contribution of distributed crowdsourced 519 

observations to the improvement of the flood prediction at a specific point of the catchment, in 520 

this case at Ponte degli Angeli. For this reason, five different experimental settings are 521 

introduced, and represented in Figure 6, corresponding to different types of employed sensors.  522 

Firstly, only the observations coming from the physical sensor at the Leogra sub-catchment are 523 

used to update the hydrological model of sub-catchment B (setting A). Secondly, in setting B, 524 

the model improvement in case of assimilation of crowdsourced observations at the same 525 

location of setting A is analysed. In setting C only the distributed crowdsourced observations 526 

within the catchment are assimilated into the hydrological model. Then, setting D accounts for 527 

the integration of crowdsourced and physical observations, contrary to the setting C where the 528 

physical sensors is dropped in favour of the social sensor at Leogra. Finally, setting E considers 529 

the complete integration between physical and social sensors in Leogra, Timonchio and Orolo 530 

sub‐catchments. 531 
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6 Results 532 

6.1 Experiments 1: Influence of crowdsourced observations on flood forecasting 533 

The observed and simulated hydrographs at the outlet section of the Brue, Sieve and Alzette 534 

catchments with and without the model update (considering hourly streamflow observations) 535 

are reported in Figure 7 for nine different flood events in case of 1 hour lead time. As expected, 536 

it can be seen that the updated model tends to better represent the flood events than model 537 

without updating in all the case studies. However, such improvement it is closely related to the 538 

value of the matrix S. In fact, increasing the value of S, i.e. assuming a less accurate model, 539 

force the model towards the observations because more accurate than the model itself. For this 540 

reason, a sensitivity analysis on the influence of the matrix S on the assimilation of 541 

crowdsourced observations in case of scenario 1, i.e. coming and assimilated at regular time 542 

steps within the observation windows, is reported in Figure 8. The results of Figure 8 are related 543 

to the first flood event of the Brue, Sieve and Alzette catchments. Increasing the number of 544 

observations within the observation window results in an improvement of the NSE for different 545 

value of model error. However, such improvement becomes negligible for a given threshold 546 

value of streamflow observation, which is a function of the considered flood event. This means 547 

that the additional observations do not add information useful for improving the model 548 

performance. Overall, increasing the value of the model error S tends to increase NSE values 549 

as mentioned before. For this reason, in order to better evaluate the effect of assimilating 550 

crowdsourced observations, a small value of S, i.e. model more accurate than observations, is 551 

assumed.  552 

In case of scenario 1 the arrival frequency is set as regular for different model runs, so the 553 

moments and accuracy in which the observations became available is always the same for any 554 

model run. However, for the other scenarios, the irregular moment in which the observations 555 

becomes available within the observation window and their accuracy are randomly selected and 556 

change according to the different model runs. This reflects in a random model performances, 557 

and consequent NSE. In order to remove such random behaviour, different model runs (100 in 558 

this case) are carried out, assuming different random values of arrival and accuracy (coefficient 559 

) during each model run, for a given number of observations and lead time. The NSE value is 560 

estimated for each model run, so (NSE) and (NSE) represent the mean and standard deviation 561 

of the different values of NSE. 562 
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In case of scenarios 2 and 3 (represented using warm, red and orange, colours in Figure 9 and 563 

Figure 10 for lead time equal to 24 hours), i.e. random arrival frequency with fixed/controlled 564 

accuracy, the average values of NSE, (NSE), are smaller but comparable with the ones 565 

obtained in case of scenario 1 for all the considered flood events and case studies. In particular, 566 

scenario 3 has lower (NSE) than scenario 2. This can related to the fact that both scenarios has 567 

random arrival frequency, however, in scenario 3 observations are not provided at the model 568 

time step, as opposed to scenario 2. From Figure 10, higher values of (NSE), can be observed 569 

in case of scenario 3. Scenario 2 has the lowest standard deviation for low values of discharge 570 

observations due to the fact that the arrival frequency has to coincide with the model time step 571 

and this tends to stabilize the NSE. In particular, for increasing number of observations (NSE) 572 

tends to decrease. However, constant trend of (NSE) can be observed, due to particular 573 

characteristics of the flood events, in case of the flood event 1 of Sieve and flood event 2 and 3 574 

of Alzette. It is worth nothing that scenario 1 has null standard deviation due to the fact that 575 

observations are assumed coming at the same moment with the same accuracy for the all 100 576 

model runs. 577 

In scenario 4, represented using cold blue colour, observations are considered coming at regular 578 

time steps but having random accuracy. Figure 9 shows that (NSE) values are lower in case 579 

of scenario 4 than scenarios 2 and 3. This can be related to the higher influence of observations 580 

accuracy if compared to arrival frequency. High variability in the model performances of 581 

model, especially for low values of crowdsourced observations, it can be observed in scenario 582 

4 (Figure 10).  583 

The combined effects of random arrival frequency and observation accuracy is represented in 584 

scenario 5 using a magenta colour (i.e. the combination of warm and cold colours used for 585 

scenarios 2, 3 and 4) in Figure 9 and Figure 10. As expected, this scenario is the one with the 586 

lower (NSE) and higher (NSE) values if compared to the previous ones.  587 

The remaining scenarios, from 6 to 9, are equivalent to the ones from 2 to 5 with the only 588 

difference that are non-periodic in time. For this reason, in Figure 9 and Figure 10, scenarios 589 

from 6 to 9 have the same colour of scenarios 2 to 5 but indicated with dashed line in order to 590 

underline their non-periodic behaviour. Overall it can be observed that non-periodic scenarios 591 

have similar (NSE) values to their corresponding periodic scenario. However, their smoother 592 

(NSE) trends are because of lower (NSE) values which means that model performances are 593 

less dependent to the non-periodic nature of the crowdsourced observations than their period 594 
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behaviour. Table 1 shows the NSE values and model improvement obtained for the different 595 

experimental scenarios during the different flood events. Overall, small improvements are 596 

obtained when NSE is already high for 1 crowdsourced observation as in case of the Sieve 597 

catchment during flood event 2 or the Alzette catchment in the event 2. Moreover, it can be 598 

seen that lower improvement is achieved in case of scenarios where arrival frequency is random 599 

and accuracy fixed if compared to those scenarios (4, 5, 8 and 9) where arrival frequency is 600 

regular and accuracy is random. 601 

In the previous analysis, model improvements are expressed only in terms of NSE. However, 602 

statistics such as NSE only explain the overall model accuracy and not the real 603 

increases/decreases in prediction error. Therefore, increases in model accuracy due to the 604 

assimilation of crowdsourced observations have to be presented in different ways as increased 605 

accuracy of flood peak magnitudes and timing. For this reason, additional analyses are carried 606 

out to assess the change in flood peak prediction considering 3 peaks occurred during flood 607 

event 2 in Brue catchment (see Figure 7). Errors in the flood peak timing, Errt, and intensity, 608 

ErrI, are estimated as: 609 

S
P

o
Pt ttErr  .            (6) 610 

o
P
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o
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I Q
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
 .           (7) 611 

where tp
o and tp

s are the observed and simulated peak time (hours), while Qp
o and Qp

s are the 612 

observed and simulated peak discharge (m3/s). From the results reported in Figure 11, 613 

considering 12-hours lead time, it can be observed that, overall, errors reduction in peak 614 

prediction is achieved for increasing number of crowdsourced observations. In particular, 615 

assimilation of crowdsourced observations has more influence in the reduction of the peak 616 

intensity rather than peak timing. In fact, a small reduction of Errt of about 1 hour is obtained 617 

even increasing the number of observations. In both ErrI and Errt the higher error reduction is 618 

obtained considering fixed observation accuracy and random arrival frequency (e.g. scenarios 619 

1, 2, 3, 6 and 7). In fact, smaller ErrI error values are obtained in case of scenario 1, while 620 

scenarios 5 and 9 are the ones that show the lowest improvement in terms of peak prediction. 621 

These conclusions are very similar to the previous ones obtained analysing only NSE as model 622 

performance measures.  623 
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The combination of all the previous scenarios is represented by scenario 10, where number of 624 

crowdsourced observations changing at in each observation windows are considered. In 625 

scenario 11 the intermittent nature of crowdsourced observations is accounted as well. The 626 

(NSE) and (NSE) values of these scenarios obtained for the considered flood events are 627 

showed in Figure 12. It can be observed that scenarios 10 tends to provide higher (NSE) and 628 

lower (NSE) values, for a given flood event, if compared to scenarios 11. In fact, intermittency 629 

in crowdsourced observations tends to reduce model performance and increase variability of 630 

NSE values for random configuration of arrival frequency and observations accuracy. In 631 

particular, (NSE) tends to be constant for increasing number of observations. 632 

6.2 Experiments 2: Influence of distributed physical and social sensors 633 

Three different flood events occurred in the Bacchiglione catchment are used within 634 

Experiments 2. Figure 13 shows the observed and simulated streamflow value at the outlet 635 

section of Vicenza. In particular, two simulated time series of streamflow are calculated using 636 

as input for the hydrological model the measured and forecasted time series of precipitation 637 

(provided by AAWA). Overall, an underestimation of the observed discharge can be observed 638 

using forecasted input while the results achieved used measured precipitation tend to well 639 

represent the observations. In order to find out what model states leads to a maximum increase 640 

of the model performance, a preliminary sensitivity analysis is performed. The four model 641 

states, xS, xsur, xsub and xL, related to Sw, Qsur, Qsub and Qg, are perturbed by ±20% around the 642 

true state value using the uniform distribution, every time step from the initial time step up to 643 

the perturbation time (PT). No correlation between time steps is considered. After PT, the model 644 

realizations are run without perturbation in order to assess the perturbation effect on the system 645 

memory. No assimilation, and consequent model update, is performed at this step. From the 646 

results reported in Figure 14, related to the flood event 1, it can be observed that the model state 647 

xsur is the most sensitive states if compared to the other ones. In addition, the perturbations of 648 

all the states seem to affect the model output even after the PT (high system memory). For this 649 

reason, in this experiments, only the model state xsur is updated by means of the DACO method. 650 

Scenarios 10 and 11, described in the previous sections, are used to represent the irregular and 651 

random behaviour of the crowdsourced observations assimilated in the Bacchiglione catchment. 652 

Figure 15 and Figure 16 show the results obtained from the experiments settings represented in 653 

Figure 6 in case of physical and crowdsourced observations during three different flood events. 654 
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Three different lead time values are considered. Different model runs (100) are performed to 655 

account for the effect induced by the random arrival frequency and accuracy of the 656 

crowdsourced observations within the observation window as described above. From Figure 657 

15, in which observations have the same characteristics of previous scenario 10, it can be seen 658 

that the assimilation of observations from the physical sensor in the Leogra sub-catchment 659 

(Setting A) provides a better flood prediction at Ponte degli Angeli if compared to the 660 

assimilation of a small number of crowdsourced observations provided by a social sensor in the 661 

same location (Setting B). In particular, Figure 15 show that, depending on the flood event, the 662 

same NSE values achieved with assimilation of physical observations (hourly frequency and 663 

high accuracy) can be obtained by assimilating between 10 and 20 crowdsourced observations 664 

per hour in case of 4 hours lead time. Such number of crowdsourced observations tends to 665 

increase for increasing values of lead times. In case of intermittent observations (Figure 16) the 666 

overall reduction of NSE is such that even with a high number of observations (even higher 667 

than 50 per hour) the NSE is always lower than the one obtained assimilating physical 668 

observations for any lead time.  669 

In case of Setting C, it can be observed for all three flood events that distributed social sensors 670 

in Timonchio, Leogra and Orolo sub-catchments allow for obtaining higher model 671 

performances than the one achieved with only one physical sensor (see Figure 15). However, 672 

in case of flood event 3 this is valid only for low lead time values. In fact, for 8 and 12 hours 673 

lead time values, the contribution of crowdsourced observations tend to decrease in favour of 674 

physical observations from the Leogra sub-catchment. This effect is predominant in case of 675 

intermittent crowdsource observations, scenario 11. In this case, Setting C has higher (NSE) 676 

values than Setting A only during flood event 1 and for lead time values equal to 4 and 8 hours 677 

(see Figure 16).  678 

It is interesting to note that in case of Setting D, during flood event 1, the (NSE) is higher than 679 

Setting C for low number of observations. However, with higher number of observations, 680 

Setting C is the one providing the best model improvement for low lead time values. In case of 681 

intermittent observations, it can be noticed that the Setting D provides always higher 682 

improvement than Setting C. For flood event 1, the best model improvement is achieved in case 683 

of Setting E, i.e. fully integrating physical sensor with distributed social sensors. On the other 684 

hand, during flood events 2 and 3 Setting D shows higher improvements than Setting E. In case 685 

of intermittent observations the difference between Setting D and E tends to reduce for all the 686 



 24

flood events. Overall, settings D and E are the ones which provided the highest (NSE) in both 687 

scenario 10 and 11. This demonstrates the importance of integrating existing network of 688 

physical sensors (Setting A) with social sensors providing crowdsourced observations in order 689 

to improve flood predictions. 690 

Figure 17 shows the standard deviation of the NSE obtained for the different settings in case of 691 

4 hours lead time. Similar results are obtained for the 3 considered flood events.  In case of 692 

Setting A, (NSE) is equal to zero since observations are coming from physical sensor at 693 

regular time steps. Higher (NSE) values are obtained in case of Setting B, while including 694 

different crowdsourced observations (Setting C) tend to decrease the value of (NSE). It can 695 

be observed that (NSE) decreases for high values of crowdsourced observations. As expected, 696 

the lowest values of (NSE) are achieved including the physical sensor in the DA procedure 697 

(Setting D and E). Similar considerations can be drawn in case of intermittent observations, 698 

where higher and more perturbed (NSE) values are obtained. 699 

7 Discussion 700 

Assimilation of crowdsourced observations is performed in four different case studies 701 

considering only one social sensor location in the Brue, Sieve and Alzette catchments, and 702 

distributed social and physical sensors in the Bacchiglione catchment. 703 

In the first three catchments, different characteristics of the crowdsourced observations are 704 

represented by means of 11 scenarios. Nine different flood events are used to assess the 705 

beneficial use in assimilating crowdsourced observations in hydrological model to improve 706 

flood forecasting.  707 

Overall, assimilation of crowdsourced observations improves model performances in all the 708 

considered case studies. In particular, there is a limit in the number of crowdsourced 709 

observations for which satisfactory model improvements can be achieved and for which 710 

additional observations become redundant. This asymptotic behaviour when extra information 711 

is added has also been observed using other metrics by Krstanovic and Singh (1992), Ridolfi et 712 

al. (2014), Alfonso et al. (2013)), among others. From Figure 9 it can be seen that, in all the 713 

considered catchments, increasing the number of model error induces an increase of such 714 

asymptotic value with a consequent reduction of observations needed to improve model 715 

performances. For this reason, a small value of model error is assumed in this study. In addition, 716 

it is not possible to define a priori number of observations needed to improve model due to the 717 
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different model behaviour for a given flood event in case of no update. In fact, as reported in 718 

Table 1 and Figure 8, flood events with high NSE values even without update tends to achieve 719 

the asymptotic values of NSE for small number of observations (e.g. flood event 1 in Brue and 720 

2 in Sieve), while more observations are needed for flood events having low NSE without 721 

update. However, in case of these case studies and during these nine flood events, an indicative 722 

value of 10 observations can be considered to achieve a good model improvement. 723 

Figure 9 and Figure 10 show the (NSE) and (NSE) values for the scenarios 2 to 9. Figure 9 724 

demonstrate that in case of irregular arrival frequency and constant accuracy (e.g. scenarios 2, 725 

3, 6 and 7) the NSE is higher than in case of scenarios in which accuracy is variable and arrival 726 

frequency fixed (e.g. scenarios 4, 5, 8 and 9). These results point out that the model performance 727 

is more sensitive to the accuracy of the observations than to the moment in time at which the 728 

streamflow observations become available. Overall, (NSE) tends to decrease for the high 729 

number of observations. The combined effects of irregular frequency and uncertainty are 730 

reflected in scenario 5 which has the lower mean and higher standard deviation of NSE if 731 

compared to the first four scenarios. However, it can be observed from scenarios 2 to 5 that the 732 

trend it is not as smooth as the one obtained with scenario 1. This can be related to the fact that 733 

NSE may vary with varying arrival frequency and observations accuracy.  734 

An interesting fact is that passing from periodic to non-periodic scenarios the standard deviation 735 

(NSE) is significantly reduced, while (NSE) remains the same but with a smoother trend. A 736 

non-periodic behaviour of the observations, common in real life, helps to reduce the fluctuation 737 

of the NSE generated by the random behaviour of streamflow observations. Finally, the results 738 

obtained for scenarios 10 and 11 are showed in Figure 12. The assimilation of irregular number 739 

of observations in scenario 10, in each observation window, seems to provide the same (NSE) 740 

than the ones obtained with scenario 9. One of the main outcome is that the intermittent nature 741 

of the observations (scenario 11) induces a drastic reduction of the NSE and an increase in its 742 

noise in both considered flood events. All these previous results are consistent across the 743 

considered catchments. 744 

In case of the Bacchiglione catchment, the physical and crowdsourced observations are 745 

assimilated within a hydrological model to improve the poor flow prediction in Vicenza for the 746 

three considered flood events. In fact, such predictions are affected by an underestimation of 747 

the 3-days rainfall forecast used as input in flood forecasting practice in this area. 748 
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One of the main outcomes of these analyses is that the replacement of a physical sensor (Setting 749 

A) for a social sensor at only one location (settings B) does not improve the model performance 750 

in terms of NSE for small number of crowdsourced observations. Figure 15 and Figure 16 show 751 

that distributed locations of social sensors (setting C) can provide higher values of NSE than a 752 

single physical sensor, even for low number of observations, in case of regular observations 753 

(scenario 10). In case of flood event 1, Setting C provides better model improvement than 754 

Setting D for low lead time values and high number of observations. This can be due to the fact 755 

that the physical sensor at Leogra provides constant improvement, for a given lead time, while 756 

the social sensor tends to achieve better results with a higher number of observations. This 757 

dominant effect of the social sensor, in case of high number of observations, tends to increase 758 

for the higher lead times. On the other hand, for intermittent observations (scenario 11) such 759 

effect decreases in particular for flood events 2 and 3.  760 

Integrating physical and social sensors (Setting D and E) induces the highest model 761 

improvements for all the three flood events. In case of flood event 1, assimilation from Setting 762 

E it appears to provide better results than assimilation from Setting D. Opposite results are 763 

obtained in case of flood events 2 and 3. In fact, the high (NSE) values of setting D, when 764 

compared to setting E during such flood events, can be due to the fact that flood events 2 and 3 765 

are characterized by one main peak and similar shape while flood event 1 has two main peaks. 766 

From Figure 17 it can be seen that assimilation of crowdsourced observations from distributed 767 

social sensors tend to reduce the variability of the NSE coefficient in both scenarios 10 and 11. 768 

8 Conclusions 769 

This innovative study demonstrates that crowdsourced observations, asynchronous in time and 770 

with variable accuracy, can improve flood prediction if integrated in hydrological models. Such 771 

observations are assumed to be inferred using low-cost social sensors as, for example, staff 772 

gauge connected to a QR code on which people can read the water level indication and send the 773 

observations via a mobile phone application. This type of social sensor is tested within the 774 

framework of the WeSenseIt FP7 Project. Four different case studies, the Brue (UK), Sieve 775 

(Italy), Alzette (Luxemburg) and Bacchiglione (Italy) catchments, are considered, and the two 776 

types of hydrological models are used. In the Experiments 1 (Brue, Sieve and Alzette 777 

catchments) the sensitivity of the model results to the different frequencies and accuracies of 778 

the crowdsourced observations coming from a hypothetical social sensor at the catchments 779 

outlet is assessed. On the other hand, in the Experiments 2 (Bacchiglione catchment), the 780 
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influence of the combined assimilation of crowdsourced observations, coming from a 781 

distributed network of social sensors, and existing streamflow observations from physical 782 

sensors, used in the Early Warning System implemented by AAWA, is evaluated. Due to the 783 

fact that crowdsourced streamflow observations are not yet available in all case studies, realistic 784 

synthetic observations with various characteristics of arrival frequency and accuracy are 785 

introduced. 786 

Overall, we demonstrated that the results we have obtained are very similar in terms of model 787 

behaviour assimilating asynchronous observations in all cases studies.  788 

In Experiments 1 it is found that increasing the number of crowdsourced observations within 789 

the observation window increases the model performance even if these observations have 790 

irregular arrival frequency and accuracy. Therefore, observations accuracy affects the average 791 

value of NSE more than the moment in which these observations are assimilated. The noise in 792 

the NSE is reduced when the assimilated observations are considered having non-periodic 793 

behaviour. In addition, the intermittent nature of the observations tends to drastically reduce the 794 

NSE of the model for different values of lead times. In fact, if the intervals between the 795 

observations are too large then the abundance of crowdsourced data at other times and places 796 

is no longer able to compensate their intermittency.  797 

Experiments 2 showed that, in the Bacchiglione catchment, the integration of observations from 798 

social sensors and single physical sensor can improve the flood prediction even in case of a 799 

small number of intermittent crowdsourced observations. In case of both physical and social 800 

sensors located at the same place the assimilation of crowdsourced observations give the same 801 

model improvement than the assimilation of physical observations only in case of high number 802 

and non-intermittent behaviour. Overall, the integration of existing physical sensors with a new 803 

network of social sensors can improve the model predictions, as shown in the Bacchiglione case 804 

study. We agree that the cases and models are indeed different, but the presented study 805 

demonstrated that the results obtained are very similar in terms of model behaviour assimilating 806 

asynchronous observations. 807 

In our study we have obtained interesting results, however, this work has still certain 808 

limitations. Firstly, the proposed method used to assimilate crowdsourced observations is 809 

applied to the linear parts of hydrological models, so the proposed methodology has to be tested 810 

on models with explicit non-linearities. Secondly, while quite realistic synthetic streamflow 811 

observations have been used in this study, the developed methodology was not tested on real-812 
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life data (observations coming from actual social sensors) so there is a need to check if the 813 

drawn conclusions are still valid. Finally, advancing methods for a more accurate assessment 814 

of the data quality and accuracy of streamflow observations coming from social sensors need 815 

to be considered (e.g. developing a pre-filtering module aimed to select only observations 816 

having good accuracy while discarding the one with low accuracy).  817 

The future work will be aimed at addressing the limitations formulated above, which would 818 

hopefully allow for a better characterisation of the crowdsourced observations (citizens 819 

observatories) and making them a more reliable source of data for model-based forecasting.  820 
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Tables 1028 

 1029 

Table 1. NSE improvements, from 1 to 50 crowdsourced observations, in case of different 1030 

experimental scenarios during the nine flood events occurred in the Brue, Sieve and Alzette 1031 

catchments. 1032 

Scenario 1 2 3 4 5 6 7 8 9 

Brue - event 1 0.126 0.125 0.140 0.243 0.253 0.125 0.144 0.237 0.248

Brue - event 2 0.416 0.413 0.445 0.920 0.902 0.413 0.463 0.841 0.870

Brue - event 3 0.443 0.438 0.472 0.890 0.842 0.440 0.471 0.809 0.822

Sieve - event 1 0.250 0.246 0.228 0.271 0.221 0.247 0.225 0.263 0.237

Sieve - event 2 0.066 0.064 0.067 0.057 0.056 0.064 0.068 0.057 0.060

Sieve - event 3 0.629 0.623 0.632 1.085 1.045 0.625 0.634 1.019 0.995

Alzette - event 1 0.884 0.881 0.883 1.274 1.265 0.882 0.890 1.251 1.342

Alzette - event 2 0.137 0.135 0.135 0.120 0.121 0.134 0.147 0.119 0.135

Alzette - event 3 0.314 0.309 0.305 0.297 0.283 0.310 0.315 0.297 0.281

  1033 
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Figures 1034 

 1035 

 1036 

Figure 1. Example of a low-cost social sensor, and crowdsourced observations, implemented in 1037 

the Bacchiglione River, Italy, under the WeSenseIt project   1038 

  1039 
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 1040 

Figure 2. Representation of the four case studies considered in this study   1041 

  1042 
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 1043 

Figure 3. Structure of the early warning system AMICO and location of the physical, social  1044 

and Ponte degli Angeli (PA) sensors implemented in the Bacchiglione catchment by the Alto 1045 

Adriatico Water Authority 1046 

  1047 
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 1048 

Figure 4. Graphical representation of the DACO method proposed in this study to assimilate 1049 

crowdsourced asynchronous observations 1050 

  1051 
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 1052 

Figure 5. The experimental scenarios representing different configurations of arrival frequency, 1053 

number and accuracy of the streamflow observations 1054 

  1055 
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 1056 

Figure 6. Different experimental settings implemented within the Bacchiglione catchment 1057 

during Experiments 2 1058 

  1059 
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 1060 

Figure 7. The observed and simulated hydrographs, with and without assimilation, for the nine 1061 

considered flood events occurred in the Brue, Sieve and Alzette catchments 1062 

  1063 
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 1064 

Figure 8. Model improvement in terms of NSE during flood event 1 of each case study, in case 1065 

of different values of model error matrix S and 24-hours lead time, assimilating streamflow 1066 

observations according to scenario 1 1067 

 1068 

  1069 
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 1070 

Figure 9. Dependency of (NSE) on the number of observations, for the scenarios 2, 3, 4, 5, 6, 1071 

7, 8 and 9 for the five considered flood events 1072 
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 1074 

Figure 10. Dependency of (NSE) on the number of observations, for the scenarios 2, 3, 4, 5, 1075 

6, 7, 8 and 9 for the five considered flood events 1076 
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 1078 

Figure 11. Representation of the Errt and ErrI as function of number of crowdsourced 1079 

observations and experimental scenarios for three different flood peaks occurred during flood 1080 

event 2 in Brue catcment 1081 

  1082 
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 1083 

Figure 12. Dependency of the (NSE) and (NSE) on the number of observations, for the 1084 

scenarios 10 and 11 in case of the five flood events 1085 

  1086 
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 1087 

Figure 13. The observed and simulated hydrographs, without update, using measured input (MI) 1088 

and forecasted input (FI), for the three considered flood events occurred in 2013 (event 1), 2014 1089 

(event 2) and 2016 (event 3) on the Bacchiglione catchment 1090 

 1091 

  1092 
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 1093 

Figure 14. Effect of perturbing the model states on the model output, Bacchiglione case study. 1094 

PT=Perturbation Time 1095 

  1096 
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 1097 

Figure 15. Model performance expressed as (NSE) – assimilating different number of 1098 

crowdsourced observations during the three considered flood events, for the three lead time 1099 

values, having characteristic of scenario 10 1100 

 1101 
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 1102 

Figure 16. Model performance expressed as (NSE) – assimilating different number of 1103 

crowdsourced observations during the three considered flood events, for the three lead time 1104 

values, having characteristic of scenario 11 1105 

 1106 

  1107 
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 1108 

Figure 17. Variability of performance expressed as (NSE) – assimilating crowdsourced 1109 

observations within setting A, B, C and D, assuming the lead time of 4h, for scenarios 10 and 1110 

11 during the three considered flood events 1111 

 1112 

 1113 


