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Abstract 12 

Monitoring stations have been used for decades to properly measure hydrological variables and 13 

better predict floods. To this end, methods to incorporate such observations into mathematical 14 

water models have also being developed, including data assimilation. Besides, in recent years, 15 

the continued technological improvement has stimulated the spread of low-cost sensors that 16 

allow for employing crowdsourced and obtain observations of hydrological variables in a more 17 

distributed way than the classic static physical sensors allow. However, such measurements 18 

have the main disadvantage to have asynchronous arrival frequency and variable accuracy. For 19 

this reason, this is one of the first studies that aims to demonstrate that crowdsourced streamflow 20 

observations can improve flood prediction if integrated in hydrological models. Two different 21 

types of hydrological models, applied to two case studies, are considered. Realistic (albeit 22 

synthetic) streamflow observations are used to represent crowdsourced streamflow 23 

observations in both case studies. Overall, assimilation of such observations within the 24 

hydrological model results in a significant improvement, up to 21% (flood event 1) and 67% 25 

(flood event 2) of the Nash-Sutcliffe efficiency index, for different lead times. It is found that 26 

the accuracy of the observations influences the model results more than the actual (irregular) 27 

moments in which the streamflow observations are assimilated into the hydrological models. 28 
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This study demonstrates how networks of low-cost sensors can complement traditional 29 

networks of physical sensors and improve the accuracy of flood forecasting. 30 

 31 

1 Introduction 32 

Observations of hydrological variables measured by physical sensors have been increasingly 33 

integrated into mathematical models by means of model updating methods. The use of these 34 

techniques allows for the reduction of intrinsic model uncertainty and improves the flood 35 

forecasting accuracy (Todini et al., 2005). The main idea behind model updating techniques is 36 

to either update model input, states, parameters or outputs as new observations become 37 

available (Refsgaard, 1997; WMO, 1992). Input update is the classical method used in 38 

operational forecasting as uncertainties of the input data can be considered as the main source 39 

of uncertainty (Bergström, 1991; Canizares et al., 1998; Todini et al., 2005). Regarding the state 40 

updating, Kalman filtering approaches such as Kalman filter (Kalman, 1960), extended Kalman 41 

filter (Aubert et al., 2003; Kalman, 1960; Madsen and Cañizares, 1999; Verlaan, 1998) or 42 

Ensemble Kalman filter (EnKF, Evensen, 2006) are ones of the most used when new 43 

observations are available. 44 

Due to the complex nature of the hydrological processes, spatially and temporally distributed 45 

measurements are needed in the model updating procedures to ensure a proper flood prediction 46 

(Clark et al., 2008; Mazzoleni et al., 2015; Rakovec et al., 2012). However, traditional physical 47 

sensors require proper maintenance and personnel which can be very expensive in case of a 48 

vast network. For this reason, the technological improvement led to the spread of low-cost 49 

sensors used to measure hydrological variables such as water level or precipitation in a 50 

distributed way. An example of such sensors, defined in the following as “social sensor”, is a 51 

smart-phone camera used to measure the water level at a staff gauge with an associate QR code 52 

used to infer the spatial location of the measurement (see Figure 1). The main advance of using 53 

these type of sensors is that they can be used not only by technicians but also by regular citizens, 54 

and that due to their reduced cost a more spatially distributed coverage can be achieved. The 55 

idea of designing such alternative networks of low-cost social sensors and using the obtained 56 

crowdsourced observations is the base of the EU-FP7 WeSenseIt project (2012-2016), which 57 

also sponsors this research. Various other projects have also been initiated in order to assess the 58 

usefulness of crowdsourced observations inferred by low-cost sensors owned by citizens. For 59 

instance, in the project CrowdHydrology (Lowry and Fienen, 2013), a method to monitor 60 
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stream stage at designated gauging staffs using crowd source-based text messages of water 61 

levels is developed using untrained observers. Cifelli et al. (2005) described a community-based 62 

network of volunteers (CoCoRaHS), engaged in collecting precipitation measurements of rain, 63 

hail and snow. An example of hydrological monitoring, established in 2009, of rainfall and 64 

streamflow values within the Andean ecosystems of Piura, Peru, based on citizen observations 65 

is reported in Célleri et al. (2009). Degrossi et al. (2013) used a network of wireless sensors in 66 

order to map the water level in two rivers passing by Sao Carlos, Brazil. Recently, the iSPUW 67 

Project is aims to integrate data from advanced weather radar systems, innovative wireless 68 

sensors and crowdsourcing of data via mobile applications in order to better predict flood events 69 

in the urban water systems of the Dallas-Fort Worth Metroplex (ISPUW, 2015; Seo et al., 70 

2014). Other examples of crowdsourced the water-related information include the so-called 71 

Crowdmap platform for collecting and communicating the information about the floods in 72 

Australia in 2011 (ABC, 2011), and informing citizens about the proper time to drink water in 73 

an intermittent water system (Alfonso, 2006; Au et al., 2000; Roy et al., 2012). A detailed and 74 

interesting review of the examples of citizen science applications in hydrology and water 75 

resources science is provided by Buytaert et al. (2014) 76 

The traditional hydrological observations from physical sensors have a well-defined structure 77 

in terms of frequency and accuracy. On the other hand, crowdsourced observations are provided 78 

by citizens with varying experience of measuring environmental data and little connections 79 

between each other, and the consequence is that the low correlation between the measurements 80 

might be observed. So far, in operational hydrology practice, the added value of crowdsourced 81 

data it is not integrated into the forecasting models but just used to compare the model results 82 

with the observations in a post-event analysis. This can be related to the intrinsic variable 83 

accuracy, due to the lack of confidence in the data quality from such heterogeneous sensors, 84 

and the variable life-span of the crowdsourced observations. 85 

Regarding data quality, Bordogna et al. (2014) and Tulloch and Szabo (2012) stated that quality 86 

control mechanisms should consider contextual conditions to deduce indicators about reliability 87 

(expertise level), credibility (volunteer group) and performance of volunteers such as accuracy, 88 

completeness and precision level. Bird et al. (2014) addressed the issue of data quality in 89 

conservation ecology by means of new statistical tools to assess random error and bias in such 90 

observations. Cortes et al. (2014) evaluated data quality by distinguishing the in-situ data 91 

collected between a volunteer and a technician and comparing the most frequent value reported 92 
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at a given location. They also gave some range of precision according to the rating scales. With 93 

in-situ exercises, it might be possible to have an indication of the reliability of data collected 94 

(expertise level). However, this indication does not necessarily lead to a conclusion of high, 95 

medium or low accuracy every time a streamflow observation of a contributor is received. In 96 

addition, such approach is not enough at operational level to define accuracy in data quality. In 97 

fact, every time a crowdsourced observation is received in real-time, the reliability and accuracy 98 

of observations should be identified. To do so, one possible approach could be to filter out the 99 

measurements following a geographic approach which defines semantic rules governing what 100 

can occur at a given location (e.g. Vandecasteele and Devillers, 2013). Another approach could 101 

be to compare measurements collected within a pre-defined time-window in order to calculate 102 

the most frequent value, the mean and the standard deviation. 103 

Regarding the variable life-span, crowdsourced observations can be defined as asynchronous 104 

because do not have predefined rules about the arrival frequency (the observation might be sent 105 

just once, occasionally or at irregular time steps which can be smaller than the model time step) 106 

and accuracy. In a recent paper, Mazzoleni et al. (2015) presented results of the study of the 107 

effects of distributed synthetic streamflow observations having synchronous intermittent 108 

temporal behaviour and variable accuracy in a semi-distributed hydrological model. It has been 109 

shown that the integration of distributed uncertain intermittent observations with single 110 

measurements coming from physical sensors would allow for the further improvements in 111 

model accuracy. However, we have not considered the possibility that the asynchronous 112 

observations might be coming at the moments not coordinated with the model time steps. A 113 

possible solution to handle asynchronous observations in time with EnKF is to assimilate them 114 

at the moments coinciding with the model time steps (Sakov et al., 2010). However, as these 115 

authors mention, this approach requires the disruption of the ensemble integration, the ensemble 116 

update and a restart, which may not feasible for large-scale forecasting applications. Continuous 117 

approaches, such as 3D-Var or 4D-Var methods, are usually implemented in oceanographic 118 

modeling in order to integrate asynchronous observations at their corresponding arrival 119 

moments (Derber and Rosati, 1989; Huang et al., 2002; Macpherson, 1991; Ragnoli et al., 120 

2012). In fact, oceanographic observations are commonly collected at not pre-determined, or 121 

asynchronous, times. For this reason, in variational data assimilation, the past asynchronous 122 

observations are simultaneously used to minimize the cost function that measures the weighted 123 

difference between background states and observations over the time interval, and identify the 124 

best estimate of the initial state condition (Drecourt, 2004; Ide et al., 1997; Li and Navon, 2001). 125 



 5

In addition to the 3D-Var and 4D-Var methods, Hunt et al. (2004) proposed a Four Dimensional 126 

Ensemble Kalman Filter (4DEnKF) which adapts EnKF to handle observations that have 127 

occurred at non-assimilation times. In this method the linear combinations of the ensemble 128 

trajectories are used to quantify how well a model state at the assimilation time fits the 129 

observations at the appropriate time. Furthermore, in case of linear dynamics 4DEnKF is 130 

equivalent to instantaneous assimilation of the measured data (Hunt et al., 2004). Similarly to 131 

4DEnKF, Sakov et al. (2010) proposed the Asynchronous Ensemble Kalman Filter (AEnKF), 132 

a modification of the EnKF, mainly equivalent to 4DEnKF, used to assimilate asynchronous 133 

observations (Rakovec et al., 2015). Contrary to the EnKF, in the AEnKF current and past 134 

observations are simultaneously assimilated at a single analysis step without the use of adjoint 135 

model. Yet another approach to assimilate asynchronous observations in models is the so-called 136 

First-Guess at the Appropriate Time (FGAT) method. Like in 4D-Var, the FGAT compares the 137 

observations with the model at the observation time. However, in FGAT the innovations are 138 

assumed constant in time and remain the same within the assimilation window (Massart et al., 139 

2010). Having reviewed all the described approaches, in this study we have decided to use a 140 

straightforward and pragmatic method, due to the linearity of the hydrological models 141 

implemented in this study, similar to the AEnKF to assimilate the asynchronous crowdsourced 142 

observations. 143 

The main objective of this novel study is to assess the potential use of crowdsourced 144 

observations within hydrological modelling. In particular, the specific objectives of this study 145 

are to a) assess the influence of different arrival frequency of the crowdsourced observations 146 

and their related accuracy on the assimilation performances in case of a single social sensor; b) 147 

to integrate the distributed low-cost social sensors with a single physical sensor to assess the 148 

improvement in the flood prediction performances in an early warning system. The 149 

methodology is applied in the Brue (UK) and Bacchiglione (Italy) catchments, considering 150 

lumped and semi-distributed hydrological models respectively. Due to the fact that streamflow 151 

observations from social sensors are not available in the Brue catchment while in the 152 

Bacchiglione catchment the sensors are being recently installed, the synthetic time series, 153 

asynchronous in time and with random accuracy, that imitate the crowdsourced observations, 154 

are generated and used. 155 

The study is organized as follows. Firstly, the case studies and the datasets used are presented. 156 

Secondly, the hydrological models used are described. Then, the procedure used to integrate 157 
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the crowdsourced observations is reported. Finally, the results, discussion and conclusions are 158 

presented. 159 

 160 

2 Case studies and datasets 161 

In this paper we choose two different case studies in order to validate the obtained results for 162 

areas having diverse topographical and hydrometeorological features and represented by two 163 

different hydrological models. The Brue catchment is considered because of the availability of 164 

precipitation and streamflow data, while the Bacchiglione river is one of the official case studies 165 

of the WeSenseIt Project (Huwald et al., 2013), which is funding this research. 166 

2.1 Brue catchment 167 

The first case study is located in the Brue catchment (Figure 2), in Somerset, with a drainage 168 

area of about 135 km2 at the catchment outlet in Lovington. Using the SRTM DEM with the 169 

90m resolution it is possible to derive the streamflow network and the consequent time of 170 

concentration, by means of the Giandotti equations (Giandotti, 1933), which is about 10 hours. 171 

The hourly precipitation (49 rainfall stations) and streamflow data used in this study are 172 

supplied by the British Atmospheric Data Centre from the HYREX (Hydrological Radar 173 

Experiment) project (Moore et al., 2000; Wood et al., 2000). The average precipitation value in 174 

the catchment is estimated using the Ordinary Kriging (Matheron, 1963). 175 

2.2 Bacchiglione catchment 176 

The second case study is the upstream part of the Bacchiglione River basin, located in the 177 

North-East of Italy, and tributary of the River Brenta which flows into the Adriatic Sea at the 178 

South of the Venetian Lagoon and at the North of the River Po delta. The study area has an 179 

overall extent and river length of about 400 km2 and 50 km (Ferri et al., 2012).  The main urban 180 

area located in the downstream part of the study area is Vicenza.  The analysed part of the 181 

Bacchiglione River has four main tributaries. On the Western side the confluences with the 182 

Bacchiglione are the Leogra, the Orolo and the Retrone River, whose junction is located in the 183 

urban area itself. In Figure 2 the Retrone River it is not shown since it does not influence the 184 

water level measured at the gauged station of Vicenza (Ponte degli Angeli in Figure 3). On the 185 

Eastern side there is the Timonchio River (see Figure 3). The Alto Adriatico Water Authority 186 

(AAWA) has implemented an Early Warning System to properly forecast the possible future 187 
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flood events. Recently, within the activities of the WeSenseIt Project (Huwald et al., 2013), , 188 

one physical sensor and three staff gauges complemented by a QR code (social sensor, as 189 

represented in Figure 1) were installed in the Bacchiglione River to measure the water level. In 190 

particular, the physical sensor is located at the outlet of the Leogra catchment while the three 191 

social sensors are located at the Timonchio, Leogra and Orolo catchments outlet respectively 192 

(see Figure 3). 193 

2.3 Datasets 194 

In the Brue catchment two different flood events which occurred between 28/10/1994 to 195 

16/11/1994 (flood event 1) and from 14/01/1995 to 04/02/1995 (flood event 2) are considered. 196 

The observed precipitation values are treated as the “perfect forecasts” and are fed into the 197 

hydrological model. The observed streamflow data for the considered flood event are available 198 

as well. 199 

In case of Bacchiglione catchment, the flood event which occurred in May 2013 is considered; 200 

it had the high intensity and resulted in several traffic disruptions at various locations upstream 201 

Vicenza. For flood forecasting, AAWA uses the 3-day weather forecast as the input to the 202 

hydrological model. The observed values of streamflow and water level at Ponte degli Angeli 203 

are used to assess the performance of the hydrological model. 204 

 205 

3 Hydrological modelling 206 

3.1 Brue catchment 207 

A lumped conceptual hydrological model is implemented to estimate the flood hydrograph at 208 

the outlet section of the Brue catchment. The choice of the model is based on previous studies 209 

performed on the Brue catchment in case of assimilation of streamflow observations from 210 

dynamic sensors (Mazzoleni et al., 2015). Direct runoff is used as input in the conceptual model 211 

and assessed by means of the Soil Conservation Service Curve Number (SCS-CN) method 212 

(Mazzoleni et al., 2015). The average value of CN within the catchment is calibrated by 213 

minimizing the difference between the simulated volume and observed quickflow, using the 214 

method proposed by Eckhardt (2005), at the outlet section. 215 
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The main module of the hydrological model is based on the Kalinin-Milyukov-Nash (KMN), 216 

Szilagyi and Szollosi-Nagy (2010), equation:  217 
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where I is the model forcing (in this case direct runoff), n (number of storage elements) and k 219 

(storage capacity) are the two parameters of the model and Q is the model output (streamflow). 220 

In this study, the parameter k is assumed as a linear function between the time of concentration, 221 

assessed using the Giandotti equation (Giandotti, 1933) and a coefficient ck. Szilagyi and 222 

Szollosi-Nagy (2010) derived the discrete state-space system of Eq. (1) that is used in this study 223 

in order to apply the data assimilation (DA) approach (Mazzoleni et al., 2014, 2015). 224 

The model calibration is performed maximizing the correlation between the simulated and 225 

observed value of discharge, at the outlet point of the Brue catchment, during the flood events 226 

occurred from the 23-10-1994 to 17-03-1995. The results of such calibration provided a value 227 

of the parameters n and ck equal to 4 and 0.026 respectively.  228 

3.2 Bacchiglione catchment 229 

The hydrological and routing models used in this study are based on the early warning system 230 

implemented by the AAWA and described in Ferri et al. (2012). One the main goal of this study 231 

is also to test our methodology using synthetic observations to then apply it, in the framework 232 

of the WeSenseIt Project, on the existing early warning system implemented by AAWA on the 233 

Bacchiglione catchment. 234 

In the schematization of the Bacchiglione catchment, the location of physical and social sensors 235 

corresponds to the outlet section of three main sub- catchment s, Timonchio, Leogra and Orolo, 236 

while the remaining sub-catchments are considered as inter-catchment. For both sub-237 

catchments and inter-catchments, a conceptual hydrological model, described below, is used to 238 

estimate the outflow hydrograph. The outflow hydrograph of the three main sub-catchments is 239 

considered as upstream boundary conditions of a hydraulic model used to estimate water level 240 

in the main river channel (see Figure 3), while the outflow from the inter-catchment is 241 

considered as internal boundary condition to account for their corresponding drained area. In 242 

the following, a brief description of the main components of the hydrological and routing 243 

models is provided. 244 
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The input for the hydrological model consists of precipitation only. The hydrological response 245 

of the catchment is estimated using a hydrological model that considers the routines for runoff 246 

generation and a simple routing procedure. The processes related to runoff generation (surface, 247 

sub-surface and deep flow) are modelled mathematically by applying the water balance to a 248 

control volume representative of the active soil at the sub-catchment scale. The water content 249 

Sw in the soil is updated at each calculation step dt using the following balance equation:  250 

tttsubtsurttdtt ETLRRPSwSw  ,,        (2) 251 

where P and ET are the components of precipitation and evapotranspiration, while Rsur, Rsub and 252 

L are the surface runoff, sub-surface runoff and deep percolation model states respectively (see 253 

Figure 3). The surface runoff is expressed by the equation based on specifying the critical 254 

threshold beyond which the mechanism of dunnian flow (saturation excess mechanism) 255 

prevails: 256 
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where C is a coefficient of soil saturation obtained by calibration, and Swmax is the content of 258 

water at saturation point which depends on the nature of the soil and on its use. 259 

The sub-surface flow is considered proportional to the difference between the water content 260 

Sw(t) at time t and that at soil capacity Sc: 261 

 cttsub SSwcR , .          (4) 262 

while the estimated deep flow is evaluated according to the expression proposed by Laio et al. 263 

(2001): 264 
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where, Ks is the hydraulic conductivity of the soil in saturation conditions, β is a dimensionless 266 

exponent characteristic of the size and distribution of pores in the soil. The evaluation of the 267 

real evapotranspiration is performed assuming it as a function of the water content in the soil 268 

and potential evapotranspiration, calculated using the formulation of Hargreaves and Samani 269 

(1982). 270 
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Knowing the values of Rsur, Rsub and L, it is possible to model the surface Qsur, sub-surface Qsub 271 

and deep flow Qg routed contributes according to the conceptual framework of the linear 272 

reservoir at the closing section of the single sub-catchment. In particular, in case of Qsur the 273 

value of the parameter k, which is a function of the residence time in the catchment slopes, is 274 

estimated relating the slopes velocity of the surface runoff to the average slopes length L. 275 

However, one of difficulties involved is the proper estimation of the surface velocity, which 276 

should be calculated for each flood event (Rinaldo and Rodriguez-Iturbe, 1996). According to 277 

Rodríguez-Iturbe et al. (1982), such velocity is a function of the effective rainfall intensity and 278 

event duration. In this study, the estimate of the surface velocity is performed using the relation 279 

between velocity and intensity of rainfall excess proposed in Kumar et al. (2002). In this way 280 

it is possible to estimate the average time travel and the consequent parameter k. However, such 281 

formulation is applied in a lumped way for a given sub-catchment. As reported in McDonnell 282 

and Beven (2014) more reliable and distributed models should be used to reproduce the spatial 283 

variability of the residence times within the catchment over the time. That is why, in the 284 

advanced version of the model implemented by AAWA, in each sub-catchment the 285 

runoff propagation is carried out according to the geomorphological theory of the hydrologic 286 

response. In such model, the overall catchment travel time distributions is considered as nested 287 

convolutions of statistically independent travel time distributions along sequentially connected, 288 

and objectively identified, smaller sub-catchments. The parameter k assumes different values 289 

for each time step as the rainfall changes. In fact, the variability of residence time is considered 290 

according to Rodríguez-Iturbe et al. (1982) by assuming the surface velocity as a function of 291 

the effective rainfall intensity (Kumar et al., 2002). Anyway, the correct estimation of the 292 

residence time should be derived considering the latest findings reported in McDonnell and 293 

Beven (2014). In case of Qsub and Qg the value of k is calibrated comparing the observed and 294 

simulated discharge at Vicenza as previously described. 295 

In the early warning system implemented by AAWA in the Bacchiglione catchment, the flood 296 

propagation along the main river channel is represented one-dimensional hydrodynamic model, 297 

MIKE 11 (DHI, 2005). This model solves the Saint Venant Equations in case of unsteady flow 298 

based on an implicit finite difference scheme proposed by Abbott and Ionescu (1967). However, 299 

in order to reduce the computational time required by the analysis performed in this study 300 

MIKE11 is replaced by a hydrological routing Muskingum-Cunge model (see, e.g. Todini 301 

2007), considering river cross-sections as rectangular for the estimation of hydraulic radios, 302 

wave celerity and the other hydraulic variables.  303 
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Calibration of the hydrological and hydrodynamic model parameters is performed by AAWA, 304 

and described in Ferri et al. (2012), considering the time series of precipitation from 2000 to 305 

2010 in order to minimize the root mean square error between observed and simulated values 306 

of water level at Ponte degli Angeli gauged station. In order to stay as close as possible to the 307 

early warning system implemented by AAWA, we used the same calibrated model parameters 308 

proposed by Ferri et al. (2012). 309 

4 Data assimilation procedure 310 

4.1 Kalman Filter 311 

In Data Assimilation (DA) it is typically assumed that the dynamic system can be represented 312 

in the state-space as follows: 313 

   tttttt ~NwwIM Sxx ,0       ,,1    .        (6) 314 

   ttttt R~NvvH ,0      ,  xz .         (7) 315 

where, xt and xt-1 are state vectors at time t and t-1, M is the model operator that propagates the 316 

states x from its previous condition to the new one as a response to the inputs It, while H is the 317 

operator which maps the model states into output zt. The system and measurements errors wt 318 

and vt are assumed to be normally distributed with zero mean and covariance S and R. In a 319 

hydrological modelling system, these states can represent the water stored in the soil (soil 320 

moisture, groundwater) or on the earth surface (snow pack). These states are one of the 321 

governing factors that determine the hydrograph response to the inputs into the catchment. 322 

In case of the linear systems used in this study, the discrete state-space system of Eq. (1) can 323 

be represented as follows (Szilagyi and Szollosi-Nagy, 2010): 324 

tttt wI   ΓΦxx 1 .          (8) 325 

ttt vQ  Hx .           (9) 326 

where t is the time step, x is vector of the model states (stored water volume in m3),  is the 327 

state-transition matrix (function of the model parameters n and k),  is the input-transition 328 

matrix, H is the output matrix, and I and Q are the input (forcing) and model output (discharge 329 

in this case).For example, for n=3 the matrix H is expressed as  k00H . Expressions for 330 

matrices  and can be found in Szilagyi and Szollosi-Nagy (2010). 331 
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For the Bacchiglione model, the preliminary sensitivity analysis on the model states (soil 332 

content S and the storage water xsur, xsub and xL related to Qsur, Qsub and Qg) is performed in 333 

order to decide on which of the states to update. The results of this analysis (shown in the next 334 

section) pointed out that the stored water volume xsur (estimated using Eq. (8) with n=1, H=k 335 

and It replaced by Rsur) is the most sensitive state and for this reason we decided to update only 336 

this state. 337 

The Kalman Filter (KF, Kalman, 1960) is a mathematical tool which allows estimating, in an 338 

efficient computational (recursive) way, the state of a process which is governed by a linear 339 

stochastic difference equation. KF is optimal under the assumption that the error in the process 340 

is Gaussian; in this case KF is derived by minimizing the variance of the system error (error in 341 

state) assuming that the model state estimate is unbiased. In an attempt to overcome these 342 

limitations, various variants of the Kalman filter, such as the extended Kalman filter (EKF), 343 

unscented Kalman filter and ensemble Kalman filter (EnKF) have been proposed.  344 

Kalman filter procedure can be divided in two steps, namely forecast equations, (Eqs. (10) and 345 

(11)), and update (or analysis) equations (Eqs. (12), (13) and (14)): 346 

ttt ΓIΦxx  



1 .           (10) 347 

SΦΦPP  


 T
tt 1 .           (11) 348 

  1  RT
t

T
tt HHPHPK .           (12) 349 

   t
o

tttt Q Hxxx K .          (13) 350 

    ttt PHKIP .           (14) 351 

where Kt is the Kalman gain matrix, P is the error covariance matrix, Q0 is the new observation 352 

and MQ is the model error matrix. The prior model states x at time t are updated, as the response 353 

to the new available observations, using the analysis equations Eqs. (12) to (14). This allows 354 

for estimation of the updated states values (with superscript +) and then assessing the 355 

background estimates (with superscript –) for the next time step using the time update equations 356 

Eqs. (10) and (11). The proper characterization of the model covariance matrix S is a 357 

fundamental issue in Kalman filter. In this study, in order to evaluate the effect of assimilating 358 

crowdsourced observations, the model is considered more accurate than the observations and, 359 

a covariance matrix S with diagonal values of 102 is considered. 360 
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4.2 Assimilation of asynchronous streamflow observations with irregular 361 

accuracy 362 

In most of the hydrological applications of DA, observations from physical sensors are 363 

integrated into water models at a regular, synchronous, time step. However, as showed in Figure 364 

1, a social sensor can be used by different operators, having different accuracy, to measure 365 

water level at a specific point. For this reason, social sensors provide crowdsourced 366 

observations which are asynchronous in time and with a higher degree of uncertainty than the 367 

one of observations from physical sensors. In particular, crowdsourced observations have three 368 

main characteristics: a) irregular arrival frequency (asynchronicity); b) random accuracy; c) 369 

random number of observations received by the static device within two model time steps.  370 

As described in the Introduction, various methods have been proposed in order to include 371 

asynchronous observations in models. Having reviewed them, in this study we are proposing a 372 

somewhat simpler DA approach for integrating Crowdsourced Observations into hydrological 373 

models (DACO). This method is based on the assumption that the change in the model states 374 

and in the error covariance matrices within the two consecutive model time steps t0 and t 375 

(observation window) is linear, while the inputs are assumed constant. All the data received 376 

during the observation window are assimilated in order to update the model states and output 377 

at time t. Therefore, assuming that one observation would be available at time t0
*, the first step 378 

of such a filter (A in Figure 4) is the definition of the model states and error covariance matrix 379 

at t0
* as: 380 

 
0

0
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  xxxx .          (15) 381 
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  PPPP           (16) 382 

The second step (B in Figure 4) is the estimation of the updated model states and error 383 

covariance matrix, as the response to the streamflow observation o

t
Q *

0
. The estimation of the 384 

posterior values of 
*
0t

x  and 
*
0t

P  is performed by Eqs. (13) and (14) respectively. The Kalman 385 

gain is estimated by Eq. (12), where the prior values of model states and error covariance matrix 386 

at t0
* are used. Knowing the posterior value  

*
0t

x  and 
*
0t

P  it is possible to predict the value of 387 
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states and covariance matrix at one model step ahead, t* (C in Figure 4) using the model forecast 388 

equations Eqs. (10) and (11). 389 

The last step (D in Figure 4) is the estimation of the interpolated value of x and P at time step 390 

t. This is performed by means of a linear interpolation between the current values of x and P at 391 

t0
* and t*: 392 
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  xxxx .          (17) 393 
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  PPPP .         (18) 394 

The symbol ~ is added on the new matrices x and P in order to differentiate them from the 395 

original forecasted values in t. Assuming that a new streamflow observation is available at an 396 

intermediate time t1
* (between t0

* and t), the procedure is repeated considering the values at t0
* 397 

and t for the linear interpolation. Then, in case when no more observations are available, the 398 

updated value of 
tx~ is used to predict the model states and output at t+1 (Eqs. (10) and (11)). 399 

Finally, in order to account for the intermittent behaviour of such observations, the approach 400 

proposed by Mazzoleni et al. (2015) is applied. In this method, the model states matrix x is 401 

updated and forecasted when observations are available, while without observations the model 402 

is run using Eq. (10) and covariance matrix P propagated at the next time step using Eq. (11) 403 

4.3 Observation accuracy 404 

In this section, the uncertainty related to the streamflow crowdsourced observations is 405 

characterised. The observational error is assumed to be the normally distributed noise with zero 406 

mean and given standard deviation:  407 

true
tt

Q
t Q            (19) 408 

where the coefficient  is related to the degree of uncertainty of the measurement (Weerts and 409 

El Serafy, 2006).  410 

One of the main and obvious issues in citizen-based observations is to maintain the quality 411 

control of the water observations (Cortes et al., 2014; Engel and Voshell, 2002).  In Introduction 412 

a number of methods to estimate (calibrate) the model of observational uncertainty have been 413 

referred to. In this study coefficient α is assumed a random variable uniformly distributed 414 
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between 0.1 and 0.3, so we leave more thorough investigation of uncertainty level of the 415 

crowdsourced data for future studies. Cortes et al. (2014) argue (and this is a reasonable 416 

suggestion) that the uncertainty of a measurement provided by a well-trained technician is 417 

smaller than the one coming from a normal citizen. For this reason we assumed that the 418 

maximum value of  is three times higher than the uncertainty coming from the physical 419 

sensors. The value of Qtrue
 is the streamflow value measured at a asynchronous time step and it 420 

is described in the next section.  421 

 422 

5 Experimental setup 423 

In this section, two sets of experiments are performed in order to test the proposed method and 424 

assess the benefit to integrate crowdsourced observations, asynchronous in time and with 425 

variable accuracy, in real-time flood forecasting. 426 

In the first set of experiments, called “Experiments 1”, assimilation of streamflow observations 427 

at one social sensor location is carried out to understand the sensitivity of the employed 428 

hydrological model (KMN) under various scenarios of such observations. 429 

In the second set of experiments, called “Experiments 2”, the distributed observations coming 430 

from social and physical sensors, at four locations within the Bacchiglione catchment, are 431 

considered, with the aim of assessing the improvement in the flood forecasting accuracy. The 432 

social sensors, showed in Figure 1 and Figure 3, were installed in the summer of 2014 within 433 

the framework of the WeSenseIt project. 434 

5.1 Experiments 1: Assimilation of crowdsourced observations from one social 435 

sensor 436 

The focus of Experiments 1 is to study the performance of the hydrological model (KMN) 437 

assimilating crowdsourced observations, having lower arrival frequencies than the model time 438 

step and random accuracies, coming from a social sensor located in a specific point of the Brue 439 

catchment.  440 

Due to the fact that crowdsourced observations are not available in the case studies of Brue at 441 

the moment of this study, realistic synthetic streamflow observations having different 442 

characteristics are generated. For this reason, observed hourly streamflow observations at the 443 

catchment outlet are interpolated to represent observations coming at arrival frequency higher 444 
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than hourly. A similar approach, termed “observing system simulation experiment” (OSSE), is 445 

commonly used in meteorology to estimate synthetic “true” states and measurements by 446 

introducing random errors in the state and measurement equations (Arnold and Dey, 1986; 447 

Errico et al., 2013; Errico and Privé, 2014). OSSEs have the advantage of making it possible to 448 

directly compare estimates to “true” states and they are often used for validating DA algorithms. 449 

To analyse all possible combinations of arrival frequency, number of observations within the 450 

observation window (1 hour) and accuracy, a set of scenarios are considered (Figure 5), 451 

changing from regular arrival frequency of observations with high accuracy (scenario 1) to 452 

random and chaotic asynchronous observations with variable accuracy (scenario 11). In each 453 

scenario a varying the number of observations from 1 to 100 is considered. It is worth noting 454 

that in case of one observation per hour and regular arrival time, scenario 1 corresponds to the 455 

case of physical sensors with an observation arrival frequency of one hour. 456 

Scenario 2 corresponds to the case of observations having fixed accuracy ( equal to 0.1) and 457 

irregular arrival moments, but in which at least one observation coincides with the model time 458 

step. In particular, scenario 1 and 2 are exactly the same in case of one observation available 459 

within the observation window since it is assumed that the arrival frequency of that observation 460 

has to coincide with the model time step. On the other hand, the arrival frequency of the 461 

observations in scenario 3 is assumed to be random and observations might not arrive at the 462 

model time step. 463 

Scenario 4 considers observations with regular frequency but random accuracy at different 464 

moments within the observation window, whereas in scenario 5 observations have irregular 465 

arrival frequency and random accuracy. In all the previous scenarios the arrival frequency, the 466 

number and accuracy of the observations are assumed to be periodic, i.e. repeated between 467 

consecutive observation windows along all the time series. However such periodic 468 

repetitiveness might not occur in real-life, and for this reason, a non-periodic behaviour is 469 

assumed in scenarios 6, 7, 8 and 9. The non-periodicity assumptions of the arrival frequency 470 

and accuracy are the only factors that differentiate scenarios 6, 7, 8 and 9 from the scenarios 2, 471 

3, 4, and 5 respectively. In addition, the non-periodicity of the number of observations within 472 

the observation window is introduced in scenario 10.  473 

Finally, in scenario 11 the observations, in addition to all the previous characteristics, might 474 

have an intermittent behaviour, i.e. not being available for one or more observation windows. 475 
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5.2 Experiments 2: Spatially distributed physical and social sensors 476 

Synthetic hourly streamflow observations are calculated using measured precipitation recorded 477 

during the May 2013 flood event (post-event simulation) as input in the hydrological model of 478 

the Bacchiglione catchment. Interpolated streamflow observations having characteristics 479 

reported in scenarios 10 and 11, in Experiments 1, are generated due to the unavailability of 480 

crowdsourced observations at the moment of this study. In order to evaluate the model 481 

performances, observed and simulated streamflows are compared, for different lead times.  482 

Streamflow observations from physical sensors are assimilated in the hydrological model of 483 

AMICO system at an hourly frequency, while crowdsourced observations from social sensors 484 

are assimilated using the DACO method previously described. The updated hydrograph 485 

estimated by the hydrological model is used as the input into Muskingum-Cunge model used 486 

to propagate the flow downstream, to the gauged station at Ponte degli Angeli, Vicenza. 487 

The main goal of Experiments 2 is to understand the contribution of distributed crowdsourced 488 

observations to the improvement of the flood prediction at a specific point of the catchment, in 489 

this case at Ponte degli Angeli. For this reason, five different experimental settings are 490 

introduced, and represented in Figure 6, corresponding to different types of employed sensors.  491 

Firstly, only the observations coming from the physical sensor at the Leogra sub-catchment are 492 

used to update the hydrological model of sub-catchment B (setting A). Secondly, in setting B, 493 

the model improvement in case of assimilation of crowdsourced observations at the same 494 

location of setting A is analysed. In setting C only the distributed crowdsourced observations 495 

within the catchment are assimilated into the hydrological model. Then, setting D accounts for 496 

the integration of crowdsourced and physical observations, contrary to the setting C where the 497 

physical sensors is dropped in favour of the social sensor at Leogra. Finally, setting E considers 498 

the complete integration between physical and social sensors in Leogra, Timonchio and Orolo 499 

sub-catchments. 500 

 501 
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6 Results and discussions 502 

6.1 Experiments 1: Influence of crowdsourced observations on flood 503 

forecasting 504 

The observed and simulated hydrographs at the outlet section of the Brue catchment with and 505 

without the model update (considering hourly streamflow observations) are reported in Figure 506 

7 for two different flood events. As expected, it can be seen that the updated model tends to 507 

better represent the flood events than model without updating. 508 

The results of scenario 1 for flood event 1, assimilating from 1 to 30 observations within the 509 

observation window, are represented in Figure 8. As it can be seen, increasing the number of 510 

observations within the observation window results in the improvement of the NSE for different 511 

lead time values. However, such improvement becomes negligible for more than five 512 

observations. This means that the additional observations do not add information useful for 513 

improving the model performance. In both flood events we found similar trends in the 514 

dependency of Nash index on the number of observations. However, it is not possible to define 515 

a priori number of observations needed to improve model. In fact, after a threshold number of 516 

observations (five for flood event 1 and fifteen for flood event 2), NSE asymptotically 517 

approaches to a certain value meaning that no improvement is achieved with additional 518 

observations. However, the only difference between the two flood events is that such 519 

asymptotic NSE values are different because model performances can change according to the 520 

considered flood events.  521 

This asymptotic behaviour when extra information is added has also been observed using other 522 

metrics by Krstanovic and Singh (1992), Ridolfi et al. (2014), Alfonso et al. (2013)), among 523 

others. 524 

The same type of analysis is performed with the scenarios 2 to 9 (Figure 9). The results obtained 525 

in Figure 9 show that in case of irregular arrival frequency (scenarios 2 and 3) the NSE is higher 526 

than in scenarios 4 and 5, where observations vary in accuracy. These results point out that the 527 

model performance is more sensitive to the accuracy of the observations than to the moment in 528 

time at which the streamflow observations become available. However, it can be observed from 529 

scenarios 2 to 5 that the trend it is not as smooth as the one obtained with scenario 1. This can 530 

be related to the fact that NSE may vary with varying arrival frequency and observations 531 

accuracy. In fact, in scenario 1 the arrival frequency is set as regular for different model runs, 532 
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so the moments in which the observations became available is always be the same for any  533 

model run. On the other hand, in the other scenarios, the irregular moment in which the 534 

observation becomes available within the observation window is randomly selected and is 535 

changing according to the different model runs. This means that for a given number of 536 

observations (for example 5), the five observations arrive at different moments, for different 537 

model runs, and this results in five different values of NSE. A smooth trend is also obtained for 538 

scenarios 6, 7, 8 and 9 but this is related to the periodic behaviour of the observations as 539 

explained below. 540 

In order to remove the random behaviour related to the irregular arrival frequency and 541 

observation accuracy, different model runs (100 in this case) are carried out, assuming different 542 

random values of arrival and accuracy (coefficient ) during each model run, for a given 543 

number of observations and lead time. The NSE value is estimated for each model run, so 544 

(NSE) and (NSE) represent the mean and standard deviation of the different values of NSE. 545 

Overall, (NSE) tends to decrease for the high number of observations. Scenario 2 has the 546 

lower standard deviation for low values of discharge observations due to the fact that the arrival 547 

frequency has to coincide with the model time step and this tends to stabilize the NSE. In 548 

addition, the irregular arrival frequency (scenarios 2 and 3) has a higher impact on the (NSE) 549 

than on the mean NSE value (NSE). Besides, the variable observations accuracy (scenario 4) 550 

influences more (NSE) than (NSE), as described before. The combined effects of irregular 551 

frequency and uncertainty are reflected in scenario 5 which has the lower mean and higher 552 

standard deviation of NSE if compared to the first four scenarios. 553 

An interesting fact is that passing from periodic (Figure 10a and b) to non-periodic (Figure 10c 554 

and d) behaviour of the crowdsourced observations, the standard deviation is significantly 555 

reduced, while the mean remains the same. A non-periodic behaviour of the observations, 556 

common in real life, helps to reduce the fluctuation of the NSE generated by the random 557 

behaviour of streamflow observations. Table 1 shows the NSE values and model improvement 558 

obtained for the different experimental scenarios during flood event 1 and 2. 559 

Finally, the results obtained for scenarios 10 and 11 are showed in Figure 11. The NSE values 560 

obtained for the flood event 1 are higher than the ones obtained for the flood event 2. The 561 

assimilation of irregular number of observations in scenario 10, in each observation window, 562 

seems to provide the same (NSE) than the ones obtained with scenario 9. One the main 563 
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outcome is that the intermittent nature of the observations (scenario 11) induces a drastic 564 

reduction of the NSE and an increase in its noise in both considered flood events. 565 

6.2 Experiments 2: Influence of distributed physical and social sensors 566 

In order to find out what model states leads to a maximum increase of the model performance, 567 

a preliminary sensitivity analysis is performed. The four model states, xS, xsur, xsub and xL, related 568 

to Sw, Qsur, Qsub and Qg, are perturbed by ±20% around the true state value using the uniform 569 

distribution, every time step from the initial time step up to the perturbation time (PT). No 570 

correlation between time steps is considered. After PT, the model realizations are run without 571 

perturbation in order to assess the perturbation effect on the system memory. No assimilation, 572 

and consequent model update, is performed at this step. From the results reported in Figure 12, 573 

it can be observed that the model state xsur is the most sensitive states if compared to the other 574 

ones. In addition, the perturbations of all the states seem to affect the model output even after 575 

the PT (high system memory). For this reason, in this experiments, only the model state xsur is 576 

updated by means of the DACO method. 577 

The physical and crowdsourced observations are assimilated in order to improve the poor flow 578 

prediction in Vicenza due to the underestimation of the 3-days rainfall forecast used as input in 579 

flood forecasting practice in this area. Scenarios 10 and 11, described in the previous sections, 580 

are used to represent the irregular and random behaviour of the crowdsourced observations. 581 

The results of this analysis are showed in Figure 13. Different model runs (100) are performed 582 

for the Leogra sub-catchment to account for the effect induced by the random arrival frequency 583 

and accuracy of the crowdsourced observations within the observation window as described 584 

above. It can be seen that the assimilation of observations from the physical sensor provides a 585 

better flood prediction at the Leogra catchment if compared to the assimilation of a small 586 

number of crowdsourced observations. In particular, Figure 13a and Figure 13b show that the 587 

same NSE values achieved with assimilation of physical observations (hourly frequency and 588 

high accuracy) can be obtained by assimilating between 10 and 20 crowdsourced observations 589 

per hour. However, the overall reduction of NSE in case of intermittent observations is such 590 

that even with a high number of observations (even higher than 50 per hour) the NSE is always 591 

lower than the one obtained assimilating physical observations for any lead time. Figure 13c 592 

and Figure 13d show analogous results expressed in terms of different lead times. 593 



 21

Figure 14 and Figure 15 show the results obtained from the experiments settings represented in 594 

Figure 6 in case of physical and crowdsourced observations. Also in this case, different 595 

simulation runs (100) of random values of arrival frequency and uncertainty are performed.  596 

One of the main outcomes of these analyses is that the replacement of a physical sensor for a 597 

social sensor at only one location (settings B) does not improve the model performance in terms 598 

of NSE for different lead time values. Distributed locations of social sensors (setting C) can 599 

provide higher values of NSE than a single physical sensor, even for low number of 600 

observations in both regular and intermittent crowdsourced observations. It is interesting to note 601 

that integrating social and physical sensors (setting D) the NSE is higher than in case of setting 602 

C for low number of observations. However, with higher number of observations, setting C is 603 

the one providing the best model improvement for low lead time values. This can be due to the 604 

fact that the physical sensor at Leogra provides constant improvement, for a given lead time, 605 

while the social sensor tends to achieve better results with a higher number of observations. 606 

This dominant effect of the social sensor, in case of high number of observations, tends to 607 

increase for the higher lead times. The best model improvement is achieved in case of setting 608 

E, i.e. fully integrating physical sensor with distributed social sensors. In case of intermittent 609 

observations (Figure 14d, e and f), it can be noticed that the setting D provides always higher 610 

improvement than setting C. In case of high lead time value (12h) results of setting C tend to 611 

be similar to the ones obtained with setting B. As in case of scenario 10, also in case of scenario 612 

11 the best results are achieved in case of setting E. 613 

Figure 15 shows the standard deviation of the NSE obtained for the different settings in case of 614 

lead time 4h.  In case of setting A (NSE) is equal to zero since observations are coming from 615 

physical sensor at regular time steps. Higher (NSE) values are obtained in case of setting B, 616 

while including different crowdsourced observations tend to decrease the value of (NSE). It 617 

can be observed that (NSE) decreases for high value of crowdsourced observations. As 618 

expected, the lowest values of (NSE) are achieved including the physical sensor in the DA 619 

procedure. Similar considerations can be drawn in case of scenario 11, where an higher and 620 

more perturbed (NSE) values are obtained. 621 

 622 
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7 Conclusions 623 

This innovative study demonstrates that crowdsourced observations, asynchronous in time and 624 

with variable accuracy, can improve flood prediction if integrated in hydrological models. Such 625 

observations are assumed to be inferred using low-cost social sensors as, for example, staff 626 

gauge connected to a QR code on which people can read the water level indication and send the 627 

observations via a mobile phone application. This type of social sensor is tested within the 628 

framework of the WeSenseIt FP7 Project. Two different case studies, the Brue (UK) and 629 

Bacchiglione (Italy) catchments, are considered, and the two types of hydrological models are 630 

used. In the Experiments 1 (Brue catchment) the sensitivity of the model results to the different 631 

frequencies and accuracies of the crowdsourced observations coming from a hypothetical social 632 

sensor at the catchment outlet is assessed. On the other hand, in the Experiments 2 633 

(Bacchiglione catchment), the influence of the combined assimilation of crowdsourced 634 

observations, coming from a distributed network of social sensors, and existing streamflow 635 

observations from physical sensors, used in the Early Warning System implemented by 636 

AAWA, is evaluated. Due to the fact that crowdsourced streamflow observations are not yet 637 

available in both case studies, realistic synthetic observations with various characteristics of 638 

arrival frequency and accuracy are introduced. 639 

Overall, we demonstrated that the results we have obtained are very similar in terms of model 640 

behaviour assimilating asynchronous observations in both cases studies.  641 

In Experiments 1 it is found that increasing the number of crowdsourced observations within 642 

the observation window increases the model performance even if these observations have 643 

irregular arrival frequency and accuracy. Therefore, observations accuracy affects the average 644 

value of NSE more than the moment in which these observations are assimilated. However, the 645 

arrival frequency of the observations results in a significant noise in the NSE estimation. This 646 

noise is reduced when the assimilated observations are considered having non-periodic 647 

behaviour. In addition, the intermittent nature of the observations tends to drastically reduce the 648 

NSE of the model for different values of lead times. In fact, if the intervals between the 649 

observations are too large then the abundance of crowdsourced data at other times and places 650 

is no longer able to compensate their intermittency.  651 

Experiments 2 showed that, in the Bacchiglione catchment, the integration of observations from 652 

social sensors and single physical sensor can improve the flood prediction even in case of a 653 

small number of intermittent crowdsourced observations. In case of both physical and social 654 
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sensors located at the same place the assimilation of crowdsourced observations give the same 655 

model improvement than the assimilation of physical observations only in case of high number 656 

and non-intermittent behaviour. . In particular, the integration of existing physical sensors with 657 

a new network of social sensors can improve the model predictions, as shown in the 658 

Bacchiglione case study. We agree the cases and models are indeed different, but the presented 659 

study demonstrated that the results obtained are very similar in terms of model behaviour 660 

assimilating asynchronous observations. 661 

In our study we have obtained interesting results, however, this work has still certain 662 

limitations. Firstly, the proposed method used to assimilate crowdsourced observations is 663 

applied to the linear parts of hydrological models, so the proposed methodology has to be tested 664 

on models with explicit non-linearities. Secondly, additional analyses on different case studies 665 

and the longer time series of flood events should be carried out in order to draw more general 666 

conclusions about assimilation of the crowdsourced observations and their value in different 667 

types of catchments and model setups. Thirdly, while quite realistic synthetic streamflow 668 

observations have been used in this study, the developed methodology was not tested on real-669 

life data (observations coming from actual social sensors) so there is a need to check if the 670 

drawn conclusions are still valid. Finally, advancing methods for a more accurate assessment 671 

of the data quality and accuracy of streamflow observations coming from social sensors need 672 

to be considered (e.g. developing a pre-filtering module aimed to select only observations 673 

having good accuracy while discarding the one with low accuracy).  674 

The future work will be aimed at addressing the limitations formulated above, which would 675 

hopefully allow for a better characterisation of the crowdsourced observations (citizens 676 

observatories) and making them a more reliable source of data for model-based forecasting.  677 
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Tables 877 

 878 

Table 1. NSE values in case of different experimental scenarios during flood event 1 and 2. 879 

 Flood event 1 Flood event 2 

Scenario 1 obs 100 obs Improvement 1 obs 100 obs Improvement 

1 0.775 0.896 0.135 0.537 0.879 0.390 

2 0.775 0.895 0.134 0.537 0.876 0.388 

3 0.760 0.895 0.151 0.501 0.875 0.428 

4 0.699 0.888 0.212 0.318 0.856 0.629 

5 0.692 0.885 0.218 0.304 0.850 0.642 

6 0.775 0.895 0.134 0.537 0.877 0.388 

7 0.758 0.895 0.153 0.486 0.876 0.445 

8 0.708 0.888 0.203 0.338 0.857 0.605 

9 0.696 0.885 0.214 0.283 0.852 0.667 

  880 
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Figures 881 

 882 

 883 

Figure 1. Example of a low-cost social sensor, and crowdsourced observations, implemented in 884 

the Bacchiglione river, Italy, under the WeSenseIt project   885 

  886 
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 887 

Figure 2. The two case studies considered in this study   888 

  889 
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 890 

Figure 3. Structure of the early warning system AMICO and location of the physical, social  891 

and Ponte degli Angeli (PA) sensors implemented in the Bacchiglione catchment by the Alto 892 

Adriatico Water Authority 893 

  894 
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 895 

Figure 4. Graphical representation of the DACO method proposed in this study to assimilate 896 

crowdsourced asynchronous observations 897 

  898 
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 899 

Figure 5. The experimental scenarios representing different configurations of arrival frequency, 900 

number and accuracy of the streamflow observations 901 

  902 



 36

 903 

Figure 6. Different experimental settings implemented within the Bacchiglione catchment 904 

during Experiments 2 905 

  906 
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 907 

Figure 7. The observed and simulated hydrographs, with and without assimilation, for flood 908 

event 1 (a) and 2 (b) in the Brue catchment 909 

  910 
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 911 

Figure 8. Model improvement in terms of NSE during flood event 1 and 2, in case of different 912 

lead times, assimilating streamflow observations according to scenario 1 913 

 914 

  915 



 39

 916 

Figure 9. Model improvement during flood event 1 (lead time of 24h), assimilating diverse 917 

values of streamflow observations according to the experimental scenarios from 1 to 9 with (a) 918 

observations with periodic behaviour, (b) observations with non-periodic behaviour 919 

  920 



 40

 921 

Figure 10. Dependency of (NSE) and (NSE) on the number of observations, for the scenarios 922 

2, 3, 4, 5, 6, 7, 8 and 9 in case of flood event 1 923 

  924 
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 925 

Figure 11. Dependency of the (NSE) and (NSE) on the number of observations, for the 926 

scenarios 10 and 11 in case of flood events 1 (a) and 2 (b) 927 

  928 



 42

 929 

Figure 12. Effect of perturbing the model states on the model output, Bacchiglione case study. 930 

PT=Perturbation Time 931 

  932 



 43

 933 

Figure 13. Model performance expressed as (NSE) values – assimilating observations from 934 

physical and social sensors, continuous (a) or intermittent (b) in time, at Leogra gauged station 935 

having characteristic described in scenarios 10 (c) and 11 (d) 936 

  937 



 44

 938 

Figure 14. Model performance expressed as (NSE) – assimilating different number of 939 

crowdsourced observations, for the three lead time values, having characteristic of scenario 10 940 

(first row) and 11 (second row) 941 

  942 



 45

 943 

Figure 15. Variability of performance expressed as (NSE) – assimilating crowdsourced 944 

observations within setting A, B, C and D, assuming the lead time of 4h, for scenarios 10 and 945 

11 946 

 947 

 948 


