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Response to Editor, Referee #1  and Referee #2 on the review of 
“Estimating catchment scale groundwater dynamics from recession 
analysis- enhanced constraining of hydrological models”, by T. Skaugen 
and Z. Mengistu 
First of all, we would like to thank the referees and the editor for taking their time to read closely and 
comment thoughtfully on our paper. Time for such tasks is hard to find so it is very appreciated.  In the 
marked manuscript “Slettet” means deleted and “Flyttet” means moved. Unfortunately the MS Word is in 
Norwegian, sorry for that. 

 

Response to Editor 

1)Properly evaluate and discuss the issues of using streamflow signatures (in this case MRC) as a form 
of calibration that they can be considered (there are ways this could be assessed as to the strength of 
this information in comparison to the overall calibration scheme). I suggest further in depth analyses 
is needed here that needs to be compelling 

Response: In the revised and, we believe, more focused introduction we have devoted a paragraph to 
recession analysis and how the literature have treated it as a catchment signature (see p. 3, l.14-p.4, 
l.3 in marked MS). This point is revisited in the discussion where we discuss the literature’s different 
ways of sampling recession events and how they compare to our method of sampling (see p. 17, l.15-
p.18, l.2 in marked MS). In the discussion we also point out that the recession characteristics are 
indeed catchment specific in that we find significant correlations between the parameters of the 
distribution of Λ and catchment characteristics (the new Table 4).  

2) Tone down any comments of this being ‘calibration free’ unless they can bring in the work of their 
colleagues where these parameters have been attributed to catchment characteristics and show 
therefore this as the main comparison made. I would strongly suggest the paper is more unique and 
novel if this could be related to some form of true ‘un-gauged’ analyses. 

Response: To address this issue we have made it clear in the introduction what we mean by 
calibration and estimation (see p.4, l.4-25 in marked MS) and the phrase “calibration–free” is 
removed. Here we also point out, supported by the literature, the advantages of estimating model 
parameters apriori model calibration against streamflow. In addition, we have elaborated upon the 
potential for prediction in ungauged basins using the new models structure (see p.p.15,l.16- p.16, l.18 
in marked MS). The new Table 4 shows significant correlations between the parameters of the 
distribution of Λ and catchment characteristics and we can show significant coefficients of 
determination for the multiple regression equations from which we can estimate these parameters.  

3) I would add that there is a need to better articulate in the paper what parts of the recessions they 
have extracted to fit the parameters ‘pre-calibration’ as it wasn’t clear to me how these series had 
been quantified. I would also be interested in knowing as part of this how consistent these recessions 
are from the overall set used and how much variability there is in this characteristic for a few example 
catchments. 

Response: We have made it more clear how these series are extracted in the subsection 2.2  (see p. 
8, l. 1-6 in marked MS) and we have included the estimated parameters values in the Figure 3 (used 
to be Figure 4). This point is also revisited in the discussion section where the correlations between 
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the parameters of the distribution of Λ is shown and discussed (see p.15. l.16-p. 18, l.2 in marked 
MS). 

 

Response to Referee #1 
General comments 

R#1: Replacing some of the calibration by recession analysis effectively breaks the parameter estimation 
into two steps, but it does not reduce reliance on extracting information from the hydrograph. 
 
Response: There is indeed a reliance on extracting information from the hydrograph. However, in the 
introduction we point out, with support from the literature, the benefit of estimating model parameters 
directly from observations and not through model calibration against runoff (see p.4, l.4-25 in marked 
MS). In addition, we show that the model parameters estimated from observations are significantly 
correlated to catchment characteristics and are hence possible to estimate for ungauged catchments (see 
p.15, l.16- p.16, l.18 in marked MS). 

R#1:The authors have a particular way of deriving their model structure, including the way subsurface 
flows are drawn from different levels in the soil (e.g. Fig 12), with a particular distribution in the vertical. 
However this remains a hypothesis which is not directly tested. If there is evidence to support the authors’ 
hypothesis, that would be of more interest, e.g. spatially-distributed monitoring of lateral water flow 
through different soil horizons, water tracer data implying the that contributions to river flow come from 
particular levels in the soil column. 
 
Response: It is correct that the hypothesis is not tested directly. On the other hand we have indirectly 
justified the distribution of 𝑆𝑆 in the vertical, see Figure 10 in revised MS and the accompanying 
discussion (p. 16, l.19- p.18, l.2). In Figure 10 we have estimated S for recession events (Eq. 18 in revised 
MS) and plotted its distribution. The similarity in shape to the distribution of Λ is clear. 
 
The basis for the model structure is, apart from the distance distributions, the observed distribution of Λ, 
the recession characteristic, from which we derive the celerities of flow. Λ is typically small for low flows 
(flat recession) and high for high flows (steep recession), so it is natural (and we do not think very 
controversial) to relate it to low and high storage, 𝑆𝑆. We have chosen to discretize the distribution of Λ 
(and hence the celerities) which gives the levels of the subsurface, 𝑆𝑆. These levels could be discretized 
much finer at the expense of computing time and little gain in precision (see Skaugen and Onof, 2014).  
 
Catchments in which the subsurface fluctuations are investigated to such a detail as suggested by R#1 are 
very hard to find, especially for normally sized catchments (10-1000 km2). There is an example from 
Norway where a tiny catchment of 0.0075 km2 was instrumented with over 100 manually read 
(intermittently) groundwater tubes for a short period of time, 1986-1989. We have mentioned this 
experiment in the revised MS (p.16. l. 20-23 in the marked MS). The data (Myrabø, 1997) is, at present, 
not available but we hope to retrieve it later and use it for the purpose suggested by R#1.  
 
Specific comments  
  

1. P11134 L1 “and an unsaturated zone with volume D (mm), called the soil water zone. The actual 
water volume present in the unsaturated zone, D, is called Z (mm).” It is hard to understand the 
difference between D and Z from this text. I think it would be clearer to start this phrase “and an 
unsaturated zone with capacity D (mm) …”  
 
Response: A good reformulation. It is changed see p.6, l.2 in marked MS. 
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2. P11134 L20 “Experience using the DDD model shows that the subsurface water reservoir M 
largely controls the variability of the hydrograph.” I think it clearer to say “the subsurface water 
capacity parameter M”  
 
Response: Again a good reformulation. It is changed, se p.6, l.21 in marked MS. 
 

3. P11134 L21 “Low values of M increase the amplitude of the hydrograph, since the entire range of 
celerities is engaged, and vice versa.” This sentence is impossible to interpret without a 
description of the role that celerities play in the model. 
 
Response: We agree that this comment is perhaps difficult to understand at this point in the paper. 
We have reformulated the paragraph so that the mentioning of celerities does no longer come as a 
surprise, see p.6, l.19-20 in marked MS. 
 

4.  P11136 L6 “according to a linear reservoir in recession with runoff coefficient ϑ” It seems 
confusing to call this a runoff coefficient. That term is generally reserved for a ratio of runoff to 
precipitation. This parameter seems more like a rate constant, since it presumably has units of 
1/time.  
 
Response: Agreed, it is changed to “rate constant”, see Appendix A, p.22 l.3 in marked MS. 
 

5.  P11136 L7 “The ratio between consecutive values of runoff, Q(t + 1)/Q(t)” Do the authors mean 
Q(t + Δt) rather than Q(t + 1)?  
 
Response: Yes, it is changed.  See Eq A2 (p.22, l.5) in marked MS. 
 

6.  P11136 L14 Equation 6 indicates that ϑ is dimensionless, but since Q is presumably a flux 
(mm/day) and S is a storage (mm), the linear reservoir equation Q(t) = ϑ S(t) indicates that ϑ has 
units of 1/day. This inconsistency needs to be resolved, as ϑ is closely linked to Λ and 𝜅𝜅, which 
are pure ratios.  
 
Response: Thank you for this. Somehow, a “Δt” was lost during the derivation. The correct 
relation between 𝜅𝜅 and  ϑ is 𝜗𝜗 = 1−𝜅𝜅

Δ𝑡𝑡
. This is corrected in eqs. A3-6 (p.22), and Eq.18 (p.17) in 

the marked MS but is of no consequences for the other equations. 
 

7. P11136 L20 “This brief discussion on the distance distribution and linear reservoirs is relevant 
because it suggest that if a catchment exhibits an exponential distance distribution the linear 
reservoir comes as a natural choice for modelling the interaction between hillslopes and the river 
network.” This is true only if hillslope celerity is effectively constant. A rather strong assumption 
given the nonlinearity of some soil water processes! If I understand correctly, the DDD model has 
a celerity which varies with water storage, i.e. the effective celerity is not constant. Thus I am 
unclear why the discussion on linear reservoirs is seen as especially relevant. 
 
Response: This part of the paper is moved to Appendix A (p.21-23 in marked MS) in order to 
enhance readability  
The celerity is indeed not constant, but varies with storage. The runoff dynamics in DDD is taken 
care of by basically 4 different celerities, 5 when you include overland flow. Each of these 
celerites (which are determined from observed recession) are associated with a unit hydrograph. 
The shape of the unit hydrographs are identical, due to the common distance distribution, but the 
scale of the UH varies due to the associated celerity. The actual storage determines which UH are 
active (for example, if it is relatively dry, then no water is routed using the UH for overland 
flow). The actual runoff is the superposition of active UH’s. The UH’s are “triggered” for each 
moisture input event, so after the model has been running for a while, quite a few UH’s are at 
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work to convey water to the river network.  So, being able to relate analytically the observed 
distance distribution to UH’s and hence to linear reservoirs is a very important result of this 
study, and we believe this is a first time such a link is demonstrated.  
 

8.  P11137 L15 “The parameter Λ is thus the slope per Δt of the recession in the log-log space”. 
This is not correct. If one plots log(Q(t+Δt)) against log(Q(t)) (the only log-log space I can see in 
the paper), the slope of the line is unity, and the offset is Λ. Isn’t Λ the recession slope when log 
flow is plotted against (linear) time?  
 
Response: Yes, you are correct. The sentence is reformulated, see p.8, l.3-4 in marked MS. 
 

9. P11143 L8 “We will test the performance of the new calibration-free formulation for the 
subsurface.” It seems overstated to call the new approach calibration-free, because calibration-
free is often interpreted to mean that no flow record is required to estimate the parameter. 
Parameter estimation by recession analysis still requires measured streamflow. The new approach 
differs in that parameter estimation does not use traditional hydrograph-matching using a time-
stepping model, but instead uses recession analysis.  

 
Response: We have removed the words calibration-free and made it clear in the introduction what 
we mean by “calibration” and “estimation” (see p.4, l.4-25 in marked MS).  
 

10. P11146 L16 “as we have no way of actually knowing the true empirical distribution of storage at 
the catchment scale” It would be entirely possible to install a spatially distributed monitoring 
network which measured the changes in unsaturated and saturated storage at multiple locations. If 
a stratified sampling approach was taken when selecting sites, then this could be used to estimate 
catchment-scale storage. This may not be practical for the authors’ specific situation, but it is 
possible, and has been done in other situations. 
 
Response: This comment is similar to the second general comment. You are, of course, correct, 
and as soon as such data is at hand (see response to the second general comment) we will 
investigate how the data compares with the concepts in DDD. For normally sized catchments, 
(10-1000 km2), however, such a sampling approach is extremely challenging and would still 
involve some non-trivial upscaling (interpolation) of point values.    
 

11. P11147L7 “The estimation of θM is, however, no longer needed.” But surely the calibration has 
merely been replaced by recession analysis to determine the parameter?  
 
Response: This discussion is related to estimating model parameters from catchment 
characteristics. We have replaced the sentence with “The estimation of θM through multiple 
regression with catchment characteristics, however, is no longer needed.” (see p.16, l.1-2 in 
marked MS) 
 

12.  P11148 L21 “Figure 13 shows simulated storage S, plottet against observed runoff Q, for two 
catchments of different size (50 and 1833 km2 ). It is quite clear that the relationship between Q 
and S is not single valued.” Some of the reason for the scatter could just be that the model is not 
well correlated with the observations? Why not plot simulated storage against simulated runoff?  
 
Response: A good point, and we have done so. The new plot, new Figure 12, also demonstrates 
this point.  
 
 

13.  P11150 L9 “An important contribution of the new formulation is that its parameters are 
estimated solely from observed recession data and the mean annual runoff (i.e. not through 
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calibration).” To me, it is still calibration (albeit multi-stage calibration), if it is necessary to use 
measured flow to estimate parameter values. If instead the parameters could be reliably estimated 
from catchment and climate characteristics, that would be of great interest.  
 
Response: This comment is similar to the first general comment and to comment 9, see response 
to those. We have elaborated further on the PUB potential of the new structure of the DDD model 
(see p.15, l.16- p.16, l.18 in the marked MS). The new model structure of DDD has effectively 
one parameter less (θM) to estimate from catchment characteristics for application to PUB. We 
have also shown that the parameters of the distribution of Λ are significantly correlated to 
catchment characteristics and can be estimated from those.  
 
 

Response to Referee #2 
General comments 

1.They show that the performances of both models are comparable but that the new version of the model 
produces more realistic recessions. With these results the authors conclude that their new approach is 
another step towards simulation of ungauged basins. 
 
Response: The point of this study was to see if we could estimate the parameters of the subsurface routine 
from observations apriori to model calibration against runoff (and precipitation and temperature) and still 
obtain reasonable hydrological simulations (see response to first general comment of R#1 and revised 
introduction). The fact that a reduction in free calibrations parameters will enhance the model’s ability to 
predict in ungauged basins (see Seibert, 1999; Skaugen et al. 2015) is a pleasant consequence. We have 
elaborated further on the PUB potential of the model (see p.15, l.16- p.16, l.18 in the marked MS). 
 
2. First of all, I found the manuscript very hard to read. The theory is too long and the structure of the 
manuscript is structure confusing. This is particularly true for the explanation of the theory: I definetly 
recommend reordering the sections (2.1 Hydrological model, 2.2 Runoff dynamics, 2.3 Reformulation, 
2.3.1 Estimating the mean storage, 2.4 Example..) The old calibrated model should be explained in much 
less detail supported by more detail in the appendix. The Reformulation should be structured in a better 
way and if there is no 2.3.2 there is no purpose in having a subsection 2.3.1, etc. Generally, discard all 
information that is not completely necessary. 
 
Response: We agree that the theory part (section 2) is long. We have restructured the paper as follows: 
-The introduction is more focused where we put our approach in the framework of linear reservoirs, 
recession analysis and the difference between estimating parameters directly from observed data and 
through model calibration against runoff. 
The entire section 2 is restructured:  
-We have moved the part where we relate the distance distribution to the linear reservoirs to Appendix A..  
-In the original subsection 2.3, the part where we justify the similarity in shape of the distributions of Λ 
and 𝑆𝑆, is moved to the discussion. 
-In the original subsection 2.4, the discussion around large sample hydrology is deleted in order to keep 
the paper focused. 
- We only use one meteorological grid in order to make the paper more easy to read. 
- We have revised Table 1 by deleting two columns, but keeping the relevant information. 
 
3. Also, more focus should be put on the example where application, parameter estimation, evaluation and 
data should be explained in a structured way (more subsections). A lot of theory is also presented at the 
beginning of 2.4 (1st and 2nd paragraph), which should rather be moved to the discussion as the studies 
methods and the methods of other studies are quite mixed up now. 
 
Response: Yes, see response above (for comment #2) 
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4. As new calibration is performed for DDD_M a strict evaluation of the observation derived parameters 
of the subsurface routine is difficult. I recommend rather remaining with all calibrated parameters of the 
old surface routine with the old meteorological grid V1, which would allow estimating the skills of the 
new parameter estimation scheme without any calibration. Also this would make the approach simpler 
and the paper easier to read. 
 
Response: We have revised as suggested, see above. 
 
5. Finally, as the new parameter estimation scheme still requires discharge data I also do not see the real 
advantage in terms of simulating ungauged catchments. I agree with referee #1 that there is the need to 
apply the new approach for simulating catchments without discharge data as mentioned in the discussion. 
Most desirably at least first try should be part of the study indicating the advantages of this new approach. 
 
Response: This comment is similar to the first general comment and to comment 13 of R#1, please see 
response to those and in the discussion in the revised MS (p.15, l.16- p.16, l.18 in the marked MS). The 
correlation analysis between parameters and catchment characteristics and the multiple regression serves 
as a “first try”.  
 

Specific comment 

1.p11131, L25.. mention importance of reliable estimation of storage –discharge relations as pointed out 
by Berghuijs et al.2016) 

Response: We are not certain this is a correct place to have this reference, since we discuss linear 
reservoirs. It fits very well, however, at P3, l.15 in marked MS. 

 

2.p11138-L10: mention height of each storage level 

Response: Yes. We have mentioned storage levels of equal capacity at p.8, l.15 in marked MS 

 

3. p11130-L9. mention variability of aquifer porosity 

Response: Yes, a good point, see p.9-l.22 in marked MS 

 

4.11144-L16 it is enough just to mention which data was used  

Response: This part is rewritten (see response to general comment #2, and new section 2.4 in MS) 

 

5. 11144-L24 Can these parameters be assumed to be constant?, see studies Merz et al. 2011 and 
Berghuijs et al, 2014. 

Response: Only partly, temperature threshold for snow melt should be 0 °C, but the others account for 
data and model structure errors. This part is anyway be deleted in the revised paper. 

 

6. 11147-L15 This should be part of the study (PUB excersise) 
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Response: See response to general comment #1 and #5 and p.15, l.16- p.16, l.18 in the marked MS. 

 

7.11148-L3: this makes sense even more in regions with heterogeneous subsurface, see studies 
(Refsgaard et al (2012) and Hartmann et al. 2015) 

Response: Thank you for the references. Refsgaard et al. (2012) is referenced at p.9-l.22 in marked MS 

 

8. 11148-L15 refer to TTD papers that make a similar point (Harman C.J 2014 and Kirchner, 2016.) 

Response: Thank you for the references. Harman (2015) is referenced at p.18, l.15 and at p.19,l.2. in 
marked MS.  

 

9. Figure 4 Increase font size 

Response: Yes. It has become the new Figure 3 with increased font size, inserted parameter values and 
letters marking the different panels. 

 

10. Have lambda symbol in Figure 6. 

Response: It has become the new Figure 10 with inserted lambda symbol. 
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Estimating catchment scale groundwater dynamics from 
recession analysis – enhanced constraining of hydrological 
models.  

 

T. Skaugen and Z. Mengistu 

{Dept. of Hydrology, Norwegian Water Resources and Energy Directorate} 

Correspondence to: T. Skaugen (ths@nve.no) 

 

Abstract 
In this study we propose a new formulation of subsurface water storage dynamics for use in 

rainfall-runoff models. Under the assumption of a strong relationship between storage and 

runoff, the temporal distribution of catchment scale storage is considered to have the same shape 

as the distribution of observed recessions (measured as the difference between the log of runoff 

values). The mean subsurface storage is estimated as the storage at steady-state, where moisture 

input equals the mean annual runoff. An important contribution of the new formulation is that its 

parameters are derived directly from observed recession data and the mean annual runoff. The 

parameters are hence estimated prior to model calibration against runoff. The new storage 

routine is implemented in the parameter parsimonious Distance Distribution Dynamics (DDD) 

model and has been tested for 73 catchments in Norway of varying size, mean elevation and 

landscape type. Runoff simulations for the 73 catchments from two model structures; DDD with 

calibrated subsurface storage and DDD with the new estimated subsurface storage, were 

compared. Little loss in precision of runoff simulations was found using the new estimated 

storage routine. For the 73 catchments, an average of the Nash-Sutcliffe Efficiency criterion of 

0.73 was obtained using the new estimated storage routine compared with 0.75 using calibrated 

storage routine. The average Kling-Gupta Efficiency criterion was 0.80 and 0.81 for the new and 

old storage routine, respectively. Runoff recessions are more realistically modelled using the 

Slettet:  and

Slettet: . Key principles guiding the evaluation of the

Slettet: subsurface 

Slettet: have been a) to minimize the number of parameters 
to be estimated through the, often arbitrary fitting to optimize 
runoff predictions (calibration) and b) maximize the range of 
testing conditions (i.e. large-sample hydrology). The new 
storage routine has been 

Slettet: already 

Slettet: elevations

Slettet: types

Slettet: No

Slettet: 68

Slettet: found

Slettet: 66

Slettet: 69

Slettet: 70
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new approach since the root mean square error between the mean of observed and simulated 

recession characteristics was reduced by almost 50 % using the new storage routine. The 

parameters of the proposed storage routine are found to be significantly correlated to catchments 

characteristics, which is potentially useful for predictions in ungauged basins. 

 

1 Introduction 
The movement of groundwater to streams is an important component of catchment hydrology 

and simulating its movement is key to accurately reproducing the hydrograph. Unfortunately, at 

the spatial scale of interest for studying the dynamics of hydrological systems, the catchment 

scale, we are not able to actually see and learn how water is transported in the subsurface.  

Hence, for many decades the (subsurface) storage-runoff relationship has been the basis for 

countless hydrological model concepts. The subsurface water storage, hereafter denoted 

subsurface storage or storage, is to be understood as the dynamics storage, i.e. the variation in 

storage between wet and dry period (Kirchner, 2009). In this paper we will develop and test a 

new formulation for storage dynamics. The proposed subsurface storage model is based on linear 

reservoir theory and its parameters are derived directly from recession analysis, digitized maps 

and the mean annual runoff.  

The linear reservoir, often visualised as a straight-sided bucket with a hole in the bottom (Beven, 

2001; Dingman, 2002), has an exponentially declining outflow and is the basis for the 

exponential unit hydrograph (UH). It has served as the most commonly used storage-runoff 

relationship and plays a fundamental role in conceptual rainfall runoff models. A single linear 

reservoir is, however, too simple for describing the variability and non-linearity of hydrological 

response. Some groundwater models conceptualise the stream- aquifer interactions as the 

drainage of an infinite number of independent linear reservoirs (Sloan, 2000; Pulido-Velasquez 

et al., 2005; Bidwell et al. 2008; Rupp et al., 2009). This comes as a result of solving the 

Slettet: recessions

Slettet: )

Slettet: ; Beven, 2001

Slettet: served as the most commonly used basic storage-
runoff relationship. Such a reservoir has 

Slettet: ,

Slettet:  too simple

Slettet: Therefore, most conceptual models use a system of 
several, possibly modified, linear reservoirs to describe the 
soil moisture accounting and runoff dynamics. The system 
may vary in complexity (and hence in the inclusion of 
calibration parameters), but the linear reservoir remains the 
basic building block of conceptual models. Examples of such 
models are the UH models of Nash (1957) and Dooge (1959) 
and the explicit soil-moisture accounting (ESMA) models, of 
which the work-horse of operational Nordic hydrology, the 
HBV model (Bergström, 1992) serves as an example (see 
Beven (2001) for a discussion on the evolution of rainfall-
runoff models). In addition to the fundamental role the linear 
reservoir has played in simple conceptual rainfall- runoff 
models, some

Slettet: Rupp et al., 2009; Bidwell et al. 2008; 

Slettet: Sloan, 2000
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linearized Dupuit- Boussinesq equation for saturated flow as an eigenvalue and eigenfunction 

problem. In order to capture the variability in hydrological response, most conceptual rainfall-

runoff models also use a system of several, often modified, linear reservoirs to describe the soil 

moisture accounting and runoff dynamics. The system may vary in complexity (and hence in the 

inclusion of free calibration parameters), but the linear reservoir remains the basic building 

block. Examples of such models are the UH models of Nash (1957) and Dooge (1959) and the 

explicit soil-moisture accounting (ESMA) models, of which the work-horse of operational 

Nordic hydrology, the Hydrologiska Byråns Vattenbalans (HBV) model (Bergström, 1992) 

serves as an example (see Beven (2001) for a discussion on the evolution of rainfall-runoff 

models). In Lindström et al. (1997) the upper zone (the reservoir responsible for quick response) 

of the HBV model was formulated as a non-linear reservoir, 𝑄𝑄 = 𝜗𝜗𝑆𝑆1+𝛿𝛿 where 𝑄𝑄 is runoff, 𝑆𝑆 is 

storage and 𝜗𝜗 and 𝛿𝛿 are calibrated constants. For 𝛿𝛿 = 0, this is, of course an ordinary linear 

reservoir. 

Recession behaviour should be characteristic for a specific catchment (Tallaksen, 1995; 

Kirchner, 2009; Stoelzle et al., 2013; Berghuijs et al., 2016) since it provides hydrological 

information integrated over the catchment. Such a scaled-up hydrological signal contrasts that of 

information derived from the extrapolation of point measurements. Recession data have often 

been used to derive the storage-runoff relationship and Brutsaert and Nieber (1977) discuss 

several theoretical models from the soil sciences as a basis for describing the non-linearity of 

storage- runoff relationships and investigate this relationship using recession events. Lamb and 

Beven (1997) developed a tool that used recession data to parameterize non-linear storage-runoff 

relationships but were not always able to fit single analytical functions. In Kirchner (2009), 

runoff is assumed to depend solely on the amount of water stored in the catchment and very 

carefully selected recession events are used to parameterize the storage- runoff relationship. The 

Slettet: Despite the popularity of linear reservoirs, the non-
linear relationship between storage, 𝑆𝑆 and runoff 𝑄𝑄 has long 
been recognised and simple solutions for manipulating a 
single reservoir for taking into account non-linearity have 
been put forward. In Lindström et al.,

Slettet: . The recently published rainfall-runoff model DDD 
(Distance Distribution Dynamics, Skaugen and Onof, 2014; 
Skaugen et al. 2015) is also based upon a high dependence 
between runoff and storage and uses linear reservoirs as its 
primary building block. In this model, the dynamics of runoff 
are modelled using linear storages

Flyttet ned [1]:  arranged in parallel, a principle which 
resembles the stream- aquifer interaction model described by 
for example Bidwell et al. (2008). 

Slettet: The non-linearity of the response in DDD comes 
from exponential UHs of different temporal scale

Formatert: Engelsk (USA)

Formatert: Engelsk (Storbritannia)

Slettet: data from runoff 

Slettet:  Recession data have often been used to derive the 
storage-runoff relationship and
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recession events were selected such that the possible contaminating effect of precipitation and 

evapotranspiration on the recession data was minimized. For two rivers in the UK, highly non-

linear relationships between storage and runoff were found using this approach.  

Recession characteristics are, in this paper, used to estimate parameters characterising the 

storage dynamics. The parameters associated with storage are hence estimated directly from 

observed data and apriori model calibration to runoff. Such an approach has many attractive 

features. First, when we use the precipitation-runoff relationship in model calibration, the 

estimated parameters will be conditioned on both inputs (precipitation and temperature) and the 

output (runoff). The calibrated parameters will therefore be sensitive to biases and errors in the 

inputs. Consequently, the more uncertain and biased the precipitation input, the more uncertain 

and biased parameter estimates (e.g. Dawdy and Bergman, 1969; Kuczera and Williams, 1992; 

Andréassian et al., 2001; Engeland et al., 2016). Second, when a single parameter is estimated 

directly from data you remove the possibility that its value is conditioned on the value of the 

other parameters, i.e. that the calibrated parameter values compensate for structural or data errors 

(Beven, 1989; Kirchner, 2006; Kirchner, 2009). Third, when a single parameter is estimated 

directly from observed data and not through the optimizing of a model, one does not have to take 

into account the possible (and probable) errors associated with the model structure (Beven, 2001. 

p. 21; Kirchner, 2009). In such a way, the errors associated with the modelling of processes such 

as snow accumulation and -melt, groundwater- and soilmoisture dynamics do not influence the 

parameter estimate. In this paper we distinguish between calibrated and estimated parameters. 

The term “calibrated parameters” refers to parameters being part of a set that is simultaneously 

optimized when minimizing the difference between observed and simulated runoff. The term 

“estimated parameters” refers to parameters estimated independently and directly from observed 

data. These values are not tuned to minimize the difference between simulated and observed 

runoff as would be the case if they were calibrated.  

Slettet: As in Brutsaert and Nieber (1977) and Kirchner 
(2009), recession data are fundamental in DDD for describing 
the runoff dynamics. The temporal scales of the UHs are 
estimated assuming that the recessions provide the parameters 
of exponential UHs, which together with the distribution 
describing the distances from points in the catchment to their 
nearest river reach, are used to derive celerities and, hence, 
the temporal scale of the UHs. The linearity of the parallel 
reservoirs is not assumed but is dictated by the empirical 
distance distributions, which for Norwegian hillslopes can 
usually be modelled as exponential (Skaugen and Onof, 2014; 
Skaugen et al. 2015). The UHs are turned on and off 
according to the level of saturation (or storage) in the 
catchment. 

Formatert: Engelsk (USA)
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The new formulation of storage dynamics proposed in this paper is implemented in the in the 

Distance Distribution Dynamics (DDD) model (Skaugen and Onof, 2014; Skaugen et al. 2015), 

which is briefly reviewed in the next section. In this model, the dynamics of runoff are modelled 

using linear reservoirs (unit hydrographs (UHs)) arranged in parallel, a principle which 

resembles the stream- aquifer interaction model described by for example Bidwell et al. (2008). 

The UHs are turned on and off according to the level of saturation in the catchment. The UHs are 

parameterized from recession data and digitized maps, so the DDD model incorporates many of 

the modelling approaches presented above.  

The main objective of this study is to assess how the new formulation of storage with its 

parameters estimated directly from recession characteristics and the mean annual runoff 

compares with the current formulation of the storage, where its parameter is calibrated against 

runoff. The comparison will be carried out for a large number of catchments and for runoff and 

recession behaviour. In the discussion, some implications with respect to predictions in 

ungauged basins and spatially variable groundwater modelling are discussed. 

  

2 Methods 
 

2.1 Hydrological model 
The DDD model (Skaugen and Onof, 2014; Skaugen et al.2015) is a rainfall- runoff model 

written in the programming language R (www.r-project.org) and currently runs operationally at 

daily and 3-hourly time steps at the operational flood forecasting service of the Norwegian Water 

Resources and Energy Directorate (NVE). The DDD model introduces new concepts in its 

description of the subsurface and of runoff dynamics. Input to the model is precipitation and 

temperature. In the subsurface module (see Figure 1), the capacity of the subsurface water 

Flyttet (innsetting) [1]

Slettet: The DDD model was developed with the aim of 
investigating how far one could parameterize a rainfall-runoff 
model using information obtained from maps and runoff 
records prior to model calibration. The result was a model 
that had no loss in precision or detail when compared with the 
HBV model, although the number of calibration parameters 
in the subsurface- and dynamic modules was reduced from 7 
(HBV) to 1 (DDD). This study is a continuation of that 
approach, and the aim is to investigate how storage dynamics 
can be related to runoff dynamics within the DDD 
framework. The recession data continue to play a crucial role 
in the model formulation and using these data together with 
the distance distributions and the mean annual runoff (𝑀𝑀𝑀𝑀𝑀𝑀), 
we attempt to estimate all parameters of the subsurface and 
runoff dynamics prior to model calibration.

Feltkode endret

Slettet: Norwegian

Slettet: .

Slettet: volume 

http://www.r-project.org/
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reservoir 𝑀𝑀 [𝑚𝑚𝑚𝑚] is shared between a saturated zone, 𝑆𝑆[𝑚𝑚𝑚𝑚], called the groundwater zone and 

an unsaturated zone with capacity 𝐷𝐷[𝑚𝑚𝑚𝑚], called the soil water zone. The actual water present in 

the unsaturated zone, 𝐷𝐷, is called 𝑍𝑍[𝑚𝑚𝑚𝑚]. 

The subsurface state variables are updated after evaluating whether the current soil moisture, 

𝑍𝑍(𝑡𝑡), together with the input of rain and snowmelt, 𝐺𝐺(𝑡𝑡), represent an excess of water over the 

field capacity, 𝑀𝑀, which is fixed at 30% (𝑀𝑀 =  0.3) of 𝐷𝐷(𝑡𝑡) (Grip and Rohde, 1985, p.26; 

Colleuille et al. 2007). If so, excess water 𝑋𝑋(𝑡𝑡) is added to 𝑆𝑆(𝑡𝑡). To summarize: 

Excess water:                                    𝑋𝑋(𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀 �𝐺𝐺(𝑡𝑡)+𝑍𝑍(𝑡𝑡)
𝐷𝐷(𝑡𝑡) − 𝑀𝑀, 0�𝐷𝐷(𝑡𝑡).                          (1a) 

Groundwater:                                    𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑋𝑋(𝑡𝑡) −𝑄𝑄(t).                                                         (1b) 

Soil water content:                             𝑑𝑑𝑍𝑍
𝑑𝑑𝑡𝑡

= 𝐺𝐺(𝑡𝑡) − 𝑋𝑋(𝑡𝑡) − 𝐸𝐸𝑀𝑀(𝑡𝑡).                                         (1c) 

Soil water zone:                                 𝑑𝑑𝐷𝐷
𝑑𝑑𝑡𝑡

= −𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

,                                                                    (1d) 

 

where 𝑄𝑄(𝑡𝑡) is runoff.  Actual evapotranspiration, 𝐸𝐸𝑀𝑀(𝑡𝑡), is estimated as a function of potential 

evapotranspiration and the level of storage. Potential evapotranspiration is estimated as 𝐸𝐸𝐸𝐸 =

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑇𝑇  [𝑚𝑚𝑚𝑚/𝑑𝑑𝑀𝑀𝑑𝑑], where 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐[𝑚𝑚𝑚𝑚/℃ 𝑑𝑑𝑀𝑀𝑑𝑑] is the degree-day factor which is positive for 

positive temperatures and zero for negative temperatures. Actual evapotranspiration thus 

becomes 𝐸𝐸𝑀𝑀 = 𝐸𝐸𝐸𝐸 × (𝑆𝑆 + 𝑍𝑍)/𝑀𝑀, and is drawn from 𝑍𝑍. 

In the current version of DDD, 𝑀𝑀 is a calibrated parameter and is divided into storage levels, 𝑖𝑖, 

which are all assigned different wave velocities, or celerities, 𝑣𝑣𝑖𝑖  [𝑚𝑚/𝑠𝑠]. The celerities increase for 

increasing 𝑖𝑖 (see next section). Experience using the DDD model shows that the subsurface water 

capacity parameter 𝑀𝑀 largely controls the variability of the hydrograph. Low values of 𝑀𝑀 

increase the amplitude of the hydrograph, since the entire range of celerities is engaged, and vice 

versa.  

Slettet:  with volume

Slettet: volume

Slettet:  volume

Slettet:  ,

Slettet: ]

Formatert: Skrift: 12 pkt

Slettet: reservoir

Slettet:  
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Calibrated model parameters are hereafter denoted by 𝜃𝜃 with subscripts (e.g. 𝜃𝜃𝑀𝑀), in order to 

clearly distinguish between estimated and calibrated parameters.  

 

2.2 Runoff dynamics  
The runoff dynamics are completely parameterized from observed catchment features derived 

using a Geographical Information System (GIS) and runoff recession analysis. Central for the 

formulation of runoff dynamics for a catchment is the distance distribution derived using GIS.  

The distances, 𝑑𝑑 [𝑚𝑚],  from points in the catchments to the nearest river reach are calculated for 

each catchment and for more than 120 studied catchments in Norway the exponential distribution 

describe the distribution of distances well. Figure 2 shows the empirical and exponential 

distributions for two Norwegian catchments and although the mean distance �̅�𝑑 is different, the 

exponential distribution is a good fit for both catchments. The parameter 𝛾𝛾, of the exponential 

distribution 

 𝑓𝑓(𝑑𝑑) = 𝛾𝛾𝑒𝑒−𝛾𝛾𝑑𝑑 ,                                                                    (2) 

equals 𝛾𝛾 = 1/�̅�𝑑. The distance distributions (Figure 2) express the areal fraction of the catchment 

as a function of distance from the river network. In appendix A, analytical relations between 

exponential distance distributions and linear reservoirs are described. 

𝛾𝛾 = −log (𝜅𝜅)/Δ𝑑𝑑ξ = −log (𝜅𝜅)/Δ𝑡𝑡𝑄𝑄(𝑡𝑡) = 𝜗𝜗𝑆𝑆(𝑡𝑡).In the DDD model, water is conveyed through 

the soils to the river network by waves with celerities determined by the actual storage, 𝑆𝑆(𝑡𝑡) in 

the catchment. The celerities associated with the different storages are estimated by assuming 

exponential recessions with parameter 𝛬𝛬, in 𝑄𝑄(𝑡𝑡) = 𝑄𝑄0𝛬𝛬𝑒𝑒−𝛬𝛬(𝑡𝑡−𝑡𝑡0), where 𝑄𝑄0 is the peak 

discharge immediately before the recession starts (Nash, 1957). We can determine the parameter 

𝛬𝛬(𝑡𝑡) from the difference:  

Flyttet (innsetting) [2]

Slettet: ,

Slettet:  In Figure 3 the information of the distance 
distribution is visualised differently. Here

Flyttet ned [3]: , for the same two catchments as in Figure 
2, the consecutive fractional areas for each distance interval 
∆𝑑𝑑 are plotted against the distance to the river network, and 
the ratio, 𝜅𝜅 between consecutive fractional areas is a constant 
and it has been showed (Skaugen, 2002) that the parameter 𝛾𝛾 
of the exponential distribution relates to 𝜅𝜅 as ¶
𝛾𝛾 = −log (𝜅𝜅)/Δ𝑑𝑑.                                                         

Slettet: (3

Flyttet ned [4]: )¶
If we assume that a uniform moisture input (i.e. 

Slettet: excess rainfall or snowmelt) is transported through 
the hillslope to the river network with a constant velocity 𝑣𝑣, 

Flyttet ned [5]:  (or celerity, see Skaugen and Onof, 2014, 
Beven, 2006), then Δ𝑑𝑑 is the distance travelled by water 
during a suitable time step, ∆𝑡𝑡, i.e., ∆𝑑𝑑 = 𝑣𝑣∆𝑡𝑡. When 𝑑𝑑 Eq. 2 
is replaced with 𝑑𝑑/𝑣𝑣, the distance distribution hence becomes 
a travel-time distribution with mean equal to  𝑑𝑑

�

𝑣𝑣
 and parameter ¶

ξ = −log (𝜅𝜅)/Δ𝑡𝑡,                                                                  (

Slettet: 4)¶

Flyttet ned [6]: which constitutes a unit hydrograph 
(Maidment, 1993, Bras, 1990,  p.448). The variable 𝜅𝜅, is now 
the ratio between volumes of water drained pr. time step, i.e. 
the volume of water drained into the river network is reduced 
by 𝜅𝜅 for each time step. ¶
A linear reservoir has this same property of consecutive 
runoff values having a constant ratio. This can be seen if we 
compute successive volumes and runoff values according to a 
linear reservoir in recession with 

Slettet: runoff coefficient 𝜗𝜗, i.e.   

Flyttet ned [7]: 𝑄𝑄(𝑡𝑡) = 𝜗𝜗𝑆𝑆(𝑡𝑡). 

Flyttet ned [8]: The ratio between consecutive values of 
runoff, 

Slettet: 𝑄𝑄(𝑡𝑡 + 1)/𝑄𝑄(𝑡𝑡) remains constant and equal to 1 − 𝜗𝜗. 
Hence, a catchment with an exponential distance distribution ...

Flyttet ned [9]: Furthermore, from eqs. 

Slettet: 4 and 5 we see that the runoff coefficient of a linear 
reservoir relates to the parameter of the travel time ...

Flyttet ned [10]: and the celerity can hence be formulated 
as:¶

Slettet: 𝑣𝑣 = −log (1−𝜗𝜗)𝑑𝑑�

∆𝑡𝑡
= −log (𝜅𝜅)𝑑𝑑�

∆𝑡𝑡
                                                  

(8)¶
This brief discussion on the distance distribution and linear 
reservoirs is relevant because it suggest that if a catchment 
exhibits an exponential distance distribution the linear 
reservoir comes as a natural choice for modelling the ...

Flyttet ned [11]: ). These latter statements assumes, of 
course, that the topographical catchment area and that of the 

Slettet: , 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑄𝑄(𝑡𝑡)) − 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑄𝑄(𝑡𝑡 + 𝛥𝛥𝑡𝑡)), 



8 
 

 𝛬𝛬(𝑡𝑡) = log�Q(t)� − log�Q(t + ∆t)� ,   Q(t) > Q(t + ∆t),                            (3) 

at any time 𝑡𝑡,  during the recession due to the lack of-memory property of the exponential 

distribution (Feller, 1971, p. 8).The parameter Λ is thus the slope per Δ𝑡𝑡 of the recession (of 

𝑙𝑙𝑙𝑙𝑙𝑙𝑄𝑄(𝑡𝑡)). From eqs. A2 and A7 in Appendix A, we find the celerity 𝑣𝑣 [𝑚𝑚/𝑠𝑠] as a function of Λ: 

𝑣𝑣 = Λ𝑑𝑑�

Δ𝑡𝑡
                                                                    (4) 

If we sample 𝛬𝛬’s from all recession events (the only condition is that Q(t) > Q(t + ∆t)) 

according to Eq. (3), we find that they can be fitted to a gamma distribution. This is a 

development from the exponential model used in Skaugen and Onof (2014) and is based on more 

detailed analysis of a much larger number of runoff records. For the 73 catchments us in this 

study, the gamma distribution was a good fit for all catchments.  In Figure 3 we have plotted the 

empirical and the gamma distribution of Λ for six catchments with estimated shape, 𝛼𝛼, and scale, 

𝛽𝛽, parameters of the gamma distribution, and it is clearly seen that the flexibility of the gamma 

distribution is needed in order to model the observed quantiles (see for example Figure 3 d) and 

f)). 

The capacity of the subsurface reservoir 𝜃𝜃𝑀𝑀, is divided into storage levels of equal capacity. The 

storage levels 𝑖𝑖 corresponds to the quantile of the distribution of Λ under the assumption that the 

higher the storage, the higher the values of Λ. Each level is further assigned a celerity 𝑣𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑑𝑑�

Δ𝑡𝑡
 

(see Eq. 4), where 𝜆𝜆𝑖𝑖 is the parameter of the individual unit hydrograph for storage level 𝑖𝑖, and 

estimated such that the runoff from several storage levels will give a UH equal to the exponential 

UH with parameter Λ𝑖𝑖, i.e.: 

𝛬𝛬𝑖𝑖𝑒𝑒−𝛬𝛬𝐼𝐼(𝑡𝑡−𝑡𝑡0) = 𝜛𝜛1𝜆𝜆1𝑒𝑒−𝜆𝜆1(𝑡𝑡−𝑡𝑡0) + 𝜛𝜛2𝜆𝜆2𝑒𝑒−𝜆𝜆2(𝑡𝑡−𝑡𝑡0)+. . +𝜛𝜛𝑖𝑖𝜆𝜆𝑖𝑖𝑒𝑒−𝜆𝜆𝑖𝑖(𝑡𝑡−𝑡𝑡0),             (5) 

Slettet: 8), 

Slettet:  𝛬𝛬(𝑡𝑡) = log (Q(t)) − log (Q(t + ∆t))    .                                                  
(9)¶
The parameter Λ is thus the slope per Δ𝑡𝑡 of the recession in 
the log-log space and we see the relation between the variable 
𝜅𝜅 = 𝑄𝑄(𝑡𝑡 + ∆𝑡𝑡)/𝑄𝑄(𝑡𝑡) and Λ as:¶
Λ =  −log (𝜅𝜅)                                                                (10)¶
¶
From Eq. 8  we have that the celerity 𝑣𝑣 as a function of Λ is:¶
𝑣𝑣 = Λ𝑑𝑑�

Δ𝑡𝑡
                                                                    (11)¶

Slettet: 𝛬𝛬s

Slettet: 9

Slettet:  have a distribution which

Slettet: 4

Slettet: 6

Slettet: the middle and bottom panels on the right side).

Slettet: 𝑀𝑀,

Slettet: corresponding

Slettet: quantiles

Slettet: 11

Slettet:  the individual

Slettet: 12
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where 𝜛𝜛 are the weights associated with the discharge from each level estimated by 𝜛𝜛𝑖𝑖 =

 𝛬𝛬𝑖𝑖 ∑ 𝛬𝛬𝑘𝑘𝑖𝑖
𝑘𝑘=1

� . From Eq. 5, 𝜆𝜆𝑖𝑖 are solved successively for increasing 𝑖𝑖 under the assumption that  

𝜆𝜆1 = Λ1  (see Skaugen and Onof, 2014).  

The quantiles of Λ are mapped to a uniform distribution of 𝑆𝑆, 𝐹𝐹(𝛬𝛬) = 𝑑𝑑
𝜃𝜃𝑀𝑀

, which implies that all 

storage levels are equally probable and that the equally-spaced storage levels have equal capacity 

of water, i.e. if 𝜃𝜃𝑀𝑀 = 50𝑚𝑚𝑚𝑚 and we use 5 storage levels (𝑖𝑖 = 1 … 5), each level has a capacity of 

10 𝑚𝑚𝑚𝑚. In Skaugen and Onof (2014), no increase in the precision of daily runoff simulations 

was found using more than 5 storage levels. 

 

2.3 Reformulation of the subsurface of DDD 
An obvious problem of the approach described above is that we attempt to estimate an extreme 

value, the maximum catchment scale storage 𝜃𝜃𝑀𝑀, a task which is obviously associated with more 

uncertainty than estimating the mean catchment scale storage, 𝑚𝑚𝑠𝑠.  Another problem is the 

assumption of a uniform distribution of storage levels. A quick investigation of observed 

groundwater level fluctuations suggests that this is not the case. Figure 4 shows histograms of 

observed groundwater levels from three observation boreholes located in a small catchment (the 

Groset catchment, 6.33 km2) in southern Norway. The figure clearly illustrates that fluctuations 

in storage and groundwater levels are spatially variable and should ideally be treated as such in 

rainfall-runoff models (Rupp et al. 2009; Sloan, 2000). This is a consequence of the differences 

in water level fluctuations depending on the location of the borehole relative to the river, i.e. top 

of a hillslope vs. adjacent to a river and also of the catchment variability of topography and soil 

porosity (Refsgaard et al., 2015). It is therefore very difficult to parameterize the distribution of 

the catchment-scale groundwater fluctuations from such single observation points (Kirchner, 

Slettet: 12 the

Slettet: 𝑑𝑑
𝑀𝑀

,

Slettet:  

Slettet:  𝑀𝑀 = 100 𝑚𝑚𝑚𝑚

Slettet: 10

Slettet: , 

Slettet: 10,

Slettet: )

Slettet: in

Slettet:  was found

Flyttet opp [2]: Calibrated model parameters are hereafter 
denoted by 𝜃𝜃 with subscripts (e.g. 𝜃𝜃𝑀𝑀), in order to clearly 
distinguish between estimated and calibrated parameters. ¶

Slettet: 5

Slettet:  

Slettet: topographic 

Slettet: .
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2009). In addition, the distribution is unlikely to be uniform as none of the individual histograms 

exhibits such a behaviour.  

To overcome the problems identified above, we attempt to develop a storage model that differs 

from the previous model in that the groundwater reservoir is parameterised by its mean storage, 

𝑚𝑚𝑠𝑠, as opposed to the maximum storage, 𝜃𝜃𝑀𝑀. In addition, regarding the practical problems 

associated with the observation of catchment scale fluctuations of storage, we make the 

assumption that recession and its distribution carries information on the distribution of 

catchment-scale storage. More precisely, we assume that the temporal distribution of catchment 

scale storage can be considered as a scaled version to that of the recession characteristic, Λ. 

Consequently, the subsurface reservoir no longer increases linearly with the quantiles (which is 

the case with storage levels of equal capacity), but rather, increases non-linearly according to the 

shape of the distribution of Λ.  

Since the distribution of Λ is modelled as a two parameter gamma distribution, we can write: 

𝑓𝑓(Λ) =   1
𝛽𝛽𝛼𝛼Γ(𝛼𝛼)

Λ𝛼𝛼−1exp (−Λ 𝛽𝛽⁄ ),           𝛼𝛼 > 0,𝛽𝛽 > 0                             (6) 

where 𝛼𝛼 and 𝛽𝛽 are the shape and scale parameters respectively and estimated from observed Λ′𝑠𝑠 

(using Eq. 3). 

The distribution of 𝑆𝑆 is hence also modelled as a two-parameter gamma distribution: 

𝑓𝑓(S) =   1
𝜂𝜂𝛼𝛼Γ(𝛼𝛼)

S𝛼𝛼−1exp (− S 𝜂𝜂⁄ ),           𝛼𝛼 > 0,𝜂𝜂 > 0                              (7) 

where the scale parameter, 𝜂𝜂, is 

 𝜂𝜂 = 𝛽𝛽 𝑐𝑐⁄ ,                                                                            (8) 

and 𝑐𝑐 is a constant  and equal to 

Slettet: subsurface

Slettet: non-observability

Slettet: -

Slettet: Λ.

Slettet: The assumption of equal shape for the distributions 
of 𝛬𝛬  and 𝑆𝑆 is, of course, difficult to verify as no direct 
observations of 𝑆𝑆 are at hand.  However, if we use the 
equation for the linear reservoir (Eq. 5) and express the runoff 
coefficient as a function of Λ(t) (Eq. 10), we can, for 
observed values of 𝑄𝑄(𝑡𝑡) and Λ(t), calculate the 
corresponding values of 𝑆𝑆(𝑡𝑡) and compare the distributions of 
 Λ(t) and (the scaled) 𝑆𝑆(𝑡𝑡). 

Slettet: 𝑆𝑆(𝑡𝑡) =  𝑄𝑄(𝑡𝑡)
1−𝑐𝑐−Λ(t)                                                                  

(13)¶
Figure 6 show such a comparison for two catchments, and, 
except for the highest quantiles, the distributions of Λ(t) and 
(scaled) 𝑆𝑆(𝑡𝑡) are almost identical and hence supporting our 
assumption.  The high frequency of high 𝑆𝑆(𝑡𝑡) values present 
in Figure 6, also seen for several other catchments (not 
shown), is the result of the combination of high 𝑄𝑄(𝑡𝑡) values 
and low values of Λ(t), i.e. 

Flyttet ned [12]: very modest recession for situations with 
high runoff values. 

Slettet: Such events are probably not representative for 
describing recessions, and by sampling Λ(𝑡𝑡) and estimating 
𝑆𝑆(𝑡𝑡) under the condition that precipitation at the day of 
(t + ∆t) could not exceed a low threshold (for example 0, 2 
and 5 mm) we found that the frequency of very high values of 
𝑆𝑆(𝑡𝑡) were reduced. Hence, the very high values of 𝑆𝑆(𝑡𝑡) did 
not represent recession events. 

Flyttet ned [13]: Moreover, the distribution of Λ was 
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 𝑐𝑐 = Λ� 𝑚𝑚𝑠𝑠⁄ ,                                                                           (9) 

where Λ� is the mean value of Λ, estimated from the parameters of the fitted gamma distribution 

and representing the mean recession characteristic. Note that since the distribution of 𝑆𝑆 is a 

scaled version of Λ, the shape parameter 𝛼𝛼 is equal for the two distributions.    

In order to model the storage as a two-parameter gamma distribution we need to estimate the 

mean storage, 𝑚𝑚𝑑𝑑. We can then determine the constant 𝑐𝑐 from Eq. 9, and finally, the scale 

parameter 𝜂𝜂 using Eq. 8. 

If we assume that the mean value of the sampled 𝛬𝛬′s, Λ�, represents the slope of recession in a 

state of mean storage in the catchment, then the associated unit hydrograph (UH) is, 

𝑢𝑢Λ�(𝑡𝑡) = Λ�𝑒𝑒−Λ�(𝑡𝑡−𝑡𝑡0)        .                                                                  (10) 

The temporal scale of the UH in Eq. 10 is 𝑡𝑡ℎ,𝑚𝑚𝑐𝑐𝑚𝑚 = 𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚/�̅�𝑣ℎ, where 𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚 is the observed 

maximum distance of the hillslope distance distribution and �̅�𝑣ℎ is the celerity associated with Λ� 

through �̅�𝑣ℎ = Λ�𝑑𝑑�

Δ𝑡𝑡
 (see Eq. 4).  Let 𝑡𝑡ℎ,𝑚𝑚𝑐𝑐𝑚𝑚 be divided into suitable time intervals, 𝛥𝛥𝑡𝑡, then the 

number of time intervals it takes to drain the hillslope is 𝐽𝐽 = 𝑡𝑡ℎ,𝑚𝑚𝑐𝑐𝑚𝑚/𝛥𝛥𝑡𝑡.  When Eq. 10 is 

integrated over successive time intervals we obtain weights, 𝜇𝜇𝑗𝑗, which, if multiplied by the 

excess moisture input, 𝑋𝑋(Δ𝑡𝑡), give the response (the water entering the river network) for the 

different time intervals. The weights are calculated as:  

𝜇𝜇(Λ�)𝑗𝑗 = ∫ 𝑢𝑢Λ�
(𝑗𝑗)𝛥𝛥𝑡𝑡

(𝑗𝑗−1)𝛥𝛥𝑡𝑡 (𝑡𝑡)𝑑𝑑𝑡𝑡      𝑗𝑗 = 1. . 𝐽𝐽, ∑𝜇𝜇(Λ�)𝑗𝑗 = 1 ,                                  (11) 

and scaled so that the sum of weights equals 1. The runoff at time interval 𝑗𝑗 is calculated as 

𝑄𝑄(𝑗𝑗∆𝑡𝑡) = 𝑋𝑋(Δ𝑡𝑡)𝜇𝜇(Λ�)𝑗𝑗.                                                         (12) 
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For estimating the mean storage mS we first calculate the mean annual runoff, 𝑀𝑀𝑀𝑀𝑀𝑀, which 

corresponds to a daily excess moisture input 𝑋𝑋 of  

 𝑋𝑋[𝑚𝑚𝑚𝑚 𝑑𝑑𝑀𝑀𝑑𝑑⁄ ] = (1000 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀[𝑚𝑚3 𝑠𝑠⁄ ] ∗ 86400[𝑠𝑠])/ 𝑀𝑀[𝑚𝑚2],                       (13) 

where 𝑀𝑀 is the catchment area. 

After 𝐽𝐽 successive days of input 𝑋𝑋, routed with the UH of Eq. 10, we reach a steady state where 

the volume of the input equals the output (𝑀𝑀𝑀𝑀𝑀𝑀). The total sum of moisture input after 𝐽𝐽 days is  

𝐽𝐽 ∙ 𝑋𝑋 = 𝑆𝑆𝑑𝑑𝑑𝑑 + 𝑄𝑄𝑑𝑑𝑑𝑑                                                              (14) 

where total runoff, 𝑄𝑄𝑑𝑑𝑑𝑑, after 𝐽𝐽 days is 

  𝑄𝑄𝑑𝑑𝑑𝑑 = ∑ ∑ 𝑋𝑋 ∙𝑘𝑘
𝑗𝑗=1

𝐽𝐽
𝑘𝑘=1 𝜇𝜇(Λ�)𝑗𝑗,                                                      (15)  

and k is the number of  days and the subscript denotes “steady state”. The water left in the soils, 

𝑆𝑆𝑑𝑑𝑑𝑑, at steady state (after 𝐽𝐽 time intervals) and hence assumed to represent the mean storage 𝑚𝑚𝑑𝑑, 

is 𝑆𝑆𝑑𝑑𝑑𝑑 = 𝐽𝐽 ∙ 𝑋𝑋 − 𝑄𝑄𝑑𝑑𝑑𝑑 , which can also be calculated as: 

𝑆𝑆𝑑𝑑𝑑𝑑 = ∑ ∑ 𝑋𝑋 ∙ 𝜇𝜇(Λ�)𝑗𝑗
J
𝑗𝑗=𝑘𝑘+1

𝐽𝐽−1
𝑘𝑘=1 =  𝑚𝑚𝑑𝑑.                                                     (16) 

With an estimate of the mean storage, 𝑚𝑚𝑑𝑑, we can use eqs. 8 and 9 to estimate the scale 

parameter, 𝜂𝜂, of the distribution of 𝑆𝑆. The shape parameter, 𝛼𝛼, is already determined and equal to 

that of the distribution of Λ. The gamma distributed storage levels 𝑆𝑆𝑖𝑖 are calculated as quantiles 

of the gamma distributed storage: 

𝑑𝑑𝑖𝑖
𝑀𝑀

= ∫  1
𝜂𝜂𝛼𝛼Γ(𝛼𝛼)

S𝛼𝛼−1exp (− S 𝜂𝜂⁄ )𝑑𝑑𝑆𝑆𝑑𝑑𝑖𝑖
0 ,                                                     (17) 

where 𝑀𝑀 is now estimated as the 99% quantile of the distribution of 𝑆𝑆.  

 

2.4 Test of new storage routine 
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We will test the performance of the new formulation of storage by replacing the formulation of 

the storage where 𝜃𝜃𝑀𝑀is a calibrated parameter and storage is uniformly distributed with a 

formulation where storage is gamma distributed with parameters, 𝜂𝜂 and α, derived from 

recession data and 𝑀𝑀𝑀𝑀𝑀𝑀. The model with the current storage routine is denoted DDD_𝜃𝜃𝑀𝑀 and the 

model with the new storage routine is denoted DDD_𝑚𝑚𝑑𝑑. 

DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are tested for 73 catchments distributed across Norway (see Figure 5). 

The catchments vary in latitude, size, elevation and landscape type (see histograms of selected 

catchment characteristics in Figure 6) and constitute thus a varied, representative sample of 

Norwegian catchments.  

The time series for precipitation and temperature are mean areal catchment values extracted from 

an operational meteorological grid (1 x 1 km²) produced by MET Norway, which provides daily 

values of precipitation and temperature for Norway from 1957 to the present day (see 

www.senorge.no). The runoff data is provided by the NVE. The time series of precipitation , 

temperature and runoff where split into a calibration data set (1.9.1995- 31.12.2011) and a 

validation data set (1.1.1980- 31.8.1995).  

DDD_𝜃𝜃𝑀𝑀 is calibrated using an R-based Monte-Carlo Marko Chain method (Soetart and 

Petzhold, 2010). All together 11 parameters (including 𝜃𝜃𝑀𝑀) are calibrated (see parameters 

denoted by 𝜃𝜃 with subscripts in Table 1). The calibrated parameters, except for 𝜃𝜃𝑀𝑀, are also used 

when running DDD_𝑚𝑚𝑑𝑑.  

3 Results 
Figure 7 (a-e) shows different skill scores obtained for the simulations for the 73 catchments 

with DDD_𝜃𝜃𝑀𝑀  (skill is shown with red crosses) and for DDD_𝑚𝑚𝑑𝑑 (skill is shown with blue 

circles) for the validation data set. The figure is organised such that the catchments are sorted 

geographically starting from the South-East (S-E), then follows the South-West (S-W) and Mid-
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Norway (M-N) and finally Northern-Norway (N-N). Figure 7 a) shows the Nash-Sutcliffe 

efficiency criterion (NSE, Nash and Sutcliffe, 1970), 7 b) the Kling-Gupta Efficiency criterion 

(KGE, Gupta, et al. 2009, Kling et al. 2012) and 7 c-e) the three components of the KGE, 

correlation, bias and variability error, respectively. The variability error is given by the ratio of 

the coefficients of variation of simulated and observed runoff as suggested in Kling et al. (2012). 

The mean values of the skill scores for DDD_𝜃𝜃𝑀𝑀 and DDD_𝑚𝑚𝑑𝑑 are shown as straight lines in the 

plots. We have also added a moving average of the results for enhanced readability. We see from 

Figure 7 that little precision is lost in the results for DDD_𝑚𝑚𝑑𝑑. The mean values of NSE and 

KGE are slightly better for DDD_𝜃𝜃𝑀𝑀. The result for bias is better for DDD_𝑚𝑚𝑑𝑑 (Fig. 7d) whereas 

the results for the correlation and variability errors favor DDD_𝜃𝜃𝑀𝑀. Overall, the differences in 

skill between DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are very small. Mean values of the skill scores for 

DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are shown in Table 2.  

The observed distribution of the recession characteristic Λ, is crucial for both the estimation of 

the subsurface celerities and the estimation of 𝑚𝑚𝑑𝑑. If the distribution of simulated Λ, denoted Λ̇, 

is similar to that of the observed, this suggests that recessions are well simulated and hence, that 

the dynamics of the model are realistic. Figure 8 shows scatter plots of the mean and standard 

deviation of observed 𝛬𝛬 and simulated Λ̇ for DDD_𝑚𝑚𝑑𝑑  (blue circles) and DDD_𝜃𝜃𝑀𝑀 (red 

crosses). The root mean square error (RMSE) of the mean Λ̇ is clearly less for DDD_𝑚𝑚𝑑𝑑, 

whereas the RMSEs of standard deviation of Λ̇ for DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are similar (see 

Table 3). 

Figure 9 shows histograms of simulated storage from DDD_𝜃𝜃𝑀𝑀 (a) and DDD_𝑚𝑚𝑑𝑑 (b) with 

empirical CDFs (c) of the observed Λ (black line) and simulated Λ̇ (DDD_𝜃𝜃𝑀𝑀, red line and 

DDD_𝑚𝑚𝑑𝑑, blue line) for a specific catchment. The CDF of Λ̇ simulated with DDD_𝑚𝑚𝑑𝑑 is clearly 

in better agreement with that of the observed. The shape of the histograms of storage fluctuations 

Slettet: 9

Slettet: 9

Slettet: 9

Slettet: the 

Slettet: 9

Slettet: no

Slettet: value

Slettet: is

Slettet: ,

Formatert: Engelsk (Storbritannia)

Slettet: mean value of KGE for DDD_𝑚𝑚𝑑𝑑 is slightly worse 
due to a lower correlation between simulated and observed 
(Fig. 9 c). The 

Slettet: bias

Slettet: 𝑚𝑚𝑑𝑑

Slettet:  

Slettet: Λ has been identified, in this and in previous studies, 
as being

Slettet: 10

Slettet: ¶

Slettet: 11

Slettet: (



15 
 

are very different, and as we have no data to estimate the true empirical distribution of storage at 

the catchment scale we cannot claim that the fluctuations simulated with DDD_𝑚𝑚𝑑𝑑 are closer to 

the truth than those simulated by DDD_𝜃𝜃𝑀𝑀. However, since the parameters of the subsurface- 

and dynamic module of DDD_𝑚𝑚𝑑𝑑 are estimated prior to model calibration and that the recessions 

are demonstrably better simulated, it is reasonable to suggest that the catchment scale storage 

fluctuations simulated with DDD_𝑚𝑚𝑑𝑑 are closer to the truth. 

4 Discussion 
The new formulation for the subsurface storage gives good results, and it is promising that the 

replacement of a routine with calibrated parameters with a routine with estimated parameters 

produces runoff simulations which are equally precise and robust. In addition, the simulated 

recessions Λ̇, are much closer to those observed, suggesting a more realistically modelled 

storage-runoff relationship (i.e. the non-linearly increasing storage capacity). Comparing 

simulated runoff in such a manner constitutes a rather strict test for DDD_𝑚𝑚𝑑𝑑. DDD_𝜃𝜃𝑀𝑀 has an 

advantage since the parameter 𝜃𝜃𝑀𝑀 is optimized together with the other calibration parameters. 

These optimized parameter are not necessarily optimal for DDD_𝑚𝑚𝑑𝑑.   

The reduction of calibrated parameters in the storage and dynamic module of the DDD model 

has attractive implications for the problem of predictions in ungauged basins (PUB) (see eg. 

Sivapalan, 2003; Parajka et al, 2013; Hrachowitz, 2013; Blöschl et al, 2013; Skaugen et al. 

2015). In Skaugen et al.(2015), 7 model parameters of the DDD model (including 𝜃𝜃𝑀𝑀 and the 

parameters for the distribution of 𝜆𝜆) were estimated from catchment characteristics (CC’s) using 

multiple regression analysis. All model parameters were found to correlate significantly with the 

CC’s. The median NSE for 17 catchments was found to be 0.66 and 0.72 for two timeseries 

when DDD was run with model parameters estimated from CC’s. The change in the model 

structure of DDD presented in this paper with respect to predictions in ungauged basins implies 
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that we need to estimate the parameters for the distribution of Λ from CC’s. The estimation of 𝜃𝜃𝑀𝑀 

through multiple regression with CC’s, however, is no longer needed. Although it is not within 

the scope of this study to conduct a full PUB analysis, we investigated how the parameters of the 

distribution of Λ can be regionalized. Since 𝜆𝜆 is a function of Λ (see Eq. 5) the parameters of the 

distribution of 𝜆𝜆 and Λ are obviously highly correlated (from a sample of 84 Norwegian 

catchments we found correlations between the shape, 𝛼𝛼, and the scale, 𝛽𝛽, parameters of Λ and 𝜆𝜆 

of 𝜚𝜚(𝛼𝛼)Λ,𝜆𝜆 = 0.97 𝜚𝜚(𝛽𝛽)Λ,𝜆𝜆 = 0.98). In Skaugen et al. (2015) the parameters for the distribution 

of 𝜆𝜆 could be expressed as functions of the mean of the distance distribution, �̅�𝑑, percentage of 

lake , percentage of bare rock and catchment length with significant coefficients of determination 

of 𝑀𝑀𝜆𝜆2(𝛼𝛼) = 0.45 and 𝑀𝑀𝜆𝜆2(𝛽𝛽) = 0.35 respectively. A similar analysis using the new model 

structure (DDD_𝑚𝑚𝑑𝑑), with an added new subroutine for the spatial distribution of SWE (Skaugen 

and Weltzien, 2016), showed that the parameters of the distribution of Λ were significantly 

correlated (p-value < 0.01) to the mean of the distance distribution, �̅�𝑑, areal percentage of lake 

and the catchment gradient (see Table 4). From Table 4, we note that the shape parameter is 

positively correlated to the areal percentage of lake (L%). In Figure 3 f), this catchment has L% 

of 9.5 % whereas in Figure 3 c) L% is only 4.4 %.  The significant correlations yield significant 

multiple regression equations with coefficients of determination of 𝑀𝑀Λ2(𝛼𝛼) = 0.59 and 𝑀𝑀Λ2(𝛽𝛽) =

0.54. Hence, the potential for improved predictions in ungauged basins is promising.  

The assumption of equal shape for the distributions of 𝛬𝛬 and 𝑆𝑆 is, of course, difficult to verify as 

no direct observations of 𝑆𝑆 are at hand. Myrabø (1997) conducted groundwater measurements on 

a very dense spatial grid over a tiny catchment (0.0075 km2) in Southern Norway for a short 

period of time in order to investigate subsurface dynamics over an entire catchment. These data 

are unfortunately not available and no other similar experiment from Norway is known. 

However, if we use the equation for the linear reservoir in Appendix A (Eq. A4) and express the 
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rate constant as a function of Λ (Eq. 4 and Eq. A6), we can, for observed recession values of 𝑄𝑄 

and Λ, calculate the corresponding values of 𝑆𝑆 and compare the distributions of  Λ and (the 

scaled) 𝑆𝑆.  

𝑆𝑆(𝑡𝑡) =  𝑄𝑄(𝑡𝑡)∆𝑡𝑡
1−𝑐𝑐−Λ(t)                                                                  (18) 

Figure 10 shows such a comparison for two catchments, and, except for the highest quantiles, the 

distributions of Λ and (scaled) 𝑆𝑆 are almost identical and hence supporting our assumption.  The 

high frequency of high 𝑆𝑆 values present in Figure 10, also seen for several other catchments (not 

shown), is the result of the combination of high 𝑄𝑄 values and low values of Λ, i.e. very modest 

recession for situations with high runoff values. Such events are probably not representative for 

describing recession characteristics of the catchment. By sampling Λ(𝑡𝑡) and estimating 𝑆𝑆(𝑡𝑡) 

under the condition that precipitation at the time (t + ∆t) could not exceed a low threshold of 0, 

2 and 5 mm, we found that the frequency of very high values of 𝑆𝑆 estimated by Eq. 18 were 

reduced. Hence, the very high values of 𝑆𝑆 did not represent storage for true recession events. 

Moreover, the distribution of Λ was insensitive to such conditioning, implying that Eq. 3 is a 

robust estimate of recession characteristics, whereas the distribution of 𝑆𝑆 is highly sensitive. This 

way of conducting recession analysis differs, mainly in the manner of sampling the recession 

events, from those described in recession analysis reviews such as Tallaksen (1995) and Stoelzle 

et al. (2013). Common for many of the recession selecting algorithms reported in the literature is 

the censoring of the recession events with exclusion of events with rainfall or periods of high 

evapotranspiration (e.g. Kirchner, 2009) and exclusion of the early stages of the recession to 

avoid the influence of preceding storm and surface flow (Stoelzle, 2013). In this study, all 

recession events that satisfy 𝑄𝑄(𝑡𝑡) > 𝑄𝑄(𝑡𝑡 + ∆𝑡𝑡) are used to estimate the parameters of the 

distribution of Λ. We have found that the distribution of Λ remains quite incentive to 
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precipitation (see above) and equally important, that the parameters of the distribution of Λ are 

correlated to, and can be estimated from catchment characteristics.  

In Kirchner (2009) the storage-runoff relationship is assumed to be a single-valued function, i.e 

𝑆𝑆 is a single valued function of 𝑄𝑄. This leads to a very simple model with regards to the number 

of states in the subsurface, namely one. The number of states in DDD, however, can be very 

high. If we consider Eq. 16,  the number of summations (time-steps) constituting 𝑆𝑆𝑑𝑑𝑑𝑑 can be 

viewed as a number of subsurface states since each summation represents a volume water that 

will sooner or later propagate into the river network. Eq. 16 describes the subsurface using only 

one (mean) UH. In the DDD model, the number of storage levels is fixed to 5, and the UH’s 

constituting the storage levels all have the same shape (exponential) but have different temporal 

scales. The temporal scale (level of discretisations) of the UH’s vary according to their 

associated celerity, and the slowest (lowest) storage level may be discretised such that hundreds 

of time steps are necessary for the complete attenuation of the UH. Such a system actually 

provides a 2-D representation of the subsurface (Rupp et al. 2009; Sloan, 2000) and gives 

numerous subsurface states (Harman, 2015). It is hence entirely possible to have different 

configurations of states associated with the same runoff. Figure 11 shows a snapshot of how 

DDD models the storage 𝑆𝑆. The catchment is represented as one hillslope where the x-axis 

shows the distance (in metres) from the river reach (at the right hand-side) to the top of the 

hillslope (at the left hand side). The y-axis shows the different storage levels. We see the outline 

of boxes (especially for the higher storage levels) which represents the temporal discretisation of 

the UHs. Each box represents an area according to the distance distribution and the associated 

celerity that will drain pr. time interval. The higher the celerity, the more of the catchment area is 

represented by each box. The darker the blue colour, the more water is present in the box. Figure 

11 can be seen together with Figure 1 A in appendix A, which illustrates how the distance 
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distribution (and the travel time distribution) determines the fractional areas that drain pr. time 

interval for a given celerity (see also Harman (2015) for distribution of storage and water age). In 

Figure 11 we can also note that it is more or less dry at the top of the hillslope and saturated near 

the river. This is consistent with the wetting up of a catchment from the riparian zone outwards 

and up the hillslope (Dunne and Black, 1970; Kirkby, p.275,1978; Myrabø, 1997).  

Figure 12 shows simulated storage, 𝑆𝑆, plottet against simulated runoff, 𝑄𝑄, for two catchments of 

different size (49 km3 1833 km3). It is quite clear that the relationship between 𝑄𝑄 and 𝑆𝑆 is not 

single valued. The variability of 𝑄𝑄 for the same 𝑆𝑆 (and vice versa) is to be expected given the 

multitude of possible configurations of the subsurface states (i.e. the discretisations of the UHs). 

The shape of the clouds of points resembles those found for observations of groundwater vs 

runoff (Rupp et al. 2009; Laudon et al. 2004 and Myrabø, 1997). The points in Figure 12, 

however, do not level off to the same degree as does for groundwater observations. This can 

probably be explained by the fact that storage in DDD is simulated for an entire catchment, and 

it is more unlikely that an entire catchment will reach full saturation than individual groundwater 

boreholes, located relatively close to the river (Myrabø, 1997; Laudon et al. 2004).  

The parameters of the subsurface and the dynamical modules of the DDD model are all 

estimated prior to calibration against streamflow and we see this as a necessary development if 

we are to effectively test new algorithms for snow distribution, snowmelt, evapotranspiration etc. 

at the scale that matters for most practical applications, the catchment scale (Clarke, 2011). 

Multi-variable parameter estimation (Bergström et al., 2002) has been put forward as a means to 

increase confidence in hydrological modelling and models. Although we agree that such 

procedures indeed narrows the parameter-space (although not its number of dimensions), the 

interaction and compensating nature of the calibration parameters makes it almost impossible to 

reject flawed model structures so that we can concentrate on building models that work well for 
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the right reasons. In this paper, and in previous ones (Skaugen and Onof, 2014; Skaugen et al. 

2015), information ready at hand such as GIS-derived distance distributions functions and runoff 

records have proved useful for parameterising algorithms describing basic hydrological 

processes.  

 

5 Conclusions 
In this paper a new formulation of the subsurface in the DDD model is presented. In the new 

formulation, the storage capacity increases non-linearly with saturation, following a two-

parameter gamma distribution. The parameters of the gamma distribution are estimated directly 

from observed runoff recession data and the mean annual runoff and not through model 

calibration against runoff. The new storage formulation has been tested for 73 catchments in 

Norway of varying size, mean elevation and landscape type, with little loss in precision. In 

addition, more realistic runoff recessions are found using the new subsurface routine suggesting 

a more realistic storage-runoff relationship.  

A preliminary analysis shows that the parameters of the new storage routine can be estimated 

from catchment characteristics, which is promising for continued advances in prediction in 

ungauged basins.  

The DDD model exhibits a spatially variable representation of the subsurface and allows for 

different subsurface states associated with the same value of runoff. This constitutes a more 

realistic representation of the subsurface and is more in line with more dedicated groundwater 

models. 

Future work includes implementing a more physically based energy balance approach for 

snowmelt in DDD and testing the new model structure for predictions in ungauged basins in a 

similar analysis to that of Skaugen et al. (2015).  
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Data availability 

The precipitation, temperature and runoff data used in this study are available by contacting the 

corresponding author. 

 

Appendix A 
Distance distributions and linear reservoirs  

In Figure A1 the information of the distance distribution is visualised differently from Figure 2. 

In Figure A1, for the same two catchments as in Figure 2, the consecutive fractional areas for 

each distance interval ∆𝑑𝑑 are plotted against the distance to the river network, and the ratio, 𝜅𝜅 

between consecutive fractional areas is a constant and it has been showed (Skaugen, 2002) that 

the parameter 𝛾𝛾 of the exponential distribution relates to 𝜅𝜅 as  

𝛾𝛾 = −log (𝜅𝜅)/Δ𝑑𝑑.                                                         (A1) 

If we assume that a uniform moisture input (i.e. excess rainfall or snowmelt) is transported 

through the hillslope to the river network with a constant velocity, 𝑣𝑣, (or celerity, see Skaugen 

and Onof, 2014, Beven, 2006), then Δ𝑑𝑑 is the distance travelled by water during a suitable time 

step, ∆𝑡𝑡, i.e., ∆𝑑𝑑 = 𝑣𝑣∆𝑡𝑡. When 𝑑𝑑 Eq. 2 is replaced with 𝑑𝑑/𝑣𝑣, the distance distribution hence 

becomes a travel-time distribution with mean equal to  𝑑𝑑
�

𝑣𝑣
 and parameter  

ξ = −log (𝜅𝜅)/Δ𝑡𝑡,                                                                  (A2) 

which constitutes a unit hydrograph (Maidment, 1993, Bras, 1990,  p.448). The variable 𝜅𝜅, is 

now the ratio between volumes of water drained pr. time step, i.e. the volume of water drained 

into the river network is reduced by 𝜅𝜅 for each time step.  
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A linear reservoir has this same property of consecutive runoff values having a constant ratio. 

This can be seen if we compute successive volumes and runoff values according to a linear 

reservoir in recession with rate constant 𝜗𝜗, i.e.   𝑄𝑄(𝑡𝑡) = 𝜗𝜗𝑆𝑆(𝑡𝑡). The ratio between consecutive 

values of runoff,  

𝜅𝜅 = 𝑄𝑄(𝑡𝑡 + ∆𝑡𝑡)/𝑄𝑄(𝑡𝑡)                                                        (A2) 

 remains constant and equal to 1 − 𝜗𝜗∆𝑡𝑡. Hence, a catchment with an exponential distance 

distribution and a constant celerity is equivalent to a linear reservoir with a rate constant equal to 

(1 − 𝜅𝜅)/∆𝑡𝑡, i.e. 

 𝑄𝑄(𝑡𝑡) = (1−𝜅𝜅)
Δ𝑡𝑡

𝑆𝑆(𝑡𝑡).                                                         (A3) 

Furthermore, from eqs. A2 and A3 we see that the rate constant of a linear reservoir relates to the 

parameter of the travel time distribution as: 

𝜗𝜗 = 1−𝑐𝑐−𝜉𝜉Δ𝑡𝑡

Δ𝑡𝑡
.                                                         (A4) 

Since the mean of the travel-time distribution is 1
𝜉𝜉

= 𝑑𝑑�

𝑣𝑣
, the rate constant relates to the mean of the 

distance distribution as: 

 𝜗𝜗 = 1−𝑐𝑐−(𝑣𝑣/𝑑𝑑)���Δ𝑡𝑡

Δ𝑡𝑡
,                                                         (A5) 

and the celerity can hence be formulated as: 

𝑣𝑣 = −log (1−𝜗𝜗∆𝑡𝑡)𝑑𝑑�

∆𝑡𝑡
= −log (𝜅𝜅)𝑑𝑑�

∆𝑡𝑡
.                                              (A6) 

This brief discussion on the distance distribution and linear reservoirs shows that if a catchment 

exhibits an exponential distance distribution, linear reservoirs comes as a natural choice for 

modelling the interaction between hillslopes and the river network. Furthermore, the distance 
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distribution suggests a geometrical configuration of the hillslope (or aquifer) (Figure A1) and the 

linear reservoir model is partly parameterised from the parameter of the distance distribution 

(Eq. A5). These latter statements assumes, of course, that the topographical catchment area and 

that of the aquifer are equal, an assumption that does not always hold (Bidwell et al. 2008).  
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Table1. Parameters of the DDD model with description and method of estimation. Some 
parameters have fixed values obtained through experience in calibrating DDD for gauged 
catchments in Norway. These values are within the recommended range for the HBV model 
(Sælthun,1996). The GIS analyses are carried out using the national 25 X 25 m DEM (www. 
statkart.no). 

Parameter Description Method of 
estimation 

  

Hypsograpic curve 11 values describing the quantiles 
0,10,20,30,40,50,60,70,80,90,100 

GIS   

𝜃𝜃𝑊𝑊𝑠𝑠 [%] Max liquid water content in snow Calibrated   

Hfelt Mean elevation of catchment GIS   

𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇 [°C/100 m] 
  

Temperature lapse rate for (pr 100 m) Calibrated   

 𝜃𝜃𝑃𝑃𝑇𝑇𝑇𝑇  [mm/100 m] 
  

Precipitation gradient (mm per 100 m) Calibrated   

𝜃𝜃𝑃𝑃𝑐𝑐 Correction factor for precipitation  Calibrated   

𝜃𝜃𝑑𝑑𝑐𝑐    Correction factor for precipitation as snow Calibrated   

𝜃𝜃𝑇𝑇𝑇𝑇  [°C] Threshold temperature rain /snow Calibrated   

𝜃𝜃𝑇𝑇𝑑𝑑  [°C] Threshold temperature melting / freezing Calibrated   

𝜃𝜃𝐶𝐶𝑇𝑇   [mm/°C/day] Degree-day factor for melting snow Calibrated    

𝐶𝐶𝐺𝐺𝑇𝑇𝑐𝑐𝑐𝑐   [mm/°C/day] Degree-day factor 
for melting glacier 
Ice 

 1.5x𝜃𝜃𝐶𝐶𝑇𝑇  

𝐶𝐶𝐹𝐹𝑀𝑀 [mm/°C/day] Degree-day factor 
for freezing  

  Fixed value: 0.02, Sælthun (1996) 

 Area[m2] Catchment area GIS   

maxLbog[m] Max of distance distribution for bogs GIS   

midLbog[m] Mean of distance distribution for bogs GIS   

Bogfrac Fraction of bogs in catchment GIS   

Zsoil Areal fraction of zero distance to the river 
network for soils 

GIS   

Zbog Areal fraction of zero distance to the river 
network for bogs 

GIS   

𝑁𝑁𝑁𝑁𝑁𝑁 Number of storage 
levels 

  Fixed value: 5, Skaugen and Onof 
(2014) 

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐  [mm/°C/day] Degree day factor for evapotranspiration  Calibrated    

𝑀𝑀 Ratio defining 
field capacity  

  Fixed value: 0.3, Skaugen and Onof 
(2014) 

𝛼𝛼 Shape parameter of gamma distributed 
celerities 

Estimated from  
recession 

  

𝛽𝛽 Scale parameter of gamma distributed 
celerities 

Estimated from  
recession 
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𝜃𝜃𝐶𝐶𝐶𝐶   Coefficient of variation for spatial 
distribution of snow 

Calibrated   

𝜃𝜃𝑣𝑣𝑟𝑟  [m/s] Mean celerity in river. Calibrated   

𝑚𝑚𝑅𝑅𝑑𝑑[m] Mean of distance distribution of the river 
network 

GIS   

𝑠𝑠𝑅𝑅𝑑𝑑[m] Standard deviation of distance distribution of 
the river network 

GIS   

𝑀𝑀𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚[m] Max of distance distribution in river network GIS   

𝜃𝜃𝑀𝑀  / 𝑚𝑚𝑑𝑑[mm] Max subsurface water reservoir/ 
Mean of subsurface water reservoir 

Calibrated/ 
Estimated from  
recession 

  

�̅�𝑑[m] Mean of distance distribution for hillslope GIS   

𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚[m] Max of distance distribution for hillslope GIS   

Glacfrac Fraction of bogs in catchment GIS   

𝑚𝑚𝐺𝐺𝑇𝑇[m] Mean of distance distribution for glaciers GIS   

𝑠𝑠𝐺𝐺𝑇𝑇[m] Standard deviation of distance distribution 
for glaciers  

GIS   

Areal fraction of  
glaciers in elevation 
zones 

10 values GIS   
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Table 2 .Mean values of skill scores obtaind with simulating with DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 for 
73 catchments. KGE_r measures correlation, KGE_b, the bias error and KGE_g the variability 
error. All skill scores have an ideal value of 1. 

 NSE KGE KGE_r KGE_b KGE_g 

DDD_𝑚𝑚𝑑𝑑   0.73 0.80 0.87 0.92 0.94 

DDD_𝜃𝜃𝑀𝑀 0.75 0.81 0.88 0.91 0.97 
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Table 3. Root mean square error (RMSE) values for the mean and standard deviation of 
simulated Λ̇ for the 73 catchments 

 RMSE mean Λ RMSE std Λ 

DDD_𝑚𝑚𝑑𝑑   0.04 0.045 

DDD_𝜃𝜃𝑀𝑀 0.07 0.049 

 
 
Table 4. Significant spearman correlation (p-value < 0.01) between catchment characteristics 
and the shape, 𝛼𝛼, and scale, 𝛽𝛽, parameters of the distribution of Λ. The correlations are based on 
estimated model parameters for 83 Norwegian catchments. 

Correlation Mean of distance 
distribution, �̅�𝑑 

Lake percentage, 
L% 

Catchment 
gradient 

𝛼𝛼 - 0.33 - 
𝛽𝛽 -0.36 -0.44 0.31 
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Figure 1. Schematic of the subsurface water reservoir M of DDD. 𝐺𝐺(𝑡𝑡) represents moisture 

input, rain and snowmelt. The dotted horizontal line is the actual level 𝑍𝑍, of soil moisture in 𝐷𝐷. 

The ratio (𝐺𝐺(𝑡𝑡) + 𝑍𝑍(𝑡𝑡))/𝐷𝐷(𝑡𝑡) controls the release of excess water to 𝑆𝑆 and hence to runoff.  

Note that 𝐷𝐷, 𝑆𝑆 and 𝑍𝑍 are functions of time, whereas 𝑀𝑀 is fixed. 

Figure 2. Empirical and fitted (exponential, red line) CDFs of distances from a point in the 

catchment to the nearest river reach for two Norwegian catchments. The mean distance (denoted 

𝑑𝑑_𝑚𝑚𝑒𝑒𝑀𝑀𝑚𝑚 in the figure) and catchment size differ, but the shape of the distribution is similar. 

Figure 3. Empirical and fitted (gamma, blue line) CDFs of Λ for 6 Norwegian catchments. Λ is 

sampled using Eq. 3 for all observed recession events. 

Figure 4. Histograms (in black, green, and red) of groundwater levels at three different locations 

in the Groset catchment (6.33 km2) located in southern Norway. 

Figure 5. Location of the 73 catchments used to evaluate the new storage routine 

Figure 6. Histograms of catchment characteristics for the 73 catchments. a) mean of the hillslope 

distance distribution, �̅�𝑑, b) areal percentage of lakes, c) areal percentage of bogs, d) catchment 

area , e) mean elevation, f) areal percentage of glaciers, g) areal percentage of forests and h) areal 

percentage of bare rock. 

Figure 7. Skill scores for DDD_𝑚𝑚𝑑𝑑 (blue circles) and DDD_𝜃𝜃𝑀𝑀 (red crosses) for 73 Norwegian 

catchments. Mean skill score values are shown in horizontal lines (same color code).a) NSE, b) 

KGE, c) KGE_r (correlation), d) KGE_b (bias) and e) KGE_g (variability error). 

Figure 8. Scatterplot of mean a) and standard deviation b) of observed Λ and simulated with 

DDD_𝑚𝑚𝑑𝑑 (blue circles) and DDD_𝜃𝜃𝑀𝑀 (red crosses) Λ̇ for 73 catchments. 
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Figure 9. Histograms of storage simulations with DDD_𝜃𝜃𝑀𝑀 a) and DDD_𝑚𝑚𝑑𝑑 b). Empirical CDFs 

of observed Λ (black line) and simulated Λ̇ with DDD_𝜃𝜃𝑀𝑀 (red line) and DDD_𝑚𝑚𝑑𝑑 (blue line) 

are shown in c). 

Figure 10. Empirical CDFs of Λ (circles) and scaled 𝑆𝑆(𝑡𝑡) (blue line) for two Norwegian 

catchments . 

Figure 11. Snapshot of the saturated zone 𝑆𝑆 of the DDD model. The catchment is represented as 

one hillslope. The x-axis shows the distance from the river (right hand-side) to the top of the 

hillslope (left hand-side). The y-axis show the storage levels. The darker the blue colour, the 

more water is present in the storage level. 

Figure 12. Simulated storage 𝑆𝑆 plotted against simulated runoff 𝑄𝑄 for a catchment of 49 km2 (a) 

and a catchment of 1833 km2 (b). 

Figure A1. Fractional catchment area as a function of distance from the river network for the 

same two catchments as in Figure 2. The ratio 𝜅𝜅, between consecutive areas is shown as ”Ratio”.  
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Fig A1 
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