
1 
 

Estimating catchment scale groundwater dynamics from 1 

recession analysis – enhanced constraining of hydrological 2 

models.  3 

 4 

T. Skaugen and Z. Mengistu 5 

{Dept. of Hydrology, Norwegian Water Resources and Energy Directorate} 6 

Correspondence to: T. Skaugen (ths@nve.no) 7 

 8 

Abstract 9 

In this study we propose a new formulation of subsurface water storage dynamics for use in 10 

rainfall-runoff models. Under the assumption of a strong relationship between storage and 11 

runoff, the temporal distribution of catchment scale storage is considered to have the same shape 12 

as the distribution of observed recessions (measured as the difference between the log of runoff 13 

values). The mean subsurface storage is estimated as the storage at steady-state, where moisture 14 

input equals the mean annual runoff. An important contribution of the new formulation is that its 15 

parameters are derived directly from observed recession data and the mean annual runoff. The 16 

parameters are hence estimated prior to model calibration against runoff. The new storage 17 

routine is implemented in the parameter parsimonious Distance Distribution Dynamics (DDD) 18 

model and has been tested for 73 catchments in Norway of varying size, mean elevation and 19 

landscape type. Runoff simulations for the 73 catchments from two model structures; DDD with 20 

calibrated subsurface storage and DDD with the new estimated subsurface storage, were 21 

compared. Little loss in precision of runoff simulations was found using the new estimated 22 

storage routine. For the 73 catchments, an average of the Nash-Sutcliffe Efficiency criterion of 23 

0.73 was obtained using the new estimated storage routine compared with 0.75 using calibrated 24 

storage routine. The average Kling-Gupta Efficiency criterion was 0.80 and 0.81 for the new and 25 

old storage routine, respectively. Runoff recessions are more realistically modelled using the 26 
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new approach since the root mean square error between the mean of observed and simulated 1 

recession characteristics was reduced by almost 50 % using the new storage routine. The 2 

parameters of the proposed storage routine are found to be significantly correlated to catchments 3 

characteristics, which is potentially useful for predictions in ungauged basins. 4 

 5 

1 Introduction 6 

The movement of groundwater to streams is an important component of catchment hydrology 7 

and simulating its movement is key to accurately reproducing the hydrograph. Unfortunately, at 8 

the spatial scale of interest for studying the dynamics of hydrological systems, the catchment 9 

scale, we are not able to actually see and learn how water is transported in the subsurface.  10 

Hence, for many decades the (subsurface) storage-runoff relationship has been the basis for 11 

countless hydrological model concepts. The subsurface water storage, hereafter denoted 12 

subsurface storage or storage, is to be understood as the dynamics storage, i.e. the variation in 13 

storage between wet and dry period (Kirchner, 2009). In this paper we will develop and test a 14 

new formulation for storage dynamics. The proposed subsurface storage model is based on linear 15 

reservoir theory and its parameters are derived directly from recession analysis, digitized maps 16 

and the mean annual runoff.  17 

The linear reservoir, often visualised as a straight-sided bucket with a hole in the bottom (Beven, 18 

2001; Dingman, 2002), has an exponentially declining outflow and is the basis for the 19 

exponential unit hydrograph (UH). It has served as the most commonly used storage-runoff 20 

relationship and plays a fundamental role in conceptual rainfall runoff models. A single linear 21 

reservoir is, however, too simple for describing the variability and non-linearity of hydrological 22 

response (Brutsaert and Nieber, 1977; Lindström et al., 1997). Some groundwater models 23 

conceptualise the stream- aquifer interactions as the drainage of an infinite number of 24 

independent linear reservoirs (Sloan, 2000; Pulido-Velasquez et al., 2005; Bidwell et al. 2008; 25 
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Rupp et al., 2009). This comes as a result of solving the linearized Dupuit- Boussinesq equation 1 

for saturated flow as an eigenvalue and eigenfunction problem. In order to capture the variability 2 

in hydrological response, most conceptual rainfall-runoff models also use a system of several, 3 

often modified, linear reservoirs to describe the soil moisture accounting and runoff dynamics. 4 

The system may vary in complexity (and hence in the inclusion of free calibration parameters), 5 

but the linear reservoir remains the basic building block. Examples of such models are the UH 6 

models of Nash (1957) and Dooge (1959) and the explicit soil-moisture accounting (ESMA) 7 

models, of which the work-horse of operational Nordic hydrology, the Hydrologiska Byråns 8 

Vattenbalans (HBV) model (Bergström, 1992) serves as an example (see Beven (2001) for a 9 

discussion on the evolution of rainfall-runoff models). In Lindström et al. (1997) the upper zone 10 

(the reservoir responsible for quick response) of the HBV model was formulated as a non-linear 11 

reservoir, 𝑄𝑄 = 𝜗𝜗𝑆𝑆1+𝛿𝛿 where 𝑄𝑄 is runoff, 𝑆𝑆 is storage and 𝜗𝜗 and 𝛿𝛿 are calibrated constants. For 12 

𝛿𝛿 = 0, this is, of course an ordinary linear reservoir. 13 

Recession behaviour should be characteristic for a specific catchment (Tallaksen, 1995; 14 

Kirchner, 2009; Stoelzle et al., 2013; Berghuijs et al., 2016) since it provides hydrological 15 

information integrated over the catchment. Such a scaled-up hydrological signal contrasts that of 16 

information derived from the extrapolation of point measurements. Recession data have often 17 

been used to derive the storage-runoff relationship and Brutsaert and Nieber (1977) discuss 18 

several theoretical models from the soil sciences as a basis for describing the non-linearity of 19 

storage- runoff relationships and investigate this relationship using recession events. Lamb and 20 

Beven (1997) developed a tool that used recession data to parameterize non-linear storage-runoff 21 

relationships but were not always able to fit single analytical functions. In Kirchner (2009), 22 

runoff is assumed to depend solely on the amount of water stored in the catchment and very 23 

carefully selected recession events are used to parameterize the storage- runoff relationship. The 24 
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recession events were selected such that the possible contaminating effect of precipitation and 1 

evapotranspiration on the recession data was minimized. For two rivers in the UK, highly non-2 

linear relationships between storage and runoff were found using this approach.  3 

Recession characteristics are, in this paper, used to estimate parameters characterising the 4 

storage dynamics. The parameters associated with storage are hence estimated directly from 5 

observed data and apriori model calibration to runoff. Such an approach has many attractive 6 

features. First, when we use the precipitation-runoff relationship in model calibration, the 7 

estimated parameters will be conditioned on both inputs (precipitation and temperature) and the 8 

output (runoff). The calibrated parameters will therefore be sensitive to biases and errors in the 9 

inputs. Consequently, the more uncertain and biased the precipitation input, the more uncertain 10 

and biased parameter estimates (e.g. Dawdy and Bergman, 1969; Kuczera and Williams, 1992; 11 

Andréassian et al., 2001; Engeland et al., 2016). Second, when a single parameter is estimated 12 

directly from data you remove the possibility that its value is conditioned on the value of the 13 

other parameters, i.e. that the calibrated parameter values compensate for structural or data errors 14 

(Beven, 1989; Kirchner, 2006; Kirchner, 2009). Third, when a single parameter is estimated 15 

directly from observed data and not through the optimizing of a model, one does not have to take 16 

into account the possible (and probable) errors associated with the model structure (Beven, 2001. 17 

p. 21; Kirchner, 2009). In such a way, the errors associated with the modelling of processes such 18 

as snow accumulation and -melt, groundwater- and soilmoisture dynamics do not influence the 19 

parameter estimate. In this paper we distinguish between calibrated and estimated parameters. 20 

The term “calibrated parameters” refers to parameters being part of a set that is simultaneously 21 

optimized when minimizing the difference between observed and simulated runoff. The term 22 

“estimated parameters” refers to parameters estimated independently and directly from observed 23 

data. These values are not tuned to minimize the difference between simulated and observed 24 

runoff as would be the case if they were calibrated.  25 
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The new formulation of storage dynamics proposed in this paper is implemented in the in the 1 

Distance Distribution Dynamics (DDD) model (Skaugen and Onof, 2014; Skaugen et al. 2015), 2 

which is briefly reviewed in the next section. In this model, the dynamics of runoff are modelled 3 

using linear reservoirs (unit hydrographs (UHs)) arranged in parallel, a principle which 4 

resembles the stream- aquifer interaction model described by for example Bidwell et al. (2008). 5 

The UHs are turned on and off according to the level of saturation in the catchment. The UHs are 6 

parameterized from recession data and digitized maps, so the DDD model incorporates many of 7 

the modelling approaches presented above.  8 

The main objective of this study is to assess how the new formulation of storage with its 9 

parameters estimated directly from recession characteristics and the mean annual runoff 10 

compares with the current formulation of the storage, where its parameter is calibrated against 11 

runoff. The comparison will be carried out for a large number of catchments and for runoff and 12 

recession behaviour. In the discussion, some implications with respect to predictions in 13 

ungauged basins and spatially variable groundwater modelling are discussed. 14 

  15 

2 Methods 16 

 17 

2.1 Hydrological model 18 

The DDD model (Skaugen and Onof, 2014; Skaugen et al.2015) is a rainfall- runoff model 19 

written in the programming language R (www.r-project.org) and currently runs operationally at 20 

daily and 3-hourly time steps at the operational flood forecasting service of the Norwegian Water 21 

Resources and Energy Directorate (NVE). The DDD model introduces new concepts in its 22 

description of the subsurface and of runoff dynamics. Input to the model is precipitation and 23 

temperature. In the subsurface module (see Figure 1), the capacity of the subsurface water 24 

http://www.r-project.org/
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reservoir 𝑀𝑀 [𝑚𝑚𝑚𝑚] is shared between a saturated zone, 𝑆𝑆[𝑚𝑚𝑚𝑚], called the groundwater zone and 1 

an unsaturated zone with capacity 𝐷𝐷[𝑚𝑚𝑚𝑚], called the soil water zone. The actual water present in 2 

the unsaturated zone, 𝐷𝐷, is called 𝑍𝑍[𝑚𝑚𝑚𝑚]. 3 

The subsurface state variables are updated after evaluating whether the current soil moisture, 4 

𝑍𝑍(𝑡𝑡), together with the input of rain and snowmelt, 𝐺𝐺(𝑡𝑡), represent an excess of water over the 5 

field capacity, 𝑅𝑅, which is fixed at 30% (𝑅𝑅 =  0.3) of 𝐷𝐷(𝑡𝑡) (Grip and Rohde, 1985, p.26; 6 

Colleuille et al. 2007). If so, excess water 𝑋𝑋(𝑡𝑡) is added to 𝑆𝑆(𝑡𝑡). To summarize: 7 

Excess water:                                    𝑋𝑋(𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀 �𝐺𝐺(𝑡𝑡)+𝑍𝑍(𝑡𝑡)
𝐷𝐷(𝑡𝑡) − 𝑅𝑅, 0�𝐷𝐷(𝑡𝑡).                          (1a) 8 

Groundwater:                                    𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑋𝑋(𝑡𝑡) −𝑄𝑄(t).                                                         (1b) 9 

Soil water content:                             𝑑𝑑𝑍𝑍
𝑑𝑑𝑡𝑡

= 𝐺𝐺(𝑡𝑡) − 𝑋𝑋(𝑡𝑡) − 𝐸𝐸𝑀𝑀(𝑡𝑡).                                         (1c) 10 

Soil water zone:                                 𝑑𝑑𝐷𝐷
𝑑𝑑𝑡𝑡

= −𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

,                                                                    (1d) 11 

 12 

where 𝑄𝑄(𝑡𝑡) is runoff.  Actual evapotranspiration, 𝐸𝐸𝑀𝑀(𝑡𝑡), is estimated as a function of potential 13 

evapotranspiration and the level of storage. Potential evapotranspiration is estimated as 𝐸𝐸𝐸𝐸 =14 

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑇𝑇  [𝑚𝑚𝑚𝑚/𝑑𝑑𝑀𝑀𝑑𝑑], where 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐[𝑚𝑚𝑚𝑚/℃ 𝑑𝑑𝑀𝑀𝑑𝑑] is the degree-day factor which is positive for 15 

positive temperatures and zero for negative temperatures. Actual evapotranspiration thus 16 

becomes 𝐸𝐸𝑀𝑀 = 𝐸𝐸𝐸𝐸 × (𝑆𝑆 + 𝑍𝑍)/𝑀𝑀, and is drawn from 𝑍𝑍. 17 

In the current version of DDD, 𝑀𝑀 is a calibrated parameter and is divided into equal-sized 18 

storage levels, 𝑖𝑖, for which their associated UHs are all assigned different wave velocities, or 19 

celerities, 𝑣𝑣𝑖𝑖 [𝑚𝑚/𝑠𝑠]. The celerities increase for increasing 𝑖𝑖 (see next section). Experience using 20 

the DDD model shows that the subsurface water capacity parameter 𝑀𝑀 largely controls the 21 

variability of the hydrograph. Low values of 𝑀𝑀 increase the amplitude of the hydrograph, since 22 

the entire range of celerities is engaged, and vice versa.  23 
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Calibrated model parameters are hereafter denoted by 𝜃𝜃 with subscripts (e.g. 𝜃𝜃𝑀𝑀), in order to 1 

clearly distinguish between estimated and calibrated parameters.  2 

 3 

2.2 Runoff dynamics  4 

The runoff dynamics are completely parameterized from observed catchment features derived 5 

using a Geographical Information System (GIS) and runoff recession analysis. Central for the 6 

formulation of runoff dynamics for a catchment is the distance distribution derived using GIS.  7 

The distances, 𝑑𝑑 [𝑚𝑚],  from points in the catchments to the nearest river reach are calculated for 8 

each catchment and for more than 120 studied catchments in Norway the exponential distribution 9 

describe the distribution of distances well. Figure 2 shows the empirical and exponential 10 

distributions for two Norwegian catchments and although the mean distance �̅�𝑑 is different, the 11 

exponential distribution is a good fit for both catchments. The parameter 𝛾𝛾, of the exponential 12 

distribution 13 

 𝑓𝑓(𝑑𝑑) = 𝛾𝛾𝑒𝑒−𝛾𝛾𝑑𝑑,                                                                    (2) 14 

equals 𝛾𝛾 = 1/�̅�𝑑. The distance distributions (Figure 2) express the areal fraction of the catchment 15 

as a function of distance from the river network. In appendix A, analytical relations between 16 

exponential distance distributions and linear reservoirs are described. 17 

In the DDD model, water is conveyed through the soils to the river network by waves with 18 

celerities determined by the actual storage, 𝑆𝑆(𝑡𝑡) in the catchment. The celerities associated with 19 

the different storages are estimated by assuming exponential recessions with parameter 𝛬𝛬, in 20 

𝑄𝑄(𝑡𝑡) = 𝑄𝑄0𝛬𝛬𝑒𝑒−𝛬𝛬(𝑡𝑡−𝑡𝑡0), where 𝑄𝑄0 is the peak discharge immediately before the recession starts 21 

(Nash, 1957). We can determine the parameter 𝛬𝛬(𝑡𝑡) from the difference:  22 

 𝛬𝛬(𝑡𝑡) = log�Q(t)� − log�Q(t + ∆t)� ,   Q(t) > Q(t + ∆t),                            (3) 23 



8 
 

at any time 𝑡𝑡,  during the recession due to the lack of-memory property of the exponential 1 

distribution (Feller, 1971, p. 8).The parameter Λ is thus the slope per Δ𝑡𝑡 of the recession (of 2 

𝑙𝑙𝑙𝑙𝑙𝑙𝑄𝑄(𝑡𝑡)). From eqs. A2 and A7 in Appendix A, we find the celerity 𝑣𝑣 [𝑚𝑚/𝑠𝑠] as a function of Λ: 3 

𝑣𝑣 = Λ𝑑𝑑�

Δ𝑡𝑡
                                                                    (4) 4 

If we sample 𝛬𝛬’s from all recession events (the only condition is that Q(t) > Q(t + ∆t)) 5 

according to Eq. (3), we find that they can be fitted to a gamma distribution. This is a 6 

development from the exponential model used in Skaugen and Onof (2014) and is based on more 7 

detailed analysis of a much larger number of runoff records. For the 73 catchments us in this 8 

study, the gamma distribution was a good fit for all catchments.  In Figure 3 we have plotted the 9 

empirical and the gamma distribution of Λ for six catchments with estimated shape, 𝛼𝛼, and scale, 10 

𝛽𝛽, parameters of the gamma distribution, and it is clearly seen that the flexibility of the gamma 11 

distribution is needed in order to model the observed quantiles (see for example Figure 3 d) and 12 

f)). 13 

The capacity of the subsurface reservoir 𝜃𝜃𝑀𝑀, is divided into storage levels of equal capacity. The 14 

storage levels 𝑖𝑖 corresponds to the quantile of the distribution of Λ under the assumption that the 15 

higher the storage, the higher the values of Λ. Each level is further assigned a celerity 𝑣𝑣𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑑𝑑�

Δ𝑡𝑡
 16 

(see Eq. 4), where 𝜆𝜆𝑖𝑖 is the parameter of the individual unit hydrograph for storage level 𝑖𝑖, and 17 

estimated such that the runoff from several storage levels will give a UH equal to the exponential 18 

UH with parameter Λ𝑖𝑖, i.e.: 19 

𝛬𝛬𝑖𝑖𝑒𝑒−𝛬𝛬𝐼𝐼(𝑡𝑡−𝑡𝑡0) = 𝜛𝜛1𝜆𝜆1𝑒𝑒−𝜆𝜆1(𝑡𝑡−𝑡𝑡0) + 𝜛𝜛2𝜆𝜆2𝑒𝑒−𝜆𝜆2(𝑡𝑡−𝑡𝑡0)+. . +𝜛𝜛𝑖𝑖𝜆𝜆𝑖𝑖𝑒𝑒−𝜆𝜆𝑖𝑖(𝑡𝑡−𝑡𝑡0),             (5) 20 
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where 𝜛𝜛 are the weights associated with the discharge from each level estimated by 𝜛𝜛𝑖𝑖 =1 

 𝛬𝛬𝑖𝑖 ∑ 𝛬𝛬𝑘𝑘𝑖𝑖
𝑘𝑘=1

� . From Eq. 5, 𝜆𝜆𝑖𝑖 are solved successively for increasing 𝑖𝑖 under the assumption that  2 

𝜆𝜆1 = Λ1  (see Skaugen and Onof, 2014).  3 

The quantiles of Λ are mapped to a uniform distribution of 𝑆𝑆, 𝐹𝐹(𝛬𝛬) = 𝑑𝑑
𝜃𝜃𝑀𝑀

, which implies that all 4 

storage levels are equally probable and that the equally-spaced storage levels have equal capacity 5 

of water, i.e. if 𝜃𝜃𝑀𝑀 = 50𝑚𝑚𝑚𝑚 and we use 5 storage levels (𝑖𝑖 = 1 … 5), each level has a capacity of 6 

10 𝑚𝑚𝑚𝑚. In Skaugen and Onof (2014), no increase in the precision of daily runoff simulations 7 

was found using more than 5 storage levels. 8 

 9 

2.3 Reformulation of the subsurface of DDD 10 

An obvious problem of the approach described above is that we attempt to estimate an extreme 11 

value, the maximum catchment scale storage 𝜃𝜃𝑀𝑀, a task which is obviously associated with more 12 

uncertainty than estimating the mean catchment scale storage, 𝑚𝑚𝑠𝑠.  Another problem is the 13 

assumption of a uniform distribution of storage levels. A quick investigation of observed 14 

groundwater level fluctuations suggests that this is not the case. Figure 4 shows histograms of 15 

observed groundwater levels from three observation boreholes located in a small catchment (the 16 

Groset catchment, 6.33 km2) in southern Norway. The figure clearly illustrates that fluctuations 17 

in storage and groundwater levels are spatially variable and should ideally be treated as such in 18 

rainfall-runoff models (Rupp et al. 2009; Sloan, 2000). This is a consequence of the differences 19 

in water level fluctuations depending on the location of the borehole relative to the river, i.e. top 20 

of a hillslope vs. adjacent to a river and also of the catchment variability of topography and soil 21 

porosity (Refsgaard et al., 2015). It is therefore very difficult to parameterize the distribution of 22 

the catchment-scale groundwater fluctuations from such single observation points (Kirchner, 23 
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2009). In addition, the distribution is unlikely to be uniform as none of the individual histograms 1 

exhibits such a behaviour.  2 

To overcome the problems identified above, we attempt to develop a storage model that differs 3 

from the previous model in that the groundwater reservoir is parameterised by its mean storage, 4 

𝑚𝑚𝑠𝑠, as opposed to the maximum storage, 𝜃𝜃𝑀𝑀. In addition, regarding the practical problems 5 

associated with the observation of catchment scale fluctuations of storage, we make the 6 

assumption that recession and its distribution carries information on the distribution of 7 

catchment-scale storage. More precisely, we assume that the temporal distribution of catchment 8 

scale storage can be considered as a scaled version to that of the recession characteristic, Λ. 9 

Consequently, the subsurface reservoir no longer increases linearly with the quantiles (which is 10 

the case with storage levels of equal capacity), but rather, increases non-linearly according to the 11 

shape of the distribution of Λ.  12 

Since the distribution of Λ is modelled as a two parameter gamma distribution, we can write: 13 

𝑓𝑓(Λ) =   1
𝛽𝛽𝛼𝛼Γ(𝛼𝛼)

Λ𝛼𝛼−1exp (−Λ 𝛽𝛽⁄ ),           𝛼𝛼 > 0,𝛽𝛽 > 0                             (6) 14 

where 𝛼𝛼 and 𝛽𝛽 are the shape and scale parameters respectively and estimated from observed Λ′𝑠𝑠 15 

(using Eq. 3). 16 

The distribution of 𝑆𝑆 is hence also modelled as a two-parameter gamma distribution: 17 

𝑓𝑓(S) =   1
𝜂𝜂𝛼𝛼Γ(𝛼𝛼)

S𝛼𝛼−1exp (− S 𝜂𝜂⁄ ),           𝛼𝛼 > 0, 𝜂𝜂 > 0                              (7) 18 

where the scale parameter, 𝜂𝜂, is 19 

 𝜂𝜂 = 𝛽𝛽 𝑐𝑐⁄ ,                                                                            (8) 20 

and 𝑐𝑐 is a constant  and equal to 21 
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 𝑐𝑐 = Λ� 𝑚𝑚𝑠𝑠⁄ ,                                                                           (9) 1 

where Λ� is the mean value of Λ, estimated from the parameters of the fitted gamma distribution 2 

and representing the mean recession characteristic. Note that since the distribution of 𝑆𝑆 is a 3 

scaled version of Λ, the shape parameter 𝛼𝛼 is equal for the two distributions.    4 

In order to model the storage as a two-parameter gamma distribution we need to estimate the 5 

mean storage, 𝑚𝑚𝑑𝑑. We can then determine the constant 𝑐𝑐 from Eq. 9, and finally, the scale 6 

parameter 𝜂𝜂 using Eq. 8. 7 

If we assume that the mean value of the sampled 𝛬𝛬′s, Λ�, represents the slope of recession in a 8 

state of mean storage in the catchment, then the associated unit hydrograph (UH) is, 9 

𝑢𝑢Λ�(𝑡𝑡) = Λ�𝑒𝑒−Λ�(𝑡𝑡−𝑡𝑡0)        .                                                                  (10) 10 

The temporal scale of the UH in Eq. 10 is 𝑡𝑡ℎ,𝑚𝑚𝑐𝑐𝑚𝑚 = 𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚/�̅�𝑣ℎ, where 𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚 is the observed 11 

maximum distance of the hillslope distance distribution and �̅�𝑣ℎ is the celerity associated with Λ� 12 

through �̅�𝑣ℎ = Λ�𝑑𝑑�

Δ𝑡𝑡
 (see Eq. 4).  Let 𝑡𝑡ℎ,𝑚𝑚𝑐𝑐𝑚𝑚 be divided into suitable time intervals, 𝛥𝛥𝑡𝑡, then the 13 

number of time intervals it takes to drain the hillslope is 𝐽𝐽 = 𝑡𝑡ℎ,𝑚𝑚𝑐𝑐𝑚𝑚/𝛥𝛥𝑡𝑡.  When Eq. 10 is 14 

integrated over successive time intervals we obtain weights, 𝜇𝜇𝑗𝑗, which, if multiplied by the 15 

excess moisture input, 𝑋𝑋(Δ𝑡𝑡), give the response (the water entering the river network) for the 16 

different time intervals. The weights are calculated as:  17 

𝜇𝜇(Λ�)𝑗𝑗 = ∫ 𝑢𝑢Λ�
(𝑗𝑗)𝛥𝛥𝑡𝑡

(𝑗𝑗−1)𝛥𝛥𝑡𝑡 (𝑡𝑡)𝑑𝑑𝑡𝑡      𝑗𝑗 = 1. . 𝐽𝐽, ∑𝜇𝜇(Λ�)𝑗𝑗 = 1 ,                                  (11) 18 

and scaled so that the sum of weights equals 1. The runoff at time interval 𝑗𝑗 is calculated as 19 

𝑄𝑄(𝑗𝑗∆𝑡𝑡) = 𝑋𝑋(Δ𝑡𝑡)𝜇𝜇(Λ�)𝑗𝑗.                                                         (12) 20 
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For estimating the mean storage mS we first calculate the mean annual runoff, 𝑀𝑀𝑀𝑀𝑅𝑅, which 1 

corresponds to a daily excess moisture input 𝑋𝑋 of  2 

 𝑋𝑋[𝑚𝑚𝑚𝑚 𝑑𝑑𝑀𝑀𝑑𝑑⁄ ] = (1000 ∗ 𝑀𝑀𝑀𝑀𝑅𝑅[𝑚𝑚3 𝑠𝑠⁄ ] ∗ 86400[𝑠𝑠])/ 𝑀𝑀[𝑚𝑚2],                       (13) 3 

where 𝑀𝑀 is the catchment area. 4 

After 𝐽𝐽 successive days of input 𝑋𝑋, routed with the UH of Eq. 10, we reach a steady state where 5 

the volume of the input equals the output (𝑀𝑀𝑀𝑀𝑅𝑅). The total sum of moisture input after 𝐽𝐽 days is  6 

𝐽𝐽 ∙ 𝑋𝑋 = 𝑆𝑆𝑑𝑑𝑑𝑑 + 𝑄𝑄𝑑𝑑𝑑𝑑                                                              (14) 7 

where total runoff, 𝑄𝑄𝑑𝑑𝑑𝑑, after 𝐽𝐽 days is 8 

  𝑄𝑄𝑑𝑑𝑑𝑑 = ∑ ∑ 𝑋𝑋 ∙𝑘𝑘
𝑗𝑗=1

𝐽𝐽
𝑘𝑘=1 𝜇𝜇(Λ�)𝑗𝑗,                                                      (15)  9 

and k is the number of  days and the subscript denotes “steady state”. The water left in the soils, 10 

𝑆𝑆𝑑𝑑𝑑𝑑, at steady state (after 𝐽𝐽 time intervals) and hence assumed to represent the mean storage 𝑚𝑚𝑑𝑑, 11 

is 𝑆𝑆𝑑𝑑𝑑𝑑 = 𝐽𝐽 ∙ 𝑋𝑋 − 𝑄𝑄𝑑𝑑𝑑𝑑 , which can also be calculated as: 12 

𝑆𝑆𝑑𝑑𝑑𝑑 = ∑ ∑ 𝑋𝑋 ∙ 𝜇𝜇(Λ�)𝑗𝑗
J
𝑗𝑗=𝑘𝑘+1

𝐽𝐽−1
𝑘𝑘=1 =  𝑚𝑚𝑑𝑑.                                                     (16) 13 

With an estimate of the mean storage, 𝑚𝑚𝑑𝑑, we can use eqs. 8 and 9 to estimate the scale 14 

parameter, 𝜂𝜂, of the distribution of 𝑆𝑆. The shape parameter, 𝛼𝛼, is already determined and equal to 15 

that of the distribution of Λ. The gamma distributed storage levels 𝑆𝑆𝑖𝑖 are calculated as quantiles 16 

of the gamma distributed storage: 17 

𝑑𝑑𝑖𝑖
𝑀𝑀

= ∫  1
𝜂𝜂𝛼𝛼Γ(𝛼𝛼)

S𝛼𝛼−1exp (− S 𝜂𝜂⁄ )𝑑𝑑𝑆𝑆𝑑𝑑𝑖𝑖
0 ,                                                     (17) 18 

where 𝑀𝑀 is now estimated as the 99% quantile of the distribution of 𝑆𝑆.  19 

 20 

2.4 Test of new storage routine 21 
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We will test the performance of the new formulation of storage by replacing the formulation of 1 

the storage where 𝜃𝜃𝑀𝑀is a calibrated parameter and storage is uniformly distributed with a 2 

formulation where storage is gamma distributed with parameters, 𝜂𝜂 and α, derived from 3 

recession data and 𝑀𝑀𝑀𝑀𝑅𝑅. The model with the current storage routine is denoted DDD_𝜃𝜃𝑀𝑀 and the 4 

model with the new storage routine is denoted DDD_𝑚𝑚𝑑𝑑. 5 

DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are tested for 73 catchments distributed across Norway (see Figure 5). 6 

The catchments vary in latitude, size, elevation and landscape type (see histograms of selected 7 

catchment characteristics in Figure 6) and constitute thus a varied, representative sample of 8 

Norwegian catchments.  9 

The time series for precipitation and temperature are mean areal catchment values extracted from 10 

an operational meteorological grid (1 x 1 km²) produced by MET Norway, which provides daily 11 

values of precipitation and temperature for Norway from 1957 to the present day (see 12 

www.senorge.no). The runoff data is provided by the NVE. The time series of precipitation , 13 

temperature and runoff where split into a calibration data set (1.9.1995- 31.12.2011) and a 14 

validation data set (1.1.1980- 31.8.1995).  15 

DDD_𝜃𝜃𝑀𝑀 is calibrated using an R-based Monte-Carlo Marko Chain method (Soetart and 16 

Petzhold, 2010). All together 11 parameters (including 𝜃𝜃𝑀𝑀) are calibrated (see parameters 17 

denoted by 𝜃𝜃 with subscripts in Table 1). The calibrated parameters, except for 𝜃𝜃𝑀𝑀, are also used 18 

when running DDD_𝑚𝑚𝑑𝑑.  19 

3 Results 20 

Figure 7 (a-e) shows different skill scores obtained for the simulations for the 73 catchments 21 

with DDD_𝜃𝜃𝑀𝑀  (skill is shown with red crosses) and for DDD_𝑚𝑚𝑑𝑑 (skill is shown with blue 22 

circles) for the validation data set. The figure is organised such that the catchments are sorted 23 

geographically starting from the South-East (S-E), then follows the South-West (S-W) and Mid-24 

http://www.senorge.no/
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Norway (M-N) and finally Northern-Norway (N-N). Figure 7 a) shows the Nash-Sutcliffe 1 

efficiency criterion (NSE, Nash and Sutcliffe, 1970), 7 b) the Kling-Gupta Efficiency criterion 2 

(KGE, Gupta, et al. 2009, Kling et al. 2012) and 7 c-e) the three components of the KGE, 3 

correlation, bias and variability error, respectively. The variability error is given by the ratio of 4 

the coefficients of variation of simulated and observed runoff as suggested in Kling et al. (2012). 5 

The mean values of the skill scores for DDD_𝜃𝜃𝑀𝑀 and DDD_𝑚𝑚𝑑𝑑 are shown as straight lines in the 6 

plots. We have also added a moving average of the results for enhanced readability. We see from 7 

Figure 7 that little precision is lost in the results for DDD_𝑚𝑚𝑑𝑑. The mean values of NSE and 8 

KGE are slightly better for DDD_𝜃𝜃𝑀𝑀. The result for bias is better for DDD_𝑚𝑚𝑑𝑑 (Fig. 7d) whereas 9 

the results for the correlation and variability errors favor DDD_𝜃𝜃𝑀𝑀. Overall, the differences in 10 

skill between DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are very small. Mean values of the skill scores for 11 

DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are shown in Table 2.  12 

The observed distribution of the recession characteristic Λ, is crucial for both the estimation of 13 

the subsurface celerities and the estimation of 𝑚𝑚𝑑𝑑. If the distribution of simulated Λ, denoted Λ̇, 14 

is similar to that of the observed, this suggests that recessions are well simulated and hence, that 15 

the dynamics of the model are realistic. Figure 8 shows scatter plots of the mean and standard 16 

deviation of observed 𝛬𝛬 and simulated Λ̇ for DDD_𝑚𝑚𝑑𝑑  (blue circles) and DDD_𝜃𝜃𝑀𝑀 (red 17 

crosses). The root mean square error (RMSE) of the mean Λ̇ is clearly less for DDD_𝑚𝑚𝑑𝑑, 18 

whereas the RMSEs of standard deviation of Λ̇ for DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 are similar (see 19 

Table 3). 20 

Figure 9 shows histograms of simulated storage from DDD_𝜃𝜃𝑀𝑀 (a) and DDD_𝑚𝑚𝑑𝑑 (b) with 21 

empirical CDFs (c) of the observed Λ (black line) and simulated Λ̇ (DDD_𝜃𝜃𝑀𝑀 , red line and 22 

DDD_𝑚𝑚𝑑𝑑, blue line) for a specific catchment. The CDF of Λ̇ simulated with DDD_𝑚𝑚𝑑𝑑 is clearly 23 

in better agreement with that of the observed. The shape of the histograms of storage fluctuations 24 
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are very different, and as we have no data to estimate the true empirical distribution of storage at 1 

the catchment scale we cannot claim that the fluctuations simulated with DDD_𝑚𝑚𝑑𝑑 are closer to 2 

the truth than those simulated by DDD_𝜃𝜃𝑀𝑀. However, since the parameters of the subsurface- 3 

and dynamic module of DDD_𝑚𝑚𝑑𝑑 are estimated prior to model calibration and that the recessions 4 

are demonstrably better simulated, it is reasonable to suggest that the catchment scale storage 5 

fluctuations simulated with DDD_𝑚𝑚𝑑𝑑 are closer to the truth. 6 

4 Discussion 7 

The new formulation for the subsurface storage gives good results, and it is promising that the 8 

replacement of a routine with calibrated parameters with a routine with estimated parameters 9 

produces runoff simulations which are equally precise and robust. In addition, the simulated 10 

recessions Λ̇, are much closer to those observed, suggesting a more realistically modelled 11 

storage-runoff relationship (i.e. the non-linearly increasing storage capacity). Comparing 12 

simulated runoff in such a manner constitutes a rather strict test for DDD_𝑚𝑚𝑑𝑑. DDD_𝜃𝜃𝑀𝑀 has an 13 

advantage since the parameter 𝜃𝜃𝑀𝑀 is optimized together with the other calibration parameters. 14 

These optimized parameter are not necessarily optimal for DDD_𝑚𝑚𝑑𝑑.   15 

The reduction of calibrated parameters in the storage and dynamic module of the DDD model 16 

has attractive implications for the problem of predictions in ungauged basins (PUB) (see eg. 17 

Sivapalan, 2003; Parajka et al, 2013; Hrachowitz, 2013; Blöschl et al, 2013; Skaugen et al. 18 

2015). In Skaugen et al.(2015), 7 model parameters of the DDD model (including 𝜃𝜃𝑀𝑀 and the 19 

parameters for the distribution of 𝜆𝜆) were estimated from catchment characteristics (CC’s) using 20 

multiple regression analysis. All model parameters were found to correlate significantly with the 21 

CC’s. The median NSE for 17 catchments was found to be 0.66 and 0.72 for two timeseries 22 

when DDD was run with model parameters estimated from CC’s. The change in the model 23 

structure of DDD presented in this paper with respect to predictions in ungauged basins implies 24 
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that we need to estimate the parameters for the distribution of Λ from CC’s. The estimation of 𝜃𝜃𝑀𝑀 1 

through multiple regression with CC’s, however, is no longer needed. Although it is not within 2 

the scope of this study to conduct a full PUB analysis, we investigated how the parameters of the 3 

distribution of Λ can be regionalized. Since 𝜆𝜆 is a function of Λ (see Eq. 5) the parameters of the 4 

distribution of 𝜆𝜆 and Λ are obviously highly correlated (from a sample of 84 Norwegian 5 

catchments we found correlations between the shape, 𝛼𝛼, and the scale, 𝛽𝛽, parameters of Λ and 𝜆𝜆 6 

of 𝜚𝜚(𝛼𝛼)Λ,𝜆𝜆 = 0.97 𝜚𝜚(𝛽𝛽)Λ,𝜆𝜆 = 0.98). In Skaugen et al. (2015) the parameters for the distribution 7 

of 𝜆𝜆 could be expressed as functions of the mean of the distance distribution, �̅�𝑑, percentage of 8 

lake , percentage of bare rock and catchment length with significant coefficients of determination 9 

of 𝑅𝑅𝜆𝜆2(𝛼𝛼) = 0.45 and 𝑅𝑅𝜆𝜆2(𝛽𝛽) = 0.35 respectively. A similar analysis using the new model 10 

structure (DDD_𝑚𝑚𝑑𝑑), with an added new subroutine for the spatial distribution of SWE (Skaugen 11 

and Weltzien, 2016), showed that the parameters of the distribution of Λ were significantly 12 

correlated (p-value < 0.01) to the mean of the distance distribution, �̅�𝑑, areal percentage of lake 13 

and the catchment gradient (see Table 4). From Table 4, we note that the shape parameter is 14 

positively correlated to the areal percentage of lake (L%). In Figure 3 f), this catchment has L% 15 

of 9.5 % whereas in Figure 3 c) L% is only 4.4 %.  The significant correlations yield significant 16 

multiple regression equations with coefficients of determination of 𝑅𝑅Λ2(𝛼𝛼) = 0.59 and 𝑅𝑅Λ2(𝛽𝛽) =17 

0.54. Hence, the potential for improved predictions in ungauged basins is promising.  18 

The assumption of equal shape for the distributions of 𝛬𝛬 and 𝑆𝑆 is, of course, difficult to verify as 19 

no direct observations of 𝑆𝑆 are at hand. Myrabø (1997) conducted groundwater measurements on 20 

a very dense spatial grid over a tiny catchment (0.0075 km2) in Southern Norway for a short 21 

period of time in order to investigate subsurface dynamics over an entire catchment. These data 22 

are unfortunately not available and no other similar experiment from Norway is known. 23 

However, if we use the equation for the linear reservoir in Appendix A (Eq. A4) and express the 24 
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rate constant as a function of Λ (Eq. 4 and Eq. A6), we can, for observed recession values of 𝑄𝑄 1 

and Λ, calculate the corresponding values of 𝑆𝑆 and compare the distributions of  Λ and (the 2 

scaled) 𝑆𝑆.  3 

𝑆𝑆(𝑡𝑡) =  𝑄𝑄(𝑡𝑡)∆𝑡𝑡
1−𝑐𝑐−Λ(t)                                                                  (18) 4 

Figure 10 shows such a comparison for two catchments, and, except for the highest quantiles, the 5 

distributions of Λ and (scaled) 𝑆𝑆 are almost identical and hence supporting our assumption.  The 6 

high frequency of high 𝑆𝑆 values present in Figure 10, also seen for several other catchments (not 7 

shown), is the result of the combination of high 𝑄𝑄 values and low values of Λ, i.e. very modest 8 

recession for situations with high runoff values. Such events are probably not representative for 9 

describing recession characteristics of the catchment. By sampling Λ(𝑡𝑡) and estimating 𝑆𝑆(𝑡𝑡) 10 

under the condition that precipitation at the time (t + ∆t) could not exceed a low threshold of 0, 11 

2 and 5 mm, we found that the frequency of very high values of 𝑆𝑆 estimated by Eq. 18 were 12 

reduced. Hence, the very high values of 𝑆𝑆 did not represent storage for true recession events. 13 

Moreover, the distribution of Λ was insensitive to such conditioning, implying that Eq. 3 is a 14 

robust estimate of recession characteristics, whereas the distribution of 𝑆𝑆 is highly sensitive. This 15 

way of conducting recession analysis differs, mainly in the manner of sampling the recession 16 

events, from those described in recession analysis reviews such as Tallaksen (1995) and Stoelzle 17 

et al. (2013). Common for many of the recession selecting algorithms reported in the literature is 18 

the censoring of the recession events with exclusion of events with rainfall or periods of high 19 

evapotranspiration (e.g. Kirchner, 2009) and exclusion of the early stages of the recession to 20 

avoid the influence of preceding storm and surface flow (Stoelzle, 2013). In this study, all 21 

recession events that satisfy 𝑄𝑄(𝑡𝑡) > 𝑄𝑄(𝑡𝑡 + ∆𝑡𝑡) are used to estimate the parameters of the 22 

distribution of Λ. We have found that the distribution of Λ remains quite insensitive to 23 
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precipitation (see above) and equally important, that the parameters of the distribution of Λ are 1 

correlated to, and can be estimated from catchment characteristics.  2 

There are other assumptions presented in this paper that remain difficult to test due to the fact 3 

that 𝑆𝑆 is not observed at the catchment scale. We assume that i) the mean Λ  represent the slope 4 

of recession in a state of mean storage in the catchment and ii) that the water left in the soils at 5 

steady state for mean annual runoff represents the mean storage. Whereas these assumptions 6 

appear reasonable given the simulation results of the model, we need to design field experiments 7 

similar to that of Myrabø (1997) to justify their validity.  8 

In Kirchner (2009) the storage-runoff relationship is assumed to be a single-valued function, i.e 9 

𝑆𝑆 is a single valued function of 𝑄𝑄. This leads to a very simple model with regards to the number 10 

of states in the subsurface, namely one. The number of states in DDD, however, can be very 11 

high. If we consider Eq. 16,  the number of summations (time-steps) constituting 𝑆𝑆𝑑𝑑𝑑𝑑 can be 12 

viewed as a number of subsurface states since each summation represents a volume water that 13 

will sooner or later propagate into the river network. Eq. 16 describes the subsurface using only 14 

one (mean) UH. In the DDD model, the number of storage levels is fixed to 5, and the UH’s 15 

constituting the storage levels all have the same shape (exponential) but have different temporal 16 

scales. The temporal scale (level of discretisations) of the UH’s vary according to their 17 

associated celerity, and the slowest (lowest) storage level may be discretised such that hundreds 18 

of time steps are necessary for the complete attenuation of the UH. Such a system actually 19 

provides a 2-D representation of the subsurface (Rupp et al. 2009; Sloan, 2000) and gives 20 

numerous subsurface states (Harman, 2015). It is hence entirely possible to have different 21 

configurations of states associated with the same runoff. Figure 11 shows a snapshot of how 22 

DDD models the storage 𝑆𝑆. The catchment is represented as one hillslope where the x-axis 23 

shows the distance (in metres) from the river reach (at the right hand-side) to the top of the 24 
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hillslope (at the left hand side). The y-axis shows the different storage levels. We see the outline 1 

of boxes (especially for the higher storage levels) which represents the temporal discretisation of 2 

the UHs. Each box represents an area according to the distance distribution and the associated 3 

celerity that will drain pr. time interval. The higher the celerity, the more of the catchment area is 4 

represented by each box. The darker the blue colour, the more water is present in the box. Figure 5 

11 can be seen together with Figure 1 A in appendix A, which illustrates how the distance 6 

distribution (and the travel time distribution) determines the fractional areas that drain pr. time 7 

interval for a given celerity (see also Harman (2015) for distribution of storage and water age). In 8 

Figure 11 we can also note that it is more or less dry at the top of the hillslope and saturated near 9 

the river. This is consistent with the wetting up of a catchment from the riparian zone outwards 10 

and up the hillslope (Dunne and Black, 1970; Kirkby, p.275,1978; Myrabø, 1997).  11 

Figure 12 shows simulated storage, 𝑆𝑆, plottet against simulated runoff, 𝑄𝑄, for two catchments of 12 

different size (49 km3 1833 km3). It is quite clear that the relationship between 𝑄𝑄 and 𝑆𝑆 is not 13 

single valued. The variability of 𝑄𝑄 for the same 𝑆𝑆 (and vice versa) is to be expected given the 14 

multitude of possible configurations of the subsurface states (i.e. the discretisations of the UHs). 15 

The shape of the clouds of points resembles those found for observations of groundwater vs 16 

runoff (Rupp et al. 2009; Laudon et al. 2004 and Myrabø, 1997). The points in Figure 12, 17 

however, do not level off to the same degree as does for groundwater observations. This can 18 

probably be explained by the fact that storage in DDD is simulated for an entire catchment, and 19 

it is more unlikely that an entire catchment will reach full saturation than individual groundwater 20 

boreholes, located relatively close to the river (Myrabø, 1997; Laudon et al. 2004).  21 

The parameters of the subsurface and the dynamical modules of the DDD model are all 22 

estimated prior to calibration against streamflow and we see this as a necessary development if 23 

we are to effectively test new algorithms for snow distribution, snowmelt, evapotranspiration etc. 24 
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at the scale that matters for most practical applications, the catchment scale (Clarke, 2011). 1 

Multi-variable parameter estimation (Bergström et al., 2002) has been put forward as a means to 2 

increase confidence in hydrological modelling and models. Although we agree that such 3 

procedures indeed narrows the parameter-space (although not its number of dimensions), the 4 

interaction and compensating nature of the calibration parameters makes it almost impossible to 5 

reject flawed model structures so that we can concentrate on building models that work well for 6 

the right reasons. In this paper, and in previous ones (Skaugen and Onof, 2014; Skaugen et al. 7 

2015), information ready at hand such as GIS-derived distance distributions functions and runoff 8 

records have proved useful for parameterising algorithms describing basic hydrological 9 

processes.  10 

 11 

5 Conclusions 12 

In this paper a new formulation of the subsurface in the DDD model is presented. In the new 13 

formulation, the storage capacity increases non-linearly with saturation, following a two-14 

parameter gamma distribution. The parameters of the gamma distribution are estimated directly 15 

from observed runoff recession data and the mean annual runoff and not through model 16 

calibration against runoff. The new storage formulation has been tested for 73 catchments in 17 

Norway of varying size, mean elevation and landscape type, with little loss in precision. In 18 

addition, more realistic runoff recessions are found using the new subsurface routine suggesting 19 

a more realistic storage-runoff relationship.  20 

A preliminary analysis shows that the parameters of the new storage routine can be estimated 21 

from catchment characteristics, which is promising for continued advances in prediction in 22 

ungauged basins.  23 
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The DDD model exhibits a spatially variable representation of the subsurface and allows for 1 

different subsurface states associated with the same value of runoff. This constitutes a more 2 

realistic representation of the subsurface and is more in line with more dedicated groundwater 3 

models. 4 

Future work includes implementing a more physically based energy balance approach for 5 

snowmelt in DDD and testing the new model structure for predictions in ungauged basins in a 6 

similar analysis to that of Skaugen et al. (2015).  7 

 8 

Data availability 9 

The precipitation, temperature and runoff data used in this study are available by contacting the 10 

corresponding author. 11 

 12 

Appendix A 13 

Distance distributions and linear reservoirs  14 

In Figure A1 the information of the distance distribution is visualised differently from Figure 2. 15 

In Figure A1, for the same two catchments as in Figure 2, the consecutive fractional areas for 16 

each distance interval ∆𝑑𝑑 are plotted against the distance to the river network, and the ratio, 𝜅𝜅 17 

between consecutive fractional areas is a constant and it has been showed (Skaugen, 2002) that 18 

the parameter 𝛾𝛾 of the exponential distribution relates to 𝜅𝜅 as  19 

𝛾𝛾 = −log (𝜅𝜅)/Δ𝑑𝑑.                                                         (A1) 20 

If we assume that a uniform moisture input (i.e. excess rainfall or snowmelt) is transported 21 

through the hillslope to the river network with a constant velocity, 𝑣𝑣, (or celerity, see Skaugen 22 

and Onof, 2014, Beven, 2006), then Δ𝑑𝑑 is the distance travelled by water during a suitable time 23 
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step, ∆𝑡𝑡, i.e., ∆𝑑𝑑 = 𝑣𝑣∆𝑡𝑡. When 𝑑𝑑 Eq. 2 is replaced with 𝑑𝑑/𝑣𝑣, the distance distribution hence 1 

becomes a travel-time distribution with mean equal to  𝑑𝑑
�

𝑣𝑣
 and parameter  2 

ξ = −log (𝜅𝜅)/Δ𝑡𝑡,                                                                  (A2) 3 

which constitutes a unit hydrograph (Maidment, 1993, Bras, 1990,  p.448). The variable 𝜅𝜅, is 4 

now the ratio between volumes of water drained pr. time step, i.e. the volume of water drained 5 

into the river network is reduced by 𝜅𝜅 for each time step.  6 

A linear reservoir has this same property of consecutive runoff values having a constant ratio. 7 

This can be seen if we compute successive volumes and runoff values according to a linear 8 

reservoir in recession with rate constant 𝜗𝜗, i.e.   𝑄𝑄(𝑡𝑡) = 𝜗𝜗𝑆𝑆(𝑡𝑡). The ratio between consecutive 9 

values of runoff,  10 

𝜅𝜅 = 𝑄𝑄(𝑡𝑡 + ∆𝑡𝑡)/𝑄𝑄(𝑡𝑡)                                                        (A2) 11 

 remains constant and equal to 1 − 𝜗𝜗∆𝑡𝑡. Hence, a catchment with an exponential distance 12 

distribution and a constant celerity is equivalent to a linear reservoir with a rate constant equal to 13 

(1 − 𝜅𝜅)/∆𝑡𝑡, i.e. 14 

 𝑄𝑄(𝑡𝑡) = (1−𝜅𝜅)
Δ𝑡𝑡

𝑆𝑆(𝑡𝑡).                                                         (A3) 15 

Furthermore, from eqs. A2 and A3 we see that the rate constant of a linear reservoir relates to the 16 

parameter of the travel time distribution as: 17 

𝜗𝜗 = 1−𝑐𝑐−𝜉𝜉Δ𝑡𝑡

Δ𝑡𝑡
.                                                         (A4) 18 

Since the mean of the travel-time distribution is 1
𝜉𝜉

= 𝑑𝑑�

𝑣𝑣
, the rate constant relates to the mean of the 19 

distance distribution as: 20 
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 𝜗𝜗 = 1−𝑐𝑐−(𝑣𝑣/𝑑𝑑)���Δ𝑡𝑡

Δ𝑡𝑡
,                                                         (A5) 1 

and the celerity can hence be formulated as: 2 

𝑣𝑣 = −log (1−𝜗𝜗∆𝑡𝑡)𝑑𝑑�

∆𝑡𝑡
= −log (𝜅𝜅)𝑑𝑑�

∆𝑡𝑡
.                                              (A6) 3 

This brief discussion on the distance distribution and linear reservoirs shows that if a catchment 4 

exhibits an exponential distance distribution, linear reservoirs comes as a natural choice for 5 

modelling the interaction between hillslopes and the river network. Furthermore, the distance 6 

distribution suggests a geometrical configuration of the hillslope (or aquifer) (Figure A1) and the 7 

linear reservoir model is partly parameterised from the parameter of the distance distribution 8 

(Eq. A5). These latter statements assumes, of course, that the topographical catchment area and 9 

that of the aquifer are equal, an assumption that does not always hold (Bidwell et al. 2008).  10 
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Table1. Parameters of the DDD model with description and method of estimation. Some 1 
parameters have fixed values obtained through experience in calibrating DDD for gauged 2 
catchments in Norway. These values are within the recommended range for the HBV model 3 
(Sælthun,1996). The GIS analyses are carried out using the national 25 X 25 m DEM (www. 4 
statkart.no). 5 

Parameter Description Method of 
estimation 

Hypsograpic curve 11 values describing the quantiles 
0,10,20,30,40,50,60,70,80,90,100 

GIS 

𝜃𝜃𝑊𝑊𝑠𝑠 [%] Max liquid water content in snow Calibrated 

Hfelt Mean elevation of catchment GIS 

𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇 [°C/100 m] 
  

Temperature lapse rate for (pr 100 
m) 

Calibrated 

 𝜃𝜃𝑃𝑃𝑇𝑇𝑇𝑇  [mm/100 m] 
  

Precipitation gradient (mm per 100 
m) 

Calibrated 

𝜃𝜃𝑃𝑃𝑐𝑐 Correction factor for precipitation  Calibrated 

𝜃𝜃𝑑𝑑𝑐𝑐    Correction factor for precipitation as 
snow 

Calibrated 

𝜃𝜃𝑇𝑇𝑇𝑇  [°C] Threshold temperature rain /snow Calibrated 

𝜃𝜃𝑇𝑇𝑑𝑑  [°C] Threshold temperature melting / 
freezing 

Calibrated 

𝜃𝜃𝐶𝐶𝑇𝑇  [mm/°C/day] Degree-day factor for melting snow Calibrated  

𝐶𝐶𝐺𝐺𝑇𝑇𝑐𝑐𝑐𝑐   [mm/°C/day] Degree-day factor for melting 
glacier Ice 

1.5x𝜃𝜃𝐶𝐶𝑇𝑇 

𝐶𝐶𝐹𝐹𝑅𝑅 [mm/°C/day] Degree-day factor for freezing  Fixed value: 
0.02, Sælthun 
(1996) 

 Area[m2] Catchment area GIS 

maxLbog[m] Max of distance distribution for 
bogs 

GIS 

midLbog[m] Mean of distance distribution for 
bogs 

GIS 

Bogfrac Fraction of bogs in catchment GIS 

Zsoil Areal fraction of zero distance to the 
river network for soils 

GIS 

Zbog Areal fraction of zero distance to the 
river network for bogs 

GIS 

𝑁𝑁𝑁𝑁𝑁𝑁 Number of storage levels Fixed value: 5, 
Skaugen and 
Onof (2014) 

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐  [mm/°C/day] Degree day factor for 
evapotranspiration  

Calibrated  
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𝑅𝑅 Ratio defining field capacity  Fixed value: 0.3, 
Skaugen and 
Onof (2014) 

𝛼𝛼 Shape parameter of gamma 
distributed celerities 

Estimated from  
recession 

𝛽𝛽 Scale parameter of gamma 
distributed celerities 

Estimated from  
recession 

𝜃𝜃𝐶𝐶𝐶𝐶   Coefficient of variation for spatial 
distribution of snow 

Calibrated 

𝜃𝜃𝑣𝑣𝑟𝑟  [m/s] Mean celerity in river. Calibrated 

𝑚𝑚𝑅𝑅𝑑𝑑[m] Mean of distance distribution of the 
river network 

GIS 

𝑠𝑠𝑅𝑅𝑑𝑑[m] Standard deviation of distance 
distribution of the river network 

GIS 

𝑅𝑅𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚[m] Max of distance distribution in river 
network 

GIS 

𝜃𝜃𝑀𝑀 / 𝑚𝑚𝑑𝑑[mm] Max subsurface water reservoir/ 
Mean of subsurface water reservoir 

Calibrated/ 
Estimated from  
recession 

�̅�𝑑[m] Mean of distance distribution for 
hillslope 

GIS 

𝑑𝑑𝑚𝑚𝑐𝑐𝑚𝑚[m] Max of distance distribution for 
hillslope 

GIS 

Glacfrac Fraction of bogs in catchment GIS 

𝑚𝑚𝐺𝐺𝑇𝑇[m] Mean of distance distribution for 
glaciers 

GIS 

𝑠𝑠𝐺𝐺𝑇𝑇[m] Standard deviation of distance 
distribution for glaciers  

GIS 

Areal fraction of  
glaciers in 
elevation zones 

10 values GIS 

 1 

  2 



30 
 

Table 2 .Mean values of skill scores obtaind with simulating with DDD_𝑚𝑚𝑑𝑑 and DDD_𝜃𝜃𝑀𝑀 for 1 
73 catchments. KGE_r measures correlation, KGE_b, the bias error and KGE_g the variability 2 
error. All skill scores have an ideal value of 1. 3 

 NSE KGE KGE_r KGE_b KGE_g 

DDD_𝑚𝑚𝑑𝑑   0.73 0.80 0.87 0.92 0.94 

DDD_𝜃𝜃𝑀𝑀 0.75 0.81 0.88 0.91 0.97 

 4 

  5 
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Table 3. Root mean square error (RMSE) values for the mean and standard deviation of 1 
simulated Λ̇ for the 73 catchments 2 

 RMSE mean Λ RMSE std Λ 

DDD_𝑚𝑚𝑑𝑑   0.04 0.045 

DDD_𝜃𝜃𝑀𝑀 0.07 0.049 

 3 
 4 
Table 4. Significant spearman correlation (p-value < 0.01) between catchment characteristics 5 
and the shape, 𝛼𝛼, and scale, 𝛽𝛽, parameters of the distribution of Λ. The correlations are based on 6 
estimated model parameters for 83 Norwegian catchments. 7 

Correlation Mean of distance 
distribution, �̅�𝑑 

Lake percentage, 
L% 

Catchment 
gradient 

𝛼𝛼 - 0.33 - 
𝛽𝛽 -0.36 -0.44 0.31 

 8 
  9 
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  1 

Figure 1. Schematic of the subsurface water reservoir M of DDD. 𝐺𝐺(𝑡𝑡) represents moisture 2 

input, rain and snowmelt. The dotted horizontal line is the actual level 𝑍𝑍, of soil moisture in 𝐷𝐷. 3 

The ratio (𝐺𝐺(𝑡𝑡) + 𝑍𝑍(𝑡𝑡))/𝐷𝐷(𝑡𝑡) controls the release of excess water to 𝑆𝑆 and hence to runoff.  4 

Note that 𝐷𝐷, 𝑆𝑆 and 𝑍𝑍 are functions of time, whereas 𝑀𝑀 is fixed. 5 

Figure 2. Empirical and fitted (exponential, red line) CDFs of distances from a point in the 6 

catchment to the nearest river reach for two Norwegian catchments, Møska (top) and Narsjø 7 

(bottom). The catchments are located south and north-east, respectively, in Southern Norway. 8 

The mean distance (denoted 𝑑𝑑_𝑚𝑚𝑒𝑒𝑀𝑀𝑚𝑚 in the figure) and catchment size differ, but the shape of 9 

the distribution is similar. 10 

Figure 3. Empirical and fitted (gamma, blue line) CDFs of Λ for 6 Norwegian catchments. Λ is 11 

sampled using Eq. 3 for all observed recession events. 12 

Figure 4. Histograms (in black, green, and red) of groundwater levels at three different locations 13 

in the Groset catchment (6.33 km2) located in southern Norway. 14 

Figure 5. Location of the 73 catchments used to evaluate the new storage routine 15 

Figure 6. Histograms of catchment characteristics for the 73 catchments. a) mean of the hillslope 16 

distance distribution, �̅�𝑑, b) areal percentage of lakes, c) areal percentage of bogs, d) catchment 17 

area , e) mean elevation, f) areal percentage of glaciers, g) areal percentage of forests and h) areal 18 

percentage of bare rock. 19 

Figure 7. Skill scores for DDD_𝑚𝑚𝑑𝑑 (blue circles) and DDD_𝜃𝜃𝑀𝑀 (red crosses) for 73 Norwegian 20 

catchments. Mean skill score values are shown in horizontal lines (same color code).a) NSE, b) 21 

KGE, c) KGE_r (correlation), d) KGE_b (bias) and e) KGE_g (variability error). 22 
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Figure 8. Scatterplot of mean a) and standard deviation b) of observed Λ and simulated with 1 

DDD_𝑚𝑚𝑑𝑑 (blue circles) and DDD_𝜃𝜃𝑀𝑀 (red crosses) Λ̇ for 73 catchments. 2 

Figure 9. Histograms of storage simulations with DDD_𝜃𝜃𝑀𝑀 a) and DDD_𝑚𝑚𝑑𝑑 b). Empirical CDFs 3 

of observed Λ (black line) and simulated Λ̇ with DDD_𝜃𝜃𝑀𝑀 (red line) and DDD_𝑚𝑚𝑑𝑑 (blue line) 4 

are shown in c). 5 

Figure 10. Empirical CDFs of Λ (circles) and scaled 𝑆𝑆(𝑡𝑡) (blue line) for two Norwegian 6 

catchments . 7 

Figure 11. Snapshot of the saturated zone 𝑆𝑆 of the DDD model. The catchment is represented as 8 

one hillslope. The x-axis shows the distance from the river (right hand-side) to the top of the 9 

hillslope (left hand-side). The y-axis show the storage levels. The darker the blue colour, the 10 

more water is present in the storage level. 11 

Figure 12. Simulated storage 𝑆𝑆 plotted against simulated runoff 𝑄𝑄 for a catchment of 49 km2 (a) 12 

and a catchment of 1833 km2 (b). 13 

Figure A1. Fractional catchment area as a function of distance from the river network for the 14 

same two catchments as in Figure 2. The ratio 𝜅𝜅, between consecutive areas is shown as ”Ratio”.  15 

  16 
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