
April 15, 2016 

Dr. Dominic Mazvimavi 

Department of Earth Sciences  

Institute for Water Studies 

University of the Western Cape 

Bellville 7535 

Republic of South Africa 

 

Dear Dr. Mazvimavi, 

 

We are submitting a revised manuscript for HESS-2015-413, originally entitled “Empirical 

streamflow simulation for water resource management in data-scarce seasonal watersheds” but now 
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decision.  
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Reviewer 1:  

1. I do not see a change to Figure 3 that demonstrates greater inter-annual variability. 

We respectfully disagree with the reviewer that Figure 3 does not show inter-annual variability; for instance, 

the observed peak wet season flow in 1986 was approximately 30 CMS, while the peak wet season flow in 

1990 was almost twice that at approximately 60 CMS. While this variability may be relatively minor 

compared to seasonal variability in the flow regime, we think that the figure in its current form provides an 

accurate representation of both seasonal and inter-annual variability, as well as the ability of different model 

formulations in capturing this variability.   

 

2. The rainfall intensity calculation is simplistic and that could affect its value as an input. It 

would be better just to say that intensity data are not available. 

The text referring rainfall intensity has been removed from Section 2.2.  

 

3. I still do not think that models that respond to higher rainfall with higher runoff (or similar 

statements) can be considered physical realism and I would like to see such comments 

changed. If a model does not respond in a sensible way that is just related to really bad 



model structure. The statements in the paper represent a very broad interpretation of 

physical realism and perhaps this should be made a bit clearer. 

The references to “physical realism” have been removed from the second and third paragraphs of discussion 

section, as well as the conclusion section. Instead, we just refer to models as performing in a “reasonable” 

fashion.  

 

Reviewer 2: 

The authors have addressed most of the comments, so I believe that the manuscript should be 

considered for publication as long as the following minor aspects are first taken into account. 

1. Title. The manuscript describes a hydrological modelling problem (i.e., fitting models, 

studying interpretability, bias and uncertainty), not a water resources management one. 

Water management entails the use of decision-making techniques to influence the way water 

resources are operated or planned in a given basin. None of these techniques is used in the 

study. I understand that the authors have a different opinion, but I believe that the title is 

misleading. I would leave this to the editor. 

We propose the revised title “Machine learning methods for empirical streamflow simulation: a comparison of 

model accuracy, interpretability and uncertainty in seasonal watersheds” 

 

2. Line 24-27, page 5. The study is not only about comparing six models in terms of their 

predictive ability, as clearly explained in the last paragraph of the introduction. The authors 

may want to anticipate this important point. 

This text has been revised, removing the reference to predictive ability so it focuses only on the case study 

location.  

 

3. Line 12, page 9. Please correct the typo ‘of of’. 

This has been corrected.  

 

4. Line 15-16, page 9. Please provide the technical details of the log transformation (see 

reviewer #1, comment no. 8. How are the streamflow data distributed?  

The distributions of streamflow data, log-transformed streamflow, and streamflow anomalies in each basin are 

shown in supplementary Figure S1.  

 

5. Line 25-28, page 9. More technical details are needed here. How are the ‘anomaly themselves 

calculated based on climatic and land cover conditions that are non-stationary through time? 

Text has been added elaborating on the flow calculations in the anomaly model formulation. The anomaly 

value for a given month in the time series (for instance, June 1990) are calculated based on temperature, 

precipitation, and land cover values for that specific month. The long-term average and standard deviation 

values (estimated from all observed June flows from 1961 to 2004) are only used to convert this anomaly 

value back into a flow value.  

 



6. Figure 3 illustrates the predicted streamflow. Which model (of the six proposed) issues these 

predictions? It does not emerge from the caption. The same comment applies to Table 4. 

The model types have been added to Table 4 and to the caption of Figure 3.  
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Abstract 1 

In the past decade, machine-learning methods for empirical rainfall-runoff modeling have 2 

seen extensive development and been proposed as a useful complement to physical 3 

hydrologic models, particularly in basins where data to support process-based models are 4 

limited. However, the majority of research has focused on a small number of methods, such as 5 

artificial neural networks, despite the development of multiple other approaches for non-6 

parametric regression in recent years. Furthermore, this work has often evaluated model 7 

performance based on predictive accuracy alone, while not considering broader objectives 8 

such as model interpretability and uncertainty that  are important if such methods are to be 9 

used for planning and management decisions. In this paper, we use multiple regression and 10 

machine-learning approaches (including generalized additive models, multivariate adaptive 11 

regression splines, artificial neural networks, random forests, and M5 cubist models) to 12 

simulate monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia and 13 

compare their performance in terms of predictive accuracy, error structure and bias, model 14 

interpretability, and uncertainty when faced with extreme climate conditions. While the 15 

relative predictive performance of models differed across basins, data-driven approaches were 16 

able to achieve reduced errors when compared to physical models developed for the region. 17 

Methods such as random forests and generalized additive models may have advantages in 18 

terms of visualization and interpretation of model structure, which can be useful in providing 19 

insights into physical watershed function. However, the uncertainty associated with model 20 

predictions under extreme climate conditions should be carefully evaluated, since certain 21 

models (especially generalized additive models and multivariate adaptive regression splines) 22 

become highly variable when faced with high temperatures. 23 

 24 

25 
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1 Introduction 1 

Hydrologists and water managers have made use of observed relationships between 2 

rainfall and runoff to predict streamflow ever since the creation of the rational method in the 3 

19th century (Beven, 2011). However, the development of increasingly sophisticated machine 4 

learning techniques, combined with rapid increases in computational ability, has prompted 5 

extensive research into advanced methods for data-driven streamflow prediction in the past 6 

decade. Artificial neural networks (ANNs), regression trees, and support vector machines 7 

have been shown to be powerful tools for predictive modeling and exploratory data analysis, 8 

particularly in systems that exhibit complex, non-linear behavior (Solomatine and Ostfield, 9 

2008; Abrahard and See, 2007).  10 

While distributed physical models that accurately represent hydrologic processes can still 11 

be considered the gold standard for rainfall runoff modeling, empirical models can be a useful 12 

tool in contexts where there is limited data on physical watershed processes but long time-13 

series of precipitation and streamflow (Iorgulescu and Beven, 2004). The development of 14 

historical data centers and more recent efforts to merge satellite data with in situ observations 15 

to monitor climate and hydrology has made acceptable climate and streamflow data more 16 

widely available in data poor regions. Because obtaining measurement-based estimates of soil 17 

hydraulic parameters or details on hydrologically-relevant land management activities can be 18 

more difficult, empirical models may be particularly useful in these locations.While many 19 

criticize these approaches as “black boxes” with no relationship to underlying physical 20 

processes (See et al., 2007), a number of studies have demonstrated how empirical approaches 21 

can be used to gain insights about physical system function (e.g., Han et al., 2007; Galelli and 22 

Castelletti, 2013a). Additionally, improvements in interpretation and visualization methods 23 

can make complex models more easily interpretable (Sudheer and Jain, 2004; Jain et al., 24 

2004). Finally, data-driven models can be useful in identifying situations where observed data 25 

disagree with what would be predicted based on conceptual models, and thus identify 26 

assumptions regarding runoff generation processes that may be incorrect (Beven 2011).   27 

While there have been some applications of alternative machine learning methods, such 28 

as support vector machines (Asefa et al., 2006; Lin et al., 2006) and regression-tree based 29 

approaches (Iorgulescu and Beven, 2004; Galelli and Castelletti, 2013a) for streamflow 30 

simulation, the vast majority of research has focused on artificial neural networks (Solomatine 31 

and Ostfield, 2008). While they have demonstrated impressive predictive accuracy in a 32 
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number of different contexts, excessive parameterization of ANNs can result in overfit 1 

models that are not generalizable to unseen data (Iorgulescu and  Beven, 2004;  Gaume and 2 

Gosset, 2003). While methods exist to avoid overfitting, such as cross validation and 3 

bootstrapping, these methods are not always employed (Solomatine and Ostfield, 2008). A 4 

review by Maier et al. (2010) found that relatively few studies evaluated model performance 5 

based on parameters such as Akaike information criterion that would lead to parsimonious 6 

models that are likely to be more generalizable and interpretable. This can lead to complex 7 

models that only result in modest improvements (or no improvements at all) over much 8 

simpler approaches (Gaume and Gosset, 2003; Han et al., 2007).  9 

Even outside of a hydrology context, it has been argued that ANNs are better suited for 10 

problems aimed at prediction without any need for model interpretation, rather than those 11 

where understanding the process generating predictions and the role of input variables is 12 

important (Hastie et al., 2009). Given the importance that this interpretation plays in 13 

understanding the contexts in which a hydrologic model is appropriate and reliable, the strong 14 

opinions surrounding the use of ANNs for water resources management are perhaps not 15 

surprising. To address this issue, a number of studies have focused on highlighting the 16 

structure and mechanism by which machine learning models make predictions to confirm 17 

their physical realism and gain insight into physical watershed function. For example, some 18 

studies have demonstrated how internal ANN structure corresponds to physical hydrologic 19 

processes (Wilby et al. 2003; Jain et al., 2004; Sudheer and Jain, 2004), while others have 20 

shown how variable selection and importance can be used to gain insights about model 21 

structure and runoff generating processes (Galelli and Castelletti, 2013a and 2013b). While 22 

these studies demonstrate that a number of methods exist for characterizing model structure, 23 

they generally focus on a single model type and thus provide little insight into the 24 

comparative ease with which different model types can be interpreted.  25 

While a number of comparison studies exist that apply multiple empirical models to a 26 

given problem, finding generalizable insights from these studies is hindered because of the 27 

limited number of models and datasets evaluated. Perhaps the most comprehensive 28 

comparison to date is that of Elshorbagy et al. (2010a and 2010b), who compared six methods 29 

for data-driven modeling of daily discharge in the Ourthe River in Belgium. This work found 30 

that linear models were able to perform comparably to much more complex methods when the 31 

data content of the models were limited, or when system input-output behavior was close to 32 
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linear. However, other studies have demonstrated the value of using more complex 1 

approaches when modeling more complex rainfall-runoff behavior (e.g., Abrahart and See, 2 

2007; Asefa et al., 2006). The differing results obtained across these studies indicate that no 3 

single method is likely to be suitable for all basins, timescales, or applications.  4 

However, it is important to recognize that predictive accuracy alone is not necessarily 5 

sufficient justification for applying a model to a given problem. Models should not only be 6 

accurate, but also be fit-for-purpose (Beven, 2011; Van Griensven et al., 2012). For instance, 7 

accurate representation of low return period flows is more important in a flood forecasting 8 

model than one aimed at predicting average amounts of water available for withdrawal and 9 

human consumption. Similarly, the ability to provide insights into physical watershed 10 

function may be more important in basins where land-use change could alter the hydrologic 11 

regime, compared to a basin that is heavily urbanized and expected to remain so. The use of 12 

multiple objective functions in training data-driven models can address this to some degree by 13 

identifying models that provide sufficient balance between different performance objectives, 14 

such as accurate representation of different portions of the flow hydrograph (De Vos and 15 

Rientjes, 2008). However, more refined model training procedures will not necessarily 16 

address other aspects of model performance that make it suitable for planning  purposes, such 17 

as interpretability (Solomatine and Ostfield, 2008). More comprehensive consideration of 18 

model strengths and limitations should be standard practice in model development and 19 

selection, rather than simply evaluating global error metrics.  20 

In this work, we compare six methods for empirical streamflow prediction simulation 21 

(linear models, generalized additive models, multivariate adaptive regression splines, random 22 

forests, M5 model trees and ANNs) in their ability to predict monthly streamflow in five 23 

rivers in the Lake Tana basin in Ethiopia. This study region was selected as it provides 24 

insights into the use of data-driven models for streamflow simulation in tropical regions of the 25 

world that are underrepresented in existing studies; for instance, a review of 210 articles on 26 

water resource applications of ANNs found that over three quarters of the studies evaluated 27 

were conducted in North America, Europe, Australia, or temperate East Asia (Maier et al., 28 

2010). Existing studies conducted in tropical regions generally apply a single methodology to 29 

the basin of interest and evaluate predictive accuracy alone (see for instance, Machado et al., 30 

2011; Chibanga et al., 2003; Antar et al., 2006; Aqil et al., 2007), making it difficult to find 31 

generalizable insights into the relative advantages of different modeling approaches in these 32 
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regions. Better development of data-driven models for these regions has the potential to be 1 

particularly valuable because data limitations and complex hydrodynamic processes often 2 

hinder the use of physical watershed models, but relatively long time series of streamflow, 3 

precipitation and temperature may be available at a monthly timescale. These data, combined 4 

with information on relevant landscape change (in particular, the expansion of agricultural 5 

land cover), can be leveraged to create reasonably accurate empirical models.  6 

Models are compared not only in terms of their predictive accuracy, but also in terms of 7 

model error structure and the implications that this structure may have for water resource 8 

applications. Additionally, we evaluate the methods by which model structure and predictor 9 

variable influence can be evaluated to gain insights into physical system function for each 10 

model type. Finally, we assess the suitability of using different model types for climate 11 

change impact assessment by comparing model uncertainty in projections made for 12 

increasingly extreme climate conditions. The overall objective of this research is not to 13 

identify a single “best” model, but rather to highlight some of the strengths and limitations of 14 

different approaches, as well as demonstrate important issues that should be kept in mind for 15 

model comparisons in the future 16 

2 Data and Methods 17 

2.1 Study Area 18 

Lake Tana is located at an elevation of approximately 1800 meters in the highlands of 19 

northwest Ethiopia (Fig. 1). The catchment draining to the lake encompasses approximately 20 

12,000 square kilometers, and the four main tributaries providing water to the lake are the 21 

Gilgel Abbay (including its tributary, the Koga River), Ribb, Gumara, and Megech Rivers. 22 

Collectively, these rivers account for 93% of the inflow to the lake (Alemayehu et al., 2010). 23 

Ninety percent of rainfall in the basin occurs during the wet season from May until October, 24 

and there is significant interannual variability in precipitation with annual rainfall levels 25 

ranging from below 1000 mm to over 1800 mm (Achenef et al., 2013). Population growth and 26 

expansion of agricultural and pastoral land use in the region has resulted in substantial 27 

deforestation and land degradation, with agricultural, pastoral and settled land cover 28 

comprising over 70% of the basin’s surface area (Rientjes et al., 2011; Garede and Minale, 29 

2014; Gebrehiwot et al., 2010). There is some evidence that this has impacted the hydrology 30 
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of the rivers draining into the lake (Gebrehiwot et al., 2010). A summary of basin 1 

characteristics for the evaluation period of  1960-2004 is presented in Table 1.  2 

Approximately 2.6 million people live in the basin, and are largely settled in rural 3 

areas and reliant on rainfed subsistence agriculture. This makes the region quite vulnerable to 4 

climate variability and change, and a number of water resources infrastructure projects are 5 

planned to better manage this vulnerability and support economic development (Alemayehu 6 

et al., 2010). This includes the recent construction of the Tana-Beles hydropower transfer 7 

tunnel and the Koga River irrigation reservoir, as well as five other reservoirs planned for 8 

construction in the next 10 to 20 years (Alemayehu et al., 2010). To better understand the 9 

potential implications of this development, extensive effort has been put towards developing 10 

rainfall-runoff models for the Lake Tana basin, as well as other areas of the Ethiopian 11 

highlands with similar characteristics (van Griensven et al., 2012). Many of these studies rely 12 

on Soil and Water Assessment Tool (SWAT) models, although there are some that use water 13 

balance approaches (Van Griensven et al., 2012). While these models have in some cases 14 

demonstrated reasonably high accuracy, previous evaluations were largely based on Nash-15 

Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) which can be a flawed performance 16 

metric in highly seasonal watersheds (Schaefli and Gupta, 2007; Legates and McCabe, 1999). 17 

More importantly, the limited data available for physical parameterization of these models 18 

required a heavy reliance on model calibration, which sometimes resulted in parameterization 19 

schemes that are inconsistent with physical understanding of the region’s hydrology 20 

(Steenhuis et al., 2009; van Griensven et al., 2012). Furthermore, a number of studies relied 21 

on empirical relationships such as curve numbers and the Hargreave‘s equation that were 22 

developed for temperate regions (e.g., Mekonnen et al., 2009; Setegne et al., 2009). While 23 

these limitations are likely to introduce considerable uncertainty into model projections, 24 

particularly in situations where climatic or environmental conditions differ from those 25 

experienced in the calibration period, few studies from this region of Ethiopia include any sort 26 

of uncertainty analysis in model predictions.  Empirical models could provide a useful 27 

complement to physical models developed for the region by providing insights into physical 28 

system function and allowing for more comprehensive uncertainty analysis.  29 

2.2 Data and Model Development 30 

Models were developed using monthly streamflow, climate, and land cover data for 31 

the period from 1961 to 2004, resulting in 528 monthly observations. In each of the five major 32 
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rivers in the basin, we developed empirical models that estimated monthly streamflow as a 1 

function of climate conditions and agricultural land cover in each basin. Monthly streamflow 2 

data were taken from historic stream gauge records for each basin, as reported in feasibility 3 

studies developed for proposed irrigation projects (Alemayehu, 2010). Historic data for 4 

monthly average temperature and, monthly total precipitation, and monthly wet days in each 5 

river basin were derived from the University of East Anglia Climate Research Unit (CRU) 6 

TS3.10 gridded meterological fields (Harris et al., 2014), which are based on meteorological 7 

station observations. Historic estimates of rainfall intensity were also calculated by dividing 8 

monthly total precipitation by CRU TS3.10 records of the number of wet days in that month, 9 

but was found to be highly correlated with monthly precipitation and did not result in 10 

significant improvements to the predictive accuracy of tested models. Thus, it was not 11 

included in the final model formulations. Finally, to account for historic increases in 12 

agricultural and pastoral land cover that have occurred in the basin, the percentage of land 13 

cover used for any crop or grazing was estimated from historic land cover analyses described 14 

by Rientjes et al. (2011), Gebrehiwot et al. (2010), and Garede and Minale (2014). These 15 

studies used historic aerial photos and satellite images to estimate land cover changes in the 16 

Ribb, Gilgel Abbay, and Koga basins from the periods of 1957 to 2011. The percentage of 17 

agricultural land cover was interpolated for years when data weren‘t available, and the value 18 

of agricultural land cover in the two basins without data was assumed to be equal to average 19 

agricultural land cover in the basins with data. Land cover was assumed to change on an 20 

annual, rather than monthly basis. While this approach is prone to errors that could stem from 21 

differing rates of land use change through time and between basins, it does provide a 22 

mechanism for capturing the long-term trend of expanding agricultural land cover that has 23 

been observed throughout the Ethiopian highlands when detailed land-cover data are 24 

unavailable. Including this data improved out-of-sample predictive accuracy of the models, 25 

further suggesting that it was a valuable addition. 26 

Two general formulations for the empirical models were evaluated. The first (referred 27 

to below as the standard model formulation) was  28 

 (1) 29 

where Qb,t is the monthly streamflow in river b at time period t, Pb,t  and Tb,t are the monthly 30 

total precipitation and average temperature in river basin b at time period t, AgLCb,t is the total 31 
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percentage of agricultural land cover in basin b at time t, and εb,t is the model error. The 1 

subscripts t-1 and t-2 indicate lagged measurements from one and two months prior, and were 2 

included to roughly account for storage times longer than one month that could impact 3 

streamflow in each river. While the exact time of concentration is not known in each basin, 4 

the minor influence of of climate conditions at two months prior suggest that climate 5 

conditions from beyond this time period do not contribute significantly to flow variability. 6 

The function f represents a general function that differed between the specific models assessed 7 

and is discussed in more detail below. The logarithm of monthly streamflow was used as a 8 

response variable to keep model predictions positive. The distribution of streamflow data and 9 

log-transformed streamflow values in each basin are shown in supplementary Fig. S1.   10 

 In the second formulation, streamflow and climate anomalies were used as the 11 

response and predictor variables to better account for the highly seasonal nature of streamflow 12 

and precipitation in the region. Streamflow anomalies were calculated for each observation by 13 

subtracting the long-term average streamflow for that month (m) from the observed value and 14 

dividing this number by the long-term standard deviation of that month’s streamflow as in Eq. 15 

(2). Anomaly values thus represent how streamflow in a given month compares to the long-16 

term average flow for that month; for instance, an anomaly value of 1.0 for June of 1990 17 

would indicate that streamflow in that month was one standard deviation higher than the 18 

average June flow from 1961 to 2004. This procedure was repeated for precipitation and 19 

temperature, and these values were then used to fit models of the form described in Eq. (3). In 20 

each month of the time series, the model estimates the flow relative to the long-term average 21 

flow for that month, based on whether temperature and precipitation values were greater or 22 

less than their long-term averages, as well as the percentage of agricultural land cover in that 23 

month of the time series. In this sense, the anomaly values are calculated based on climatic 24 

and land cover conditions that vary through time. These anomaly values are then converted 25 

back to raw flow values based on the long-term average and standard deviation of flow for 26 

that month. The distribution of streamflow anomaly values in each basin are shown in 27 

supplementary Fig. S1.  It should be noted that although this formulation uses long-term 28 

averages and standard deviations to convert anomaly values to flow volumes, the anomaly 29 

values themselves are calculated based on climatic and land cover conditions that are 30 

nonstationary through time.  31 

         (2) 32 
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 1 

  (3) 2 

Six different types of models were compared using each formulation in each basin:  3 

1. A Gaussian linear regression model (GLM) using the basic stats package in the R 4 

statistical computing software (R Development Core Team, 2014) 5 

2. Gaussian generalized additive model (GAM): GAMs are a semi-parametric 6 

regression approach where the response variable is estimated as the sum of 7 

smoothing functions applied over predictor variables. These functions allow the 8 

model to capture non-linear relationships between the predictor and response 9 

variables without apriori assumptions about the form (eg., quadratic, logarithmic) 10 

of these functions, and are fit using penalized likelihood maximization to prevent 11 

model overfitting (Hastie and Tibshirani, 1990). GAMs were fit using the mgcv 12 

package in R (Wood, 2011).  13 

3. Multivariate adaptive regression splines (MARS): MARS are a non-parametric 14 

regression approach where the response variable is estimated as the sum of basis 15 

functions fit to recursively partitioned segments of the data (Friedman, 1991). 16 

MARS models were fit using the earth package in R (Milborrow, 2015). 17 

4. Artificial neural network (ANN): ANNs are a non-parametric regression approach 18 

represented by a network of nodes and links that connects predictor variables to 19 

the response variable. Each link in the network represents a function that maps the 20 

input nodes into the output node (Ripley, 1996). ANN models were fit using the 21 

nnet package in R (Venables and Ripley, 2013). 22 

5. Random forest (RF): Random forests are a rule-based, non-parametric regression 23 

approach where the model prediction is created by averaging the predicted value 24 

from multiple regression trees which are trained on separate bootstrapped 25 

resamples of the data. Each tree is fit using a small, randomly selected subset of 26 

predictor variables, resulting in reduced correlation between trees (Breiman, 27 

2001). Random forest models were fit using the randomForest package in R (Liaw 28 

and Wiener, 2002). 29 

6. M5 model: M5 models are a rule-based, non-parametric regression approach that 30 

fits a linear regression model to each terminal node of a regression tree (Quinlan, 31 

1992). M5 models were fit using the Cubist package in R (Kuhn et al., 2014).  32 
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7. Climatology model: A climatology model that simply predicted each month’s 1 

streamflow as equivalent to the long-term average streamflow for that month was 2 

included for comparison purposes. 3 

2.3 Model Evaluation 4 

When using non-parametric regression approaches, it is important to avoid overfitting a 5 

model to a given dataset because this can result in large errors in out-of-sample predictions 6 

(Hastie et al., 2009). To avoid model overfit, the caret package in R (Kuhn, 2015) was used to 7 

determine model parameters for the MARS, ANN, RF and M5 models. This package uses 8 

resampling to evaluate the effect that model parameters have on the model’s predictive 9 

performance and chooses the set of parameters that minimizes out-of-sample error (Kuhn 10 

2015). In this evaluation, 25 bootstrap resamples of the training dataset were generated for 11 

each parameter value to be assessed. A model was fit using each bootstrap sample and used to 12 

predict the remaining observations, and the parameter values that minimized average RMSE 13 

across all resamples. Details on the specific parameters evaluated for each model are 14 

presented in Table 2. While the development of more complex structures are possible for 15 

some models, this process can result in over-parameterization and poor model performance 16 

(Gaume and Gosset, 2003; Han et al., 2007). Additionally, the use of a standardized 17 

parameterization procedure allows for a more even comparison between different model 18 

types.  19 

The predictive ability of each model was assessed using 50 random holdout cross-20 

validation samples. In each sample, a random selection of years were chosen, and 21 

observations from these years were removed (“held-out”) from the dataset. The size of the 22 

held-out sample ranged from 1 to 9 years. Each model was then fit to the remaining portion of 23 

the data, using the caret package described above to determine model parameters for the 24 

MARS, ANN, RF and M5 models. These models were then used to predict streamflow for the 25 

held-out portion of the data, and both the mean absolute error (MAE) and NSE were 26 

calculated after transforming model predictions after back to the original streamflow units. 27 

Mean MAE and NSE were calculated for each model across the 50 cross-validation samples 28 

and used to choose the model with the highest predictive accuracy in each basin. This cross-29 

validation procedure provides a mechanism for evaluating how well a model will generalize 30 

to an unseen set of data while avoiding some of the problems that can arise from the use of a 31 

single calibration and validation dataset (Elshorbagy et al., 2010a; Han et al., 2007).  32 
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MAE was included as an error metric because it provides a simple and easily 1 

interpretable measure of error on the same scale as observed flow volumes. While NSE values 2 

are acknowledged to be a flawed performance metric in highly seasonal watersheds where 3 

seasonal fluctuations contribute to a substantial portion of flow variability (Schaefli and 4 

Gupta, 2007; Legates and McCabe, 1999), this metric was included to provide a rough 5 

comparison of how empirical model performance compared to the performance of physical 6 

models developed for the region. The use of alternative error metrics has been discussed 7 

extensively in the literature (for instance Pushpalatha et al., 2012; Mathevet et al., 2006; Criss 8 

and Winston, 2008), and could provide additional insights into what contributes to predicitive 9 

capabilities of different model formulations. However, this work examined predicitve 10 

accuracy based on MAE and NSE alone to allow for greater focus on how models differ in 11 

terms of error structure and uncertainty.  12 

As a rough point of comparison for the statistical models developed in this research, we 13 

also evaluated discharge estimates derived from a process-based hydrological model. The 14 

model used in this application is the Noah Land Surface Model version 3.2 (Noah LSM; Ek 15 

et. al, 2003; Chen et al., 1996).  Noah LSM was implemented for offline simulations of the 16 

Lake Tana basin at a gridded spatial resolution of 5km for the period 1979-2010 using a time 17 

step of 30 minutes. Meteorological forcing was drawn from the Princeton 50-year reanalysis 18 

dataset (Sheffield et al. 2006), downscaled to account for Ethiopia’s steep terrain using 19 

MicroMet elevation correction equations (Liston & Elder 2006). The Princeton reanalysis was 20 

selected because it provides relatively high resolution meteorological fields, including all 21 

variables required to run a water and energy balance LSM like Noah, for the period 1948-22 

present. While higher resolution and possibly higher quality datasets are available for recent 23 

years, this longer dataset was utilized to compare the process-based model to statistical 24 

models developed for a long historical period. Soil parameters for the Noah simulation were 25 

drawn from the FAO global soil database, land use was defined according to the United States 26 

Geological Survey (USGS) global 1km land cover product, and vegetation fraction was 27 

derived from MODerate Imaging Spectroradiometer (MODIS) imagery. Land cover was 28 

treated as a static parameter over the full length of the simulation, as spatially complete 29 

estimates of historical land use were not available at the required resolution and specificity.  30 

The highest performing model in each basin based on MAE was retained for more 31 

detailed evaluation of model error structure, covariate influence, and uncertainty in climate 32 



 13 

change sensitivity analysis. To generate a complete time-series of out-of-sample model 1 

predictions for error analysis, the holdout cross validation procedure was repeated for the 2 

highest performing standard-formulation and anomaly-formulation models for each basin, but 3 

this time holding out a single year of observations in each iteration. The predictions from this 4 

cross validation were used to evaluate the how model error structure might impact model 5 

predictions used for water resource applications. The influence of different predictor variables 6 

on model predictions was also assessed for the highest performing model in each basin after 7 

being fit to the complete dataset. Each predictor variable was assessed using metrics for 8 

covariate importance and influence that are unique to that model type, demonstrating how 9 

models could be used to gain physical insights about data-scarce regions and the mechanisms 10 

for generating these insights for each type of model. Partial dependence plots (Hastie et al., 11 

2009) were also generated for each covariate for the highest performing model in each basin 12 

to provide insights about how covariate influence compared across different basins and model 13 

types.  14 

Finally, two evaluations were conducted to assess uncertainty in model projections of 15 

streamflow under increasingly extreme climate conditions to better understand the 16 

implications of using different model formulations for climate change impact studies. Model 17 

projections of streamflow in different climate conditions are likely to be accompanied by 18 

considerable uncertainty, particularly when climate conditions exceed those experienced 19 

historically. To assess this uncertainty, the best performing model in each basin was used to 20 

generate streamflow predictions for 1) changes in temperature from 0 to 5° C, 2) changes in 21 

precipitation from -30 to +30%, 3) an increase in temperature to 5° C combined with a 22 

decrease in precipitation to -30%, and 4) an increase in temperature to 5° C combined with an 23 

increase in precipitation to +30%. For each of the four assessments, the models generated 24 

predictions for the 45-year historic climate record adjusted for a given degree of climate 25 

change using the delta-change method (Gleick, 1986), while holding agricultural land cover 26 

constant at 60%. In this method, monthly temperature values are simply added to the 27 

temperature change value, and monthly precipitation values are multiplied by the precipitation 28 

change percentage. Model predictions for the altered climate record were then used to 29 

calculate the average annual streamflow in each river. This process was repeated 100 times 30 

for models fit on random bootstrap resamples of the historic dataset to generate uncertainty 31 

bounds surrounding model predictions and evaluated how the uncertainty in these predictions 32 

increased as climate conditions became more extreme. It is important to recognize that these 33 
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should not be interpreted as a prediction or assessment of actual climate change impacts, but 1 

rather a measurement of the sensitivity of modeled streamflow in the basin to different 2 

climate conditions. Since one of the key motivations for using rainfall-runoff models is to 3 

understand how climate change may impact water resources, it is important to understand 4 

how model formulation contributes to this sensitivity and uncertainty. 5 

3 Results 6 

3.1 Model Accuracy and Error Structure 7 

Table 3 shows the out-of-sample cross validation errors for each model assessed in each 8 

basin. The random forest model had the lowest mean absolute error for the standard-9 

formulation model in four of the five basins, with the M5 model performing best for the Koga 10 

basin. These models outperformed the Noah LSM simulations in all basins assessed. The 11 

Noah LSM errors are for a single period of analysis and thus don’t present an exact corollary 12 

to the cross validation performed for the empirical models. Nevertheless, the significant 13 

increases in errors associated with the Noah LSM model demonstrates the difficulty 14 

associated with the use of process-based models in the region, particularly when relying on 15 

global datasets that may be unreliable at the spatial and temporal resolutions required for 16 

physical modeling. Physical models developed for monthly streamflow prediction in other 17 

basins within the Ethiopian highlands have reported NSE values ranging from 0.53 to 0.92 18 

(van Griensven et al., 2012), compared to values ranging from 0.71 to 0.87 for the random 19 

forest models developed here.  If this measure alone was used for model evaluation, these 20 

empirical models would generally be classified as having good performance based on the 21 

guidelines suggested by Moraisi et al. (2007). However, the climatology model outperforms 22 

the best standard formulation models in all basins except Megech, indicating that in the 23 

majority of basins the errors from the fitted empirical models are higher than those that result 24 

from simply using the long-term monthly average for each month’s prediction. This is due to 25 

the fact that seasonality accounts for such a large portion of the variability in monthly flow 26 

values, and demonstrates how high NSE values can be quite easy to obtain in seasonal basins.  27 

Evaluation of anomaly model errors indicates that the models using this formulation 28 

achieve better predictive accuracy than those using the standard formulation, and are able to 29 

outperform the climatology model based on both NSE and MAE in all basins. However, the 30 

highest performing models in each basin varies more when the anomaly formulation is used, 31 
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with the GLM, GAM, random forest, and M5 models all minimizing MAE in different basins. 1 

In all basins except Koga, the highest performing model significantly outperformed the 2 

climatology model based on paired Wilcoxon rank-sum tests (Bonferroni-corrected p-value < 3 

0.01). 4 

Further exploration of model residuals indicates another important advantage of using 5 

the anomaly model formulation. In the standard model formulation, model residuals appear to 6 

be non-random. Example autocorrelation plots are shown for the Gilgel Abbay and Ribb 7 

Rivers in Fig. 2, and demonstrate that a positive autocorrelation exists at the 12 month time 8 

lag. For brevity, only plots for two rivers are shown, although this autocorrelation existed in 9 

the standard-formulation models for all basins except Megech (Table 4). This autocorrelation 10 

occurs because the standard-formulation models consistently underestimate wet-season 11 

streamflow while overestimating dry-season flows, as is apparent in hydrographs of observed 12 

and predicted streamflow (Fig. 3). Because wet-season flows contribute such a large portion 13 

of the total annual flow volume, this results in regular underestimation of aggregate values 14 

such as mean annual flow (Table 4). This autocorrelation is reduced in the anomaly-15 

formulation models, meaning that they are better able to capture the peak flow volumes 16 

experienced in the wet season and do not underestimate mean annual flow to the same degree 17 

that the standard formulation models do. 18 

3.2 Model Structure and Covariate Influence 19 

Evaluating the relationship between predictor covariates and streamflow response can 20 

lend insight into the physical processes underlying runoff generation in each basin. There are 21 

two components of this relationship that can be evaluated: how much each covariate 22 

contributes to model accuracy (covariate importance), and the direction and nature of the 23 

relationship between covariate values and model response (covariate influence). In many 24 

machine-learning models, complete description of the all of the mathematical relationships 25 

within the model (for instance, through description of each tree comprising a random forest 26 

model) is infeasible, requiring the use of other mechanisms for understanding covariate 27 

importance and influence.  However, because each model type is structured in a different way, 28 

these mechanisms differ. This section first describes the mechanisms available for obtaining 29 

insights about covariate influence in each of the highest performing models. To provide a 30 

mechanism for comparing results across different basins, each basin model is then assessed 31 

using the general approach of partial dependence plots.  32 
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 In the Gilgel Abbay and Koga basins, the highest performing model was a simple 1 

linear regression model. These models can be evaluated by reviewing model coefficients and 2 

associated p-values, as shown in Table 5. In a standard linear regression, model coefficients 3 

can be interpreted as the mean change in the response variable that results from a unit change 4 

in that covariate when all others are held constant. These coefficients are for streamflow 5 

anomalies rather than raw values, making their immediate interpretation less intuitive. For 6 

instance, in the Gilgel Abbay model an increase of one standard deviation in precipitation 7 

results in an increase of 0.22 standard deviations in flow.  The associated p-value for each 8 

coefficient evaluates a null hypothesis that the true coefficient value is equal to zero given the 9 

other covariates in the model, and thus has no influence on the response variable.  10 

 Evaluating model structure based on regression coefficients is appealing due to their 11 

simplicity and familiarity. However, it is important to keep in mind that the above 12 

interpretations rely on specific assumptions regarding model error distributions. Examination 13 

of fitted model residuals from both basins indicate that errors are autocorrelated in the Koga 14 

basin and not normally distributed due to the presence of outliers in both basins. Non-15 

normality and autocorrelation both impact the t statistics and f statistics used to test for the 16 

significance of model coefficients, and thus the p-values for these models are likely biased 17 

(Montgomery et al., 2012).  18 

    Interpretation of variable influence in GAMs is based on the estimated degrees of 19 

freedom (EDF) a covariate’s smoothing function s(Xi) uses within a model (Hastie and 20 

Tibushini, 1986). An EDF value of one or below indicates a linear function relating the 21 

response variable to that covariate, while values greater than one represent a non-linear 22 

smoothing function. An EDF value of zero indicates that the covariate smoothing function is 23 

penalized to zero (meaning it has no influence on model predictions). In the model for the 24 

Megech River, the terms for lagged temperature at one and two months, as well as 25 

precipitation lagged at two months were all smoothed to zero. Of the remaining covariates, 26 

lagged precipitation has a linear impact on model response, while precipitation, temperature 27 

and land cover have non-linear impacts. Smoothing functions can be plotted to gain more 28 

insight about these relationships (Fig. 4). The functions for precipitation anomaly, lagged (one 29 

month) precipitation anomaly, and agricultural land cover show a positive relationships with 30 

streamflow, while the function for temperature anomaly predicts low streamflow at both high 31 

and low anomalies.  32 
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P-values test the null hypothesis that a covariate’s smoothing function is equal to zero, 1 

but rest on the assumption that model residuals are homoscedastic and independent (Wood, 2 

2012). Similar to the linear models, residuals in the Megech GAM model appear to be both 3 

autocorrelated and heteroscedastic, meaning that a formal statistical interpretation of this 4 

value may be inappropriate and that confidence bounds around smoothing functions might be 5 

misleading.  6 

The M5 cubist model fit for the Gumara basin is an ensemble of 100 small M5 7 

regression trees. In each tree, the model splits observations based on logical rules related to 8 

one or more covariates and fits a linear regression model to each set of observations. The final 9 

model prediction is the average across all of the individual trees. Using this sort of ensemble 10 

approach can reduce model variance and improve accuracy if the individual trees are 11 

unbiased, uncorrelated predictors (Breiman 1996). This can be useful in avoiding models that 12 

are overfit to the data, but can reduce model interpretability since direct visualization of 13 

model structure becomes impractical as the number of trees increases. However, the 14 

frequency with which individual covariates are used as splitting points within trees and as 15 

regression coefficients can provide some insights about covariate importance (Table 5; note 16 

that because multiple covariates can be used for rules and linear models, these don’t 17 

necessarily add to 100%). Model rules were largely based on land cover, with some rules 18 

based on precipitation. These two covariates were also used most frequently in linear 19 

regressions at model nodes, followed by temperature (current and 1-month lag) and 1-month 20 

lagged precipitation. Notably, climate data from 2 months lagged were not used at all. While 21 

this can be useful in identifying which covariates have the largest impact on model 22 

predictions, it doesn’t provide any information regarding the nature or direction of that 23 

influence.  24 

 Similarly, the random forest model developed for the Ribb basin is an ensemble of 25 

regression trees in which the final model prediction is the average of the predictions from 26 

each individual tree. However, random forests use standard regression trees that do not 27 

incorporate linear regression models at terminal nodes. Variable importance within the final 28 

model is measured by recording the increase in out-of-sample MSE that results when a 29 

covariate is randomly permuted for each tree in the ensemble. This increase in error is then 30 

averaged across all trees in the ensemble. In our model, the largest increases in error resulted 31 

from permutation of land cover and temperature, followed by 2-month lagged temperature 32 
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and precipitation. Covariate influence can be evaluated through the use of partial dependence 1 

plots, which measure the change in model predictions that result from changing the value of 2 

one parameter while leaving all other covariates constant (Hastie et al., 2009). Partial 3 

dependence plots indicate that model predictions of streamflow are higher when the percent of 4 

agricultural land cover is greater than approximately 75%, when temperatures anomalies are 5 

low, and when precipitation anomalies are high. However, it appears that the plot for lagged 6 

temperature might be sensitive to outliers at high temperature anomalies as evidenced by the 7 

large increase that occurs above an anomaly of +2, in a region where very few data points are 8 

present.  9 

Many of the measures used to evaluate covariate importance and influence are model 10 

specific, making inter-basin and inter-model comparisons difficult. However, the partial 11 

dependence plots used in the randomForest R package can be developed for any model and 12 

provide a mechanism for comparing the influence that covariates have in the different models 13 

and basins (Shortridge et al., 2015). Partial dependence plots were generated for each basin’s 14 

best performing model and results are shown for climatic variables in Fig. 6. As expected, 15 

models generally respond positively to increases in precipitation and negatively to increases 16 

in temperature, with the greatest influence in the current month and decreasing influence at 17 

one and two months prior. The influence of the current month’s precipitation is linear in three 18 

of the five basins; while this is constrained to the be the case in the Gilgel Abbay and Koga 19 

basins due to the use of a linear model, the linear response in Gumara is not required from the 20 

M5 model structure. Interestingly, both Megech and Ribb demonstrate a linear response to 21 

negative precipitation anomalies, but little response to positive anomalies. Streamflow 22 

response to temperature is strongest in the Gumara basin; interestingly, this is the basin with 23 

the smallest response to precipitation.  24 

The partial dependence plots for the percentage of the basin classified as agricultural 25 

land cover indicates a positive relationship between agricultural land cover and streamflow in 26 

all basins except for the Gilgel Abbay (Fig. 7). This would be expected if deforestation had 27 

contributed to a decrease in evapotranspiration in the contributing watersheds. The exact 28 

nature of this response differs across the different rivers, with the relatively minor responses 29 

in Koga and Ribb, and much stronger responses in the Gumara and Megech basins. However, 30 

this plot also demonstrates some of the limitations associated with different model structures. 31 

The plot for Gumara is highly erratic, indicating that the M5 model might be overfit to the 32 
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training dataset, despite the use of model averaging to reduce model variance. Additionally, 1 

the GAM used in the Megech basin was only trained on agricultural land cover values up to 2 

77%; while this model may be accurately representing the impact of land cover changes 3 

within this range, extrapolating this relationship to higher values leads to predictions that may 4 

not be physically realistic. 5 

3.3 Climate Change Sensitivity and Uncertainty Assessment 6 

Fig. 8 shows the results of the climate change sensitivity analysis for total flow from all 7 

five tributaries, with dashed lines representing 95% confidence intervals obtained through 100 8 

bootstrapped resamples of the data set. As would be expected, increasing temperature 9 

independently of precipitation results in decreasing total flows while increasing precipitation 10 

results in higher flows. However, the uncertainty surrounding temperature sensitivity 11 

increases at higher changes in temperature, while the uncertainty surrounding precipitation 12 

sensitivity remains relatively constant, even at extreme changes in annual precipitation. The 13 

bottom panels of the figure show the sensitivity of total inflows to concurrent changes in 14 

temperature and precipitation. Unsurprisingly, decreasing precipitation combined with higher 15 

temperatures results in greater decreases in total flow than when temperature and precipitation 16 

are varied independently. However, even if temperature increases are combined with higher 17 

precipitation, total flows decline in the majority of bootstrap resamples.  18 

The uncertainty surrounding temperature sensitivity is a key limitation to using data-19 

driven approaches for climate impact assessment. To better understand which models and 20 

basins are contributing to this uncertainty, Fig. 9 shows how the coefficient of variation (the 21 

standard deviation of predictions from all bootstrap samples divided by the mean of these 22 

predictions) varies as a function of temperature change in each basin. From this figure, it is 23 

apparent that the Megech model is by far the largest contributor to model uncertainty; 24 

however, it is not clear whether this contribution is due to model structure (the GAM model 25 

used for the Megech River) or characteristics associated with the basin itself. To investigate 26 

how different model structures contributed to this uncertainty, the bootstrap resampling 27 

procedure was used to assess uncertainty in streamflow predictions in the Gumara River from 28 

all model types. This basin was chosen because all six models were able to outperform the 29 

climatology model, and thus could be considered good choices for model selection based on 30 

predictive accuracy alone. The results indicate that the increase in uncertainty is highest, and 31 

increases non-linearly, in the GLM, GAM, and MARS models. Uncertainty increases more 32 
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slowly in the ANN and M5 models, and no noticeable increase in uncertainty is apparent in 1 

the random forest model. 2 

4 Discussion 3 

The objective of this study was not to identify the “best” approach for empirical 4 

rainfall-runoff modeling, as this is likely to be highly specific to the basin and problem to 5 

which a model is applied. However, we hope that the comparison conducted here can 6 

highlight some of the strengths and limitations of different approaches, as well as demonstrate 7 

some important issues that should be kept in mind for model comparisons in the future. One 8 

important finding was the limitation with using NSE as an error metric. Our results confirm 9 

previous studies that found that even uninformative models able to capture basic seasonality 10 

are able to achieve high NSE values (Legates and McCabe, 1999; Schaefli and Gupta, 2007), 11 

and provide further evidence indicating that high NSE values should be considered a 12 

necessary but not sufficient requirement for model usage in planning situations. For instance, 13 

the simple climatology model used for comparison purposes here is able to achieve high NSE 14 

values, but would be unsuitable for planning since it does not account for any interannual 15 

variability nor the possibility for non-stationary conditions caused by changing climate and 16 

land cover. In particular, understanding error structure can be valuable in evaluating whether 17 

model biases might undermine the model’s suitability for management activities. In our 18 

example, the autocorrelation present in the standard-formulation models meant that these 19 

models were consistently underestimating wet-season flows, resulting in low estimates of the 20 

total annual flow in the rivers. Since multiple reservoirs are planned for construction on these 21 

rivers to support irrigation activities, this bias could lead to poor estimates of how much water 22 

is available for agricultural use in the short term (ie., seasonal forecasting) and long-term (due 23 

to climate change). Interestingly, difficulties in accurately capturing high flows has been 24 

observed in physical hydrologic models for Ethiopia (e.g., Setegne et al., 2011; Mekonnen et 25 

al., 2009) and more generally  (e.g., Wilby, 2005). The implications of this limitation should 26 

be carefully evaluated before using models for water resource planning or (more importantly) 27 

flood risk evaluation.  28 

Depending on the model type used, different mechanisms are available to evaluate 29 

covariate importance and influence within the model. This evaluation can be useful in 30 

confirming that the model is replicating physically realistic relationships between input and 31 

output variables in a reasonable manner. While the relationships identified in this evaluation 32 
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are fairly straightforward (for example, increasing runoff with higher precipitation and lower 1 

temperatures), these simple relationships are still important in highlighting the mechanisms by 2 

which the models make predictions so that they are not “black boxes.” For instance, Han et al. 3 

(2007) explore how ANN flood forecasting models responds to a double-unit input of rain, 4 

finding that some formulations respond in a hydrologically meaningful way to increased 5 

rainfall intensity, while others do not. Similarly, Galelli and Castelletti (2013a) describe how 6 

input variable importance can be used to highlight differences in hydrologic processes 7 

between an urbanized and forested watershed. The easy manner in which covariate 8 

relationships within the GAM and random forest models can be visualized using a single 9 

command within their respective R packages is a strong advantage to these approaches 10 

compared to methods such as M5 model trees and artificial neural networks. Of course, partial 11 

dependence plots can be developed for any model type (as was done in this research), but 12 

code must be written by the user and thus requires a higher degree of effort than is necessary 13 

for in-package functions. A downside to most machine-learning models is that they do not 14 

support the statistical formalism in assessing variable importance that is possible when linear 15 

models and GAMs are used. However, this formalism often rests on assumptions regarding 16 

model residuals that are unlikely to be met in many hydrologic models (Sorooshian and 17 

Dracup, 1980).  18 

Within the Lake Tana basin, evaluation of covariate influence indicates that each 19 

basin’s model is performing in a physically realisticreasonable manner, with a runoff 20 

increasing with higher precipitation levels and decreasing with higher temperatures. The 21 

influence of precipitation and temperature is greatest in the current month, and progressively 22 

declines to a very small influence after two months. This suggests that long-term (multi-23 

month) storage does not significantly contribute to variability in flow volumes. One 24 

interesting finding is the non-linear relationship between concurrent month precipitation and 25 

runoff that exists in the Megech and Ribb basins, which suggests that above a certain point 26 

increasing rainfall does not result in a commiserate increase in streamflow. Other studies have 27 

noted the dampening effect that wetlands and floodplains have had on river flows in the 28 

region (Dessie et al., 2014; Gebrehiwot et al., 2010); this phenomenon could explain the non-29 

linear relationship identified in this work. The clearly negative relationship between 30 

temperature and runoff demonstrates the degree to which upstream evapotranspiration 31 

impacts streamflow and suggests that evapotranspiration is largely energy-limited, rather than 32 

water-limited. Increasing agricultural land-use appears to be associated with higher runoff in 33 
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all rivers except for Gilgel Abbay (where no clear relationship between land cover and runoff 1 

was observed), and suggests that agricultural expansion at the expense of forest cover has 2 

reduced the evaporative component of the water balance in these basins. Finally, the relative 3 

performance of different model formulations themselves can also be informative. For 4 

instance, the improved performance of the anomaly-formulation models indicates that the 5 

relationship between precipitation and runoff varies throughout the year and could point 6 

towards differences in runoff-generating mechanisms in the wet and dry seasons that have 7 

been observed in other case studies (Wilby, 2005). 8 

One limitation with data-driven approaches for streamflow prediction is that the 9 

relationships they model can only generate reliable predictions for conditions that are 10 

comparable to those experienced historically. Using these models to generate predictions for 11 

conditions that exceed historic variability is likely to introduce considerable uncertainty into 12 

their projections. Our results indicate that uncertainty in projections of streamflow under 13 

changing precipitation is relatively constant, whereas uncertainty increases markedly in 14 

projections of streamflow under increasing temperature. This result is not surprising when one 15 

considers the basin’s climate, which is characterized by highly variable rainfall but fairly 16 

consistent temperatures (Table 6). A temperature increase of 3° C equates to almost two 17 

standard deviations beyond the historic mean, whereas a change in precipitation of 30% is 18 

well within the range of conditions experienced historically. One would expect that in other 19 

climates (for example, temperate watersheds with only minor changes in rainfall throughout 20 

the year), this relationship could be reversed. Despite the uncertainty that exists in projections 21 

of streamflow under changing temperature, total annual flow appears to be quite sensitive to 22 

increasing temperatures. In fact, the decreases in streamflow due to increasing temperature 23 

appears likely to be more than enough to counteract any increases in streamflow resulting 24 

from higher precipitation that is projected for the region in some global circulation models 25 

(GCMs). This is consistent with the work of Setegne et al. (2011), who used projections from 26 

multiple GCMs as input for a SWAT model developed for the region and found that 27 

streamflow decreased in the majority of emissions scenarios and models, even when 28 

precipitation increased. Unfortunately, this suggests that any hopes for a “windfall” of 29 

additional water to support agriculture and hydropower in the region under climate change 30 

may be unfounded.  31 
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 Repeating the climate change sensitivity experiment with multiple models fit to the 1 

Gumara watershed indicated that the MARS, GAM, and linear models all result in the largest 2 

increase in uncertainty at high temperatures. This indicates that when models are fit to slightly 3 

different bootstrap resamples of the historic dataset, the projected changes in streamflow at 4 

high temperature changes can be highly erratic. This is likely due to the fact that extrapolating 5 

the relationships that are observed between historic temperature and streamflow to higher 6 

temperatures can lead to very large changes in streamflow. Fitting the models to bootstrap 7 

resamples of the data results in minor changes to these relationships that can result in widely 8 

varying projections when the models are used to predict streamflow at higher temperatures, 9 

particularly when these relationships are nonlinear (as in the GAM). At the other end of the 10 

spectrum, the random forest model exhibits almost no increase in uncertainty at high 11 

temperatures, meaning that projections of streamflow at high temperatures are consistent 12 

across the bootstrap resamples. This is likely the result of the random forest model structure. 13 

The predicted value for each of a regression tree’s terminal nodes is the average of all 14 

observations that meet the conditions described for that node. Thus, the model will not predict 15 

values beyond those experienced historically, even if covariate values exceed those contained 16 

within the historic dataset. Thus, this model is likely to underestimate the change in 17 

streamflow that results from increasing temperatures. 18 

5 Conclusions 19 

In this work, we compared multiple methods for data-driven rainfall-runoff modeling 20 

in their ability to simulate streamflow in five highly-seasonal watersheds in the Ethiopian 21 

highlands. Despite the popularity of ANNs in research on streamflow prediction to date, 22 

ANNs were not found to be the most accurate model in any of the five basins evaluated. Other 23 

methods, in particular GAMs and random forests, are able to capture non-linear relationships 24 

effectively and lend themselves to simpler visualization of model structure and covariate 25 

influence, making it easier to gain insights on physical watershed functions and confirm that 26 

the model is operating in a physically realisticreasonable manner. However, it is important to 27 

carefully evaluate model structure and residuals, as these can contribute to biased estimates of 28 

water availability and uncertainty in estimating sensitivity to potential future changes in 29 

climate. In particular, autocorrelation in model residuals can result in underestimation of 30 

aggregate metrics such as annual flow volumes, even in models with high NSE performance. 31 

Uncertainty in GAM projections was found to rapidly increase at high temperatures, whereas 32 
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random forest projections may be underestimating the impact of high temperatures on river 1 

flows. Thorough consideration of this uncertainty and bias is important any time that models 2 

are used for water planning and management, but especially crucial when using such models 3 

to generate insights about future streamflow levels. By considering multiple model 4 

formulations and carefully assessing their predictive accuracy, error structure and 5 

uncertainties, these methods can provide an empirical assessment of watershed behavior and 6 

generate useful insights for water management and planning. This makes them a valuable 7 

complement to physical models, particularly in data-scarce regions with little data available 8 

for model parameterization, and warrants additional research into their development and 9 

application. 10 
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Table 1. Study basin characteristics over the evaluation period of 1961 to 2004. 1 

Basin 

Drainage  

area 

above 

gauge 

(km2) 

Average 

annual  

streamflow 

at gauge 

(MCM) 

Standard 

deviation of 

annual 

streamflow 

(MCM) 

Coefficient 

of 

variation 

of annual 

streamflow 

Average 

temp  Average  monthly 

rainfall [mm] 

(°C) May-Oct Nov-Apr 

Gilgel  Abbay 2664 1883 217 0.12 15.7 206 39.3 

Gumara 385 236 71 0.30 17.7 186 29 

Koga 200 114 31 0.27 15.7 206 39.3 

Megech 424 172 66 0.31 20.6 234 41.4 

Ribb 677 210 83 0.36 18.2 263 45.8 

2 
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Table 2. Model parameters evaluated through cross validation. 1 

Model 

type 

R package  Parameters defined in model formulation Parameters selected through cross 

validation 

GLM stats family = Gaussian NA 

GAM mgcv family = Gaussian 

method = generalized cross validation 

variable selection = true 

basis dimension k = 3 

epsilon = 10-7 

maxit = 200 

 

MARS earth nk = 21 

thresh = 0.001 

fast.k = 20 

pmethod = backward 

degree = {1, 2, 3} 

nprune = {5, 10, 15, 20, 25} 

ANN nnet weights = 1 

rang = 0.7 

maxit = 100 

maxNWts = 1000 

abstol = 10-4  

reltol = 10-8 

size = {1, 2, 4, 8, 20} 

decay = {0.0, 0.1, 0.5, 1.0, 2.0}  

RF randomForest ntree = 500 

sampsize =  528 

nodesize = 5 

nPerm = 1 

mtry = {2, 3, 4, 5, 6, 7} 

M5 Cubist rules = 100 

extrapolation = 100 

sample = 0 

committees = {10, 50, 100} 

neighbors = {0, 5, 9} 

2 
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 1 

Table 3. Cross validation errors for each assessed model. 2 

Standard Formulation GLM GAM MARS RF M5 ANN Climatology Noah LSM 

MAE 

Gilgel Abbay 30.78 18.54 16.75 14.89 15.11 17.22 10.42 28.11 

Gumara 4.29 3.41 3.28 2.67 2.96 3.15 2.57 3.95 

Koga 1.50 1.30 1.38 1.20 1.17 1.23 1.06 1.97 

Megech 4.45 2.64 2.83 2.37 2.53 3.04 2.54 4.09 

Ribb 4.69 2.98 3.50 2.97 3.27 3.17 2.81 7.01 

NSE 

Gilgel Abbay -0.02 0.81 0.83 0.87 0.86 0.84 0.95 0.59 

Gumara 0.04 0.51 0.61 0.80 0.66 0.70 0.81 0.48 

Koga 0.45 0.71 0.65 0.76 0.77 0.76 0.83 0.25 

Megech -1.85 0.63 0.46 0.73 0.65 0.52 0.71 0.41 

Ribb -1.14 0.71 0.39 0.71 0.31 0.67 0.73 -0.75 

Anomaly Formulation GLM GAM MARS RF M5 ANN Climatology Noah LSM 

MAE 

Gilgel Abbay 9.73 9.82 10.10 10.12 9.94 9.79 10.42 28.11 

Gumara 2.22 2.25 2.43 2.23 2.16 2.22 2.57 3.95 

Koga 1.03 1.06 1.08 1.09 1.05 1.05 1.06 1.97 

Megech 2.49 2.48 2.63 2.66 2.69 2.50 2.54 4.09 

Ribb 2.79 2.76 2.84 2.70 2.78 2.77 2.81 7.01 

NSE 

Gilgel Abbay 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.59 

Gumara 0.85 0.85 0.82 0.85 0.86 0.86 0.81 0.48 

Koga 0.83 0.82 0.81 0.81 0.82 0.82 0.83 0.25 

Megech 0.73 0.72 0.65 0.66 0.61 0.72 0.71 0.41 

Ribb 0.73 0.75 0.72 0.75 0.73 0.74 0.73 -0.75 

3 
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 1 

Table 4. Residual autocorrelation factors at a 12-month lag for the highest performing 2 

standard formulation and anomaly formulation models in each basin (with model type in 3 

parenthesis), and resulting mean annual observed and predicted flow. 4 

 5 

 

Autocorrelation Factors  Mean Annual Flow (MCM) 

Standard Anomaly  Observed Standard Anomaly 

Gilgel 0.33 (RF) 0.11 (GLM)  22,925 20,703 22,958 

Gumara 0.29 (RF) 0.07 (M5)  2,870 2,392 2,734 

Koga 0.04 (M5) 0.10 (GLM)  1,383 1,333 1,386 

Megech 0.05 (RF) 0.04 (GAM)  2,035 1,637 2,028 

Ribb 0.21 (RF) -0.01 (RF)  2,575 1,969 2,615 

6 
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Table 5. Covariate importance measurements from each basin’s model 1 

Model type Linear model 
Generalized 

additive model M5 model tree Random forest 

Measure of 

influence 

Linear regression coefficients  

and associated p-values 

Estimated 

degrees of 

freedom (EDF) 

and associated p-

values 

Covariate usage in 

tree rules and model 

coefficients 

Increase in 

MSE when 

covariate is 

randomly 

permuted 

Basin Gilgel Abbay Koga Megech Gumara  Ribb 

Covariate 
Coefficient 

estimate 
P-value 

Coefficient 

estimate 
P-value EDF P-value 

Tree 

rules 

Model 

coefficients 

Percent 

increase in 

MSE 

Prec 0.22 < 0.01 0.24 < 0.01 1.346 < 0.01 5% 58% 7.71% 

Prec (lag 1) 0.10 0.03 0.16 < 0.01 0.624 0.08 0% 19% 2.79% 

Prec (lag 2) 0.01 0.74 0.05 0.26 0 0.29 0% 0% 1.10% 

Temp -0.09 0.08 -0.07 0.17 1.023 0.07 0% 47% 12.74% 

Temp (lag 1) -0.04 0.49 -0.06 0.22 0 0.32 0% 46% 4.97% 

Temp (lag 2) -0.01 0.81 -0.09 0.08 0 0.56 0% 0% 8.16% 

Agr. LC 0.00 0.33 0.02 0.01 1.986 < 0.01 86% 73% 15.21% 

2 
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Table 6. Mean and standard deviation values for temperature, wet-season rainfall, and dry-1 

season rainfall in each basin. 2 

 3 

 Temperature 

(°C) 

Wet season 

rainfall 

(mm/month) 

Dry season 

rainfall 

(mm/month) 

Mean SD Mean SD Mean SD 

Gilgel  Abbay 15.7 1.54 206 145 39.3 56.5 

Gumara 17.7 1.55 186 137 29.0 43.6 

Koga 15.7 1.54 206 145 39.3 56.5 

Megech 20.6 1.75 234 118 41.4 60.9 

Ribb 18.2 1.61 263 115 45.8 57.0 

4 
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Figure 1. Map of Lake Tana and surrounding rivers 1 

 2 

3 
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Figure 2. Autocorrelation in model residuals for the Gilgel Abbay and Ribb Rivers 1 

 2 

3 
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Figure 3. Example observed and predicted flows from the standard formulation RF model and 1 

anomaly formulation M5 model for the Gumara River from 19895 to 19912000. 2 

 3 

4 



 40 

Figure 4. Plots of the smoothing functions used in the Megech River GAM. Hash marks along 1 

the x-axis indicate observation values of each covariate. 2 

 3 
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Figure 5. Partial dependence plots for the Ribb River random forest model. Hash marks along 1 

the x-axis show covariate sample decile values. 2 

 3 

4 
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Figure 6. Partial dependence plots for climate covariates in the highest performing model in 1 

each basin. Model type is indicated in parentheses. 2 

 3 
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Figure 7. Partial dependence plot for agricultural land cover in the highest performing model 1 

in each basin. Model type is listed in parentheses for each basin. Dashed lines 2 

indicate values that exceed historic levels of agricultural land cover experienced in 3 

that basin. 4 

 5 
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 44 

Figure 8. Projected changes in total streamflow (relative to current long-term average) under 1 

changing climate conditions. The top two panels show the sensitivity to changes in 2 

temperature and precipitation when they are varied independently. The bottom panel 3 

shows sensitivity to changing temperature in conjunction with decreasing (left 4 

panel) and increasing (right panel) precipitation.  Dashed lines represent 95% 5 

confidence bounds from bootstrap resampling. 6 

 7 

8 
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Figure 9. Changes in the coefficient of variation across bootstrap resamples from the highest 1 

performing model in each basin (left panel) and multiple models all applied to the 2 

Gumara basin (right panel). 3 

 4 


