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Abstract 10 

Statistical downscaling is a commonly used technique for translating large-scale climate model 11 

output to a scale appropriate for assessing impacts. To ensure downscaled meteorology can be 12 

used in climate impact studies, downscaling must correct biases in the large-scale signal. A 13 

simple and generally effective method for accommodating systematic biases in large-scale model 14 

output is quantile mapping, which has been applied to many variables and shown to reduce 15 

biases on average, even in the presence of non-stationarity. Quantile mapping bias correction has 16 

been applied at spatial scales ranging from areas of hundreds of kilometers to individual points, 17 

such as weather station locations. Since water resources and other models used to simulate 18 

climate impacts are sensitive to biases in input meteorology, there is a motivation to apply bias 19 

correction at a scale fine enough that the downscaled data closely resembles historically 20 

observed data, though past work has identified undesirable consequences to applying quantile 21 

mapping at too fine a scale. This study explores the role of the spatial scale at which the quantile-22 

mapping bias correction is applied, in the context of estimating high and low daily streamflows 23 

across the Western United States. We vary the spatial scale at which quantile mapping bias 24 

correction is performed from 2° (~200 km) to 1/8° (~12 km) within a statistical downscaling 25 

procedure, and use the downscaled daily precipitation and temperature to drive a hydrology 26 

model. We find that little additional benefit is obtained, and some skill is degraded, when using 27 

quantile mapping at scales finer than approximately 0.5° (~50 km). This can provide guidance to 28 

those applying the quantile mapping bias correction method for hydrologic impacts analysis. 29 
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1 Introduction 30 

Climate modeling is an imperfect science, with uncertainties in simulated land surface climate 31 

that vary in space and with the forecast time horizon (Hawkins and Sutton, 2009, 2011). This 32 

presents a challenge when projecting climate change impacts at a local and regional scale. The 33 

most recent coordinated global climate model (GCM) experiments conducted as part of the fifth 34 

Coupled Model Intercomparison Project  (CMIP5, Taylor et al., 2012) have been used to 35 

simulate historic and future climate. These CMIP5 runs have demonstrated improvements over 36 

earlier generations of models, both in the representation of physical processes and the simulated 37 

fields (Flato et al., 2013;Watterson et al., 2014). While improved skill over the United States has 38 

been found for both mean and variability of climate (Sheffield et al., 2013a;Sheffield et al., 39 

2013b), biases remain that must be accommodated for projecting future impacts, for example, on 40 

streamflow characteristics (Wood et al., 2004). 41 

In this study we focus on a common method used for bias correction, namely quantile mapping. 42 

Quantile mapping is effective at removing some climate model biases, is relatively simple to 43 

apply, and has been incorporated into many statistical downscaling schemes used for local and 44 

regional impacts analysis (Li et al., 2010;Maraun et al., 2010;Panofsky and Brier, 1968;Piani et 45 

al., 2010;Themeßl et al., 2011). While quantile mapping bias correction does inherently assume 46 

that the biases exhibited by a climate model remain constant in future projections, there is some 47 

indication that this is not an unreasonable assumption (Maraun, 2012;Maurer et al., 2013), 48 

especially where biases are driven by persistent climate model characteristics, such as inadequate 49 

representation of topography. Other discrepancies between historic climate model simulations 50 

and observations, especially due to internal natural variability (for example, El Niño events 51 
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simulated by a freely evolving GCM not coinciding with observations), are not necessarily 52 

model biases (Eden et al., 2012), but are corrected nonetheless by quantile mapping, which is 53 

blind to the source of the bias. For this reason, the training (or calibration) period for the bias 54 

correction should be long enough (typically 10-30 years) so that internal variability is not a 55 

dominant source of bias between the climate model and observations.  56 

In statistical downscaling approaches that incorporate a quantile mapping bias correction, large-57 

scale climate model output is typically first interpolated onto a regular grid and then bias 58 

corrected using quantile mapping with a gridded observational data set at the same spatial 59 

resolution (Maurer et al., 2010b;Thrasher et al., 2012). This was originally developed as a 60 

method of convenience to place the climate models, which operate natively at many different 61 

spatial resolutions, onto a single grid to enable straightforward intercomparisons. Using a 62 

common grid for all climate models also ensures that the bias corrected output from each 63 

(regridded) climate model, for the time period on which the quantile mapping is calibrated, is 64 

statistically identical. 65 

The scale at which global climate models were bias corrected for the archive of downscaled 66 

climate model output (from the prior CMIP3 experiment (Meehl et al., 2007)), described by 67 

Maurer et al. (2007) for the conterminous United States was 2° (latitude and longitude), or 68 

roughly 200 km, approximately corresponding to the finest spatial resolution of the participating 69 

climate models. Using similar logic, for the expansion of the archive with downscaled CMIP5 70 

climate model output (Maurer et al., 2014), which included climate models operating at higher 71 

spatial resolutions, the resolution at which bias correction was performed was refined to 1°. Of 72 

course, when further spatial disaggregation to finer scale is performed after the bias correction, 73 
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the correspondence between bias corrected climate model output  and observations at the fine 74 

scale degrades, since fine-scale climate information is not incorporated in the bias correction. 75 

To ensure closer correspondence between the final downscaled product and observations, a 76 

temptation is to apply quantile mapping bias correction at a finer scale, which in its limit would 77 

be applied at the scale of observations (either at the original grid scale, or even to point 78 

observation stations). This approach has been applied to climate model output at many spatial 79 

scales: for example, Wood et al. (2004) applied it at a 2° (~200 km) spatial scale; Li et al. (2010) 80 

used quantile mapping at 1° (~100 km); Hwang and Graham (2013) and Tian et al. (2014) 81 

applied it at 1/8° (~12 km); Abatzaglou and Brown (2012) applied quantile mapping at 1/12° (~8 82 

km); Tryhorn and DeGaetano (2011) used quantile mapping to bias correct to point observations 83 

of precipitation and temperature. 84 

One problem with applying quantile mapping at fine scales has been identified by Maraun 85 

(2013;2014). In summary, the adjustment by quantile mapping inappropriately applies a 86 

deterministic  variance correction, implicitly assuming that any unexplained variance at the fine 87 

spatial scale can be accommodated by rescaling the variance from the large scale. In other words, 88 

a climate model grid scale precipitation value (representing average precipitation over 89 

approximately 10,000 km2) would be used to adjust the precipitation (probability distribution) at 90 

a much smaller scale (for example, 100 km2). In essence, this assumes the unexplained 91 

variability of fine scale precipitation can be described with a deterministic function of large scale 92 

precipitation variability. Since variability at the coarse-scale (due to synoptic circulation, for 93 

example) and fine-scale (due to local topographic features, land-atmosphere interactions, etc.)  94 

have distinct sources, application of quantile mapping to simultaneously include spatial 95 
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downscaling is arguably inappropriate. For example, Maraun (2013) highlights an example 96 

where a high large-scale precipitation value is translated by quantile mapping to high values at 97 

all points within the large-scale grid box, producing an erroneously large and uniform extent of 98 

an extreme event; fine-scale variability among the points is not replicated by the deterministic 99 

transformation of quantile mapping. It should be noted that where downscaling to point 100 

observations is required, others have proposed alternative approaches that expand beyond the 101 

quantile mapping used in this study (e.g., Haerter et al., 2015). 102 

Another issue with fine-scale application of quantile mapping of precipitation has been related to 103 

spatial correlation of storm events (Bárdossy and Pegram, 2012). They found quantile mapping 104 

bias correction of precipitation at 25 km decreased spatial correlation with observations, and 105 

hence underestimated areal precipitation at larger scales. This could have potential negative 106 

effects on flood estimates for large river basins, and Bárdossy and Pegram (2012) propose a 107 

recorrelation technique to restore some of the observed spatial structure of precipitation events. 108 

A further consideration, when applying quantile mapping to future precipitation projections, is 109 

that the relationship between the spatial scale of fine- and coarse-scale precipitation may change 110 

in ways that could affect extreme runoff projections (Li et al., 2015).  111 

In addition to those noted above, there are other known shortcomings of quantile mapping, some 112 

of which have been accommodated by modifying or augmenting quantile mapping or by 113 

developing alternative statistical procedures. For example, where it is desired to maintain a joint 114 

distribution of multiple variables through bias correction, as opposed to individual variable 115 

downscaling as used here, joint downscaling methods have been developed (Abatzoglou and 116 

Brown, 2012;Mehrotra and Sharma, 2015;Zhang and Georgakakos, 2012). The probability 117 
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transformations in quantile mapping are incapable of correcting for GCM biases in low 118 

frequency variability, and autoregressive and spectral transformations have been developed to 119 

accommodate these biases where important (Mehrotra and Sharma, 2012;Pierce et al., 2015). 120 

While we recognize the deficiencies in quantile mapping, as discussed for statistical bias 121 

correction in general by Ehret et al. (2012),  and there is the promise of recent advances in bias 122 

correction, it remains that quantile mapping is widely used and generally effective at removing 123 

biases (Gudmundsson et al., 2012), even in the presence of some non-stationarity (Lafon et al., 124 

2012;Maurer et al., 2013;Teutschbein and Seibert, 2013). Our aim in this study is not to advocate 125 

for a specific downscaling method, but to understand a specific aspect of this widely used 126 

method. 127 

The question we aim to address in this study is whether there is a practical limit to spatial scale 128 

that should be considered when applying quantile mapping bias correction in statistical 129 

downscaling in the context of projecting hydrologic impacts. Past work on Western United States 130 

hydrology has found negligible predictive skill, and in some locations a degradation, when bias 131 

correction is performed at a fine spatial scale (Maurer et al., 2010b). 132 

To assess this, we begin with large-scale climate data (approximately 200 km spatial scale) and 133 

perform a quantile mapping bias correction at a variety of spatial scales, as part of a statistical 134 

downscaling approach, to obtain fine scale gridded daily precipitation and temperature values. 135 

These downscaled meteorological data are used to drive a hydrological model over the Western 136 

United States to simulate streamflow at sites where streamflow is observed, representing 137 

drainage areas from approximately 100 km2 to 600,000 km2. Skill is assessed by comparing the 138 

streamflow simulated by the downscaled meteorology and the streamflow from a simulation 139 
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using observed meteorology. Ultimately, we aim to determine whether the improved 140 

correspondence between downscaled large-scale climate and fine scale observed meteorology 141 

comes with a cost of degraded skill outside of the training period used for bias correction. This 142 

can be helpful for guiding future downscaling efforts for assessing the impacts of climate change 143 

on water resources. 144 

2 Data and Methods 145 

The quantile mapping bias correction is performed as a first step in the Bias Correction-Spatial 146 

Disaggregation (BCSD; Wood et al., 2004) technique. A schematic of the procedure is shown in 147 

Figure 1. Observations of gridded daily precipitation and temperature (Livneh et al., 2013) are 148 

available at a 1/16° spatial resolution; to reduce the computational load they are aggregated to a 149 

1/8° (0.125°) resolution for this experiment. The Livneh et al. data use approximately 20,000 150 

sites with daily meteorological records to define their field. These 1/8° gridded observations are 151 

then aggregated to different spatial resolutions to match the interpolated large-scale daily data 152 

(X° in Figure 1). 153 

A quantile mapping approach is used to bias-correct the large-scale data, in which empirical 154 

cumulative distribution functions (CDFs) are developed for both the aggregated observations and 155 

the interpolated large-scale data for a calibration period. The quantile for each large-scale value 156 

is then determined using its CDF, and the value is transformed to the observed value at the same 157 

quantile. This transfer function, following Li et al. (2010), can be written as: 158 

( )( )modelmodel
1

obsadjustedmodel xFFx −
− =  

(1) 
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where F is the CDF for the calibration period, x is a daily value of precipitation or temperature, 159 

with the CDF, at each X° grid cell, developed for a moving window of ±15 days from the day 160 

pertaining to x. The subscripts indicate large-scale model data or observations (obs). After the 161 

quantile mapping bias correction, precipitation and temperature values are expressed as 162 

anomalies relative to the climatological mean for the moving window, using a difference for 163 

temperature and a fraction for precipitation. These anomalies are interpolated from the large 164 

scale to the final 1/8° grid and applied to climatological values to obtain final daily downscaled 165 

data. Details of the quantile mapping and BCSD method as applied here are available elsewhere 166 

(Maurer et al., 2010b;Thrasher et al., 2012). 167 

The large scale climate data we use are daily precipitation and maximum and minimum surface 168 

air temperature from the National Centers for Environmental Prediction and the National Center 169 

of Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996) as a surrogate for a 170 

GCM. Because NCEP/NCAR reanalysis ingests some atmospheric observations (though, 171 

importantly, not precipitation) in its production, it exhibits a higher skill than possible with 172 

GCMs (Reichler and Kim, 2008). While it arguably represents a best possible simulation 173 

capability of a GCM, it still can exhibit substantial regional biases, especially in precipitation 174 

(Maurer et al., 2001;Widmann and Bretherton, 2000;Wilby et al., 2000). The assimilation of 175 

some observed atmospheric states means that NCEP/NCAR reanalysis can be expected to have 176 

some correspondence to observed events, which would be impossible with a freely-evolving 177 

GCM. These characteristics make the use of reanalysis data for evaluating bias correction and 178 

downscaling procedures common practice (e.g., Huth, 2002;Schmidli et al., 2006;Vrac et al., 179 

2007). 180 
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Reanalysis data are available on a T62 Gaussian grid (approximately 1.9° square), a resolution 181 

comparable to current GCMs. Daily reanalysis precipitation, maximum and minimum 182 

temperature are bilinearly interpolated onto regular grids of varying spatial resolutions 183 

(designated as X in Figure 1) prior to bias correction: 2.0°, 1.0°, 0.5°, 0.25°, 0.125°. The gridded 184 

observations are aggregated to the same spatial scale as the interpolated reanalysis data and the 185 

bias correction is then performed at that scale. The period 1960-1989 is used to calibrate or 'train' 186 

the bias correction, and 1990-2011 is used to validate the downscaled data. This analysis was 187 

conducted over the conterminous United States for all of the spatial resolutions except the 0.125° 188 

experiment, which used a smaller domain over the western U.S. for computational reasons. 189 

Both the downscaled meteorology and the gridded observations were used to drive three Soil 190 

Water and Assessment Tool (SWAT; Arnold et al., 1998) hydrologic models over the western 191 

United States (for the Columbia River Basin, Sierra Nevada, and Upper Colorado River Basin). 192 

SWAT simulates the entire hydrologic cycle, including surface runoff, snowmelt, lateral soil 193 

flow, evapotranspiration, infiltration, deep percolation, and groundwater return flows, at the 194 

subbasin scale. The subbasins delineated for these SWAT models have average areas ranging 195 

from 246 km2 (for the Colorado basin) to 191 km2 (for the Sierra), comparable to that of the 1/8° 196 

gridded observational data (approximately 140 km2 per grid cell). Each SWAT subbasin uses the 197 

meteorology from the nearest 1/8° grid cell. Calibration was performed at 185 different 198 

streamflow sites, shown in Figure 2, where naturalized or unimpaired streamflow observations 199 

were available. All SWAT models were calibrated and validated, at the 185 sites, during the 200 

1950-2005 time period, though because observations were not complete at all sites some gauges 201 

did not encompass the entire period. The contributing drainage areas of these sites varied from 202 
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approximately 100 km2 to 600,000 km2, and these calibration sites are the locations where 203 

streamflows are analyzed for this study. The parameterization, calibration, and validation of the 204 

SWAT model used in this study for three major Western United States river basins is described 205 

in detail in other references (Ficklin et al., 2012;2013, 2014). 206 

The streamflow metrics applied in this study are the annual 3-day peak flow and 7-day low flow 207 

at each site, and only the validation period of 1990-2011 is used. These metrics aim to quantify 208 

extreme high and low values without applying a theoretical distribution, as would be required to 209 

estimate more rare events from the relatively short validation period. The 3-day peak flow is a 210 

widely used measure for flood planning purposes (e.g., Das et al., 2013) and the 7-day low flow 211 

is frequently used for characterizing water quality and ecosystem impacts (WMO, 2009). The 212 

annual extreme streamflow values are analyzed using the non-parametric Mann-Whitney U test 213 

(Haan, 2002) for equality of medians to determine the significance of the difference between 214 

flows driven by observations and those driven by downscaled reanalysis data. 215 

3 Results and Discussion 216 

As an overview of the larger domain of the study, Figure 3 shows the biases in mean annual 217 

(daily) precipitation for each of the experiments. Figure 3 demonstrates that, as will always be 218 

the case due to natural variability, the biases between climate model output (or reanalyses) and 219 

observations will be different for different time periods. It is also evident, for the precipitation 220 

statistic depicted, that the difference in bias between the two periods is much smaller than the 221 

bias itself, explaining why bias correction generally does improve skill, especially given the role 222 

of topography in precipitation formation and the lack of detailed topographic representation in 223 

the large-scale reanalysis data (e.g., Maurer et al., 2013). Comparing the change in bias between 224 
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the two periods at different spatial scales (each row of the right column), Figure 3 shows that the 225 

non-stationarity has the same overall pattern at all scales, but at finer scales there is greater 226 

spatial variability, with some isolated grid cells showing greater non-stationarity at fine scales. 227 

Figure 3 shows the mountainous regions to have higher biases (and greater values for non-228 

stationarity), which may be expected given greater local complexity of the terrain and thus more 229 

heterogeneity in the local precipitation that the bias correction is attempting to correct. However, 230 

the apparent higher non-stationarity in mountainous areas is also partially due to the greater 231 

precipitation at high elevations. Expressing bias as a relative change in bias (by dividing the bias 232 

at each grid cell by the mean observed precipitation) shows higher non-stationarity, and the 233 

amplification at some locations, to occur in some mountainous areas but also more broadly over 234 

much of the domain, including some prominent valleys such as California’s Central Valley. The 235 

mechanisms driving the spatial variability in bias non-stationarity, and its amplification when 236 

bias correcting at finer scales, is reserved for future research. These locations where non-237 

stationarity is amplified could be a concern for cases where bias correction is applied at fine 238 

scales, as there would be increased risk that the bias correction could ultimately degrade the skill 239 

of the climate data. A similar plot to Figure 3, but for annual maximum precipitation, showed 240 

comparable patterns and characteristics. 241 

To illustrate how these characteristics vary at different scales, Figure 4 shows the impact of bias 242 

correction at different spatial scales on the downscaled precipitation at a single grid cell. Only 243 

quantiles above 0.5 (50% non-exceedence probability) are shown to focus on the higher 244 

precipitation values. While not used for quantitative analysis at this point, Figure 4 does 245 

demonstrate some of the impacts of performing bias correction at different scales. As would be 246 

expected, interpolating the reanalysis data to the 1/8° spatial scale prior to bias correction 247 
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(employing the SDBC technique as noted above) provides the best fit to the observations for the 248 

calibration period. However, Figure 4 shows that this also provides the worst correspondence to 249 

the CDF for observations at most quantiles during the validation period, illustrating that the 250 

instability of the biases at the finer scale may be a disincentive to performing the bias correction 251 

at too fine a scale. In other words, the CDF of precipitation at the finest resolution used here 252 

(1/8°) is likely not as stationary between two time periods as a CDF at a larger spatial scale 253 

would be. It should be noted that this stark of an example will not exist at every grid cell. Eden et 254 

al. (2012) suggest that model errors due to unrepresented topographic effects on precipitation or 255 

inadequate climate model parameterization are most successfully corrected by quantile mapping, 256 

so where other small scale variability is less important there may be more successful removal of 257 

biases using quantile mapping at finer scales. 258 

While precipitation is the primary variable affecting streamflow, in many parts of the Western 259 

United States temperature has a large impact in the hydrologic response to a changing climate, 260 

due to its effect on the nature of precipitation and the rate of snowmelt (Barnett et al., 2008). 261 

Figure 5 is similar to the lower panel of Figure 4, showing the CDFs (for quantiles above 0.5) for 262 

the validation period for maximum and minimum daily temperatures for the same location. At 263 

this one sample point performing the bias correction of minimum temperatures at the finer spatial 264 

resolution provides the closest correspondence to the observations at these higher quantiles, with 265 

progressively worse results with bias correction at the larger scales. For maximum temperature, 266 

the results are inverted, with bias correction at the largest scale appearing slightly closer to 267 

observations, though all resolutions are clustered together. This shows how the results can vary 268 

across quantiles, for different variables, as well as with location (shown in Figure 3). 269 
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Since the interest of this study is on the ultimate hydrologic impacts of these differences in 270 

downscaling approaches, not the precipitation or temperature, we turn the focus to how 271 

streamflow skill is affected by bias correction at different spatial scales. Figure 6 shows the 272 

distribution of daily streamflows simulated by the SWAT model for the Tule River basin (see 273 

Figure 2), which has a contributing drainage area of 1,015 km2, approximately equivalent to 1/3° 274 

spatial resolution. The simulated flows are overpredicted at all quantiles for this location, with 275 

the departure more visible at the high and low extremes. The upper right panel of Figure 6 shows 276 

that for the highest 10% of daily flows performing bias correction at the coarsest 2° resolution 277 

results produces less correspondence with observations than bias correcting at finer resolutions, 278 

while other spatial resolutions are more tightly clustered. Only the most extreme flows (the 279 

highest 1%) show a change in the spatial resolution with the higher skill, where the 0.5° 280 

experiment more closely resembles the observed flow probabilities. The lower right panel in 281 

Figure 6 plots the lower 10% of stream flows, showing the 2° and 1° experiments overpredicting 282 

the observed flow frequency more than those at 0.5°, 0.25°, and 0.125°, which are all nearly 283 

coincident.  284 

As a point of contrast, Figure 7 shows the same information as Figure 6 but for a larger basin, the 285 

Sacramento River (see Figure 2), which has a drainage area of 18,835 km2, approximately 286 

equivalent to a 1.4° spatial scale. Similar to the smaller Tule River site, the experiment with the 287 

bias correction performed at 2° performed worst overall, especially evident at high flows (shown 288 

in the upper right panel of Figure 7). The 1° bias correction produced the best correspondence 289 

with observed flows at the low extremes (lower right panel), with the coarse 2° overpredicting 290 

daily low flow magnitudes and the finer scale 0.25° and 0.125° bias correction underpredicting 291 
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low flows to the greatest degree. As with Figure 6, Figure 7 shows worse performance of bias 292 

correction in many cases at the high and low extremes compared to the center of the distribution, 293 

as would be expected with fewer observations for defining the driving precipitation and 294 

temperature CDFs in the relatively short calibration period. Thus, while quantile mapping 295 

generally reduces the biases compared to using raw GCM output, significant biases may remain, 296 

especially at the tails of the distributions. If streamflows produced using bias corrected and 297 

downscaled GCM output are to be used for analysis of extreme events, it may be desirable to use 298 

a further bias correction (such as quantile mapping of simulated streamflows to match observed 299 

streamflows), as has been done for water resources system operations and seasonal forecasting 300 

(Snover et al., 2003;Yuan and Wood, 2012) to ensure downscaled streamflows are comparable to 301 

observations at all quantiles. 302 

Figures 6 and 7 raise the question of whether a limit exists for the scale at which bias correction 303 

should be performed, or whether, for improved skill of simulated daily streamflows there may be 304 

a correspondence between the scale at which bias correction is done and the drainage area of the 305 

streamflow site. To investigate this, Figure 8 shows the results of the Mann-Whitney U test for 306 

all basins for 3-day maximum flows. Since the null hypothesis is that the streamflows produced 307 

by driving the SWAT model with observations are statistically indistinguishable from simulated 308 

flows using downscaled Reanalysis data, a small p-value indicates that the two can be 309 

confidently claimed to be different. There is no clear relationship between drainage areas and the 310 

skill (defined by the p-values) for the different experiments. One observation based on Figure 8 311 

is that there are more basins with p-values<0.1 (indicating low correspondence between 312 

observation- and reanalysis-driven streamflows) when bias correction is done at 2.0° than for the 313 

other experiments. Regardless of the spatial scale of the bias correction, there are always some 314 
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small basins (<1000 km2) where the correspondence between observation- and reanalysis-driven 315 

streamflows is weak. Bias correction at scales smaller than 0.5° appears to offer little 316 

improvement in skill, and may even result in more streamflow sites having poor skill (p<0.1). 317 

This apparent 0.5° limit may reflect both the finest scale at which the large-scale reanalysis 318 

variance in meteorology can be effectively rescaled (Maraun, 2013) and the degradation of 319 

larger-scale spatial structure of driving meteorology (Bárdossy and Pegram, 2012) when 320 

applying quantile mapping bias correction at finer spatial scales. 321 

Figure 9 shows the relationship between the Mann-Whitney p-value and the drainage area for 322 

each of the streamflow sites for 7-day minimum flows. Similar to the 3-day peak flows, there is a 323 

weak correspondence between the scale at which the bias correction is performed and the skill 324 

for basins of different drainage areas. As with 3-day peak flows, bias correction at 0.5° appears 325 

as a point at which finer scale bias correction does not offer any improvement, and may increase 326 

the number of streamflow sites with poor correspondence with observation-driven streamflows. 327 

Table 1 summarizes the results of Figures 8 and 9, listing the number of streamflow sites for 328 

which skill is low, both for p<0.1 and p<0.05. The bias correction being performed at 0.5° is 329 

revealed as an optimum, confirming the visual interpretations of Figures 8 and 9. 330 

Limitations of this study include the use of a single large-scale forcing data set; GCMs at 331 

different native spatial resolutions may produce different results. The biases in different GCMs 332 

will also affect the performance of the bias correction, and thus would affect the outcomes. The 333 

spatial scale of the hydrological model, and its representation of sub-grid spatial variability, may 334 

also affect the results, thus different parameterizations of the SWAT model or the use of other 335 

hydrology models would affect results (Ficklin and Barnhart, 2014;Maurer et al., 2010a). Results 336 
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may also be dependent on the metric used for testing correspondence, for example, examining 337 

impacts other than streamflow. Also, this study focused on biases at different scales for output 338 

from the BCSD process as it is typically applied. We did not assess the influence of each step in 339 

the BCSD process (as shown in Figure 1) on the biases, though this could be a fruitful avenue for 340 

future research. 341 

4 Conclusions 342 

When applying statistical downscaling methods to adapt climate model data for use in regional 343 

hydrologic impacts studies, a bias correction step is typically included. A common method for 344 

bias correction is quantile mapping, which can be performed in many different ways. One way in 345 

which applications of quantile mapping vary is in the spatial scale at which it is applied, which 346 

can range from the large scale of climate model output (generally 1° to 4° latitude-longitude) 347 

down to the finest resolution of observed data. This experiment investigated the effect of the 348 

spatial scale at which precipitation (and temperature) are bias corrected (as part of a statistical 349 

downscaling approach) on the streamflow produced by a hydrologic model. 350 

Similar to many prior studies, as a surrogate for climate model data, this experiment used 351 

reanalysis data, which is at a spatial scale of approximately 1.9°. A gridded observational dataset 352 

of daily precipitation and temperature was used as the observational baseline, and was 353 

aggregated to spatial resolutions of 0.125°, 0.25°, 0.5°, 1.0° and 2.0° to be used in the bias 354 

correction step of the statistical downscaling scheme. The principal findings were that bias 355 

correction at the coarsest scale (2.0°) performed worst, and performing bias correction at scales 356 

finer than 0.5° produced little additional benefit, and even degraded the correspondence between 357 

observation-driven streamflows and those driven by downscaled meteorology.  358 
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This suggests that the primary assumption inherent in quantile mapping bias correction, namely 359 

that the biases between modeled and observed meteorological variables for a calibration period 360 

are relatively stationary in time and can be applied to a projected period, may become less valid 361 

at spatial resolution finer than approximately 0.5°. This may indicate a shift in the sources of 362 

uncertainty causing the biases as spatial resolution changes. Some biases, such as those caused 363 

by inadequate topographic representation in the large-scale model, are better described at fine 364 

scales and benefit from having bias correction performed at as fine a scale as possible. Other 365 

biases, due to incorrect location of climate features at the larger scale, may be less able to be 366 

corrected at very fine spatial scales (e.g., Maraun and Widmann, 2015). For the region and data 367 

sources used in this study, the spatial resolution of 0.5°, or approximately a 50 km scale, appears 368 

to provide an optimal balance between these competing effects. 369 

The findings of this study caution against the temptation to apply quantile mapping bias 370 

correction at the finest possible scale, even though it provides the closest correspondence to 371 

observations for the calibration period. For independent validation periods, these findings 372 

suggest that very fine scale quantile mapping will perform no better, and possibly worse, than 373 

coarsening observations to approximately 0.5°, and applying bias correction at that scale. 374 

 375 

376 
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Table 1 - Summary of the percentage of streamflow sites with p<0.1 and p<0.05 561 

(shown in Figures 8 and 9) 562 

Spatial 

resolution used 

for bias-

correction 

Percent of sites with p<0.1 Percent of sites with p<0.05 

3-day 

maximum 

flows 

7-day 

minimum 

flows 

3-day 

maximum 

flows 

7-day 

minimum 

flows 

2.0° 22.0 30.6 17.7 23.7 

1.0° 12.4 19.9 5.9 14.5 

0.5° 6.5 13.5 4.3 8.1 

0.25° 9.1 17.2 4.3 10.8 

0.125° 9.1 18.3 5.4 15.1 

563 
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List of Figures 564 

Figure 1 - Schematic of Bias Correction - Spatial Disaggregation process used in this experiment. Values 565 
for X vary from 2° (latitude-longitude) to 0.125° as described in the text. 566 

Figure 2 - Streamflow locations used in this study. 567 

Figure 3 - Mean precipitation bias, measured as the difference between reanalysis and observations for the 568 
calibration (1960-1989) and validation (1990-2011) periods, and the difference in bias between the two 569 
periods. Reanalysis data are interpolated and observations aggregated to the spatial resolution indicated in 570 
the left column. 571 

Figure 4 - Cumulative distribution function plots (for quantiles 0.5-0.99) of bias-corrected and spatially 572 
disaggregated daily precipitation for a single grid cell at latitude 45, longitude -116. Spatial resolution in 573 
degrees at which the bias correction is performed is indicated in the legend. "Obs" is the CDF for the 574 
observations at 1/8 degree spatial resolution. 575 

Figure 5 - Similar to Figure 4, but for the validation period for minimum daily temperature (upper panel) 576 
and maximum daily temperature (lower panel). 577 

Figure 6 - Cumulative distribution function for the daily streamflows at the Tule River gauge. The full 578 
CDF is in left panel, upper right panel expands the highest 10% of flows, and the lower right highlights 579 
the 10% lowest flows. 580 

Figure 7 - Similar to Figure 6, but for the Sacramento River stream gauge site. 581 

Figure 8 - P-values from the Mann-Whitney U test vs. the drainage area for each of the streamflow sites 582 
in Figure 2. The dashed horizontal line at p=0.1 is shown for reference; p-values less than this are 583 
indicative of poor correspondence between observation- and reanalysis-driven streamflows. 584 

Figure 9 - Similar to Figure 8, but for the 7-day low flows at each streamflow site. 585 

586 



26 

 

 587 

Figure 1 - Schematic of Bias Correction - Spatial Disaggregation process used in this 588 

experiment. Values for X vary from 2° (latitude-longitude) to 0.125° as described in the 589 

text. 590 
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 592 

Figure 2 - Streamflow locations used in this study. 593 
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 595 

Figure 3 - Mean precipitation bias, measured as the difference between reanalysis and 596 

observations for the calibration (1960-1989) and validation (1990-2011) periods, and the 597 

difference in bias between the two periods. Reanalysis data are interpolated and 598 

observations aggregated to the spatial resolution indicated in the left column. 599 

600 



29 

 

 601 

 602 

 603 

Figure 4 - Cumulative distribution function plots (for quantiles 0.5-0.99) of bias-corrected 604 

and spatially disaggregated daily precipitation for a single grid cell at latitude 45, longitude 605 

-116. Spatial resolution in degrees at which the bias correction is performed is indicated in 606 

the legend. "Obs" is the CDF for the observations at 1/8 degree spatial resolution. 607 

608 
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 610 

Figure 5 - Similar to Figure 4, but for the validation period for minimum daily temperature 611 

(upper panel) and maximum daily temperature (lower panel). 612 
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 613 

Figure 6 - Cumulative distribution function for the daily streamflows at the Tule River 614 

gauge. The full CDF is in left panel, upper right panel expands the highest 10% of flows, 615 

and the lower right highlights the 10% lowest flows. 616 
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Figure 7 - Similar to Figure 6, but for the Sacramento River stream gauge site. 620 
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 623 

Figure 8 - P-values from the Mann-Whitney U test vs. the drainage area for each of the 624 

streamflow sites in Figure 2. The dashed horizontal line at p=0.1 is shown for reference; p-625 

values less than this are indicative of poor correspondence between observation- and 626 

reanalysis-driven streamflows. 627 
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Figure 9 - Similar to Figure 8, but for the 7-day low flows at each streamflow site. 631 
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