

1 **Manuscript hess-2015-414 entitled “Modelling evapotranspiration during**
2 **precipitation deficits: identifying critical processes in a land surface model”**

3 We would like to thank the reviewers for their constructive comments on our
4 manuscript. This document outlines our point-by-point responses to the reviewer
5 comments and the improvements made to the manuscript.

6

7 **Response to Reviewer #1**

8 **General comments**

9 This paper addresses the important issue of land surface model behaviour during
10 lack of rainfall. Its plots are clear and the statistics appear sound, albeit somewhat
11 basic. However, I felt somewhat empty-handed at the end. Very little, process
12 understanding was gained. Why are the key equations not provided? There are
13 various points in the paper where I get the impression the authors have used the
14 model like a black-box without truly understanding the equations within the model.
15 This is also evident from their description of the model physics, soil physics in
16 particular. This is a missed opportunity and leaves the reader somewhat frustrated. I
17 guess most of the Conclusions could have been drawn without having gone through
18 this considerable modelling exercise. More in-depth explanation of the findings is
19 required using equations presented and explored explicitly, not tentatively (using
20 words such as ‘likely’, ‘multiple explanations are possible’, etc.

21 We have addressed the reviewer’s concerns by including key equations in the paper
22 to support the conclusions reached in the paper. We have also added more in-depth
23 discussion to attach broader relevance to the paper’s findings, including more
24 detailed examination of each of the model process analysed here (soil, LAI,
25 hydrology and stomatal conductance). We have provided additional supplementary
26 figures to illustrate these points. However, we would like to point out that some
27 explanations remain necessarily tentative due to a lack of observations to test
28 specific model processes but the proposed mechanisms firmly rely on existing
29 CABLE parameterisations.

30

31 **Specific comments**

1 Page 10792: I think the statements in lines 3-8 are somewhat naïve.

2 “We use QE because it is the variable that links the land surface energy, water and
3 carbon budgets. It is also one of the variables supplied by the land surface to the
4 atmosphere and is therefore important to a climate model. We do not use soil
5 moisture as evaluating soil moisture from LSMs directly is problematic (Koster et al.,
6 2009) due to different soil structures assumptions, storage capacity and timescales
7 inherent in how LSMs represent this variable”.

8 Soil moisture, and the models underlying hydraulic properties and soil water transfer
9 and root water uptake equations, ultimately determines the latent heat flux; via
10 transpiration and direct soil evaporation. If a model gets QE right, but soil moisture
11 content (considerably) wrong, this is a sign of poor process presentation particularly
12 with regards to soil hydrology and plant water stress parameterisations.

13 Also, what exactly is meant by ‘soil structure assumptions’. This is unclear
14 terminology.

15 We agree that evaluating LSMs against soil moisture would be valuable for better
16 understanding hydrological processes in models and acknowledge this in the revised
17 manuscript (section 2.1). However, many discrepancies exist between a real soil
18 column and a model’s representation that make direct comparison extremely difficult,
19 even if appropriate observations existed. Examples in this case include
20 homogeneous soil properties with depth (there are no soil horizons), bedrock
21 distribution and the commensurability of layer discretisation and measurement
22 depths. In addition, few long-term in-situ observations are available for these flux
23 tower sites that record soil moisture changes at appropriate depths (for example
24 CABLE divides the soil into multiple layers with a total depth of 4.6 metres).
25 Furthermore, *in-situ* measurements are highly localized in nature and strongly
26 depend on local soil properties, making direct comparison to larger-scale models
27 difficult (Koster et al., 2009). Remotely-sensed soil moisture products only record the
28 top few centimetres of soil moisture (with the exact depth dependant on vegetation
29 and soil moisture conditions) and typically from a coarser scale than the flux tower
30 point fetch. Thus, these are not helpful for evaluating soil moisture outputs from
31 LSMs in the context of our study. Given the discrepancies between modelled soil
32 moisture and currently available observations, we feel that the uncertainty associated
33 with evaluation against soil moisture means it is of limited value and flux tower
34 measurements of QE remain a valuable alternative.

1 Line 25: soil texture is generally not a model parameter. It is used to derive other
2 parameters from, such as hydraulic conductivity or the water retention curve. On the
3 next page line 13 you use the term soil properties, which would be more appropriate.

4 The reviewer is right to highlight that in models soil texture is often used to derive
5 other properties, such as hydraulic conductivity or the decomposition rate in
6 CENTURY-type models (and thermal conductivity in CABLE). Nevertheless, it is
7 correct to describe soil texture, the fraction of sand, silt and clay as a model
8 parameter in the CABLE (and other) models. We have replaced soil "texture" with
9 "properties".

10

11 Page 10792:

12 Line 15-17 You say "Where the LSM cannot capture the observations, despite
13 variations in LAI and soil parameters, points to systematic errors in the model's
14 representation of physical processes"

15 I guess we could consider this roughly to be the case, but this ignores errors in
16 driving variables and energy balance closure errors, or the fact that your parameter
17 range was possibly unsuitable.

18 We agree with the reviewer that flux tower measurements themselves contain errors,
19 notably in energy balance closure. We have acknowledged this in the Discussion of
20 the revised manuscript (Section 4.1). However, it appears highly unlikely that the
21 CABLE biases identified here are solely an artefact of erroneous driving/evaluation
22 data due to the large and strongly seasonal nature of Q_E biases. In fact, Haughton et
23 al. (in review) showed based on the PLUMBER results (Best et al., 2015) that
24 problems with energy balance closure in flux tower data do not account for the poor
25 performance of LSMs (including CABLE) when compared against simple
26 benchmarks. We have employed the forcing data and Q_E observations from the
27 PLUMBER study.

28 We have tested a very large range in soil parameters by varying soil properties from
29 sandy to clay soil type. These represent the extreme soil types available in the
30 standard CABLE soil input dataset but it is not possible to quantify if this soil dataset
31 reflects the full range of soil properties at the flux tower sites. LAI was varied by site
32 depending on the remotely sensed MODIS data. It is possible that the range in LAI

1 does not capture site LAI in some cases. However, this and previous studies (Kala et
2 al., 2014) have pointed to a limited sensitivity of CABLE-simulated total Q_E to LAI. It
3 is thus unlikely that LAI errors could account for the high seasonal biases in Q_E .

4

5 Also, it is not sure that the error in Q_E was related to soil hydrological
6 parameterisations. It could just as well have to do with soil thermal and land surface
7 radiative parameterisations, affecting sensible and soil heat flux.

8 The nature of the errors in Q_E and the responses of those errors to the parameters
9 and parameterizations strongly points to errors being related to the hydrology. This is
10 supported by Haughton et al. (in review), who found that errors in the partitioning
11 between latent and sensible heat, rather than in the calculation of net radiation and
12 ground heat flux, accounted for the poor performance of LSMs when evaluated
13 against simple benchmarks. Without independent observations of all elements of the
14 surface radiation balance it is of course impossible to be certain but it is a reasonable
15 conclusion based on results across multiple sites that the hydrology is the problem.

16

17 Page 10795:

18 Lines 8-9: “The soil module simulates the transfer of heat and water within the soil
19 and snowpack following the Richards equation”.

20 This is incorrect: soil heat transfer cannot be determined with the Richards equation.
21 It is generally determined with the Fourier’s law.

22 The reviewer is of course correct and we have removed this reference to heat
23 transfer.

24

25 Page 10796:

26 Line 4-5: “It does not distinguish between saturated and un-saturated top soil
27 fractions or simulate groundwater dynamics”

28 This sentence needs elaborating. Distinguish in what way? In the context of surface
29 run-off? At the moment it reads as if model soil moisture plays no role in any soil

1 hydrological process.

2 We have clarified that the old scheme does not simulate saturated and unsaturated
3 top soil fractions separately but rather treats the top soil layer as one entity, which is
4 either fully saturated or unsaturated. Neither does it take account of water storage in
5 groundwater aquifers, or recharge from those water stores. These are two key
6 differences between the new and default schemes and are therefore highlighted in
7 the text.

8

9 Page 10796: Line 24: Table S2.

10 Table S2 in Supplementary material contains soil physically incorrect terminology. It
11 should be “Soil dry bulk density” not simply “Soil density”.

12 Also, “suction at saturation” is per definition equal to zero. What you mean is “suction
13 at air entry point”. Furthermore, suctions always have positive values. If you use
14 negative values, as in Table S2, it should be referred to as “matric potential” or rather
15 “matric head” as you are working in length units.

16 Finally what is meant exactly by soil heat capacity? At air-dry or saturated moisture
17 content? Why are these values the same for all soil texture types?

18 We have corrected the terminology in Table S2 as per reviewer comments. The dry
19 soil heat capacity has an identical value across the three soil classes as 850 (J/kg/C)
20 was the value provided for the sandy and clay soil types in the standard CABLE soil
21 input data set used in this study (provided with the standard CABLE distribution). The
22 “medium” soil class uses the median value of the sandy and clay soils and thus also
23 uses the same value.

24

25 Page 10798:

26 Lines 1-4: “The default hydrological scheme uses these three soil parameter sets
27 directly, whereas the new scheme employs an empirical approach to calculate the
28 parameters governing water holding and thermal capacities from sand, silt and clay
29 fractions”

30 I am not sure what is meant here? The default scheme also has values for wilting

1 point moisture content etc. They must also have been derived from texture?

2 The default scheme uses all soil parameter values in Table S2 as inputted, whereas
3 the new scheme only uses inputted sand, silt and clay fractions and calculates the
4 other eight parameters from these texture parameters using pedotransfer functions
5 (see comment immediately below). We have clarified this in the text.

6

7 In both cases using so called 'pedotransfer functions'? Use this word instead of
8 "empirical approach". Which ones were used? By the looks of it Cosby et al., seeing
9 you are using the Clapp and Hornberger B parameter? You need to state this
10 explicitly.

11 Also, these soil hydraulic parameters govern more than just water holding capacity.
12 They govern soil water transfer via Darcy's law and Richard's equation (with K_s
13 embedded in them).

14 Finally: you are using heat capacity, but is thermal conductivity not required in
15 Fourier's law?

16 The new and old schemes use Clapp and Hornberger (1978) relations to relate soil
17 moisture, soil matric potential, and hydraulic conductivity. The old scheme uses a
18 look up table to relate the inputted soil class (e.g. sand or clay) to the parameters in
19 the Clapp and Hurnberger formulation. The new scheme, however, follows the work
20 of Cosby et al. (1984) and uses pedotransfer functions to relate the sand, silt and
21 clay content to the parameters in the Clapp and Hornberger equations, thereby
22 negating the need for a look up table. We have clarified this in the text and replaced
23 "water holding capacities" with "hydraulic properties".

24 CABLE calculates thermal conductivity from soil texture parameters (sand, clay and
25 silt fractions) and thermal conductivity is thus not an input parameter.

26

27 Line 6-7:" Leaf area index (LAI) plays an important role in the surface energy balance
28 in CA- BLE (Kala et al., 2014)".

29 Can this sentence be elaborated upon by 1-2 follow-on sentences? In what way? By
30 upscaling from leaf to canopy scale conductance? In light interception?

1 We have added further details on the use of LAI in CABLE. It is used to calculate
2 aerodynamic resistances, partitioning the absorbed radiation flux between sunlit and
3 shaded leaves and to scale fluxes from the leaf to the canopy.

4

5 Page 10799:

6 Line 1-3: “..... the dry periods were defined based on precipitation as this allowed the
7 use of available observations, but we note the simulated fluxes will also depend on
8 other processes such as soil moisture availability”.

9 The simulated fluxes will also very much depend on the driving variables that
10 determine evaporative demand. That has been overlooked in this definition of ‘dry
11 periods’.

12 As we point out in the text, there are various ways to define a “dry” period. We have
13 added evaporative demand as one such definition. We have chosen to use
14 precipitation as this relies directly on available observations, but acknowledge that
15 many other indices could have been chosen. As the dry periods used in this study
16 coincide with the hottest part of the year in most cases, an alternative definition of a
17 dry period taking into account evaporative demand should broadly coincide with the
18 time periods used here. Given the large biases in CABLE that clearly coincide with
19 periods of low rainfall (Fig. S6), we do not believe that the choice of drought definition
20 compromises the results.

21

22 Line 8-10. “The dry-down period generally coincides with the maximum and the
23 following minimum observed latent heat flux during the one-year period but has been
24 adjusted for some sites to best capture typical model behaviour (Fig. S6)”.

25 What is meant by this exactly?

26 We mean that usually the periods to be analysed are chosen via an automated
27 procedure but on occasions we adjust the period chosen where there is a better
28 example that is not identified automatically. We have modified the text to elaborate
29 this.

30

1 I feel what is missing from the paper is a basic description of plant water stress, e.g.
2 along the lines of the beta function in the Jules model (see Egea et al. 2011). I
3 understand CABLE uses the same approach?

4 We have added a description of the plant water stress function in CABLE in the
5 Methods. CABLE uses a similar beta function to JULES and a number of other
6 LSMs.

7

8 Page 10800 Lines 23-24: "This is likely due to overly rapid drying of top soil layers,
9 which strongly control QE in CABLE (De Kauwe et al., 2015c)" But which process is
10 being affected (mostly) here? Transpiration or evaporation?

11 In both cases soil moisture content is a key variable, yet we do not get any insight
12 into how well this variable is predicted by the model.

13 We have clarified in the text that transpiration is affected and elaborated on the
14 reasons behind the rapid drying. We have also added a supplementary figure
15 showing the individual components of evapotranspiration (soil evaporation and
16 transpiration) during the dry-down periods.

17 In addition, we have added a supplementary figure showing soil moisture variations
18 for the new and default hydrological schemes for each of the six soil layers during the
19 one-year periods. Unfortunately soil moisture observations do not exist for soil
20 depths used in CABLE (4.6 m) or are not made freely available at these sites. We
21 agree that the model should ideally be evaluated against soil moisture as an
22 additional constraint but this was not possible and, in common with many other
23 studies (e.g. De Kauwe et al., 2015; Li et al., 2012; Whitley et al., 2015), we have
24 instead relied on QE measurements.

25

26 Lines 23-24: "This is particularly evident during warmer summer months when fluxes
27 are more strongly moisture-limited"

28 One may assume that this is indeed the case, but with no information on soil
29 moisture content, nor how SMC affects evapotranspiration, this remains speculative.

30 We have added a supplementary figure showing soil moisture variations (see

1 comment immediately above). We have also added the plant water stress and soil
2 evaporation functions in the Methods to show how soil moisture limits both
3 components of ET.

4

5 Lines 27-28: "While encouraging, this is likely due to compensating errors, such that
6 early season overestimations in QE are counteracted by underestimations during the
7 dry-down periods." Remove the word likely. It either is or it isn't. You have the data in
8 front of you.

9 We have removed 'likely'.

10

11 Page 10801 Line 8: "The model dries down too quickly". The model itself is not
12 drying...

13 We have rephrased the sentence.

14

15 Line 12-14: "These characteristics of CABLE are not dependent on the choice of LAI,
16 gs , or soil parameters; the range in QE fails to overlap the observations irrespective
17 of how these properties are varied."

18 I have not been able to find anywhere in the paper between what values these
19 variables have been ranged. Nor am I sure what is meant by soil variables. Are these
20 the soil hydraulic variables? Or texture percentages?

21 The range in LAI is shown in Figure S5 and referenced clearly in section 2.2.5, which
22 also details how the LAI time series were generated and varied between model runs.
23 Soil parameters are discussed in detail in section 2.2.4 and the parameter values of
24 each of the three soil classes that were used as CABLE inputs are displayed in Table
25 S2. The soil parameters were varied between the values of three soil classes. We
26 have reworded the sentence to state that the results are not dependent on the choice
27 of LAI or soil inputs or g_s parameterisations.

28

29

1 Page 10802

2 Line 19-23: "Both hydrological schemes are sensitive to soil parameters during the
3 dry- down period but show smaller variations due to soil during other parts of the
4 year (see Amplero, Blodgett, Howard Springs and Palang in Figs. 6 and 7). This
5 transition from low to high sensitivity occurs as soil moisture stores begin to deplete
6 and QE becomes increasingly limited by moisture supply".

7 This last sentence seems a very obvious statement. Does it need stating? How
8 meaningful is it anyway, if we are not told (at least approximately) how CABLE deals
9 with plant water stress?

10 As stated in a previous comment, we have added an equation for plant water stress
11 and a figure showing soil moisture variations during the dry-down period.

12

13 Line 23-25: "The new hydrological scheme uses a narrower range of parameter
14 values for water holding capacity and conductivity (Table S2) and thus results in a
15 smaller range of uncertainty due to soil parameters."

16 As far as I can see Table S2 does not give a range per soil parameter. It gives one
17 value only for each soil texture type. Also, what is meant by water holding capacity?
18 Water holding capacity is defined as the total amount of water a soil can hold at field
19 capacity. Did you mean 'water retention curve'. Furthermore, 'conductivity' needs to
20 read 'hydraulic conductivity'

21 The model was ran using three alternative soil classes as per Table S2, generating a
22 range of 3 parameter values in simulations. Table S2 details the parameter values for
23 each soil class. The sentence in question was removed from the text.

24

25 Page 10803

26 "The slope parameter affects the rate of subsurface drainage and represents a key
27 difference between the new and default schemes"

28 If this is the case, then why the emphasis on water retention? These parameters are
29 generally related to plant water availability.

1 We are not sure what the Reviewer means here. We hope that the additional edits
2 we have implemented will satisfy the Reviewer but are open to further changes if
3 their comment can be clarified.

4

5 Why is the slope parameter not in Table S2?

6 The slope parameter is not a soil parameter but was varied separately in additional
7 simulations between 0 and 5 degrees using the “medium” soil class and new
8 hydrology only, as detailed in Section 2.2.2.

9

10 What meaning does this parameter have anyway at the site scale?

11 The slope parameter can be obtained from high-resolution elevation data at scales
12 relevant for flux tower sites. In this case, the slope reflects the average slope of a 3x3
13 km area centred around the tower. The surface slope derived with this method only
14 reflects the slope at a scale larger than the footprint of the site and, as we
15 acknowledge in the manuscript, it is a first order approximation to the features
16 affecting subsurface drainage such as bedrock slope and lateral heterogeneity in
17 subsurface properties. However, as the model was shown to be sensitive to the
18 choice of slope, we believe it is important to discuss the effect of the slope parameter
19 on Q_E simulations.

20

21 Page 10804

22 Seems this section makes a lot of rather obvious statements that could have been
23 made without the work conducted in this paper.

24 The Reviewer demonstrably has a deep understanding of the areas covered by this
25 paper. We suggest that other readers may not see all the statements as obvious and
26 in any case, demonstrating statements supported by evidence is useful. We do agree
27 that some of our discussion and conclusion is fairly straightforward for the expert, but
28 we are also writing for readers who may not have the awareness of the Reviewer.

29

1 Page 10805

2 Lines 5-7: "The reason for the overestimation of peak fluxes is not clear but is not
3 resolved by the new hydrological scheme despite this parameterising many of the
4 relevant processes differently".

5 This sentences underlines the frustrating nature of this paper: CABLE is used like a
6 black-box without the authors truly having investigated the inner workings of the
7 model. I doubt this is acceptable to the journal and its readers.

8 Why/how would changes in a slope parameter affect soil evaporation?

9 We have added equations to show how soil evaporation is treated in each
10 hydrological scheme. We also demonstrate that these changes do not resolve the
11 biases. As several of the processes that can be responsible for the excessive soil
12 evaporation cannot be constrained from observations at these flux sites, it is not
13 possible to present definitive reasons behind these biases. Such reasons include
14 errors in LAI. This is a systematic bias in CABLE and warrants a separate body of
15 work to fully understand the model errors relying on alternative data streams. We
16 simply highlight this excessive spring Q_E as a possible mechanism for depleting soil
17 moisture stores earlier than observed but without an alternative scheme available to
18 test, it is not possible to fully quantify this in the present study.

19 In terms of the slope parameter, if slope increases such that runoff increases soil
20 evaporation is affected by water balance constraints.

21

22 Line 9: "...multiple potential causes to this excessive QE??" There are only a limited
23 number of causes and they are all embedded in the equations that determine soil
24 evaporation.

25 Multiple causes was used to highlight that there are a number of processes affecting
26 simulation of soil evaporation, which the section goes on to discuss. We have
27 reworded this sentence. However, soil evaporation can be affected by causes
28 unrelated to the equations that describe soil evaporation via changes in state
29 variables.

30

1 Page 10806
2 Line 9-11 “Other model processes, particularly vegetation response to drought, have
3 been identified as critical for capturing drought processes and shown to improve
4 CABLE performance during droughts but were not explored here.”

5 I do not understand this? Wilting point and field capacity are two key parameters in
6 the CABLE model plant water stress factor (empirical scalar beta, see De Kauwe et
7 al. 2015).

8 So implicitly you have explored vegetation response to drought?!

9 The Reviewer is correct that we vary the wilting point and field capacity parameters,
10 which are part of the water stress function. However, we do not contrast alternative
11 formulations for plant water stress as this has been done elsewhere (De Kauwe et
12 al., 2015b; Li et al., 2012; Egea et al. 2011). Instead, we have explicitly explored
13 hydrological processes and errors in model inputs as alternative explanations for
14 poor simulation of Q_E during dry-down, which has not been fully resolved in previous
15 studies.

16 One can also argue that the water stress function in its current form does not reflect
17 vegetation drought responses as we understand them from experiments, as it takes
18 no account of plant adaptations to drought in dry environments (De Kauwe et al.,
19 2015). It mostly reflects properties of soil, and has little empirical support (Medlyn et
20 al., in review). This section discusses the limitations of this approach and discusses
21 alternatives presented in other studies as a means to improve drought simulations.
22 We have reworded parts of this section to clarify this.

23

24 **References:**

25 Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, A.,
26 Cuntz, M., Decharme, B., Dirmeyer, P. a., Dong, J., Ek, M., Guo, Z., Haverd, V., van
27 den Hurk, B. J. ., Nearing, G. S., Pak, B., Peters-Lidard, C., Santanello, J. A.,
28 Stevens, L. and Vuichard, N.: The plumbing of land surface models: benchmarking
29 model performance, *J. Hydrometeorol.*, 16, 1425–1442, doi:10.1175/JHM-D-14-
30 0158.1, 2015.

31

32 Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic

1 properties, *Water Resour. Res.*, 14, 601–604, 1978.

2

3 De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, A. J., Wang, Y. P., Duursma,
4 R. A. and Prentice, I. C.: Do land surface models need to include differential plant
5 species responses to drought? Examining model predictions across a latitudinal
6 gradient in Europe, *Biogeosciences*, 12, 12349–12393, doi:10.5194/bg-12-12349-
7 2015, 2015.

8

9 Haughton, N., Abramowitz, G., Pitman, A. J., Or, D., Best, M., Johnson, H. R.,
10 Balsamo, G., Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P., Dong, Z., Haverd,
11 V., van der Hurk, B., Nearing, G., Pak, B., Santanello, J. A., Stevens, L. E. and
12 Vuichard, N.: The plumbing of land surface models: is poor performance a result of
13 methodology or data quality?, *J. Hydrometeorol.*, in review.

14

15 Kala, J., Decker, M., Exbrayat, J.-F., Pitman, A. J., Carouge, C., Evans, J. P.,
16 Abramowitz, G. and Mocko, D.: Influence of Leaf Area Index Prescriptions on
17 Simulations of Heat, Moisture, and Carbon Fluxes, *J. Hydrometeorol.*, 15, 489–503,
18 doi:10.1175/JHM-D-13-063.1, 2014.

19

20 Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K. and Puma, M. J.: On
21 the nature of soil moisture in land surface models, *J. Clim.*, 22, 4322–4335,
22 doi:10.1175/2009JCLI2832.1, 2009.

23

24 Li, L., Wang, Y.-P., Yu, Q., Pak, B., Eamus, D., Yan, J., van Gorsel, E. and Baker, I.
25 T.: Improving the responses of the Australian community land surface model
26 (CABLE) to seasonal drought, *J. Geophys. Res.*, 117, G04002,
27 doi:10.1029/2012JG002038, 2012.

28

29 Medlyn, B., De Kauwe, M., Walker, A., Duursma, R., Luus, K., Mishurov, M., Pak, B.,
30 Smith, B., Wang, Y.-P., Yang, X., Crous, K., Drake, J., Macdonald, C., Norby, R.,
31 Power, S., Tjoelker, M. and Ellsworth, D. S.: Using models to guide experiments: a
32 priori predictions for the CO₂ response of a nutrient- and water-limited mature
33 Eucalypt woodland, *Glob. Chang. Biol.*, in review.

34

35 Whitley, R., Beringer, J., Hutley, L., Abramowitz, G., De Kauwe, M. G., Duursma, R.,
36 Evans, B., Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M. and Yu,
37 Q.: A model inter-comparison study to examine limiting factors in modelling

1 Australian tropical savannas, Biogeosciences Discuss., 12, 18999–19041,
2 doi:10.5194/bgd-12-18999-2015, 2015.

3

4

5 **Response to Reviewer #2**

6

7 **General comments:**

8 The premise of this study, which is “to systematically evaluate the ability of land
9 surface models to simulate [biological and physical] processes [and ecosystem
10 dynamics] during soil moisture deficits” (lines 7-9, pg 10791) is a critical scientific
11 objective for hydrological, ecosystem and climate change research and is a
12 prerequisite for making predictions about how the function and services of different
13 vegetation types will be altered by anthropocentric forcings in the coming century.
14 The subject matter and scope of this study is appropriate for HESS. This study has
15 potential to become a high impact and well cited paper. However, in this current
16 version, this manuscript falls short in making significant advances in model
17 understanding and in convincing me that they have appropriately interpreted their
18 statistics. Therefore, this manuscript needs significant revisions before it should be
19 considered for publication in HESS.

20 First, it strikes me as strange to use the variation that soil texture produces in model
21 output as a way to evaluate the skill of the model to capture Qe of particular flux
22 towers with a known soil texture. We would expect different soil textures to produce
23 different magnitudes of Qe for different vegetation types. We would also expect
24 different soil textures to produce different patterns of Qe during drying periods for
25 different representations of the soil physics. These two results are indeed shown by
26 the red curves in Figures 6 and 7. But what is not clear to me is how the observations
27 relate to the variation produced by these two alternative formulations and by the
28 contrasting soil type. Without observations of the same vegetation under the same
29 climate, but growing on different soil types, there is no way to tell which model
30 formula is correct. In other words, how would the observations change if the
31 vegetation were growing on a different soil type? The default formula predicts that Qe
32 would behave one way while the new formulation predicts that Qe would behave
33 another way—but which one is correct, you cannot tell from the information
34 presented in this study.

1 The same case as above can also be made for LAI since the authors prescribed it
2 rather than evaluate the model's ability to predict it. Therefore, the authors should
3 use the known LAI as a constraint on Q_E in order to understand other aspects of the
4 model that are poorly constrained. In contrast, how g_s is regulated is not known and
5 therefore, this type of comparison to observations does make sense.

6 We explore the role of key model inputs (LAI and soil) and alternative
7 representations of hydrology and stomatal conductance to further understand biases
8 in CABLE identified in previous studies (De Kauwe et al., 2015b; Li et al., 2012). We
9 concentrate on dry-down periods as model simulations of Q_E are particularly poor
10 during these periods.

11 We disagree that soil properties or LAI are well constrained at flux tower scales, and
12 even less so at larger scales at which LSMs typically operate (≥ 0.5 degrees) in
13 coupled models. Data on some soil properties can be obtained for flux tower sites,
14 but even at these scales, soil properties are likely to be variable in space (Koster
15 2009) and uncertain across the tower footprint (typically around 1 km² but dependent
16 on the height of the tower). Similarly, *in situ* LAI is not a standard measurement
17 provided at flux sites and, consequently, site LAI is typically derived from remotely
18 sensed products (as was done here). Many studies have identified uncertainties in
19 these products for representing both magnitude and timing of LAI variations (De
20 Kauwe et al., 2011 and references therein).

21 We agree that testing model sensitivity to these inputs, as was done here, does not
22 provide us process-level understanding of Q_E simulations. However, it is a useful
23 exercise to understand the contribution from input uncertainties to the poor
24 simulation of Q_E .

25 Using datasets relevant for global-scale applications where soil information is derived
26 from coarse gridded data and highly uncertain at any particular location, we showed
27 that despite varying these inputs, CABLE was unable to capture observed Q_E . This
28 results contrasts previous work demonstrating reasonable simulations of monthly Q_E
29 at large scales (Decker, 2015). This suggests that the representation of processes
30 governing Q_E in CABLE must be insufficient.

31

32 Second, it is not clear how to interpret Figures 3, 4, and 8. We would expect NME
33 and MBE to get increasingly large when the model is configured for a soil type that is

1 not consistent with the known soil type for the flux tower. But, that doesn't mean the
2 model is performing poorly ("performance" ln13 pg 10799). Indeed the model may be
3 performing correctly for the vegetation that its soil type is configured for. In fact, I
4 would be alarmed if $NME = 0$ even though soil texture was changed. Therefore, it
5 should be argued that NME values near 0 or 1 indicate that the model is performing
6 poorly when the soil type in the model does not match the observed soil type. But
7 this distinction is not clear in the manuscript. More importantly, what can we really
8 learn from the reported NME and MBE values when all values are groups together
9 even though there is a mismatch between LAI and soil texture for some of the M_j and
10 O_j values, but not others? How do they inform us in terms of model development
11 when some of the values being put into M_j and O_j are not the same thing?

12 As discussed above, our analysis tests the sensitivity of CABLE to these inputs. If the
13 model was sensitive to these parameters and able to capture observations with some
14 combination of LAI and soil parameters, it would be hard to distinguish between poor
15 process representation and uncertainties in model inputs, particularly in larger-scale
16 applications where some inputs are poorly constrained at any particular location (as
17 we discuss in the revised introduction). We show this is not the case: CABLE fails to
18 capture observed Q_E in many cases no matter how the inputs are varied, highlighting
19 deficiencies in process representations. We contrast two possible parameterisations
20 for soil hydrology and stomatal conductance to explore this aspect further and show
21 clear improvements in model performance when parameterising soil hydrology
22 processes differently.

23

24 Third, the scope of the study is of limited appeal as it is presented. The manuscript is
25 written as if it were speaking mainly to those interested in modelling the soil
26 boundary condition for a land surface model. The model is just a tool for gaining
27 more detailed understanding (or making predictions) about the system of interest.
28 The study would be appealing to a much broader audience if the authors described
29 what the predictions of the competing hypotheses (i.e. parameterizations) mean in
30 terms how we understand ecology, physiology, and hydrology in a world with a
31 changing climate, and not make the central focus of their discussion simply about
32 model errors. As one example, the authors used two alternative formulas for gs , each
33 representing very different hypotheses about stomatal regulation. Interestingly, the
34 models predicted that the mode for stomatal regulation has very little effect on Q_E

1 during periods of water stress for all sites except Howard Springs (Figs. 6 & 7). This
2 is a remarkable result with significant ecological, hydrological and climatological
3 implications that needs to be expanded upon in the Discussion. There are many
4 other example as well. After reading this paper, I did not come away with a clear
5 sense about new hypotheses to test, observations and experiments to make, and
6 model formulas to develop. (See also Specific comments 1c and 1d).

7 We have added additional sections in the Discussion to discuss each
8 parameterisation separately to clearly identify why (or why not) each of the
9 processes explored improves CABLE simulations of Q_E during dry-down. We have
10 also highlighted model processes that should be explored in future work to resolve
11 existing model biases but could not be constrained form available data at the flux
12 sites analysed here.

13

14 Third, there is a considerable amount of information contained in the figures that
15 should be flushed out in order to give greater clarity about the relative contribution
16 each parameterization contributes to the variability in Q_E . Take Figure 5 for example
17 (but this comment pertains to all the figures), all of the “alternative LAI, g_s , and soil
18 parameterizations” (Fig.5 caption) are all mixed together to show the variation of the
19 time series of Q_E . Does one particular parameterization account for most of the
20 variation on either the high end or the low end? If not, say so in the discussion. If so,
21 what does the sensitivity (or lack thereof) to a particular parameterization mean in
22 terms of the ecology, hydrology, physiology, and climatology of the different
23 systems? What are the implications of the predictions of the different
24 parameterizations? Constructing the analysis and discussion in this manner will give
25 much clearer guidance to modellers and empiricists about modelling, experimental
26 and observational needs.

27 As discussed above, we have extended the discussion to discuss each
28 parameterisation in more detail to give the reader a better understanding of the wider
29 implications of the findings and to clearly identify what processes our study shows
30 are important for simulating Q_E during dry-down.

31 We have separated the effects of each parameterisation (hydrology, LAI, soil and g_s)
32 in the figures. Figure 5 shows the range in Q_E separating the effects of the default
33 and new hydrological schemes. The effects of LAI, soil and g_s are separated in

1 Figures 6 and 7, separately for both hydrological schemes. We have added
2 additional labels to the Figures to clarify the purpose of each figure.

3

4 **Specific comments:**

5 1. The message of this paper needs to be tighten-up considerably throughout the
6 existing text and expanded upon in the Methods and Discussion. For example:

7 a. The Introduction is not particularly focused. It would be helpful if the Introduction
8 were organized around a Problem Statement that is explicitly articulated at the
9 beginning. The Problem Statement should address the culminating result of the study
10 (i.e. lines 4-7, pg. 10804). Unfortunately, the reader has to get all the way to lines 7-
11 9, pg 10796 before they encounter the actual Problem Statement that this analysis
12 attempts to resolve.

13 We have reorganised the introduction to clearly discuss why we have chosen to
14 explore uncertainties arising from hydrological and gs parameterisations and soil and
15 LAI inputs. A better representation of hydrological processes has been identified as
16 necessary for improving LSM simulations of drought (Tallaksen and Stahl, 2014) but
17 has not been widely explored in previous studies. On the other hand, quantifying
18 errors arising from parameter uncertainties is useful for separating parameter
19 uncertainties from inadequate model parameterizations to identify where the model is
20 unable to capture observations despite ranging key inputs, pointing to likely errors in
21 model mechanisms.

22

23 b. Lines 19-25, pg 10791. Why do these models get these results and how do these
24 results relate to the Problem Statement? In other words, what is the rationale for
25 focusing on soil physics instead of biological processes? There is a huge body of
26 literature that suggests we need to emphasize improving our understanding and
27 representation of biological processes such as phenology or plant water-transport,
28 rather than focusing on improving the soil boundary conditions.

29 Plant responses to drought in CABLE have specifically been explored elsewhere. De
30 Kauwe et al. (2015b) and Li et al. (2012) implemented alternative plant water stress
31 and root water uptake functions into CABLE but did not fully resolve existing biases
32 in CABLE during dry-down periods. This manuscript explores other aspects of Q_E

1 simulations, including soil hydrological processes and stomatal conductance, that are
2 key model processes regulating Q_E fluxes but it is not known from previous studies if
3 they account for underestimations of Q_E during dry-down. We hope the revised
4 introduction addresses the importance of exploring these processes further. That
5 said, we agree that there is a large literature highlighting the need to improve the
6 representation of biological processes, and it is now becoming clear in the climate
7 model literature that this risks an imbalance with the need to improve the hydrological
8 literature. We suggest both are necessary, and reflect on this in the Discussion.

9

10 c. The Methods need to include equations for all of the alternative parameterizations
11 examined. The Methods also need to include a Table of parameters and parameter
12 values to maximize the transparency and reproducibility of this study.

13 We have added equations for the alternative stomatal conductance schemes in the
14 Methods. It is not desirable to reproduce the large number of equations associated
15 with the alternative hydrological schemes, these are fully documented in Decker
16 (2015). However, we have included a number of key equations in the methods as
17 they relate to the discussion later in the manuscript.

18 Table S2 fully details the soil parameters used in this study and Figure S7 shows the
19 LAI values. Stomatal conductance parameters are available in De Kauwe et al.
20 (2015a), which is freely available. We have referred the reader to this paper in
21 section 2.2.3 of the revised manuscript.

22

23 d. The Discussion needs to map out how the equations and parameters (i.e. from 1b
24 above) explicitly link to the different Results illustrated in the Figures. Without doing
25 1b and 1c, the model remains a bit of a black box, and therefore, it is difficult for
26 modellers to know how to improve the existing formula and what specific parameters
27 are controlling the output. Making these linkages is also important for informing
28 empiricists on which field measurements should be prioritized.

29 We have added additional sections in the Discussion where we discuss each
30 parameterisation separately, see earlier comment.

31

1 e. The influence of the “slope parameter” seems to be a key finding, yet it is given
2 very little attention at the end of the Results and there is no mention of it in the
3 Discussion. The authors state: “The slope appears more critical for simulation of Qe
4 than the other parameterizations investigated here and has strong effect on the
5 magnitude of the **fluxes primarily during dry-down**” (lines 19-21, pg 10803). The
6 authors also state “our goal was to determine whether CABLE can **capture dry-**
7 **down** associated with rainfall deficits as the components of the model are varied
8 [among which is the hydrology scheme and slope parameter], or whether the model
9 lacks the mechanisms to simulate this phenomenon” (lines 9-11, pg 10808). [Bold
10 type face is the Reviewer’s emphasis.] The authors fall short on meeting this goal
11 when they fail to mention the role of one of the most “critical” parameters in the
12 Discussion.

13 The slope parameter affects the rate of subsurface drainage. A steeper slope
14 parameter increases drainage from lower soil layers, reducing soil moisture and
15 aggravating plant water stress under dry conditions. We discuss this in more detailed
16 in the Discussion of the revised manuscript.

17

18 f. Many statements throughout the Discussion need to clearly reference a figure (a
19 few examples are given below). Also, each figure published in the Results section
20 needs to be referenced and discussed in the Discussion section. Otherwise, any
21 figure that is not discussed in the Discussion section should be moved to the
22 Supplement because it is clearly not central to the main message of the study;
23 rather, it is just supporting information.

24 We now reference each figure in the Discussion as they relate to the statements
25 made, with the exception of Figure 1, which shows the location of study sites.

26

27 g.

28 2. Lines 23 & 28, pg 10800. “Likely due to” This is speculative in both cases. The
29 beauty of using a model is that you can know these two things. By not
30 exploring the output and knowing these for sure, statements like these are not
31 very useful for either modellers or empiricists because they do not
32 unequivocally tell us where to concentrate our efforts (or even worse—

1 speculative statements can lead us down the wrong road). Also, “drying soil”
2 and “compensating errors” both need to be quantified and demonstrated.

3 We have removed the speculative wording. We have added a supplementary figure
4 showing soil moisture variations during the dry-down period.

5

6 3. Lines 21-22, pg 10806 “high soil evaporation **may** result from...” This is
7 speculative. The authors can know this with closer inspection of the canopy
8 turbulence output of their model.

9 We agree with the Reviewer that this comment was a little speculative and
10 consequently we have removed it.

11

12 4. Lines 3-4, pg 10807. “seasonal droughts”. Do you mean dry season? I am not sure
13 what a “seasonal” drought is. Droughts by definition are some type of water-
14 deficit anomaly--be it measured in terms of rainfall, soil moisture, streamflow,
15 etc—and anomalies are not seasonal, they are atypical. This is an important
16 distinction to make because vegetation in areas with dry seasons are adapted
17 for those dry seasons. However, depending on its severity, the plants may not
18 be adapted for a drought that is layered on top of a dry season, which could
19 be an important ecological filter for certain species as climate changes.

20 We have corrected this to “seasonal-scale” as used elsewhere in the manuscript.

21

22 **Technical comments:**

23 Lines 24-26, pg 10790. Awkward sentence. Reorganize as: “LSMs form an integral
24 part of global climate models by controlling how net radiation is partitioned...”

25 We have reorganised the sentence as per reviewer suggestion.

26

27 Lines 22 & 23, pg 10797 “87%” and “66%” These do not match Table S2.

1 We have corrected this in the manuscript.

2

3 Line 2, 10798. "empirical approach" What is this? Elaborate.

4 We have clarified this (see comment to Reviewer #1).

5

6 Lines 16-17, pg 10800. "Overall, both hydrological..." This sentence is not really true

7 for all sites. E.g. see Harvard Forest or Umich.

8 This behaviour is typical of most sites, including Harvard Forest for some parameter

9 choices (see Figure S1). The sentence does not suggest this applies to all sites (note

10 "overall").

11

12 Lines 9-10, pg 10802. "due to compensating biases" What are these?

13 The sentence goes on to explain this: "early season overestimations in Q_E are

14 counteracted by underestimations during the dry-down periods".

15

16 Line 3, pg 10804. "Have shown" Needs to reference a figure.

17 We have added reference to Figure 5.

18

19 Line 4, pg 10804. "have also shown" Needs to reference a figure.

20 We have added reference to Figure 6.

21

22 Line 19, pg 10804. "showed" Needs to reference a figure.

23 We have added reference to Figures 6 and 7.

24

1 Line 23, pg 10804. “the contribution of LAI (Fig. Xa), gs (Fig. Xb), and soil
2 parameterisations (Fig. Xc)” Each parameterization needs to reference their
3 respective figures.

4 We have added reference to corresponding figures in the text.

5

6 Line 2, pg 10805. “We identified” Needs to reference a figure.

7 We have added reference to the corresponding figure in the text.

8

9 Lines 6-8, pg 10805. Last sentence of the paragraph is not true for all sites. This
10 sentence needs to include a qualifier at the end (before (Fig. S7)). For example,
11 insert “for most sites”.

12 We have revised the sentence as per reviewer suggestion.

13

14 Lines 17-19, pg 10805. Which sites in Figure S7. Clearly reference the figure at the
15 end of the sentence e.g. (Fig. S7a,b,d,f).

16 We have referenced specific sites.

17

18 Lines 9-10, pg 10807 and elsewhere in the text. “monthly climatology”. LAI is a
19 vegetation property, not a property of the climate. Therefore, it strikes me as
20 confusing when LAI is referred to as being part of the climatology.

21 Referring to mean monthly LAI (or other land surface property) as a monthly
22 climatology is standard terminology employed in other studies (e.g. Oleson et al.,
23 2008).

24

25 All Figures. The font size is way too small.

26 We have increased the font size of all figures.

1 Figure 8. Legend needs labels. And, caption needs to state what colours go with
2 each of the parameters.

3 We have modified the figure and caption as per reviewer suggestions.

4

5 Table S2. Check numbers on “medium soil”. Should be decimals?

6 We thank the Reviewer for spotting this. We have corrected the silt, clay and sand
7 fractions for the medium soil type.

8

9

10 **References:**

11

12 De Kauwe, M. G., Disney, M. I., Quaife, T., Lewis, P. and Williams, M.: An
13 assessment of the MODIS collection 5 leaf area index product for a region of mixed
14 coniferous forest, *Remote Sens. Environ.*, 115, 767–780,
15 doi:10.1016/j.rse.2010.11.004, 2011.

16

17 De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E., Duursma, R. A.,
18 Abramowitz, G., Wang, Y.-P. and Miralles, D. G.: A test of an optimal stomatal
19 conductance scheme within the CABLE land surface model, *Geosci. Model Dev.*, 8,
20 431–452, doi:10.5194/gmd-8-431-2015, 2015a.

21

22 De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, A. J., Wang, Y. P., Duursma,
23 R. A. and Prentice, I. C.: Do land surface models need to include differential plant
24 species responses to drought? Examining model predictions across a latitudinal
25 gradient in Europe, *Biogeosciences*, 12, 12349–12393, doi:10.5194/bgd-12-12349-
26 2015, 2015b.

27

28 Decker, M.: Development and evaluation of a new soil moisture and runoff
29 parameterization for the CABLE LSM including subgrid-scale processes, *J. Adv.*
30 *Model. Earth Syst.*, 7, doi:10.1002/2013MS000282. Received, 2015.

31

32 Li, L., Wang, Y.-P., Yu, Q., Pak, B., Eamus, D., Yan, J., van Gorsel, E. and Baker, I.
33 T.: Improving the responses of the Australian community land surface model
34 (CABLE) to seasonal drought, *J. Geophys. Res.*, 117, G04002,

1 doi:10.1029/2012JG002038, 2012.

2

3 Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence,

4 P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A. and Qian, T.:

5 Improvements to the community land model and their impact on the hydrological

6 cycle, *J. Geophys. Res. Biogeosciences*, 113, doi:10.1029/2007JG000563, 2008.

7

8 Tallaksen, L. M. and Stahl, K.: Spatial and temporal patterns of large-scale droughts

9 in Europe: model dispersion and performance, *Geophys. Res. Lett.*, 41, 429–434,

10 doi:10.1002/2013GL058954. Received, 2014.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

1 **Modelling evapotranspiration during precipitation**
2 **deficits: identifying critical processes in a land**
3 **surface model**

4

5

6 **A.M. Ukkola¹, A.J. Pitman^{1,2}, M. Decker^{1,2}, M.G. De Kauwe³, G.**
7 **Abramowitz^{1,2}, J. Kala^{1,4} and Y.-P. Wang⁵**

8

9 ¹ARC Centre of Excellence for Climate System Science, University of New South
10 Wales, Kensington, NSW 2052, Australia

11 ²Climate Change Research Centre, University of New South Wales, Kensington,
12 NSW 2052, Australia

13 ³Department of Biological Sciences, Macquarie University, Balaclava Road, North
14 Ryde, NSW 2109, Australia

15 ⁴Murdoch University, School of Veterinary and Life Sciences, Environmental and
16 Conservation Sciences, Murdoch, 6150, WA, Australia

17 ⁵CSIRO Ocean and Atmosphere, Aspendale, Victoria 3195, Australia

18

19 *Correspondence to:* A.M. Ukkola (amukkola@gmail.com)

20

21 For submission to *Hydrology and Earth System Sciences*

22

23

24 **Abstract**

25

26 | Surface fluxes from land surface models ([LSMs](#)) have traditionally been
27 evaluated against monthly, seasonal or annual mean states. The limited ability of
28 LSMs to reproduce observed evaporative fluxes under water-stressed conditions has
29 been previously noted, but very few studies have systematically evaluated these
30 | models during rainfall deficits. We evaluated latent heat [fluxes](#) simulated by the
31 Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux
32 tower sites at sub-annual to inter-annual time scales, in particular focusing on model
33 performance during seasonal-scale rainfall deficits. The importance of key model

1 processes in capturing the latent heat flux ~~are was~~ explored by employing alternative
2 representations of hydrology, leaf area index, soil properties and stomatal
3 conductance. We found that the representation of hydrological processes was critical
4 for capturing observed declines in latent heat during rainfall deficits. By contrast, the
5 effects of soil properties, LAI and stomatal conductance ~~are shown to be~~ were highly
6 site-specific. Whilst the standard model performs reasonably well at annual scales as
7 measured by common metrics, it grossly underestimates latent heat during rainfall
8 deficits. A new version of CABLE, with a more physically consistent representation
9 of hydrology, captures the variation in the latent heat flux during seasonal-scale
10 rainfall deficits better than earlier versions but remaining biases point to future
11 research needs. Our results highlight the importance of evaluating LSMs under water-
12 stressed conditions and across multiple plant functional types and climate regimes.

13

14

15 **1 Introduction**

16

17 ~~Land surface models (LSMs) simulate the exchange of water and energy between the~~
18 ~~land surface and the atmosphere (Pitman, 2003). They control how net radiation is~~
19 ~~partitioned between sensible and latent heat (Q_L), and how rainfall is partitioned~~
20 ~~between evaporation and runoff and therefore form an integral part of global climate~~
21 ~~models. LSMs have been extensively evaluated for simulated water, energy and~~
22 ~~carbon fluxes, typically at seasonal to inter-annual time scales (Abramowitz et al.,~~
23 ~~2007; Best et al., 2015; Blyth et al., 2011; Dirmeyer, 2011; Zhou et al., 2012). LSMs~~
24 ~~have been found to perform reasonably well under well watered conditions (e.g. Best~~
25 ~~et al., 2015) but are less able to capture fluxes during water stressed conditions (Li et~~
26 ~~al., 2012). Given the long history of systematic model evaluation (Best et al., 2015;~~
27 ~~Dirmeyer, 2011; Henderson-Sellers et al., 1995), it is remarkable that very few studies~~
28 ~~have systematically evaluated the ability of LSMs to simulate hydrological processes~~
29 ~~during precipitation or soil moisture deficits, although Powell et al. (2013) and~~
30 ~~Prudhomme et al. (2011) are some notable exceptions.~~

31

32 ~~The ability to simulate a drying landscape is one of the pre-requisites for reliable~~
33 ~~projections of drought by a LSM and therefore by a climate model. Droughts are~~
34 ~~expected to increase in frequency and intensity (Allen et al., 2010; Trenberth et al.,~~

1 2014) in some regions due to the effects of climate change (Collins et al., 2013). This
2 would have profound implications for affected regions and their socio-economic
3 systems. ~~Unfortunately, there are large uncertainties in the evolution of historical~~
4 ~~(Dai, 2012) and future~~Land surface models (LSMs) are a key tool for understanding
5 ~~the evolution of historical droughts and predicting future water scarcity when coupled~~
6 ~~to global climate models (Prudhomme et al., 2014) droughts. This is associated, in~~
7 ~~part, to differences in projected climate, particularly regional scale rainfall, or sparse~~
8 ~~observational records in the case of historical drought trends (Dai, 2011). However,~~
9 ~~there are also major weaknesses in the capability of the LSMs used in climate models~~
10 ~~to capture drought events. For example, Prudhomme et al. (2011) showed large~~
11 ~~differences between three global hydrological models in simulating historical~~
12 ~~hydrological droughts (i.e. streamflow deficits) in European catchments. The~~
13 ~~participating Joint UK Land Environment Simulator LSM (JULES; Best et al., 2011)~~
14 ~~was shown to overestimate both the duration and severity of droughts. Similarly, the~~
15 ~~projected occurrence of future droughts(Dai, 2012; Prudhomme et al., 2014). LSMs~~
16 ~~have been extensively evaluated for simulated water, energy and carbon fluxes,~~
17 ~~typically at seasonal to inter-annual time scales (Abramowitz et al., 2007; Best et al.,~~
18 ~~2015; Blyth et al., 2011; Dirmeyer, 2011; Zhou et al., 2012), and been found to~~
19 ~~perform reasonably well under well-watered conditions (e.g Best et al., 2015).~~
20 ~~However, recent studies have indicated that the ability of current LSMs to simulate~~
21 ~~these fluxes during water-stressed conditions is limited (De Kauwe et al., 2015b;~~
22 ~~Powell et al., 2013). LSMs have been shown to poorly characterise the magnitude,~~
23 ~~duration and frequency of droughts when evaluated against site- and catchment-scale~~
24 ~~observations of latent heat (Q_E) and streamflow (De Kauwe et al., 2015b; Li et al.,~~
25 ~~2012; Powell et al., 2013; Prudhomme et al., 2011; Tallaksen and Stahl, 2014).~~
26 ~~Similarly, LSM projections of future drought occurrence~~ has been shown to be highly
27 model dependent, with greater uncertainty in future projections arising from
28 differences between ~~hydrological models~~LSMs than from the climate model
29 projections used to force them (Prudhomme et al., 2014). ~~Further, changes in soil~~
30 ~~moisture in the future are also linked with changes in the probabilities and intensities~~
31 ~~of other extremes including heatwaves (Seneviratne et al., 2010). Clearly, a better~~
32 ~~understanding of limitations in LSMs under more extreme conditions, and ultimately~~
33 ~~improved performance by these models, is necessary for improving the future~~
34 ~~projections of drought and other land-surface influenced extremes by climate models.~~

1
2 We investigate the performance of the Australian Community Atmosphere-Biosphere
3 Land Exchange (CABLE) in simulating observed declines in Q_E during rainfall
4 deficits. We use Q_E because it is the variable that links the land surface energy, water
5 and carbon budgets. It is also one of the variables supplied by the land surface to the
6 atmosphere and is therefore important to a climate model. We do not use soil moisture
7 as evaluating soil moisture from LSMs directly latent heat during rainfall deficits is
8 problematic (Koster et al., 2009) due to different soil structures assumptions, storage
9 capacity and timescales inherent in how LSMs represent this variable. There are also
10 very few examples of full soil moisture profile observations with co-located
11 meteorological forcing. By using Q_E , we can identify when this flux begins to become
12 limited by soil moisture and then evaluate CABLE against these “dry down” periods.
13 This forms an important first step towards establishing the capability of CABLE to
14 simulate drought events. This is particularly important because CABLE is the LSM
15 used within the Australian Community Climate and Earth Systems Simulator
16 (ACCESS; Bi et al., 2013), a global climate model which has participated in the 5th
17 assessment report of the International Panel on Climate Change (IPCC, 2013) and is
18 used for numerical weather prediction research in Australia (Puri et al., 2013). If
19 CABLE, or other LSMs, over or underestimate the magnitude of Q_E at the onset of
20 rainfall deficits, or drop too quickly or slowly during periods of low rainfall, they are
21 also likely to fail to capture the magnitude and intensity of droughts.
22

23 We examine CABLE in the context of two key areas of uncertainty: how processes
24 are parameterised and how associated parameters are selected. In terms of model
25 parameterisations, we examine the hydrology and stomatal conductance modules.
26 These have recently been revised in common with other LSMs (Prudhomme et al.,
27 2011; Tallaksen and Stahl, 2014). CABLE has been found to poorly simulate the
28 evolution of droughts, systematically underestimating site-scale Q_E during seasonal-
29 scale droughts (De Kauwe et al., 2015b; Li et al., 2012). There could be many reasons
30 for this systematic error. For example, unrealistic representation of plant drought
31 responses has been identified as a major limitation in LSM simulations of drought
32 (Egea et al., 2011; Powell et al., 2013), including CABLE (De Kauwe et al., 2015b).
33 Recent studies have revised vegetation drought responses in CABLE but not fully
34 resolved existing model biases (De Kauwe et al., 2015b; Li et al., 2012). In this paper,

1 we examine CABLE in the context of another major area of uncertainty: how
2 hydrological processes are parameterised and how associated parameters are selected.
3 A better representation of hydrological processes, particularly soil moisture, has been
4 identified as necessary for improving LSM simulations of drought (Tallaksen and
5 Stahl, 2014) but this has not been widely explored. The parameterisations of soil
6 hydrology and stomatal conductance (g_s) have recently been revised in CABLE and
7 shown to improve seasonal to annual scale simulations of Q_E in CABLE (Decker, in
8 review; De Kauwe et al., 2015a). In terms of parameters, we quantify the uncertainty
9 arising from soil texture and leaf area index (LAI) inputs. CABLE simulated Q_E has
10 been shown to be sensitive to these parameters but they remain uncertain at both site
11 and large scales (Kala et al., 2014; Zhang et al., 2013). While other parameters,
12 including other vegetation characteristics such as rooting depth (Li et al., 2012), are
13 potentially important, soil texture and leaf area index can be constrained from readily
14 available global scale datasets widely used in large scale LSM applications (De
15 Kauwe et al., 2015a; Decker, 2015). We explore if changes to these hydrological
16 processes can also improve simulations of Q_E during dry periods and to guide
17 development of more realistic drought mechanisms in LSMs.

18

19 We note it is possible to measure or calibrate some key parameters at site scales
20 (Gupta et al., 1999; Leplastrier et al., 2002; Wang et al., 2001) to enable a LSM to
21 better match an observed time series. This is not our goal; we are not trying to
22 demonstrate how well CABLE can reproduce observed Q_E *per se*. Rather, we are
23 examining where the model appears to fail for lack of process level representation of
24 a land surface component in ways that should be applicable to larger scale
25 applications of the model. While using calibration would improve a model's metrics,
26 calibration is likely to lead to parameter values that perform well at the calibration
27 site, but are likely to be over-fitted for broad scale application. Rather than using
28 calibration, we utilise observed datasets that are similar or identical to those
29 commonly used to run CABLE (and other LSMs) at regional to global scales. We
30 examine whether variations in the LAI and soil properties, informed by the
31 observations, enable our LSM to accurately capture the observations of Q_E . Where the
32 LSM cannot capture the observations, despite variations in LAI and soil parameters,
33 points to systematic errors in the model's representation of physical processes.

34

1 We therefore evaluate CABLE's simulation of Q_E across 20 globally distributed flux
2 tower sites, covering a range of climates and vegetation types, with a specific focus
3 on identifying key processes controlling model performance during rainfall deficits.
4 While our analysis is restricted to site scales, flux tower measurements are direct
5 observations of latent heat (Wang and Dickinson, 2012) and offer a valuable reference
6 for model performance.

7 We quantify the uncertainty arising from key model parameters: soil properties and
8 leaf area index (LAI) inputs. CABLE-simulated Q_E has been shown to be sensitive to
9 these parameters but they remain uncertain at both site and large scales (De Kauwe et
10 al., 2011; Kala et al., 2014; Koster et al., 2009; Zhang et al., 2013). Quantifying the
11 sensitivity of CABLE to LAI and soil properties is useful for separating parameter
12 uncertainties from inadequate model parameterisations. Where the LSM cannot
13 capture the observations, despite variations in LAI and soil parameters, systematic
14 errors in the model's representation of physical processes are probable (assuming
15 negligible errors in flux tower data used to drive and evaluate the model). While other
16 parameters, including additional vegetation characteristics such as rooting depth (Li et
17 al., 2012) are also potentially important, soil properties and leaf area index can be
18 constrained from readily available global-scale datasets widely used in large-scale
19 LSM applications.

20
21 We therefore explore CABLE performance at 20 flux tower sites distributed globally.
22 We contrast model behaviour at annual to sub-seasonal scales to explore uncertainties
23 in hydrological processes and parameters under conditions ranging from wet to dry.
24 We concentrate on the ability of the model to capture the onset of drought in a drying
25 phase as a pre-requisite for capturing the magnitude and intensity of droughts.

28 **2 Methods**

30 **2.1 Flux tower sites**

32 We evaluate CABLE performance against eddy covariance measurements across 20
33 flux tower sites globally (Fig. 1 and Table S1). The flux tower data were collated
34 as part of the Protocol for the Analysis of Land Surface models (PALS; Abramowitz,

1 2012) Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER; Best et
2 al., 2015), originally obtained through the Fluxnet LaThuile Free Fair-Use subset
3 (fluxnet.ornl.gov). The PLUMBER sites ~~were chosen to~~ represent a broad range of
4 vegetation and climate types, ~~whilst~~ ~~and were~~ also ~~maximising~~ selected to maximise
5 the length of measurement records (Best et al., 2015). Here, we focus on the results
6 for six sites with a pronounced period of low precipitation, (Fig. 1 and Table S1),
7 each representing a different climate and vegetation type, but provide results for all
8 study sites as Supplementary Information (Fig. S1-S4).

9

10 The 20 flux tower sites provide meteorological and flux measurements at 30-minute
11 ~~resolution. The observed meteorological data (precipitation, short- and long-wave~~
12 ~~radiation, surface air pressure, air temperature, specific humidity and wind speed)~~
13 ~~were used to drive CABLE simulations. Observed Q_E was then used to evaluate~~
14 ~~simulations because it is the variable that links the land surface energy, water and~~
15 ~~carbon budgets (Pitman, 2003). It is also one of the variables supplied by a LSM to~~
16 ~~the atmosphere and is therefore important to a climate model. We note that it would~~
17 ~~also be desirable to evaluate soil moisture outputs from LSMs. Ultimately this is~~
18 ~~problematic (Koster et al., 2009) time steps as~~ site measurements at depths which
19 ~~reflect the plants' root-zone access (i.e. deeper than the top few centimetres) are not~~
20 ~~readily available. The observed meteorological data (precipitation, short and long~~
21 ~~wave radiation, surface air pressure, air temperature, specific humidity and wind~~
22 ~~speed) were used to drive CABLE simulations. Observed Q_E was used to evaluate~~
23 ~~simulations.~~

24

25

26 **2.2 Description of the CABLE LSM and model parameterisations**

27

28 **2.2.1 General description**

29

30 The Community Atmosphere-Biosphere Land Exchange (CABLE) model is ~~a LSM~~
31 used to simulate energy, water and carbon fluxes and the partitioning of net radiation
32 into latent and sensible heat fluxes. It can be employed offline with prescribed
33 meteorology, ~~as in this paper,~~ or within the Australian Community Climate Earth
34 System Simulator coupled climate model (ACCESS; Bi et al., 2013). It has been used

1 widely in coupled (Cruz et al., 2010; Lorenz and Pitman, 2014) and offline (Haverd et
2 al., 2013; Huang et al., 2015; Zhou et al., 2012) simulations and has been extensively
3 evaluated against flux site (De Kauwe et al., 2015b; Li et al., 2012; Wang et al., 2011;
4 Williams et al., 2009) [and regional to global-scale observations \(De Kauwe et al., 2015a; Decker, 2015\)](#). Previous model inter-comparisons have shown that simulated
5 latent and sensible heat fluxes perform comparably to other LSMs (Best et al., 2015).
6

7
8 CABLE consists of sub-models for radiation, canopy, soil and ecosystem carbon.
9 Canopy processes are represented with a two-leaf model, which calculates
10 photosynthesis, stomatal conductance and leaf temperature separately for sunlit and
11 shaded leaves ([Leuning, 1995; Wang and Leuning, 1998](#)). [The soil module simulates the transfer of heat and](#) ([Leuning, 1995; Wang and Leuning, 1998](#)). [The soil module simulates the transfer of](#) water within the soil and snowpack following the Richards
12 equation. CABLE has 11 plant functional types (PFT). A detailed description of
13 model components can be found in Wang et al. (2011).
14

15
16
17 We [ran used](#) CABLE version 2.0 [\(revision 2902; https://trac.nci.org.au/trac/cable/wiki\)](#) forced with site-specific meteorological data at
18 30-minute time steps. Site PFT was determined by matching site vegetation
19 (fluxnet.ornl.gov) to CABLE PFTs. PFT parameters were taken from a standard look-
20 up table provided with CABLE 2.0 and were not calibrated to match site
21 characteristics. The model was run using two alternative hydrological modules, two
22 stomatal conductance parameterisations, three soil types and three LAI time series.
23 The new hydrological scheme implements a topographic slope parameter, which was
24 varied between two values in additional simulations. [This parameter controls the drainage rate and can in principle be constrained from high-resolution elevation data.](#)
25 [We vary the slope parameter between 0 and 5 degrees, broadly coinciding with the observed range of 0-6 degrees at the flux sites as derived from the approximately 1 km spatial resolution Global 30-Arc Second Elevation \(GTOPO30\) elevation dataset \(https://lta.cr.usgs.gov/GTOPO30\).](#)
26
27
28
29
30

31
32 CABLE was run with all parameterisation combinations, resulting in 18 simulations
33 using the default and 36 using the new hydrological scheme. This enabled the
34 quantification of individual parameter and/or parameterisation uncertainties on model

1 simulations and accounts for interactions between different parameterisations. The
2 individual model parameterisations varied in this study are detailed below.

3

4 **2.2.2 Hydrological parameterisation**

5

6 We use two different representations of hydrology. [The two schemes are fully](#)
7 [detailed in Decker \(2015\) but we will briefly describe the main differences here.](#) The
8 default soil hydrological scheme in CABLE simulates the exchange of water and heat
9 based on six soil layers and up to three snow layers. The default parameterisation for
10 soil moisture processes was developed by Kowalczyk et al. (1994) and later revised
11 by Gordon et al. (2002) and is described in detail in Kowalczyk et al. (2006) and
12 Wang et al. (2011). The default scheme only generates infiltration excess surface
13 runoff when the top three soil layers are $\geq 95\%$ saturated and otherwise lacks an
14 explicit runoff generation scheme ([Decker, in review](#)). [It does not distinguish between](#)
15 [saturated and un-saturated top soil fractions or simulate groundwater dynamics.](#) The
16 [default version of CABLE tends to overestimate \$Q_E\$ at annual to seasonal scales when](#)
17 [used coupled with the ACCESS climate model \(Lorenz et al., 2014\), but was found to](#)
18 [significantly underestimate \$Q_E\$ during soil moisture deficits across six European flux](#)
19 [tower sites \(De Kauwe et al., 2015e\).](#) It is not known if this is the result of the
20 [hydrological parameterisation and we explore this here.](#) ([Decker, 2015](#)). It does not
21 [simulate saturated and un-saturated top soil fractions separately or consider](#)
22 [groundwater aquifer storage.](#) The default scheme solves the vertical redistribution of
23 [soil water using the 1-D Richards equation.](#) The bottom boundary condition for the
24 [solution of the 1-D Richards equation is given as](#)

25

26
$$q_{sub} = C_{drain} \theta_n \quad (1)$$

27

28 where q_{sub} is the subsurface drainage (mm s^{-1}), θ_n the soil moisture content of the
29 bottom soil layer ($\text{mm}^3 \text{mm}^{-3}$) and C_{drain} a tunable parameter (mm s^{-1}) ([Decker, 2015](#)).
30 The scheme thus assumes a free draining lower boundary and water below the model
31 domain (e.g. groundwater) cannot recharge the water content of the above soil
32 column.

33

1 | Soil evaporation (E_{soil} , W m^{-2}) is given by

2 |

3 |
$$E_{soil} = \beta_s \frac{L_v \rho_a (q_{sat}(T_{srf}) - q_a)}{r_g} \quad (2)$$

4 |

5 | where L_v is the latent heat of vaporisation (J kg^{-1}), ρ_a the air density (kg m^{-3}), $q_{sat}(T_{srf})$ the saturated specific humidity at the surface temperature (kg kg^{-1}), q_a the specific humidity of air (kg kg^{-1}) and r_g (s m^{-1}) the aerodynamic resistance term. β_s is a dimensionless scalar (varying between 0 and 1) used to reduce E_{soil} when soil moisture is limiting and is given by the linear function

10 |

11 |
$$\beta_s = \frac{\theta_l - 0.5\theta_w}{\theta_{fc} - 0.5\theta_w} \quad (3)$$

12 |

13 | where θ_l the soil moisture content of the first soil layer ($\text{m}^3 \text{ m}^{-3}$), θ_w the wilting point ($\text{m}^3 \text{ m}^{-3}$) and θ_{fc} the field capacity ($\text{m}^3 \text{ m}^{-3}$).

15 |

16 | Decker (2015) developed an improved representation of sub-surface hydrological processes similar to that implemented in the Community Land Model (Lawrence and Chase, 2007; Oleson et al., 2008). The new scheme explicitly simulates saturation- and infiltration-excess runoff generation and has a dynamic groundwater component with aquifer water storage. The scheme solves the vertical redistribution of soil water (θ) following the Modified Richards Equation (Zeng and Decker, 2009):

22 |

23 |
$$\frac{\partial \theta}{\partial t} = - \frac{\partial}{\partial z} K \frac{\partial}{\partial z} (\Psi - \Psi_E) - F_{soil} \quad (4)$$

24 |

25 | where K (mm s^{-1}) is the hydraulic conductivity, Ψ (mm) the soil matric potential, Ψ_E (mm) the equilibrium soil matric potential, z is soil depth (mm) and F_{soil} (mm s^{-1}) is the sum of subsurface runoff and transpiration (Decker, 2015). An unconfined aquifer is located below the six soil layers and is presented with a simple water balance model:

1
$$\frac{dW_{aq}}{dt} = q_{re} - q_{aq,sub} \quad (5)$$

2 where W_{aq} is the mass of water in the aquifer (mm), $q_{aq,sub}$ the subsurface runoff
 3 removed from aquifer (mm s^{-1}) and q_{re} the water flux between the aquifer and the
 4 bottom soil layer, given from Darcy's law as
 5

6
$$q_{re} = K_{aq} \frac{(\Psi_{aq} - \Psi_n) - (\Psi_{E,aq} - \Psi_{E,n})}{z_{wtd} - z_n} \quad (6)$$

7 where z_{wtd} is the water table depth (mm), K_{aq} is the hydraulic conductivity of the
 8 aquifer (mm s^{-1}), and z_n is the depth of the lowest model layer (mm). The bottom
 9 boundary condition is given as
 10

11
$$q_{out} = 0 \quad (7)$$

12 as the scheme assumes that the groundwater aquifer sits above an impermeable layer
 13 of rock (Decker, 2015). Subsurface runoff (q_{sub}) is calculated from
 14

15
$$q_{sub} = \sin \frac{dz}{dl} \hat{q}_{sub} e^{-\frac{z_{wtd}}{f_p}} \quad (8)$$

16 where dz/dl is the mean slope, \hat{q}_{sub} the maximum rate of subsurface drainage for a
 17 fully saturated soil column (mm s^{-1}) and f_p is a tunable parameter (Decker, 2015). q_{sub}
 18 is removed from the bottom three soil layers (which account for 4.366 m of the total
 19 soil thickness of 4.6 m) by weighting the amount of water removed from each layer
 20 based on the mass of liquid water present in each layer (Decker, 2015).
 21

22 Sub-grid scale heterogeneity in soil moisture is permitted and a modified soil
 23 evaporation formulation reflects this. At point scales the runoff generation from sub-
 24 grid heterogeneity in soil moisture is neglected as the saturated fraction of the grid
 25 cell is assumed to be equal to zero. Soil evaporation is given as (here assuming a
 26 saturated grid cell fraction (F_{sat}) of 0):
 27

1

2 $E_{soil} = F_{sat} E_{soil}^* + (1 - F_{sat}) \beta_s E_{soil}^*$ (9)

3

4 where E_{soil}^* is the soil evaporation prior to soil moisture limitation (mm s^{-1}). β_s is
5 calculated using a non-linear function following Sakaguchi and Zeng (2009):

6

7
$$\beta_s = 0.25(1 - \cos\left(\pi \frac{\theta_{unsat}}{\theta_{fc}}\right))^2$$
 (10)

8

9 where θ_{unsat} is the first layer soil moisture content in the unsaturated portion (the entire
10 soil layer in this study) ($\text{m}^3 \text{ m}^{-3}$).

11

12 Both schemes calculate transpiration using the same method and, in common with
13 many LSMs (Verhoef and Egea, 2014), limit gas exchange during low soil moisture
14 using a dimensionless scalar (β) varying between 0 and 1:

15

16
$$\beta = \sum_{i=1}^n f_{root,i} \frac{\theta_i - \theta_w}{\theta_{fc} - \theta_w}$$
 (11)

17

18 where θ_i is the soil moisture content of soil layer i ($\text{m}^3 \text{ m}^{-3}$) and $f_{root,i}$ the root mass
19 fraction of soil layer i .

20

21 The default version of CABLE tends to overestimate Q_E at annual to seasonal scales
22 when used coupled with the ACCESS climate model (Lorenz et al., 2014), but
23 significantly underestimates Q_E during soil moisture deficits across six European flux
24 tower sites (De Kauwe et al., 2015b) in uncoupled experiments. Decker (2015)
25 showed that the new model reduced overestimations of Q_E by 50–70% compared to
26 the default scheme and yielded an improved simulation of seasonal cycles when
27 evaluated against observations from large river basins. The new scheme was also
28 shown to better capture total water storage anomalies (an integral over depth of soil
29 moisture changes) from the Gravity Recovery and Climate Experiment (GRACE;
30 <http://grace.jpl.nasa.gov>) than the default scheme. It is not known if these

1 improvements will also allow CABLE to better capture observed Q_E during dry-down
2 and we explore this here.

3

4 **2.2.3 Stomatal conductance parameterisation**

5

6 We use two alternative parameterisations for stomatal conductance (g_s). The default
7 CABLE currently implements an empirical g_s formulation following [Leuning \(1995\)](#):

8

$$9 g_s = g_0 + \frac{\alpha_1 \beta A}{(C_s - \Gamma) \left(1 + \frac{D}{D_0} \right)} \quad (12)$$

10
11 where A is the net assimilation rate ($\mu\text{mol m}^{-2} \text{s}^{-1}$), Γ ($\mu\text{mol mol}^{-1}$) is the CO_2
12 compensation point of photosynthesis, C_s ($\mu\text{mol mol}^{-1}$) and D (kPa) are the CO_2
13 concentration and the vapour pressure deficit at the leaf surface, respectively. g_0 (mol
14 $\text{m}^{-2} \text{s}^{-1}$), D_0 (kPa) and α_1 are fitted constants representing the residual stomatal
15 conductance when $A=0$, the sensitivity of stomatal conductance to D and the
16 sensitivity of stomatal conductance to assimilation, respectively. Although the g_s
17 formulation following Leuning (1995) (or equivalent Ball-Berry model; Ball et al.,
18 1987) are widely used in LSMs, the model parameters are empirical. Thus, we cannot
19 attach any theoretical distinction as to how parameters vary across data sets or among
20 species (De Kauwe et al., 2015a; Medlyn et al., 2011). Consequently, as is common
21 with many LSMs (e.g. Community Land Model version 4.5 (Oleson et al., 2013) and
22 the ORganizing Carbon and Hydrology in Dynamic EcosystEms model (Krinner et
23 al., 2005)), the default scheme only varies stomatal conductance parameters between
24 photosynthetic pathways (C_3 vs. C_4), rather than among PFTs.

25 ~~At point scales the runoff generation from sub-grid heterogeneity in soil moisture is~~
26 ~~neglected as the saturated fraction of the grid cell is assumed to be equal to zero. This~~
27 ~~parameter controls the drainage rate and can in principle be constrained from high-~~
28 ~~resolution elevation data. We vary the slope parameter between 0 and 5 degrees,~~
29 ~~broadly coinciding with the observed range of 0-6 degrees at the flux sites as derived~~
30 ~~from the approximately 1 km spatial resolution Global 30 Arc Second Elevation~~
31 ~~(GTOPO30) elevation dataset (<https://lta.er.usgs.gov/GTOPO30>).~~

1 Leuning (1995). The Leuning model and similar empirical schemes (e.g. Ball et al.,
2 1987) are widely used in LSMs but due to the empirical nature of these models we
3 cannot attach any theoretical distinction to parameters across data sets or among
4 species (De Kauwe et al., 2015b; Medlyn et al., 2011). Consequently, as is common
5 with many LSMs, the default scheme only varies stomatal conductance parameters
6 between photosynthetic pathways (C_3 vs. C_4), rather than among different PFTs.

7
8 As an alternative, we also ran CABLE using the g_s model following Medlyn et al.
9 (2011), a theoretical formulation based on the premise of optimal stomatal behaviour.
10 In contrast to the default scheme, g_s parameters have been derived:

11
12
$$g_s = g_0 + 1.6 \left(1 + \frac{g_1 \beta}{\sqrt{D}} \right) \frac{A}{C_s} \quad (13)$$

13
14 where g_1 ($\text{kPa}^{0.5}$) is a fitted parameter representing the sensitivity of conductance to
15 the assimilation rate. Unlike the α_1 parameter in the Leuning model, g_1 has biological
16 meaning, representing a plant's water use strategy. Values of g_1 were derived
17 previously for each of CABLE's PFTs (De Kauwe et al., 2015a) based on a global
18 synthesis of stomatal behaviour (Lin et al., 2015). Further details and associated
19 parameter values can be found in De Kauwe et al. (2015a).

20
21 The Medlyn g_s model has been shown to improve existing CABLE biases,
22 particularly overestimations of Q_E in evergreen needleleaf and C_4 biomes (De Kauwe
23 et al., 2015a). The Leuning and Medlyn g_s models, as implemented in CABLE, are
24 fully detailed in De Kauwe et al. (2015a) (De Kauwe et al., 2015a). We will explore
25 if the re-parameterisation of g_s also improves the simulation of dry-down in CABLE.

27 2.2.4 Soil parameterisation

28
29 The soil parameters were derived from a dataset provided by CABLE developers
30 (<https://trac.nci.org.au/trac/cable/wiki>; Global Soil Data Task Group, 2000). Global
31 Soil Data Task Group, 2000; Zobler, 1999). The dataset consists of nine soil classes;
32 here the two classes with the highest sand and clay contents were used. The coarse

1 sandy soil has a 8783% sand content and the fine clay soil a 6667% clay content; the
2 soil classes have eight associated parameters for soil water holdinghydraulic and
3 thermal capacities, fully detailed in Table S2. In addition, an arbitrary “medium” soil
4 class was created with equal fractions of sand, silt and clay, with other soil parameters
5 set as the median of the coarse sand and fine clay soil classes (Table S2). CABLE was
6 run with these three alternative soil classes, fixing the soil parameters across all sites.
7 The default hydrological scheme uses these three soil parameter sets directly, whereas
8 the new scheme employs an empirical approach to calculate the parameters governing
9 water holding and thermal capacities from sand, silt and clay fractions. The to
10 generate a range in soil parameter values. The default hydrological scheme uses all
11 soil parameters directly, whereas the new scheme calculates the eight parameters
12 governing hydraulic properties from sand, silt and clay fractions using the Clapp and
13 Hornberger (1978) pedotransfer functions. The soil parameter values used by both
14 schemes are detailed in Table S2.

15

16 **2.2.5 Leaf Area Index**

17

18 Leaf area index (LAI) plays an important role in the surface energy balance in
19 CABLE (Kala et al., 2014), scaling sunlit and shaded leaf-level fluxes of
20 photosynthesis, g_s and latent heat flux to the canopy. LAI was obtained from 8-daily
21 gridded Moderate Resolution Imaging Spectroradiometer (MODIS) data at 1 km
22 resolution (Yuan et al., 2011). The data were averaged to monthly time steps to
23 smooth the time series and subsequently three alternative LAI time series were
24 created for each site to take some account of uncertainties in LAI inputs. The first
25 time series was constructed by extracting the grid cells that contained each site
26 (“centre” time series). Two alternative time series were created using the minimum
27 and maximum LAI value of the grid cell and its immediate neighbours (“minimum”
28 and “maximum” time series, respectively). Time-varying LAI was used for years
29 where the flux observations and MODIS data overlap (i.e. after 2000); a monthly
30 climatology of common years was used otherwise. The minimum and maximum time
31 series differ from the centre time series by 30% on average but the range varies
32 between sites. The alternative LAI time series are plottedshown in Fig. S5.

33

34 **2.3 Analysis methods**

1 We analyse ~~CABLE~~CABLE's performance across three time scales: the whole
 2 observational, annual and sub-annual periods. As the observational records are
 3 generally short for characterising hydrological extremes (≤ 10 years, (~ 5 years on
 4 average; Table S1), we have not adopted a formal statistical method for identifying
 5 periods of rainfall anomalies and thus do not refer to them as "droughts". We also
 6 note no one definition for droughts exists; instead, various indices have been
 7 employed based on, for example, precipitation, streamflow ~~and/or~~, soil moisture and
 8 measures of evaporative demand (Sheffield and Wood, 2011). In this study, the dry
 9 periods were defined based on precipitation as this allowed the use of available
 10 observations, but we note the simulated fluxes will also depend on other processes
 11 such as soil moisture availability. For the majority of sites (Howard Springs, Palang,
 12 and all supplementary sites), we selected the year with the lowest precipitation total as
 13 the one-year period, whilst for Amplero, Blodgett, Tumbarumba and UniMich, we
 14 selected a year when the default CABLE significantly underestimated latent heat
 15 fluxes during a rainfall deficit ("dry-down") period. The dry-down period generally
 16 coincides with the maximum and the following minimum observed latent heat flux
 17 during the one-year period but has been adjusted using expert judgment for some sites
 18 to best ~~capture~~demonstrate typical model behaviour (Fig. S6). Observed and
 19 simulated data were averaged to 14-day running means for all analyses.
 20

21
 22 ~~We follow PALS for calculating model metrics. We use the normalised mean error~~
 23 ~~(NME) to evaluate general model performance:~~
 24

$$25 \quad NME = \frac{\sum_{i=1}^n |M_i - O_i|}{\sum_{i=1}^n |\bar{O} - O_i|} \quad (1)$$

26
 27 ~~where M represents the model values and O the observations. NME accounts for~~
 28 ~~mean model biases and the temporal coincidence and magnitude of variability, but~~
 29 ~~does not distinguish between them (Best et al., 2015). An NME of 0.0 represents~~
 30 ~~perfect agreement and a value of 1.0 represents model performance equal to that~~
 31 ~~expected from a constant value equal to the mean of all observations.~~

1 We examine mean bias error (MBE) to estimate absolute biases in CABLE
2 simulations; it is simply the difference between the mean modelled and observed
3 values:

4

$$6 MBE = \bar{M} - \bar{O} \quad (2)$$

7 We follow Abramowitz et al. (2007) and the PALS protocol for calculating model
8 metrics. We use the normalised mean error (NME) to evaluate general model
9 performance:

10

$$11 NME = \frac{\sum_{i=1}^n |M_i - O_i|}{\sum_{i=1}^n |\bar{O} - O_i|} \quad (14)$$

12 where M represents the model values and O the observations. NME accounts for
13 mean model biases and the temporal coincidence and magnitude of variability, but
14 does not distinguish between them (Best et al., 2015). An NME of 0.0 represents
15 perfect agreement and a value of 1.0 represents model performance equal to that
16 expected from a constant value equal to the mean of all observations.

17 We examine mean bias error (MBE) to estimate absolute biases in CABLE
18 simulations; it is simply the difference between the mean modelled and observed
19 values:

20

$$23 MBE = \bar{M} - \bar{O} \quad (15)$$

24

25 3 Results

26

27 3.1 Whole time period

28

1 We first evaluated [CABLE](#)- Q_E simulated Q_E by [CABLE](#) during the whole data period
2 available for each flux site (ranging from 2 to 7 years for selected sites; Table S1).
3 [CABLE](#), using the default hydrological parameterisation, captures the general
4 features, such as the timing and magnitude of seasonal cycles, in observed Q_E across
5 the different sites (Fig. 2, left column). [CABLE](#) including the new hydrological
6 scheme also captures these general features (Fig. 2, right column). Quantifying the
7 performance of these two versions of [CABLE](#) over the full length of record does not
8 indicate that there is a significant difference between the versions in either NME (Fig.
9 3) or MBE (Fig. 4). The average NME for all sites and parameter choices was 0.90 for
10 the old scheme and 0.75 for the new scheme, and the average MBE was -1 and 6 W
11 m^{-2} , respectively. The NME metric is <1.0 for the majority of sites using the new
12 scheme, regardless of the choice of g_s , LAI or soil parameterisation. We note that the
13 magnitude of Q_E for the evergreen broadleaf sites (Palang and Tumbarumba and
14 supplementary site Espirra) is poorly captured (Fig. 4). Overall, both hydrological
15 parameterisations tend to overestimate peak Q_E (Fig. 2); this tendency for excessive
16 evapotranspiration has also been demonstrated in global applications of [CABLE](#) in
17 both offline (De Kauwe et al., 2015a) and coupled (Lorenz et al., 2014) simulations.
18 Furthermore, both schemes systematically overestimate Q_E in spring, particularly at
19 cooler temperate sites such as UniMich (Fig. 2; also see deciduous broadleaf and
20 needleleaf supplementary sites (Fig. S1)), and over-predict the short-term variability
21 in Q_E (see e.g. Amplero in Fig. 2). ~~This is likely due to overly rapid drying of top soil~~
22 ~~layers, which strongly control Q_E in [CABLE](#) (De Kauwe et al., 2015e).~~ This is
23 ~~particularly evident during warmer summer months when fluxes are more strongly~~
24 ~~moisture limited (see e.g. Tumbarumba and UniMich in Fig. 2).~~ Despite clear biases
25 in simulated fluxes, the MBE metric approaches zero at most sites when evaluated at
26 inter-annual time scales. While encouraging, this is ~~likely~~ due to compensating errors,
27 such that early season overestimations in Q_E are counteracted by underestimations
28 during the dry-down periods- ~~(see e.g. Blodgett and Tumbarumba in Figure 5).~~ This is
29 particularly evident with the default hydrology scheme. We therefore focus the
30 remaining analyses on shorter time periods where compensating biases are less likely
31 to hide weaknesses in the model performance.

32

33 **3.2 Annual and dry-down period**

34

1 CABLE-simulated Q_E ~~were was~~ then evaluated during annual and seasonal dry-down
2 periods to explore model performance during rainfall deficits. The default scheme
3 demonstrates a range of major biases (Fig. 5). The model dries down too quickly at
4 Amplero, Blodgett, Palang, Tumbarumba and UniMich sites. At these sites, and at
5 Howard Springs, Q_E drops too low and drops to that minimum too early in the year.
6 At several sites, including Blodgett, Tumbarumba and UniMich, CABLE
7 systematically overestimates Q_E in spring. These characteristics of CABLE are not
8 dependent on the choice of LAI, ~~g_s~~ , or soil ~~parameters~~ inputs or ~~g_s~~ parameterisations;
9 the range in Q_E fails to overlap the observations irrespective of how these properties
10 are varied. This suggests parameterisation error as distinct from parameter choices as
11 the cause of the model weaknesses.

12

13 The new hydrological scheme demonstrates clear improvements at Amplero, Howard
14 Springs and Palang. At Blodgett, Tumbarumba and UniMich, the observations are
15 within the uncertainty due to the choice of g_s , LAI or soil parameters in the second
16 half of the year, but the excessive Q_E during spring and early summer remains a
17 problem. While there are obviously remaining errors, the new hydrological scheme
18 clearly improves the simulation of Q_E over the annual cycles ~~shown in~~ (Fig. 5).
19 Assessing the overall performance at annual time scales also highlights clear
20 improvements with the new hydrology. Fig. 3 shows that for NME, the new
21 hydrology scheme in CABLE performs as well as, or better than the default at every
22 site, with an average NME across all sites of 0.68 compared to 0.90 for the default
23 scheme. This is true also of MBE (Fig. 4) for all sites except Tumbarumba.

24

25 Assessing the performance of the two schemes over the dry-down period using NME
26 is shown in Fig. 5. Using the default hydrology leads to worse performance on this
27 shorter time scale at Amplero, Blodgett, Palang and to a lesser degree at Howard
28 Springs and Tumbarumba compared to annual and inter-annual scales. In contrast,
29 CABLE with the new hydrology performs similarly ~~well~~ to the longer (≥ 1 year) time
30 scales at Blodgett, Palang, Howard Springs, Tumbarumba and UniMich and only
31 marginally poorer at Amplero. Comparing NME over this dry down period shows that
32 the new scheme strongly outperforms the default parameterisation (Fig. 3; the average
33 NME is 0.68 and 1.27 for new and default schemes, respectively). A similar
34 conclusion is reached using MBE (on average -4 and -22 W m^{-2} for the new and

1 default schemes, respectively). In short, the new hydrology does not dramatically
2 improve the performance of CABLE on the long term (i.e. inter-annual scales) (Fig.
3 2) due to compensating biases in the default CABLE. These include overestimated
4 spring and early summer Q_E , and consequently, at least in part, underestimated Q_E
5 during the dry-down. Once we focus on shorter, sub-annual timescales that lack these
6 compensating biases, CABLE with the new hydrology strongly outperforms the
7 default version in the simulation of Q_E .

8

9 **3.3 Impact of varying LAI, g_s and soil parameters**

10

11 We now explore the individual contributions from soil parameters, g_s and LAI to
12 uncertainties in simulated Q_E . Fig. 6 and Fig. 7 show the uncertainty in model
13 simulations due to soil parameters, g_s and LAI using the default and new hydrological
14 schemes, respectively. Both hydrological schemes are sensitive to soil parameters
15 during the dry-down period but show smaller variations due to soil during other parts
16 of the year (see Amplero, Blodgett, Howard Springs and Palang in Fig. 6 and Fig. 7).
17 This transition from low to high sensitivity occurs as soil moisture stores begin to
18 deplete and Q_E becomes increasingly limited by moisture supply. ~~The new~~
19 ~~hydrological scheme uses a narrower range of parameter values for water holding~~
20 ~~capacity and conductivity (Table S2) and thus results in a smaller range of uncertainty~~
21 ~~due to soil parameters. (Figure S8)~~. Both schemes show a similar sensitivity to g_s and
22 LAI variations, which is generally smaller compared to soil variations, although the
23 new scheme is more sensitive to g_s at Blodgett, Howard Springs and Palang, and to
24 LAI in Amplero and Palang during dry-down.

25

26 While the new hydrological parameterisation systematically improved model
27 performance across most sites (Fig. 3 and 4), the effect of LAI, g_s and soil parameters
28 on the mean magnitude of simulated fluxes is highly site-specific during the annual
29 and dry-down periods (Fig. 8). In agreement with (De Kauwe et al., 2015a), the
30 choice of g_s scheme generally has a larger effect in needleleaf (Blodgett) and C₄ grass
31 (Howard Springs) sites. Some sites, such as Howard Springs, are sensitive to multiple
32 parameters, whilst others such as UniMich only respond minimally to parameter
33 perturbations (Fig. 8). Whilst there is no *a priori* expectation that this should be the
34 case, it highlights the importance of investigating model uncertainties and

1 performance across multiple sites to capture full range of model sensitivities to
2 parameter perturbations.

3

4 The results have so far assessed CABLE ~~when incorporating with~~ the new hydrology
5 using a 0° slope parameter ~~because as~~ this enables a direct comparison with the default
6 hydrology. The slope parameter, which can be derived from high-resolution elevation
7 data, is scale dependent and was introduced by Decker (2015) to capture large-scale
8 hydrological processes that are affected by landscape geometry. The slope parameter
9 affects the rate of subsurface drainage and represents a key difference between the
10 new and default schemes. With the exception of the UniMich site, Fig. 8 and 9 show
11 that the model is highly sensitive to choice of the slope parameter across all sites,
12 particularly during the dry-down period. The slope appears more critical for
13 simulation of Q_E than the other parameterisations investigated here and has a strong
14 effect on the magnitude of fluxes primarily during the dry-down (see e.g. Howard
15 Springs and Palang in Fig. 9). Whilst this highlights the need to carefully set the slope
16 parameter, it is unclear how well it can be constrained at the site scale. The surface
17 slope derived from elevation data may not reflect large-scale features, such as
18 subsurface geology, which can affect drainage rates and thus water availability for Q_E
19 in highly site-specific ways.

20

21

22 **4 Discussion**

23

24 **4.1 Simulation of dry-down**

25

26 We have shown that the default version of CABLE significantly underestimates Q_E
27 during rainfall deficits- [\(Fig. 5\)](#). We have also shown that it is unlikely that
28 uncertainties in key model soil and vegetation (LAI) inputs, ~~account for these biases~~
29 [account for these biases](#) (Fig. 6). The observations used to drive and evaluate the
30 model themselves include errors, notably lack of energy balance closure (Leuning et
31 al., 2012). However, given the systematic and large seasonal biases in CABLE
32 simulations, any errors in the flux tower measurements are unlikely to explain poor
33 model performance during dry-down. Instead, our results point to deficiencies in the
34 representation of hydrological processes in the default version of CABLE- [\(Fig. 3 and](#)

1 | 4). The default CABLE has been shown to perform similarly to other LSMs in Best et
2 | al. (2015) and indeed in other model evaluation studies (Abramowitz et al., 2008).
3 | Hence, it is likely that the errors of the kind identified here may be common among
4 | other models-as model benchmarking rarely examine sub-annual behaviour. The
5 | poor simulation of dry-down periods is important: if LSMs in general struggle to
6 | simulate the dry downthis period they will fail to correctly capture water fluxes when
7 | serious soil moisture deficits are established. A model that dries-simulates dry-down
8 | too fast will enter drought early and will tend to simulate longer, deeper and more
9 | frequent droughts than a model that dries downenters drought too slowly. We suggest
10 | that systematic evaluation of LSMs during dry down periods would lead to the
11 | identification of major limitations in some models that are hidden by compensating
12 | errors over longer timescales. Resolution of those problems has the potential to
13 | improve the simulation of drought in climate models.

14

15 | We also showed that the effect of individual parameterisations was magnified during
16 | dry periods-(Fig. 6 and 7). Whilst the new hydrological scheme did not havepresent a
17 | significant impaetimprovement on the annual and inter-annual timescales analysed
18 | here, it had an increasingly large positive impact on shorter time scales and in
19 | particular during the dry-down periods-(Fig. 3,4 and 5). Similarly, the contribution of
20 | LAI,soil (Fig. 6a and 7a), g_s and soil(Fig. 6b and 7b) and LAI (Fig. 6c and 7c)
21 | parameterisations to model uncertainties was generally larger during the dry-down.
22 | This highlights the valueWe will discuss each of evaluating model parameterisations
23 | against both mean and (more) extreme states. It also these points to the challenge that,
24 | in these dry down periods that are critical to how a landscape develops towards
25 | drought, the skill needed to capture the relevant processes will be higher than during
26 | wet periodsbelow.

27

28 | 4.1.1. Soil and LAI inputs

29

30 | We evaluated the uncertainty in Q_E simulations arising from inputs of soil properties
31 | and LAI. These variables are generally obtained from gridded datasets in LSM
32 | simulations and remain uncertain at the site (and larger) scale (De Kauwe et al., 2011;
33 | Koster et al., 2009).

34

1 Soil parameters feature in many hydrological model components and our results show
2 that the range in simulated Q_E due to the choice of soil parameters is largest during
3 the dry-down for both hydrological schemes (Fig. 6 and 7). Parameters for wilting
4 point (θ_w) and field capacity (θ_{fc}) are particularly important during drying conditions
5 as they determine how evapotranspiration is reduced as soil moisture becomes
6 limiting (following Eq. (3), (10) and (11)). The model is also sensitive to value of the
7 matric potential at saturation (Table 2). The vertical diffusive flux of soil water
8 between adjacent soil layers is proportional to the saturated matric potential. This
9 control on the rate of vertical water movement alters the profile of vertical soil water
10 during the dry-down impacting the water available for transpiration in a given soil
11 layer. Using the default hydrological scheme, the observed Q_E could only be captured
12 by varying the soil properties at Howard Springs. Elsewhere, the model
13 underestimated observed Q_E during dry-down regardless of how the soil properties
14 were varied (Fig. 6). This suggests that uncertainties in soil parameters cannot
15 account for the poor simulation of dry-down by the default model.

16

17 Similarly, LAI, as it was varied here, could not explain the underestimation of Q_E .
18 The range in LAI varied by site (30% on average) according to the remotely sensed
19 data but was not lower at the drought sites. The model was generally not sensitive to
20 changes in LAI during dry-down regardless of the choice of hydrological scheme
21 (Fig. 6 and Fig. 7). This implies that the correct characterisation of canopy structure is
22 probably not critical for the simulation of Q_E in CABLE during dry-down or that the
23 scale of the errors in the simulations are too large to see any more subtle impact of
24 these LAI variations. Nevertheless, we do note that leaf drop during drought events
25 could lead to an increased or compensatory reflectance signal from deeper in the
26 canopy profile, resulting in erroneous estimates of LAI from optically remote sensed
27 products (cf. Amazon drought studies; Samanta et al., 2010).

28

29 **4.1.2. Hydrological schemes**

30

31 The new hydrological scheme was shown to improve CABLE simulations of Q_E
32 during dry-down (Fig. 3 and 4). This results from higher soil moisture content
33 simulated by the new scheme compared to the default model, particularly in the

1 bottom soil layers (Fig. S7). This allows higher ET fluxes to be maintained during dry
2 periods, mainly due to higher transpiration rates (Fig. S8).

3
4 The alternative hydrological schemes make different assumptions about subsurface
5 drainage and how this is treated upon exiting the bottom soil column boundary. The
6 default model assumes a free draining boundary for solving vertical water flow (Eq.
7 (1)), such that the bottom soil layer essentially acts as a sink for the rest of the soil
8 column as it can only remove water from the column. Conversely, the new scheme
9 simulated an unconfined groundwater aquifer below the bottom soil layer that is
10 assumed to sit on an impermeable layer of rock so that no water is lost from the
11 aquifer through downward flow (Eq. (7)). Soil moisture content of above soil layers
12 can then be replenished through recharge from the aquifer to maintain higher soil
13 moisture during dry periods (given a water table depth near the bottom of the soil
14 column; Eq. (6); Fig. S7). Zeng and Decker (2009) demonstrated that assuming a free
15 draining lower boundary requires an unrealistically high precipitation rate to maintain
16 a relatively wet soil moisture content that allows vegetation to transpire without
17 encountering soil moisture stress. Using a hypothetical example, the authors estimate
18 that a minimum precipitation rate of 17.2 mm/day is required to maintain non-water-
19 stressed conditions (a value much higher than is observed in most environments),
20 implying overly dry soil conditions in many cases. Our results therefore suggest that
21 the replacement of a constant drainage assumption in the original model with a
22 physically based, dynamic bottom boundary condition for the soil column is
23 important for improving Q_E fluxes in CABLE under water stressed conditions.

24
25 Whilst it was not possible to evaluate these simulations against soil moisture data due
26 to a lack of observations for soil depths used in CABLE, Decker (2015) showed that
27 the new scheme could better capture total soil column water anomalies and
28 evapotranspiration (two variables that strongly depend on the correct simulation of
29 soil moisture content) in comparison to the default scheme at river basin scales. This
30 gives us confidence that the higher soil moisture levels simulated by the new scheme
31 are supported by some observations. This result should be evaluated in future work
32 against locations where deep soil moisture measurements are made available, or
33 efforts to obtain observed soil moisture coincident with tower measurements of the
34 fluxes should be encouraged.

1

2 **4.1.3. Stomatal conductance schemes**

3

4 Our results showed that CABLE is generally not sensitive to the choice of g_s scheme
5 during dry-down at most sites (Fig. 6, 7 and 8), with the exception of Howard Springs
6 (a C₄ grass site) and Blodgett (an evergreen needleleaf site). This result is largely to
7 be expected: during drought both schemes are limited in the same fashion, with β (Eq.
8 (11)) reducing the slope that relates g_s to photosynthesis. The noted differences
9 between schemes at the C₄ grass and evergreen needleleaf sites are consistent with
10 results from De Kauwe et al. (2015a). At Howard Springs, De Kauwe et al. (2015a)
11 found that the high g_0 value assumed in the Leuning model (0.04 mol m⁻² leaf s⁻¹)
12 accounted for the difference between schemes when g_s approached zero (for example
13 during a drought). Differences between schemes at Blodgett stem, at least in part,
14 from the use of a parameterisation of a conservative water use, found in evergreen
15 needleleaf forests (Lin et al., 2015).

16

17 We note that the two stomatal schemes have different sensitivities to vapour pressure
18 deficit (see De Kauwe et al. (2015a) for details). However, under current climatic
19 conditions this assumption only results in a small difference between schemes,
20 although this effect could be amplified in the future with expected increased in vapour
21 pressure deficit in a warmer world.

22

23 **4.2 Overestimation of soil evaporation**

24

25 We identified systematic biases in the simulation of peak and spring Q_E , particularly
26 at forested sites (e.g. Tumbarumba and Blodgett) (Fig. 2 and S7). The biases in the
27 timing and magnitude of spring and peak fluxes not only have implications for the
28 correct simulation of seasonal cycles, but can also affect the magnitude of dry-down
29 simulated by the model. The excessive spring and early summer Q_E may reduce soil
30 moisture levels prior to the dry-down, leading to the simulation of more severe
31 reductions in Q_E during dry periods. Both hydrological schemes showed a tendency
32 to significantly overestimate these fluxes. The reason for the overestimation of peak
33 fluxes is not clear but is not resolved by the new hydrological scheme despite this
34 parameterising many of the relevant processes differently. TheAt many sites, the high

1 Q_E in spring is associated with excessive soil evaporation and is not linked to
2 transpiration, which closely follow the observed seasonal cycle (Fig. S7 see e.g.
3 Bugac, Harvard, Howland and Hyytiälä in Fig. S9).

4

5 ~~There are multiple potential causes and solutions to this excessive Q_E . There are a~~
6 ~~number of possible causes and solutions to this excessive soil evaporation. Insufficient~~
7 ~~drainage, and consequently overestimated surface soil moisture, and/or insufficient~~
8 ~~reduction of soil evaporation during soil drying may explain the excess spring Q_E .~~
9 The default scheme uses a linear function to reduce soil evaporation when soil
10 moisture is limiting following Eq. (3). This is replaced with a non-linear function
11 presented in Eq. (10) in the new scheme. The non-linear function provides a much
12 stronger limitation on soil evaporation as soil moisture declines but, based on these
13 results, this approach is not sufficient for resolving the excessive soil evaporation.

14

15 Haverd and Cuntz (2010) showed the inclusion of litter layer dynamics in an earlier
16 version of CABLE improved the simulated timing of spring Q_E at Tumbarumba by
17 suppressing soil evaporation but this was not implemented in the current study.
18 Adding a litter layer may resolve excessive soil evaporation at ~~forested~~some sites by
19 adding an additional resistance to evaporation, but ~~is unlikely to~~it is unclear that this
20 approach would resolve errors ~~for other~~at all PFTs. ~~However, before we attempt to~~
21 ~~implement litter dynamics, we need to be sure that this addition is not simply masking~~
22 ~~a major deficiency elsewhere in the model. For example, errors~~Errors in the timing of
23 spring green-up at deciduous sites in the LAI inputs (e.g. Fisher and Mustard, 2007)
24 may ~~contribute to excessive spring evaporation, whereby a delayed green-up would~~
25 ~~allow excessive radiation to reach the ground surface in early spring, increasing soil~~
26 ~~evaporation rates. Insufficient drainage, and consequently overestimated surface soil~~
27 ~~moisture, and/or insufficient reduction of soil evaporation during soil drying may also~~
28 ~~explain the excess spring Q_E . Alternatively, high soil evaporation may result from the~~
29 ~~simulation of excessive within canopy turbulence (Raupach, 1989a, 1989b, 1994).~~
30 ~~The biases in the timing and magnitude of spring and peak fluxes not only have~~
31 ~~implications for the correct simulation of seasonal cycles, but may also affect the~~
32 ~~magnitude of dry-down simulated by the model. also contribute to excessive spring~~
33 ~~evaporation, whereby a delayed green-up would allow excessive radiation to reach the~~
34 ~~ground surface in early spring, increasing soil evaporation rates. We encourage~~

1 researchers to make use of the Best et al. (2015) experimental protocol to fully
2 explore this problem. Using multi-LSM simulations should ~~The excessive spring and~~
3 ~~early summer Q_E may reduce soil moisture levels prior to the dry down, leading to the~~
4 ~~simulation of more severe reductions in Q_E during dry periods.~~

5
6 Our strategy to resolve the excessive spring soil evaporation is linked with the Best et
7 al. (2015) experimental protocol. Using multi-LSM simulations we hope to be able to
8 identify where CABLE is anomalous, and ideally implement the model
9 parameterisations used in other LSMs that do not simulate excessive spring soil
10 evaporation.

12 **4.3 Further model uncertainties**

13
14 In this study, we explored and quantified model uncertainties due to LAI, g_s ,
15 hydrological and soil parameters, limiting our analysis to parameters that can be
16 derived from observationally based global datasets (despite considerable
17 uncertainties). ~~Other model processes, particularly vegetation response to drought,~~
18 ~~have been identified as critical for capturing drought processes and shown to improve~~
19 ~~CABLE performance during droughts but were not explored here. The simulation of~~
20 ~~the effects of soil moisture limitation on photosynthesis and stomatal conductance~~
21 ~~remains a key uncertainty for drought responses in LSMs (Zhou et al., 2013). Models~~
22 ~~rely on differing assumptions about the effects of water stress on photosynthesis and~~
23 ~~stomatal conductance (Egea et al., 2011; Keenan et al., 2009) but generally assume~~
24 ~~similar drought responses across different PFTs (including CABLE as employed here)~~
25 ~~(De Kauwe et al., 2015c; Zhou et al., 2013). De Kauwe et al. (2015b) evaluated~~
26 ~~CABLE against flux site observations during the 2003 European drought using an~~
27 ~~alternative drought model with experimentally derived drought sensitivities. The~~
28 ~~authors similarly showed significant underestimations of Q_E using the default CABLE~~
29 ~~but these were improved using different plant species sensitivities to drought and a~~
30 ~~dynamic weighting of water uptake across soil layers. Experimental data to inform the~~
31 ~~parameterisation of PFT specific drought responses, however, remains limited (De~~
32 ~~Kauwe et al., 2015c), complicating the implementation of such responses into~~
33 ~~LSMs. Other model processes, particularly more realistic representations of vegetation~~
34 ~~drought responses, have been identified as critical for capturing drought processes and~~

1 shown to improve CABLE performance during droughts but were not explicitly
2 explored here. Li et al. (2012) showed the underestimation of CABLE simulated Q_E
3 under water stressed conditions could be improved by employing an alternative root
4 water uptake scheme. The default root water uptake function in CABLE employed
5 here (Wang et al., 2011) assumes a constant efficiency of water uptake per unit root
6 length (Li et al., 2012). CABLE with the alternative scheme, combining a function
7 allowing variable root density distribution (Lai and Katul, 2000) with a hydraulic
8 redistribution scheme (which allows roots to move water from wetter to drier soil
9 layers), was shown to correctly capture the magnitude of seasonal droughts across
10 three flux tower sites. The implementation of more realistic vegetation responses and
11 adaptations to droughts should further refine the performance of the new hydrological
12 scheme during dry down periods.

13

14 The simulation of the effects of soil moisture limitation on photosynthesis and
15 stomatal conductance remains a key uncertainty for drought responses in LSMs (Zhou
16 et al., 2013). Models rely on differing assumptions about the effects of water stress on
17 photosynthesis and stomatal conductance (Egea et al., 2011; Keenan et al., 2009) but
18 generally assume similar drought responses across different PFTs (including CABLE
19 as employed here) despite experimental evidence pointing to systematic differences in
20 plant adaptations to drought (De Kauwe et al., 2015b; Zhou et al., 2013). In common
21 with many other LSMs (Verhoef and Egea, 2014), CABLE limits gas exchange
22 during low soil moisture using the dimensionless scalar β following Eq. (11). The
23 function is strongly linked to soil properties (through wilting point and field capacity
24 parameters) and does not directly consider vegetation characteristics beyond rooting
25 depth (which varies little by PFT). De Kauwe et al. (2015b) evaluated CABLE against
26 flux site observations during the 2003 European drought using an alternative drought
27 model with experimentally derived drought sensitivities. They showed significant
28 underestimations of Q_E using the default CABLE but these were improved using
29 different vegetation sensitivities to drought (varying from low sensitivity in xeric
30 environments to high in mesic environments in line with experimental evidence) and
31 a dynamic weighting of water uptake across soil layers. Experimental data to inform
32 the parameterisation of PFT-specific drought responses, however, remains limited (De
33 Kauwe et al., 2015b), complicating the implementation of such responses into LSMs.
34 Li et al. (2012) showed the underestimation of CABLE-simulated Q_E under water-

1 stressed conditions could be improved by employing an alternative root water uptake
2 scheme. The default root water uptake function in CABLE employed here (Wang et
3 al., 2011) assumes a constant efficiency of water uptake per unit root length (Li et al.,
4 2012). CABLE with the alternative scheme, combining a function allowing variable
5 root-density distribution (Lai and Katul, 2000) with a hydraulic redistribution scheme
6 (which allows roots to move water from wetter to drier soil layers), was shown to
7 correctly capture the magnitude of seasonal ~~Furthermore, in current simulations~~
8 ~~prescribed monthly MODIS LAI was used.~~ ~~scale~~ droughts across three flux tower
9 sites. The implementation of more realistic vegetation responses and adaptations to
10 droughts should further refine the performance of the new hydrological scheme
11 during dry-down periods.

12
13 ~~Furthermore, in the simulations described here prescribed monthly MODIS LAI was~~
14 ~~used.~~ Whilst CABLE and many other LSMs are capable of simulating LAI
15 dynamically, it is common practice, particularly in coupled online simulations, to rely
16 on prescribed monthly climatology instead of time-varying LAI. This limits the
17 realistic simulation of reductions in LAI during severe droughts and consequent
18 feedbacks with radiative and evaporative processes such as interception losses.
19 Canopy defoliation may, for example, decrease transpiration and interception but also
20 increase radiation reaching the soil surface, potentially increasing soil evaporation in
21 the presence of available moisture, ~~whilst also decreasing albedo and total ground~~
22 ~~reaching radiation.~~ As these feedbacks were not considered in this study, the rate of
23 dry-down may have been overestimated at sites which experienced LAI reductions
24 during rainfall deficits, but which may not have been captured in the MODIS LAI
25 inputs. However, as only the magnitude of LAI was varied in this study, it is not
26 possible to quantify the effects of temporal errors in LAI on simulated Q_E . ~~But~~
27 ~~as~~ ~~Since~~ both hydrological models were forced with identical LAI, it is unlikely
28 uncertainties in the prescribed LAI explain the excessive dry-down in the default
29 hydrological scheme.

30
31 We have limited our analysis to short-term, seasonal-scale rainfall deficits. Multi-
32 annual droughts, such as the Millennium drought in eastern Australia (van Dijk et al.,
33 2013), are likely to exhibit different dynamics in terms of vegetation responses and
34 consequent feedbacks with land surface fluxes, soil moisture states and albedo.

1 Prudhomme et al. (2011), for example, showed the JULES LSM to more successfully
2 reproduce long-term hydrological droughts than short-term events in terms of
3 duration and severity. Realistic representations of plant adaptations to drought and
4 dynamically varying LAI are likely to be increasingly important for representing
5 vegetation resilience and coupled land surface processes during long-term droughts.
6 We therefore suggest future studies of LSM performance under water-stressed
7 conditions should evaluate models against drought events at different temporal scales.
8
9

10 **5 Conclusions**

11

12 This study ~~has~~ evaluated the CABLE land surface model for seasonal-scale
13 precipitation deficits using 20 flux tower sites distributed globally. We varied the soil
14 hydrological and stomatal conductance parameterisations, and the inputs for LAI and
15 soil properties. Our goal was to determine whether CABLE ~~can~~could capture dry-
16 down associated with rainfall deficits as these components of the model are varied, or
17 whether the model lacks the ~~mechanisms~~physical parameterisations to simulate this
18 phenomenon.

19

20 On long time scales (annual and above), compensating biases mean that the two
21 versions of CABLE ~~did not perform very differently. However, as our analysis~~
~~focused on periods of rainfall deficit, a new hydrological parameterisation based on~~
~~Decker (in review) clearly improved the capability of CABLE to simulate~~
 ~~Q_E~~ performed similarly. However, as our analysis focused more on periods of rainfall
~~deficit, a new hydrological parameterisation based on Decker (2015) clearly improved~~
~~the capability of CABLE to simulate Q_E .~~ However, neither version of CABLE, and no
22 reasonable choice of soil parameter, LAI or stomatal conductance resolved systematic
23 seasonal-scale biases in excessive spring soil evaporation. The reasons for these
24 biases cannot be determined in isolation and we will next pursue these model
25 limitations using the PLUMBER multi-model benchmarking framework (Best et al.,
26 2015).

27

28 Our study highlights some opportunities for land modellers. First, our study again
29 demonstrates the value in freely-available flux tower data for identifying systematic

1 biases in LSMs. The value of these data extends well beyond their common use in
2 evaluating means or seasonal cycles. Second, a major role for LSMs is to simulate
3 feedbacks to the atmosphere associated with rainfall deficits. We have demonstrated
4 that there is skill in CABLE in simulating these feedbacks as a landscape dries but
5 clearly more work needs to be invested in capturing all the elements of a drying soil
6 and its impacts on Q_E . While the parameterisation of hydrology has been explored
7 over the years, we remind the community that there are on-going challenges in
8 modelling soil moisture and links between soil moisture and evaporation that are not
9 yet resolved. Third, we note that CABLE performs [eomparativelyreasonably](#) relative
10 to other LSMs (Abramowitz et al., 2007; Best et al., 2015) and yet when we
11 interrogate the model's performance at timescales when compensating biases are
12 limited, CABLE displays some concerning behaviour. It is inevitable that other
13 LSMs, if examined using these periods of precipitation deficit, will also exhibit
14 problems. Clearly, formally testing LSMs against more extreme conditions, and in the
15 context of specific phenomenon (e.g. drought or heatwave) is a necessary step to build
16 confidence in the projections from climate models that utilise LSMs.

17

18

19 **Acknowledgements**

20

21 We acknowledge the support of the Australian Research Council Centre of Excellence
22 for Climate System Science (CE110001028). M.D.K was supported by the Australian
23 Research Council Linkage grant LP140100232. This work used eddy covariance data
24 acquired by the FLUXNET community and in particular by the following networks:
25 AmeriFlux (U.S. Department of Energy, Biological and Environmental Research,
26 Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)),
27 AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont,
28 ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment
29 Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia,
30 USCCC. We acknowledge the financial support to the eddy covariance data
31 harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck
32 Institute for Biogeochemistry, National Science Foundation, University of Tuscia,
33 Université Laval and Environment Canada and US Department of Energy and the
34 database development and technical support from Berkeley Water Center, Lawrence

1 Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National
2 Laboratory, University of California - Berkeley, University of Virginia.

3

4

5 **References**

6 |
7 Abramowitz, G.: Towards a public, standardized, diagnostic benchmarking system for
8 land surface models, *Geosci. Model Dev.*, 5, 819–827, doi:10.5194/gmd-5-819-2012,
9 2012.

10 Abramowitz, G., Pitman, A., Gupta, H., Kowalczyk, E. and Wang, Y.: Systematic
11 Bias in Land Surface Models, *J. Hydrometeorol.*, 8, 989–1001,
12 doi:10.1175/JHM628.1, 2007.

13 Abramowitz, G., Leuning, R., Clark, M. and Pitman, A.: Evaluating the performance
14 of land surface Models, *J. Clim.*, 21, 5468–5481, doi:10.1175/2008JCLI2378.1, 2008.

15 Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,
16 Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted),
17 Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard,
18 G., Running, S. W., Semerci, A. and Cobb, N.: A global overview of drought and
19 heat-induced tree mortality reveals emerging climate change risks for forests, *For.*
20 *Ecol. Manage.*, 259, 660–684, doi:10.1016/j.foreco.2009.09.001, 2010.

21 Ball, T., Woodrow, I. and Berry, J.: A model predicting stomatal conductance and its
22 contribution to the control of photosynthesis under different environmental
23 | conditions, in *Progress in photosynthesis research*[Photosynthesis Research](#), edited by
24 J. Biggins, pp. 221–224, Martinus Nijhoff, Leiden, the Netherlands., 1987.

25 Best, M. J., [Pryor, M.](#), [Clark, D. B.](#), [Roemer, G. G.](#), [Essery, R. L. H.](#), [Menard, C. B.](#),
26 [Edwards, J. M.](#), [Hendry, M. A.](#), [Person, A.](#), [Gedney, N.](#), [Mercado, L. M.](#), [Sitch, S.](#),
27 [Blyth, E.](#), [Boucher, O.](#), [Cox, P. M.](#), [Grimmond, C. S. B.](#) and [Harding, R. J.](#): The Joint
28 [UK Land Environment Simulator \(JULES\)](#), [model description Part 1: energy and](#)
29 [water fluxes](#), *Geosci. Model Dev.*, 4, 677–699, 2011.

30 [Best, M. J.](#), Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, A.,

1 Cuntz, M., Decharme, B., Dirmeyer, P. [aA](#)., Dong, J., Ek, M., Guo, Z., Haverd, V.,
2 van den Hurk, B. [J-](#)., Nearing, G. S., Pak, B., Peters-Lidard, C., Santanello, J. [aA](#).,
3 Stevens, L. and Vuichard, N.: The plumbing of land surface models: benchmarking
4 model performance, *J. Hydrometeorol.*, 16, 1425–[14221442](#), doi:10.1175/JHM-D-14-
5 0158.1, 2015.

6 Bi, D., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H. a, Uotila, P., Hirst, A. C.,
7 Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C.,
8 Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y.,
9 Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S. M., Hill, R., Harris, C., Puri, K.
10 and Farrell, S. O.: The ACCESS coupled model: description, control climate and
11 evaluation, *Aust. Meteorol. Oceanogr. J.*, 63, 41–64, 2013.

12 Blyth, E., Clark, D. B., Ellis, R., Huntingford, C., Los, S., Pryor, M., Best, M. and
13 Sitch, S.: A comprehensive set of benchmark tests for a land surface model of
14 simultaneous fluxes of water and carbon at both the global and seasonal scale, *Geosci.
15 Model Dev.*, 4, 255–269, doi:10.5194/gmd-4-255-2011, 2011.

16 [Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic
17 properties, Water Resour. Res., 14, 601–604, 1978.](#)

18 Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P.,
19 Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver,
20 A. J. and Wehner, M.: Long-term Climate Change: Projections, Commitments and
21 Irreversibility, in *Climate Change 2013: The Physical Science Basis. Contribution of
22 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
23 Climate Change*, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K.
24 Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, pp. 1029–1136,
25 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.,
26 2013.

27 Cruz, F. T., Pitman, A. J., McGregor, J. L. and Evans, J. P.: Contrasting Regional
28 Responses to Increasing Leaf-Level Atmospheric Carbon Dioxide over Australia, *J.
29 Hydrometeorol.*, 11, 296–314, doi:10.1175/2009jhm1175.1, 2010.

30 Dai, A.: [Drought under global warming: a review, Wiley Interdiscip. Rev. Clim.
31 Chang., 2, 45–65, doi:10.1002/wee.81, 2011.](#)

1 [Dai, A.](#): Increasing drought under global warming in observations and models, *Nat. Clim. Chang.*, 3, 52–58, doi:10.1038/nclimate1633, 2012.

2

3 De Kauwe, M. G., [Kala, J.](#), [Lin, Y. S.](#), [Pitman, a. J.](#), [Medlyn, B. E.](#), [Duursma, R. a.](#),
4 [Abramowitz, G.](#), [Wang, Y.-P.](#) and [Miralles, D. G.](#): [A test of an optimal stomatal](#)
5 [conductance scheme within the CABLE land surface model](#), *Geosci. Model Dev.*, 8,
6 431–452, doi:10.5194/gmd-8-431-2015, 2015a [Disney, M. I.](#), [Quaife, T.](#), [Lewis, P.](#)
7 and [Williams, M.](#): An assessment of the MODIS collection 5 leaf area index product
8 for a region of mixed coniferous forest, *Remote Sens. Environ.*, 115, 767–780,
9 doi:10.1016/j.rse.2010.11.004, 2011.

10 De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E., Duursma, R. A.,
11 Abramowitz, G., Wang, Y.-P. and Miralles, D. G.: A test of an optimal stomatal
12 conductance scheme within the CABLE land surface model, *Geosci. Model Dev.*, 8,
13 431–452, doi:10.5194/gmd-8-431-2015, [2015b](#)[2015a](#).

14 De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, [aA](#). J., Wang, [Y- P.](#),
15 Duursma, R. [aA](#). and Prentice, I. C.: Do land surface models need to include
16 differential plant species responses to drought? Examining model predictions across a
17 latitudinal gradient in Europe, *Biogeosciences Discuss.*, 12, 12349–12393,
18 doi:10.5194/bgd-12-12349-2015, [2015e](#)[2015b](#).

19 Decker, M.: Development and [Evaluation](#)[evaluation](#) of a new [Soil Moisture](#)[soil](#)
20 [moisture](#) and [Runoff Parameterization](#)[runoff parameterization](#) for the CABLE LSM
21 including subgrid-scale processes, *J. Adv. Model. Earth Syst.*, [in review](#)[7](#),
22 doi:10.1002/2013MS000282. Received, 2015.

23 Dirmeyer, P. A.: A [History](#)[history](#) and [Review](#)[review](#) of the Global Soil Wetness
24 Project (GSP), *J. Hydrometeorol.*, 12, 729–749, doi:10.1175/JHM-D-10-05010.1,
25 2011.

26 Egea, G., Verhoef, A. and Vidale, P. L.: Towards an improved and more flexible
27 representation of water stress in coupled photosynthesis-stomatal conductance
28 models, *Agric. For. Meteorol.*, 151, 1370–1384, doi:10.1016/j.agrformet.2011.05.019,
29 2011.

30 Fisher, J. I. and Mustard, J. F.: Cross-scalar satellite phenology from ground, Landsat,
31 and MODIS data, *Remote Sens. Environ.*, 109, 261–273,
32 doi:10.1016/j.rse.2007.01.004, 2007.

1 Global Soil Data Task Group: Global gridded surfaces of selected soil characteristics
2 (IGBP-IDS), [online] Available from: <http://www.daac.ornl.gov>, 2000.

3 Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, J. L., Kowalczyk, E. A.,
4 O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A.,
5 Watterson, I. G. and Elliott, T. I.: The CSIRO Mk3 climate system model, Aspendale,
6 Victoria, Australia. [\[online\]](http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+CSIRO+Mk3+Climate+System+Model#0) Available from:
7 <http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+CSIRO+Mk3+Climate+System+Model#0>, 2002.

9 ~~Gupta, H. V., Bastidas, L. a., Sorooshian, S., Shuttleworth, W. J. and Yang, Z. L.: Parameter estimation of a land surface scheme using multicriteria methods, J. Geophys. Res., 104, 19491–19503, doi:10.1029/1999JD900154, 1999.~~

12 Haverd, V. and Cuntz, M.: Soil-Litter-Iso: A one-dimensional model for coupled
13 transport of heat, water and stable isotopes in soil with a litter layer and root
14 extraction, *J. Hydrol.*, 388, 438–455, doi:10.1016/j.jhydrol.2010.05.029, 2010.

15 Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps, C., Roxburgh, S. H., van Gorsel, E., Viscarra Rossel, R. [aA](#) and Wang, Z.: Multiple
16 observation types reduce uncertainty in Australia's terrestrial carbon and water cycles,
17 *Biogeosciences*, 10, 2011–2040, doi:10.5194/bg-10-2011-2013, 2013.

19 ~~Henderson-Sellers, A., Pitman, A., Love, P., Irandejad, P. and Chen, T.: The Project for Intercorparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3, *Bull. Am. Meteorol. Soc.*, 76, 489–503, 1995.~~

22 Huang, M., Piao, S., Sun, Y., Ciais, P., Cheng, L., Mao, J., Poulter, B., Shi, X., Zeng, Z. and Wang, Y.: Change in terrestrial ecosystem water-use efficiency over the last
23 three decades, *Glob. Chang. Biol.*, 21, 2366–2378, doi:10.1111/gcb.12873, 2015.

25 IPCC: Climate change 2013: The physical science basis. Contribution of working
26 group I to the fifth assessment report of the Intergovernmental Panel on Climate
27 Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J.
28 Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Cambridge University
29 Press, Cambridge, United Kingdom and New York, NY, USA., 2013.

30 Kala, J., Decker, M., Exbrayat, J.-F., Pitman, A. J., Carouge, C., Evans, J. P.,

1 Abramowitz, G. and Mocko, D.: Influence of [Leaf Area Index Prescriptions](#) [leaf area index prescriptions](#) on [Simulations](#) [simulations](#) of [Heat](#), [Moisture](#) [heat](#), [moisture](#), and [Carbon Fluxes](#) [carbon fluxes](#), *J. Hydrometeorol.*, 15, 489–503, doi:10.1175/JHM-D-13-063.1, 2014.

5 Keenan, T., García, R., Friend, [a](#) [A](#). D., Zaehle, S., Gracia, C. and Sabate, S.:
6 Improved understanding of drought controls on seasonal variation in Mediterranean
7 forest canopy CO₂ and water fluxes through combined in situ measurements and
8 ecosystem modelling, *Biogeosciences Discuss.*, 6, [2285–2329](#) [1423–1444](#),
9 doi:10.5194/bgd-6-2285-2009, 2009.

10 Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. [a](#) [A](#)., Mitchell, K. and Puma, M. J.: On
11 the nature of soil moisture in land surface models, *J. Clim.*, 22, 4322–4335,
12 doi:10.1175/2009JCLI2832.1, 2009.

13 Kowalczyk, E. A., Garratt, J. R. and Krummel, P. B.: Implementation of a soil-canopy
14 scheme into the CSIRO GCM: Regional aspects of the model response. [CSIRO](#)
15 [Division of Atmospheric Research Technical Paper no. 32](#), [online] Available from:
16 <http://www.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=N9524192AH>, 1994.

18 Kowalczyk, E. A., Wang, Y. P., Law, R. M., Davies, H. L., McGregor, J. L. and
19 Abramowitz, G.: The CSIRO Atmosphere Biosphere Land Exchange (CABLE)
20 model for use in climate models and as an offline model, [Aspendale, Victoria,](#)
21 [Australia.](#), 2006.

22 [Krinner, G.](#), [Viovy, N.](#), [de Noblet-Ducoudré, N.](#), [Ogée, J.](#), [Polcher, J.](#), [Friedlingstein, P.](#), [Ciais, P.](#), [Sitch, S.](#) and [Prentice, I. C.](#): A dynamic global vegetation model for
23 studies of the coupled atmosphere-biosphere system, *Global Biogeochem. Cycles*, 19,
24 [GB1015](#), doi:10.1029/2003GB002199, 2005.

26 Lai, C.-T. and Katul, G.: The dynamic role of root-water uptake in coupling potential
27 to actual transpiration, *Adv. Water Resour.*, 23, 427–439, doi:10.1016/S0309-
28 1708(99)00023-8, 2000.

29 Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land surface
30 in the Community Land Model (CLM 3.0), *J. Geophys. Res. Biogeosciences*, 112,
31 G01023, doi:10.1029/2006JG000168, 2007.

1 Leplastrier, M., Pitman, A., Gupta, H. and Xia, Y.: Exploring the relationship
2 between complexity and performance in a land surface model using the multicriteria
3 method, *J. Geophys. Res.*, 107, 1–12, doi:10.1029/2001JD000931, 2002.

4 Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model for C₃
5 plants, *Plant. Cell Environ.*, 18, 339–355, 1995.

6 [Leuning, R., van Gorsel, E., Massman, W. J. and Isaac, P. R.: Reflections on the](#)
7 [surface energy imbalance problem, Agric. For. Meteorol., 156, 65–74,](#)
8 [doi:10.1016/j.agrformet.2011.12.002, 2012.](#)

9 Li, L., Wang, Y.-P., Yu, Q., Pak, B., Eamus, D., Yan, J., van Gorsel, E. and Baker, I.
10 T.: Improving the responses of the Australian community land surface model
11 (CABLE) to seasonal drought, *J. Geophys. Res.*, 117, G04002,
12 doi:10.1029/2012JG002038, 2012.

13 Lin, Y.-S., Medlyn, B. E., Duursma, R. [aA.](#), Prentice, I. C., Wang, H., Baig, S.,
14 Eamus, D., de Dios, V. R., Mitchell, P., Ellsworth, D. S., de Beeck, M. O., Wallin, G.,
15 Uddling, J., Tarvainen, L., Linderson, M.-L., Cernusak, L. a., Nippert, J. B.,
16 Ocheltree, T. W., Tissue, D. T., Martin-StPaul, N. K., Rogers, A., Warren, J. M., De
17 Angelis, P., Hikosaka, K., Han, Q., Onoda, Y., Gimeno, T. E., Barton, C. V. M.,
18 Bennie, J., Bonal, D., Bosc, A., Löw, M., Macinins-Ng, C., Rey, A., Rowland, L.,
19 Setterfield, S. [aA.](#), Tausz-Posch, S., Zaragoza-Castells, J., Broadmeadow, M. S. J.,
20 Drake, J. E., Freeman, M., Ghannoum, O., Hutley, L. B., Kelly, J. W., Kikuzawa, K.,
21 Kolari, P., Koyama, K., Limousin, J.-M., Meir, P., Lola da Costa, A. C., Mikkelsen,
22 T. N., Salinas, N., Sun, W. and Wingate, L.: Optimal stomatal behaviour around the
23 world, *Nat. Clim. Chang.*, 5, 459–464, doi:10.1038/nclimate2550, 2015.

24 Lorenz, R. and Pitman, A. J.: Effect of land-atmosphere coupling strength on impacts
25 from Amazonian deforestation, *Geophys. Res. Lett.*, 41, 5987–5995,
26 doi:10.1002/2014GL061017, 2014.

27 Lorenz, R., Pitman, A. J., Donat, M. G., Hirsch, A. L., Kala, J., Kowalczyk, E. A.,
28 Law, R. M. and Srbinovsky, J.: Representation of climate extreme indices in the
29 ACCESS1.3b coupled atmosphere–land surface model, *Geosci. Model Dev.*, 7, [545–](#)
30 [567, doi:10.5194/gmd-7-545-2014, 2014.](#)

31 Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton,

1 C. V. M., Crous, K. Y., De Angelis, P., Freeman, M. and Wingate, L.: Reconciling
2 the optimal and empirical approaches to modelling stomatal conductance, *Glob.*
3 *Chang. Biol.*, 17, 2134–2144, doi:10.1111/j.1365-2486.2010.02375.x, 2011.

4 Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence,
5 P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, [a A](#) and Qian, T.:
6 Improvements to the community land model and their impact on the hydrological
7 cycle, *J. Geophys. Res. Biogeosciences*, 113, doi:10.1029/2007JG000563, 2008.

8 [Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C.](#)
9 [D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E.,](#)
10 [Bozbiyik, A., Fisher, R., Heald, C. L., Kluzeck, E., Lamarque, J.-F., Lawrence, P. J.,](#)
11 [Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang,](#)
12 [J. and Yang, Z.-L.: Technical description of version 4.5 of the Community Land](#)
13 [Model \(CLM\), Boulder, Colorado., 2013.](#)

14 Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for
15 climate models, *Int. J. Climatol.*, 23, 479–510, doi:10.1002/joc.893, 2003.

16 Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M. a,
17 Rowland, L., Almeida, S., Brando, P. M., da Costa, A. C. L., Costa, M. H., Levine, N.
18 M., Malhi, Y., Saleska, S. R., Sotta, E., Williams, M., Meir, P. and Moorcroft, P. R.:
19 Confronting model predictions of carbon fluxes with measurements of Amazon
20 forests subjected to experimental drought, *New Phytol.*, 200, 350–365,
21 doi:10.1111/nph.12390, 2013.

22 Prudhomme, C., Parry, S., Hannaford, J., Clark, D. B., Hagemann, S. and Voss, F.:
23 How Well Do Large-Scale Models Reproduce Regional Hydrological Extremes in
24 Europe?, *J. Hydrometeorol.*, 12, 1181–1204, doi:10.1175/2011JHM1387.1, 2011.

25 Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers,
26 R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah,
27 D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y. and Wisser, D.:
28 Hydrological droughts in the 21st century, hotspots and uncertainties from a global
29 multimodel ensemble experiment., *Proc. Natl. Acad. Sci. U. S. A.*, 111, 3262–7,
30 doi:10.1073/pnas.1222473110, 2014.

31 Puri, K., Dietachmayer, G., Steinle, P., Dix, M., Rikus, L., Logan, L., Naughton, M.,
32 Tingwell, C., Xiao, Y., Barras, V., Bermous, I., Bowen, R., Deschamps, L., Franklin,

1 C., Fraser, J., Glowacki, T., Harris, B., Lee, J., Le, T., Roff, G., Sulaiman, a, Sims,
2 H., Sun, X., Sun, Z., Zhu, H., Chattopadhyay, M. and Engel, C.: Implementation of
3 the initial ACCESS numerical weather prediction system, *Aust. Meteorol. Oceanogr.*
4 J., 63, 265–284, 2013.

5 ~~Raupach, M. R.: A practical Lagrangian method for relating scalar concentrations to~~
6 ~~source distributions in vegetation canopies, Q. J. R. Meteorol. Soc., 115, 609–632,~~
7 ~~doi:10.1002/qj.49711548710, 1989a.~~

8 ~~Raupach, M. R.: Applying Lagrangian fluid mechanics to infer scalar source~~
9 ~~distributions from concentration profiles in plant canopies, Agric. For. Meteorol., 47,~~
10 ~~85–108, doi:10.1016/0168-1923(89)90089-0, 1989b.~~

11 ~~Raupach, M. R.: Simplified expressions for vegetation roughness length and zero-~~
12 ~~plane displacement as functions of canopy height and area index, Boundary Layer~~
13 ~~Meteorol., 71, 211–216, doi:10.1007/BF00709229, 1994.~~

14 Sakaguchi, K. and Zeng, X.: Effects of soil wetness, plant litter, and under-canopy
15 atmospheric stability on ground evaporation in the Community Land Model
16 (CLM3.5), J. Geophys. Res. Atmos., 114, 1–14, doi:10.1029/2008JD010834, 2009.

17 Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y.,
18 Nemani, R. R. and Myneni, R. B.: Amazon forests did not green-up during the 2005
19 drought, Geophys. Res. Lett., 37, 1–5, doi:10.1029/2009GL042154, 2010.

20 Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I.,
21 Orlowsky, B. and Teuling, A. J.: Investigating soil moisture–climate interactions in a
22 changing climate: A review, Earth-Science Rev., 99, 125–161,
23 doi:10.1016/j.earscirev.2010.02.004, 2010.

24 Sheffield, J. and Wood, E.: Drought: past problems and future scenarios, Earthscan,
25 London, United Kingdom., 2011.

26 Tallaksen, L. M. and Stahl, K.: Spatial and temporal patterns of large-scale droughts
27 in Europe: model dispersion and performance, Geophys. Res. Lett., 41, 429–434,
28 doi:10.1002/2013GL058954. Received, 2014.

29 Trenberth, K. E., Dai, A., Schrier, G. Van Der, Jones, P. D., Barichivich, J., Briffa, K.

1 R. and Sheffield, J.: Global warming and changes in drought, *Nat. Clim. Chang.*, 4,
2 17–22, doi:10.1038/NCLIMATE2067, 2014.

3 van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. aA. M., Liu, Y. Y.,
4 Podger, G. M., Timbal, B. and Viney, N. R.: The Millennium Drought in southeast
5 Australia (2001-2009): Natural and human causes and implications for water
6 resources, ecosystems, economy, and society, *Water Resour. Res.*, 49, 1–18,
7 doi:10.1002/wrcr.20123, 2013.

8 [Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: observation, modeling, climatology and climatic variability, *Rev. Geophys.*, 50, RG2005, doi:10.1029/2011RG000373, 2012.](#)

9

10

11 [Verhoef, A. and Egea, G.: Modeling plant transpiration under limited soil water: Comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models, *Agric. For. Meteorol.*, 191, 22–32, doi:10.1016/j.agrformet.2014.02.009, 2014.](#)

12

13

14

15 Wang, Y. and Leuning, R.: A two-leaf model for canopy conductance ,
16 photosynthesis and partitioning of available energy I : Model description and
17 comparison with a multi-layered model, *Agric. For. Meteorol.*, 91, 89–111, 1998.

18 [Wang, Y. P., Leuning, R., Cleugh, H. and Coppin, P.: Parameter estimation in surface exchange models using nonlinear inversion : how many parameters can we estimate and which measurements are most useful ?, *Glob. Chang. Biol.*, 7, 495–510, doi:10.1046/j.1365-2486.2001.00434.x, 2001.](#)

19

20

21

22 Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R., Pak, B.,
23 van Gorsel, E. and Luhar, A.: Diagnosing errors in a land surface model (CABLE) in
24 the time and frequency domains, *J. Geophys. Res.*, 116, G01034,
25 doi:10.1029/2010JG001385, 2011.

26 Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck,
27 H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y.,
28 Tomelleri, E., Trudinger, C. M. and Wang, Y.-P.: Improving land surface models with
29 FLUXNET data, *Biogeosciences*, 6, 1341–1359, doi:10.5194/bg-6-1341-2009, 2009.

30 Yuan, H., Dai, Y., Xiao, Z., Ji, D. and Shangguan, W.: Reprocessing the MODIS Leaf

1 Area Index products for land surface and climate modelling, *Remote Sens. Environ.*,
2 115, 1171–1187, doi:10.1016/j.rse.2011.01.001, 2011.

3 [Zeng, X. and Decker, M.: Improving the numerical solution of soil moisture-based](#)
4 [Richards equation for land models with a deep or shallow water table, J.](#)
5 [Hydrometeorol.](#), 10, 308–319, doi:10.1175/2008JHM1011.1, 2009.

6 Zhang, H., Pak, B., Wang, Y. P., Zhou, X., Zhang, Y. and Zhang, L.: Evaluating
7 [Surface Water Cycle Simulated](#)[surface water simulated](#) by the Australian
8 Community Land Surface Model (CABLE) across [Different Spatial](#)[different spatial](#)
9 and [Temporal Domains](#)[temporal domains](#), *J. Hydrometeorol.*, 14, 1119–1138,
10 doi:10.1175/JHM-D-12-0123.1, 2013.

11 Zhou, S., Duursma, R. [aA](#)., Medlyn, B. E., Kelly, J. W. G. and Prentice, I. C.: How
12 should we model plant responses to drought? An analysis of stomatal and non-
13 stomatal responses to water stress, *Agric. For. Meteorol.*, 182-183, 204–214,
14 doi:10.1016/j.agrformet.2013.05.009, 2013.

15 Zhou, X., Zhang, Y., Wang, Y., Zhang, H., Vaze, J., Zhang, L., Yang, Y. and Zhou,
16 Y.: Benchmarking global land surface models against the observed mean annual
17 runoff from 150 large basins, *J. Hydrol.*, 470-471, 269–279,
18 doi:10.1016/j.jhydrol.2012.09.002, 2012.

19 [Zobler, L.: Global soil types, 1-degree grid, , doi:10.3334/ ORNLDAAC/418, 1999.](#)

20