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Abstract 29 

Physically based distributed hydrological models(here after refers to as PBDHMs) 30 

discrete the terrain of the whole catchment into a number of grid cells at fine 31 

resolution, and assimilate different terrain data and precipitation to different cells, and 32 

are regarded to have the potential to improve the catchment hydrological processes 33 

simulation and prediction capability. In the early stage, physically based distributed 34 

hydrological models are assumed to derive model parameters from the terrain 35 

properties directly, so there is no need to calibrate model parameters, but 36 

unfortunately, the uncertanties associated with this model deriving is very high, which 37 

impacted their application in flood forecasting, so parameter optimization may also be 38 

necessary. There are two main purposes for this study, the first is to propose a 39 

parameter optimization method for physically based distributed hydrological models 40 

in catchment flood forecasting by using PSO algorithm and to test its competence and 41 

to improve its performances, the second is to explore the possibility of improving 42 

physically based distributed hydrological models capability in cathcment flood 43 

forecating by parameter optimization. In this paper, based on the scalar concept, a 44 

general framework for parameter optimization of the PBDHMs for catchment flood 45 

forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe 46 

Model as the study model, which is a physically based distributed hydrological model 47 

proposed for catchment flood forecasting, the improverd Particle Swarm 48 

Optimization(PSO) algorithm is developed for the parameter optimization of Liuxihe 49 

model in catchment flood forecasting, the improvements include to adopt the linear 50 

decreasing inertia weight strategy to change the inertia weight, and the arccosine 51 

function strategy to adjust the acceleration coefficients. This method has been tested 52 

in two catchments in southern China with different sizes, and the results show that the 53 
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improved PSO algorithm could be used for Liuxihe Model parameter optimization 54 

effectively, and could improve the model capability largely in catchment flood 55 

forecasting, thus proven that parameter optimization is necessary to improve the flood 56 

forecasting capability of physically based distributed hydrological model. It also has 57 

been found that the appropriate particle number and the maximum evolution number 58 

of PSO algorithm used for Liuxihe Model catchment flood forcasting is 20 and 30 59 

respectively. 60 

 61 

Key words：Flood forecasting, physically based distributed hydrological model, 62 

Liuxihe Model, parameter optimization, Particle Swarm Optimization 63 

64 
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1. Introduction 65 

Improving flood forecasting capability has long been the goal of the global 66 

hydrological communities, and catchment hydrological models are the main tools for 67 

flood forecasting. The first model used for flood forecasting is commonly referred to 68 

as the Sherman’s unit hydrograph method (Sherman, 1932). Early catchment 69 

hydrological models are usually referred to as lumped conceptual models (Refsgaard, 70 

et al., 1996, Chen, et.al, 2011), and a large number of this kind of models have been 71 

proposed, such as the Stanford Model (Crawford et. al., 1966), the Xinanjiang Model 72 

(Zhao, 1977), and many other lumped models included in the the book of Computer 73 

Models of Watershed Hydrology (Singh et. al., 1995). Lumped conceptual models 74 

usually aggregate the hydrological forcings, state variables and model parameters 75 

over the whole catchment, so could not represent the spatial distribution of the terrain 76 

characteristics and hydrological forcings finely, thus reducing their flood forecasting 77 

capabilities. With the development of remote sensing and GIS techniques, high 78 

resolution terrain data such as the Shuttle Radar Topography Mission DEM database 79 

(Falorni et al., 2005, Sharma et. al., 2014), the USGS land use type database 80 

(Loveland et. al., 1991, Loveland et. al., 2000), the FAO soil type database 81 

(http://www.isric.org), and precipitation estimated by digital weather radar(Fulton et. 82 

al., 1998, Chen et. al., 2009) have been prepared and freely available globally, this 83 

largely facilited the development of physically based distributed hydrological models. 84 

PBDHMs discrete the terrain of the whole catchment into a number of grid cells at 85 
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fine resolution, and assimilate different terrain data and precipitation to different cells, 86 

thus having the potential to improve the catchment hydrological processes simulation 87 

and prediction capability (Ambroise et. al., 2006). Dozen of PBDHMs have been 88 

proposed since the blueprint of PBDHMs had been published by Freeze and Harlan 89 

(1969), the first full PBDHM is regarded as the SHE model published in 1987 (Abbott 90 

et. al., 1986a, 1986b), the others include WATERFLOOD model (Kouwen, 1988), 91 

THALES model (Grayson et. al., 1992), VIC model (Liang et. al., 1994), DHSVM 92 

model (Wigmosta et. al., 1994), CASC2D model (Julien et. al., 1995), WetSpa model 93 

(Wang et. al., 1997), GBHM model (Yang et. al., 1997), WEP-L model (Jia et. al., 94 

2001), Vflo model (Vieux et. al., 2002), WEHY model (Kavvas et al., 2004, 2006), 95 

Liuxihe model (Chen et. al., 2011), and more. While at the same time, the so called 96 

semi-distritubed hydrological models have also been proposed, such as the SWAT 97 

model (Arnold et. al., 1994), TOPMODEL model (Beven et. al., 1995), HRCDHM 98 

model (Carpenter et. al., 2001), and others, with model complexity between the 99 

lumped model and distributed model. 100 

Model parameters are very important to all kind of models as they will determine the 101 

models performances in flood forecasting. Most of the model parameters could not be 102 

measured directly, therefore need to be estimated by some kind of model parameter 103 

estimation techniques (Madsen, 2003, Laloy et al., 2010, Teta. et. al., 2015). As the 104 

lumped model has limited model parameters, the optimization techniques has long 105 

been employed to calibrate the model parameters to improve the model’s performance. 106 

For example, Dowdy et. al. (1965) conducted a preliminary research on the parameter 107 
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automatic optimization, Nash et. al. (1970) and O’Connell et. al. (1970) put forward a 108 

method to evaluate the accuracy of model simulation by utilizing efficiency 109 

coefficient, Ibbitt et. al. (1971) design a conceptual watershed hydrological model 110 

parameters fitting method, Duan et. al. proposed the Shuffle Complex Evolution 111 

Algorithm(SCE) (1994), Eberhart et.al proposed the Particle Swarm Optimization 112 

method (2001), Jasper et.al proposed the SCEM-UA method (2003), Chu et.al 113 

proposed the SP-UCI method (2011), among others. Now lots of parameter 114 

optimization methods for lumped hydrologcial models have been developed. 115 

There are also many studies to parameter optimization to semi-distributed hydrologic 116 

models, among them the most studied model is SWAT due to its open assess codes 117 

and simple model sturctures. For examples, the SCE-UA method was used to calibrate 118 

SWAT model for streamflow estimation (Ajami et. al., 2004), the remote sensing 119 

derived evapotranspiration is used to calibrate the SWAT parameters by using Gauss–120 

Marquardt–Levenberg algorithm (Immerzeel et. al., 2008), and a multi-site calibration 121 

method with GA algorithm is also proposed for calibrating the SWAT parameters 122 

(Zhang et. al., 2008). For estimating the parameters of Hydrology Laboratory 123 

Distributed Hydrologic Model, the regularization method was studied (Pokhrel et. al., 124 

2007).  125 

PBDHMs usually have very complex model structures, and the hydrological 126 

processes are calculated by using physical meaning equations, so to run a PBDHM is 127 

very time consuming compared with the lumped model. In addition, PBDHM sets 128 

different model parameters to different cells, so the total model parameters of a 129 

PBDHM is huge even for a small catchment, this makes it diffucult to calibrate the 130 

PBDHMs parameters like that widely exercised in lumped models. In the early stage 131 
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of PBDHMs, the PBDHMs are assumed to derive model parameters from the terrain 132 

properties directly, so there is no need to calibrate model parameters. This is true and 133 

all the proposed PBDHMs could determine the model parameters with their own 134 

methods (Refsgaard, 1997, De Smedt et. al., 2000, Vieux et. al., 2002, Chen 2009). It 135 

is fair when they are used to study the future impacts of the hydrological processes 136 

caused by climate changes, or by terrain changes due to human activities, in which 137 

there is no observation data to evaluate the model performance or to calibrate the 138 

model parameters, and the hydrological processes simulation/prediction accuracy is 139 

not so important, while detecting the changing trends is the key issue. But like the 140 

lumped model, parameter uncertainty still exists in PBDHMs, and parameter 141 

optimization is still needed to reduce this uncertainty (Gupta et al., 1998, Madsen, 142 

2003, Vieux and Moreda, 2003, Reed et al., 2004, Smith et al., 2004, Pokhrel et. al., 143 

2012), particularly for those application with high prediction accuracy requirment, 144 

such as the catchment flood forecasting. The scalar method (Vieux et. al., 2003, Vieux, 145 

2004) proposed to adjust Vflo model parameters in its application to flood forecasting 146 

could be regarded as the first exploration of PBDHMs parameter optimization. In this 147 

method, every parameters are adjusted manually with a factor or a multiplicator(scalar) 148 

based on the initially derived parameters from the terrain properties. The scalars for 149 

the same parameter in different cells are taken the same values, so the parameters to 150 

be adjusted are only a few. This is feassible computationally, and proven to be 151 

effective. For MIKE SHE model, an automatic parameter optimization method with 152 

SCE (Duan et.al, 1994) was employed in simulating catchment runoff (Madsen, 2003), 153 

which considers two objectives, one is fitting the surface runoff at the catchment 154 

outlet, another is minimizing the error on simulated underground water level at 155 

different wells. In Liuxihe Model, a half automated method was proposed to adjust 156 
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the model parameter (Chen, 2009, Chen et. al., 2011). In simulating a medium-sized 157 

catchment runoff processes with WetSpa Model, a multi-objective genetic algorithm 158 

was used to optimize the WetSpa parameter (Shafii et. al., 2009). Compared with 159 

lumped model and semi-distributed model, studies to parameter optimization of 160 

PBDHMs are very few, particularly for their uses in flood forecasting, further works 161 

needs to be done. 162 

Current optimization methods are mainly used in lumped hydrological model 163 

parameter calibration, and could be divided into two categories, including global 164 

optimization and local optimization((Sorooshian et.al, 1995). Local optimization 165 

method search the parameter starting from a given initial parameter value with a fixed 166 

step length step by step, such as the simplex method (Nelder et.al, 1965), Rosenbrock 167 

method (Rosenbrock, 1960), Pattern search method (Hooke and Jeeves, 1961), among 168 

others. Local optimization methods are widely applied in early stage (Sorooshian et.al, 169 

1983, Hendrickson et.al, 1988, Franchini et.al, 1996), but local optimization method is 170 

difficult to find the global optimum parameters. Lots of global optimization methods 171 

have been proposed since then for lumped models in the past decades after realizing 172 

the disadvantages of the local optimization method, such as the Genetic Algorithm 173 

(Holland et.al, 1975, Goldberg et.al, 1989), Adaptive Random Search (Masri et.al, 174 

1980), Simulated Annealing (Kirkpatrick et.al, 1983), Ant Colony System (Dorigo 175 

et.al, 1996), Shuffle Complex Evolution Algorithm (SCE) (Duan et.al, 1994), 176 

Differential Evolution (DE) (Storn and Price,1997), Particle Swarm Optimization 177 

algorithm (PSO) (Eberhart et.al, 2001), SCEM-UA (Jasper et.al, 2003), SP-UCI (Chu 178 

et.al, 2011, Li et.al, 2007), AMALGAM (Vrugt and Robinson, 2007), among others. 179 

Global optimizaton methods have been widely studied and applied in lumped model 180 

parameter calibration, with SCE and PSO the most widely used algorithms. SCE has 181 
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been used for parameter optimization of Mike SHE (Madsen, 2003, Shafii et. al., 182 

2009), but PSO has never been used for PBDHMs parameter optimization. PSO 183 

algorithm has the advantages of flexibility, easy implementation and efficiency (Poli 184 

et al., 2007, Poli, 2008), it has the potential to be employed to optimize the PBDHMs 185 

parameters. 186 

There are two main purposes for this study, the first is to propose a parameter 187 

optimization method for PBDHMs in catchment flood forecasting by using PSO 188 

algorithm and to test its competence and improve its performances, the second is to 189 

explore the possibility of improving PBDHMs capability in cathcment flood 190 

forecating by parameter optimization, i.e., if PBDHMs parameter optimization could 191 

improve model performance significantly and achiverable. In this paper, based on the 192 

scalar concept, a general framework for parameter optimization of the PBDHMs for 193 

catchment flood forecasting is first proposed that could be used for all PBDHMs. 194 

Then, with Liuxihe Model as the study model, which is a physically based distributed 195 

hydrological model proposed for catchment flood forecasting, the improverd Particle 196 

Swarm Optimization(PSO) algorithm is developed for the parameter optimization of 197 

Liuxihe model in catchment flood forecasting. The method has been tested in two 198 

catchments in southern China with different sizes, and the results show that the 199 

improved PSO algorithm could be used for Liuxihe Model parameter optimization 200 

effectively, and could improve the model capability largely in catchment flood 201 

forecasting. 202 

2. Methodology 203 

Based on the scalar concept, a general methodology for parameter optimization of the 204 

physically based distributed hydrolgocial model for catchment flood forecasting is 205 
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proposed, which is applicable to all physically based, distributed hydrological models. 206 

This methodology has 3 steps, including parameter classification, parameter 207 

initialization and normalization, and automated parameter optimization. 208 

2. 1 Parameter classification 209 

In physically based distributed hydrolgocial model, the whole terrain is divided into 210 

large numbers of grid cells, and the model parameters in each cell is different, so the 211 

total parameter number is huge. The methodology proposed in this paper classifies the 212 

parameters into a few types, so to reduce the parameter numbers need to be optimized. 213 

It is assume that all model parameters of a PBDHM are related and only related to one 214 

physical property of the terrain they belong, including the topgraphy, soil type and 215 

vegetation type, then the parameters of a PBDHM could be classified as 4 types, i.e., 216 

the climate related parameters, the topography related paramerers, the vegetation(land 217 

use) related parameters and soil related parameters, this classification could be used 218 

for all PBDHMs. With this classification, the parameters in different cells will have 219 

the same values if they have the same terrain properties, and the independent 220 

parameters are defined based on this classification, i.e., the independant parameters 221 

are the parameters with the same terrain properties in each cells, and only the 222 

independant parameters need to be estimated and optimized. With this treatment, the 223 

number of model parameters with their values need to be estimated will be largely 224 

reduced, i.e., from millions to tens, so the independent parameters could be optimized 225 

by employing optimization methods. 226 

2.2 Parameter initialization and normalization 227 

After classified the model parameters into independent parameters, the feasible values 228 

of all the independent parameters will be derived from the terrain properties directly, 229 
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these values, in this paper, are called the initial values of the model parameters. As 230 

mentioned above, all proposed PBDHMs have their own methods to determine the 231 

initial model parameters.  232 

Then the parameters are normalized with the initial values as follow:  233 

          0
' / iii xxx                                (1) 234 

Where
'
ix  is the original value of parameter i, 0ix is the initial value of parameter i, 235 

ix is the normalized value of parameter i. With this normalization, all parameters 236 

become no-unit variables. 237 

2.3 Automated parameter optimization  238 

The normalized independent parameters will be automatically optimized with 239 

optimization methods. To do this, two important things need to be determined, the 240 

first one is to choose an optimization technique, in this study as mentioned above, the 241 

PSO algorithm will be employed. The second thing is to choose the optimization 242 

criterion (objective function), different objective function will result in different 243 

model parameters, thus different model performances. There are two main practices, 244 

including the single objective function and multilpe objective functions (Tang et. al., 245 

2006). Single objective optimization uses one objective function in the parameter 246 

optimization, and is the prevailing practice for both lumped model and distributed 247 

model parameter optimization. Multiple objective optimization considers 248 

simultaneously two or more objective functions, the different objectives could have 249 

same measures quantitatively, such as to minimize the model efficiency and model 250 

efficiency for logarithmic transformed discharges simultaneously (Shafii et. al., 2009), 251 

or even have different measures quantitatively, such as to minimize the streamflow 252 
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simulation error and the well water lever simulation error simultaneously (Madsen, 253 

2003). Not producing one set of optimal parameters like in single objective 254 

optimization, multiple objective optimization produces pareto-optimal parameter sets, 255 

each pareto-optimal parameter is a feassible parameter, which provides the user the 256 

opportunity to trade off among different simulation purposes. For example, if the user 257 

want to have a better simulation to the high flow of the streamflow, then the high 258 

weight will be given to the model efficiency, but if a better simulation to the low flow 259 

is expected, then the priority should be put on the model efficiency for logarithmic 260 

transformed discharges (Shafii et. al., 2009). Multiple objective optimization is more 261 

flexible than single objective optimization, but requires much more computation, so if 262 

the model simulation purpose is determined, i.e., the objective is known, then the 263 

single objective optimization is enough. In this study, the purpose is to optimize the 264 

model parameter for flood forecasting, so the purpose is obvious, the one objective 265 

function to minimize the peak flow relative error of the catchment discharge at outlet 266 

is choosen, and the single objective optimization is carried out.  267 

2.4 Liuxihe Model and parameter classification 268 

Liuxihe Model (Chen, 2009, Chen et. al, 2011) is a physically based distributed 269 

hydrological model mainly for catchment flood forecasting. In Liuxihe model, the 270 

studied area is divided into a number of cells horizontally by using a DEM, the cells 271 

are called a unit-basin, and are treated as a uniform basin in which elevation, 272 

vegetation type, soil characteristics, rainfall, and thus model parameters are 273 

considered to take the same value. The unit-basin is then divided into three layers 274 

vertically, including the canopy layer, the soil layer and the underground layer. The 275 

boundary of the canopy layer is from the terrain surface to the top of the vegetation. 276 
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The evaportranspiration takes place in this layer, and the Evaportranspiration Model is 277 

used to determine the evaportranspiration at the unit-basin scale. In the soil layer, soil 278 

water is filled by the precipitation and depleted via evapotranspiration. The 279 

underground layer is beneath the soil layer with a steady underground flow that is 280 

recharged by percolation. All cells are categorized into 3 types, namely hill slope cell, 281 

river cell and reservoir cell. 282 

There are 5 different runoff routings in Liuxihe model, including hill slope routing, 283 

river channel routing, interflow routing, reservoir routing and underground flow 284 

routing. Hill slope routing routes the surface runoff produced in one hill slope cell to 285 

its neighbouring cell, and the kinematic wave approximation is employed to make this 286 

routing. For the river channel routing, the shape of the channel cross-section is 287 

assumed to be trapezoid, which makes it estimated by satellite images, and the one 288 

dimensional diffusive wave approximation is employed to make this routing. 289 

The parameters in Liuxihe model are divided into unadjustable parameters and 290 

adjustable parameters. The flow direction and slope are unadjustable parameters 291 

which are derived from the DEM directly and remain unchanged. The other 292 

parameters are adjustable parameters, and could be adjusted to improve the model 293 

performance. The adjustable parameters are classified as 4 types, including climate 294 

based parameters, topography based parameters, vegetation based parameters and soil 295 

based parameters. Currently in Liuxihe Model, there is method for determing initial 296 

values of adjustable parameters, and then the adjustable parameters are optimized by a 297 

half-automated parameter adjusting method, i.e., based on the initial parameter values, 298 

the parameter values are adjusted by hand to improve the model performance, and the 299 

parameter adjusting is done one parametere by one parameter. In this way, it is very 300 

tedious and time-consuming, and takes months to adjust the parameters even in a very 301 
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small catchment, so it is not highly proficiency though it could improve the model 302 

performance, and is also not a global optimization method. An automatic, global 303 

optimization method of Liuxihe Model is needed. In this study, the Liuxihe Model 304 

will be employed as the representing PBDHM. 305 

2.5 Improved PSO algorithm for Liuxihe Model 306 

2.5.1 Principles of Particle Swarm Optimization (PSO)  307 

Particle Swarm Optimization (PSO) algorithm was first proposed by American 308 

psychologist, James Kennedy and electrical engineer, Russell Eberhart (1995) during 309 

their studying to the social and intelligent behaviors of a school of birds in searching 310 

for food and better living places, now it is widely used in parameter calibration of 311 

lumpled hydrological model. Resffa et. al. (2013) used the PSO algorithem to 312 

optimize strategies for designing the membership functions of Fuzzy Control Systems 313 

for the water tank and inverted pendulum, Mauricio et. al. (2013) used the PSO 314 

Optimisation software for SWAT model calibration, Zambrano-Bigiarin et. al. (2013) 315 

developed a HydroPSO software for model parameter optimization, Bahareh et. al. 316 

(2013) used single-objective and multi-objective PSO algorithms to optimize 317 

parameters of HEC-HMS model, Leila et. al. (2013) employed a multi-swarm version 318 

of particle swarm optimization (MSPSO) in connection with the well-known 319 

HEC-Res PRM simulation model in a parameterization–simulation–optimization 320 

(parameterization SO) approach, Richard et. al. (2014) compared the PSO algorithem 321 

with other algorithems in Hydrological Model Calibration, Jeraldin et. al. (2014) used 322 

PSO in the tank system, these PSO applications are for lumped models only.  323 
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PSO is a global searching algorithm, in which, each particle represents a feasible 324 

solution to the model parameters, and usually an appropriate number of particles is 325 

chosen to act like a school of birds, the appropriate number of particles is a very 326 

important PSO parameter that will impact the PSO’s performance. In the 327 

optimization process, these particles move forward over the searching space at the 328 

same time following certain rules, which include each particle’s moving direction 329 

and moving speed, that could be determined with the following equations. 330 

   , , 1 1 , , 1 2 , 1i k i k i lBest i k gBest i kV V C rand X X C rand X X              （2） 

, , 1 ,i k i k i kX X V   （3） 

Where Vi,k is the moving speed of i
th

 particle at k
th

 step, Xi,k is the position of i
th

 331 

particle at k
th

 step, Xi,pBest is the best position of i
th

 particle at k
th

 step(current), XgBest is 332 

the best position of all particles at k
th

 step, ω is inertia acceleration speed, C1 and C2 333 

are learning factors, rand is a random number between 0 and 1, here ω, C1 and C2 are 334 

also important PSO parameters that will impact the PSO’s performance.  335 

For one step optimization, it is also called one evolution, all particles move forward 336 

one step, all particles will then have their best positions up to now, and the best 337 

position of all particles represents the global optimal positions of all particles. With 338 

step by step evolution, the global positions of all the particles will be approched, and 339 

the corresponding parameter values are the optimal parameters values. In the 340 

evolution process, a maximum number of evolution is usually set to keep the 341 

optimization process in a reasonable time limit. 342 

2.5.2 Improved PSO algorithm 343 

In the early PSO algorithm, particle number, ω, C1 and C2 are fixed, studies showed 344 
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that changing the values of ω, C1 and C2 in the PSO search process will improve the 345 

PSO’s performance (El-Gohary et. al., 2007, Song et. al., 2008, Acharjee et. al., 2010, 346 

Chuang et. al., 2011). In this study, current research progress in improving PSO’s 347 

performance will be introduced to improve PSO algorithm, the strategies empoyed in 348 

changing ω, C1 and C2 are stated below, and will be tested in the studied catchments. 349 

In this paper, the appropriate PSO particle number, ω, C1 and C2 are called PSO 350 

parameters. 351 

(1) Inertia weight ω 352 

The inertia weight ω is a PSO parameter impacting the global search capability (Shi 353 

and Eberhart, 1998). In the early study, ω takes a fixed value of less than 1, current 354 

studies show that changing ω could improve the PSO performance, and a few 355 

methods for dynamically adjusting ω have been proposed, such as linear decreasing 356 

inertia weight strategy(LDIW) (Shi and Eberhart, 2001), adaptive adjustment strategy 357 

(Ratnaweera et. al., 2004), random inertia weight(RIW) (Shu et. al., 2009), fuzzy 358 

inertia weight（FIW）(Eberhart and Shi, 2001). In this study, the LDIW strategy is 359 

employed to dynamically determining the value of ω with the following equation. 360 

                   
 max min

max

t

T

 
 


         （4） 

Where, t is the current evolution number, T is the maximum evolution number, ωmax 361 

takes the value of 0.9, ωmin takes the value of 0.1. 362 

(2) Acceleration coefficients C1 and C2 363 

Acceleration coefficients C1 and C2 also impact PSO’s performance. In early studies, 364 

acceleration coefficients C1 and C2 usually take the same value of 2, and are fixed in 365 

the evoluion process. Studies show that dynamically adjusting C1 and C2 and take 366 
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different values for C1 and C2 could improve PSO’s performances, and a few 367 

methods have been proposed, such as the linear strategy (Ratnaweera et. al., 2004), 368 

concave function strategy (Chen et. al., 2006), arccosine function strategy (Chen et. 369 

al., 2007). In this study, the arccosine function strategy is employed to determine the 370 

values of C1 and C2, the equations are listed below.  371 

 1 1min 1max 1min

2
arccos 1

1

i

MaxN
c c c c



    
  

     
 
 
 

 （5） 

 2 2max 2max 2min

2
arccos 1

1
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MaxN
c c c c



    
  

     
 
 
 

 （6） 

Where C1max, C1min are the maximum and minimum value of C1, and the values of 372 

2.75 and 1.25 are recommended, C2max, C2min are the maximum and minimum values 373 

of C2,and the values of 2.5 and 0.5 are recommended, i is the current evolution 374 

number. 375 

2.5.3 PSO procedure 376 

The parameter optimization method based on PSO is summaried below. 377 

1) Choose the independent parameters to be optimized. In the case that the 378 

computation load is a great challenge, only highly sensitive parameterwill be 379 

optimized, otherwise, all parameters could be optimized;  380 

2) Initialize independent parameters to be optimized and normalize them;  381 

3) Choose optimization criterion, particle number, maximum evolution nember, ω, C1 382 

and C2;  383 

4) Initialize every particles, i.e., determine their initial positions, and calculate the 384 
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value of the current objective function;  385 

5) Evolution calculation: for every evolution, first determine the best position of every 386 

particle and the global postions of all particles, then calculate the moving directions 387 

and speeds of every particles at current evolution by using equation (2) and equation 388 

(3), finally check the optimization criterion, if it is satisfied, then the optimization end, 389 

otherwise, continue to the next evolution. 390 

3. Studied Catchment and Liuxihe Model Set Up 391 

3.1 Studied catchment and hydrological data 392 

Two catchments in southern China have been selected as the case study catchments. 393 

The first catchment is Tiantoushui catchment in Lechang County of Guangdong 394 

Province, it is a small watershed with a drainage area of 511km
2
 and channel length of 395 

70km, which is a typical mountainous catchment with frquent flash flooding in 396 

southern China. Tiantoushui catchment will mainly be used to test the PSO 397 

parameters impacts to the algorithm performance, so to propose the optimal PSO 398 

parameters for the Liuxihe Model parameter optimization. As this work needs lots of 399 

model runs, so a small catchment helps to keep the runing time in a feassible limit. 400 

There are 50 rain gaugues within the catchment and one river flow gaugues in the 401 

catchment outlet, the high density rain gauge network is built not only for flash flood 402 

forecasting, but also for some kinds of scientific experiments, this will also help to 403 

reduce the uncertainties caused by the uneven precipitation spatial distribution. Figure 404 

1(a) is the sketch map of Tiantoushui Catchment with locations of rain gauges and the 405 

tributaries. 406 
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Figure 1 is here 407 

Hydrological data of 9 flood events has been collected for this study, including the 408 

river flow at the catchment outlet and precipitation at each rain gauges at an hourly 409 

interval. The precipitation measured by the rain gauges will be interpolated to the grid 410 

cells by employing Thisseon Polygon method(Derakhshan et. al., 2011). 411 

The second studied catchment is the upper portion of Wujiang catchment in southern 412 

China, and is called in this paper the upper and middle Wujiang catchment(UMWC). 413 

UMWC is in the upper and middle stream of Wujiang catchment with a drainage area 414 

of 3622km
2
, flooding in the catchment is also very frequent and heavy. The purpose 415 

of studying this big catchment is to show that PSO could still work in large catchment. 416 

There is one river flow gauge in the outlet of UMWC, and 17 rain gauges within the 417 

catchment. Figure 1(b) shows the sketch map of the catchment with locations of rain 418 

gauges and the tributaries. Hydrological data of 14 flood events from UMWC has 419 

been collected, including the river flow at the catchment outlet and precipitation at 420 

each rain gauges at one hour interval, the precipitation measured by the rain gauges 421 

will also be interpolated to the grid cells employing Thisseon Polygon method. 422 

3.2 Property data for Liuxihe Model setting up 423 

Catchment property data used for model set up in this study are DEM, land use types 424 

and soil types, these data of the studied catchments are downloaded from the open 425 

access databases. The DEM is downloaded from the Shuttle Radar Topography 426 

Mission database at http://srtm.csi.cgiar.org, the land use type is downloaded from 427 

http://landcover.usgs.gov, and the soil type is downloaded from http://www.isric.org. 428 
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The downloaded DEM is at the spatial resolution of 90mX90m, but the other two data 429 

are at the 1000mX1000m spatial resolution, so they are rescaled to the spatial 430 

resolution of 90mX90m. Figure 2 and Figure 3 show the property data of DEM, land 431 

use types and soil types of the two catchments respectively. 432 

Figure 2 is here 433 

Figure 3 is here 434 

In the Tiantoushui Catchment, the highest, lowest and average elevation are 1874 m, 435 

174 m and 782 m respectively. There are 4 land use types, including evergreen 436 

coniferous forest, evergreen broadleaved forest, bush and farmland, accounting for 437 

27.6%, 36.5%, 25.5%, and 10.4% of the total catchment area respectively. There are 438 

10 soil types, including water body, Humicacrisol, Haplic and high activitive acrisol, 439 

Ferralic cambisol, Haplic luvisols, Dystric cambisol, Calcaric regosol, Dystric regosol, 440 

Artificial accumulated soil and Dystric rankers, accounting for 4.8%, 56.5%, 1.7%, 441 

3.4%, 6.5%, 4.5%, 0.7%, 5.6%, 9.8% and 6.5% of the total catchment area 442 

respectively.  443 

In the UMWC catchment, the highest, lowest and average elevation are 1793 m, 170 444 

m and 982 m respectively. There are 8 land use types, including evergreen coniferous 445 

forest, evergreen broadleaved forest, shrub, sparse wood, mountains and alpine 446 

meadow, slope grassland, lakes and cultivated land, accounting for 26.4%, 24.3%, 447 

35%, 2.1%, 0.1%, 2.6%, 0.5% and 9.1% of the total catchment area respectively. 448 

There are 12 soil types, including water body, Humicacrisol, Haplic and high 449 

activitive acrisol, Ferralic cambisol, Haplic luvisols, Dystric cambisol, Calcaric 450 

regosol, Dystric regosol, Haplic and weak active acrisol, Artificial accumulated soil, 451 

Eutricregosols and Black limestone soil and Dystric rankers, accounting for 4.8%, 452 

56.5%, 0.5%, 3.4%, 6.5%, 4.5%, 0.7%, 5.6%, 9.8%, 6.6%, 1.0% and 0.2% of the total 453 



- 21 - 

catchment area respectively. 454 

3.3 Liuxihe Model set up  455 

To set up the Liuxihe Model in the studied catchments is to divide the whole catchemt 456 

into grids with DEM. In this study, the Tiantoushui Catchment is divided into 65011 457 

grid cells using the DEM with grid cell size of 90mx90m, then they are categorized 458 

into reservoir cell, river channel cell and hill slope cell. In the studied catchments, 459 

there are no significant reservoirs, so there are no reservoir cells set. Based on the 460 

method for cell type classification proposed in Liuxihe Model, the river channel 461 

system is treated as a 3-order channel system, and 1364 river channel cells and 63647 462 

hill slope cells have been produced in Tiantoushui Catchment respectively. Futher, 10 463 

nodes have been set on the Tiantoushui Catchment, and the river channel system is 464 

divided into 14 virtual sections, and their cross-section sizes have been estimated by 465 

referencing to satellite remote sensing images. The Liuxihe Model structure of 466 

Tiantoushui Catchment is shown in Figure 4(a).  467 

Figure 4 is here 468 

The Liuxihe Model is also set up in UMWC, the Catchment is first divided into 469 

460695 grid cells using the DEM with grid cell size of 90mx90m. The river channel 470 

system is treated as a 3-order channel system, and 3295 river channel cells and 471 

457400 hill slope cells have been produced respectively. 32 nodes have been set on 472 

UMWC, and their cross-section sizes have been estimated by referencing to satellite 473 

remote sensing images. The Liuxihe Model structure of UMWC is shown in Figure 474 

4(b). 475 

3.4 Determination of initial parameter values 476 

In Liuxihe Model, the flow direction and slope are two unadjustable parameters which 477 



- 22 - 

will be derived from the DEM, and will remain unchanged. Based on the DEM shown 478 

in Figure 1(a), the flow direction and slope of the studied catchments are derived. The 479 

other parameters are adjustable parameters, which need initial values for further 480 

optimization. Evaporation capacity is a climate based parameter, and its initial value 481 

is set to 5mm/d at both catchment based on the observation near the catchment outlet. 482 

Evaporation coefficient and roughness are land use based parameters, and are 483 

less-sensitive parameters in Liuxihe Model, the initial values of evaporation 484 

coefficient are set to 0.7 at both catchments as recommended by Liuxihe Model (Chen, 485 

2009), while the initial values of roughness are derived based on reference (Wang et. 486 

al., 1997) and are listed in Table 1 and table 2 respectively for the two catchments.  487 

Table 1 is here 488 

Table 2 is here 489 

The other parameters are soil based parameters. In Liuxihe Model, b is recommended 490 

to take the value of 2.5, soil water content at wilting condition takes 30% of the soil 491 

water content at saturated condition, the initial values of other soil based parameters 492 

are calculated by using the Soil Water Characteristics Hydraulic Properties Calculator 493 

(Arya et al., 1981) that calculates soil water content at saturation and field condition 494 

and the hydraulic conductivity at saturation based on the soil texture, organic matter, 495 

gravel content, salinity, and compaction. The initial values of soil based parameters 496 

are determined by using the program developed by Keith E. Saxton that could be 497 

downloaded freely at http://hydrolab.arsusda.gov/soilwater/Index.htm, the initial 498 

values of the soil based parameters at the two studied catchments are listed in Table 3 499 

and Table 4 respectively. 500 

Table 3 is here 501 

Table 4 is here 502 
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4. Discussions and results  503 

4.1 Impacting of particle number to PSO performance and the 504 

determination of appropriate particle number 505 

Particle number is an important parameter of PSO, to understand the impact of the 506 

particle number to the PSO performance and to determine the appropriate particle 507 

number, 6 values of particle number, including 10, 15, 20, 25, 50 and 100 have been 508 

used to optimize the model parameters of Liuxihe Model setting up in Tiantoushui 509 

Catchment, while maximum evolution number is set to 50, ω, C1 and C2 are 510 

dynamically adjusted with equation (4), equation (5) and equation (6), and flood event 511 

flood2006071409 is used to do this calculation. 5 evaluation indices, including 512 

Nash-Sutcliffe coefficient C, correlation coefficient R, process relative error P(%), 513 

peak flow relative error E(%) and The coefficient of water balance W(%) have been 514 

computed, and listed in Table 5, the computation times for each optimization also 515 

have been listed in Table5.  516 

Table 5 is here 517 

We first analysis the impact of particle number to the computation time. From the 518 

results of table 5 we found that with the increasing of the particle number from 10 to 519 

100, the computation time used decreases first, but when the particle number is bigger 520 

than 20, the computation time increases then, and when the particle number is 20, the 521 

computation time is 12.1 hours, which is the shortest among others. This means that 522 

particle number impacts the computation time used in optimization, the small and big 523 

particle number is not the best particle number, there exist an appropriate particle 524 

number to make the optimization at the least time. In the Tiantoushui Catchment, 20 is 525 

an appropriate particle number from the view of computational efficiency. 526 
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We further analysis the impact of particle number to the model performances by 527 

comparing the 5 evaluation indices. From the results, obvious trend could be found 528 

that with the increasing of the particle number, the Nash-Sutcliffe coefficient C, the 529 

correlation coefficient R and water balance coefficient increase first, but when the 530 

particle number reaches 20, the three indices decrease. While for the process relative 531 

error W and peak flow relative error E, the trend is inversed, i.e., with the increasing 532 

of the particle number, the process relative error W and peak flow relative error E 533 

decrease first, but when the particle number reaches 20, the two indices increase. This 534 

also means that with the increasing of the particle number, the model performance 535 

increases first and then decreases. So from the view of model performance, we could 536 

assume 20 is the appropriate particle number in Tiantoushui Catchment. So in this 537 

paper, from the results above, we could suggests that 20 is the the appropriate particle 538 

number of PSO algorithm for Liuxihe Model in catchment flood forecasting in 539 

Tiantoushui Catchment.  540 

The particle number of 20 is also used in the parameter optimization of UMWC 541 

catchment, and the model performance are also very satisfactory, and the computation 542 

time is acceptable, so in this study, we assume that 20 is the appropriate particle 543 

number for Liuxihe Model parameter optimization when employing PSO algorithm 544 

for catchment flood forecasting nomatter the size of the catchment, this conclusion 545 

can also be derived from the results of PSO’s convergence in next section. 546 

4.2 PSO’s Convergence 547 

PSO algorithm is an evolution algorithm, its searching process is an iteration process, 548 

so the convergence is a key issue, i.e., the algorithm should convergence to its optimal 549 

state in a limited iteration number, otherwise it could not be used practically. In PSO, 550 
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the iteration is called evolution, one iteration is called one evolution. To explore 551 

PSO’s convengence, we first draw the optimization evolution process of PSO in 552 

Tiantoushui Catchment in Figure 5, both the objective and parameter evolution 553 

processes are included. 554 

Figure 5 is here 555 

From Figure 5 we found that during the evolution process, the objective function 556 

steadily decreases, that means the model performance is constantly improved. But for 557 

all the parameters, they do not change in the same direction, i.e., the parameters may 558 

increase in one evolution, and decrease in the next evolution, but after more than 25 559 

evolutions, most of the parameters converge to their optimal values, with about 30 560 

evolutions, all of the parameters converge to their optimal values, after that, there is 561 

almost no parameter changes, this means 30 is the maximum evolution number for 562 

PSO in Tiantoushui Catchment.  563 

From Figure 5, we also found that the optimal parameter values of several parameters 564 

are quite different with the initial parameters, but some remain little changes, this also 565 

implies that the PSO algorithm has very good performance in convergence even the 566 

initial values of the parameters are far from its optimal values. 567 

We further analysis PSO’s performance in UMWC, but this time we only draw the 568 

parameter evolution process of PSO in UMWC in Figure 6, the objective evolution 569 

process of PSO in UMWC is similar with that in Tiantoushui Catchment. 570 

Figure 6 is here 571 

From Figure 6 we also found that during the evolution process, the objective function 572 

steadily decreases, but the parameters do not increase or decrease in a constant way, 573 

the changing patten is similar with that shown in Figure 5. After 25 evolutions, most 574 
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of the parameters converge to their optimal values, with about 30 evolutions, all of the 575 

parameters converge to their optimal values. The patten in UMWC is the same with 576 

that in Tiantoushui Catchment.  577 

From Figure 6, we also found that the optimal parameter values of several parameters 578 

are quite different with the initial values, but some remain little changes, this patten in 579 

UMWC is the same with that in Tiantoushui Catchment also.  580 

From the above results both in UMWC and Tiantoushui Catchment, we could assume 581 

that PSO algorithm has a very good performance in convergence in catchments with 582 

different sizes, and we could assume that the maximum evoluion number could be set 583 

to 30 no matter the size of the studied catchments. This conclusion also supports the 584 

conclusion that 20 is the appropriate particle number for Liuxihe Model parameter 585 

optimization when employing PSO algorithm for catchment flood forecasting no 586 

matter the size of the catchment. 587 

4.3 Computational Efficiency 588 

The computation time needed for physically based distributed hydrological model run 589 

is huge, for the parameter optimization, many many model runs are needed, so the 590 

computation time needed for the parameter optimization is also a key factor to impact 591 

the performance of the PSO. From Table 5, we know in Tiantoushui Catchment, the 592 

computation time for parameter optimization is about 12 hours, this is acceptable. The 593 

time needed for parameter optimization in UMWC is about 82.6 hours, it is also 594 

acceptable. The computer used for this study is a general server, but if use advanced 595 

computer, the time needed could be reduced largely. 596 
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4.4 Model validation in Tiantoushui Catchment 597 

The parameters of Liuxihe Model in Tiantoushui Catchment have been optimized by 598 

employing PSO algorithm proposed in this paper, the particle number used is 20, 599 

maximum evolution number is set to 50, ω, C1 and C2 are dynamically adjusted with 600 

equation (4), equation (5) and equation (6), flood event flood2006071409 is used to 601 

optimize the parameters.  602 

The other 8 observed flood events of Tiantoushui Catchment are simulated by the 603 

model with parameters optimized above to validate the model performance for 604 

catchment flood forecasting. To analysis the effect of parameter optimization to model 605 

performance improvement, Figure 7 shows 4 of the simulatd hydrographes, the 606 

hydrographes simulated by the model with initial parameter values are also drawn in 607 

Figure 7.  608 

Figure 7 is here 609 

From the results, it has been found that the 8 simulated hydrographes fit the observed 610 

hydrographes well, particularly the simulated peak flow is quite good. From the 611 

results we also found that the model with initial parameter values do not simulate the 612 

observed flood events satisfactorily, i.e., the uncertainties are high.  613 

To further analysis the model performance with parameter optimization, the 5 614 

evaluation indices of the 8 simulated flood events have been calculated and listed in 615 

Table 6. 616 

Table 6 is here 617 

From Table 6 we found that the 5 evaluation indices have been improved by 618 

parameter optimization at different extent. For the results simulated by the model with 619 

initial parameters, the 5 evaluation indices, including the Nash-Sutcliffe coefficient, 620 

correlation coefficient, process relative error, peak flow relative error and water 621 
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balance coefficient, have an average values of 0.66, 0.85, 72%, 21% and 1.03 622 

respectively. While for the results simulated by the model with optimized parameters, 623 

the 5 evaluation indices have average values of 0.88, 0.939, 25%, 6% and 0.97 624 

respectively. The average Nash-Sutcliffe coefficient has a 33% increasing, the 625 

correlation coefficient a 9.6% increasing, process relative error a 65.28% decreasing, 626 

peak flow relative error a 71.43% decreasing, and the water balance coefficient a 5.83% 627 

decreasing. Among the 5 evaluation indices, the peak flow relative error and the 628 

process relative error have the biggest improvement. 629 

The above results imply that with parameter optimization by using the PSO algorithm 630 

proposed in this paper, the model performance of Liuxihe Model for catchment flood 631 

forecasting has been improved in Tiantoushui Catchment, optimizing parameters of 632 

Liuxihe Model is necerssary. 633 

4.6 Model validation in UMWC 634 

The parameters of Liuxihe Model in UMWC have been optimized by employing PSO 635 

algorithm proposed in this paper, the particle number and maximum evolution number 636 

are also set to 20 and 50 respectively, ω, C1 and C2 are dynamically adjusted with 637 

equation (4), equation (5) and equation (6), flood event flood1985052618 is used to 638 

optimize the parameters.  639 

The other 13 observed flood events of UMWC are simulated by the model with 640 

parameters optimized above, Figure 8 shows 4 of the simulatd hydrographes. To 641 

compare, the flood events also have been simulated with the parameters optimized 642 

with a half-automated parameter adjusting method (Chen, 2009), and the results are 643 

also shown in Figure 8. From the simulated results, it has been found that the 13 644 
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simulated hydrographes fit the observed hydrographes well, particularly the simulated 645 

peak flow is quite good, this conclusion is the same with the results in Tiantoushui 646 

Catchment. From the results we also found that the model with initial parameter 647 

values do not simulate the observed flood event satisfactorily, the simulated results 648 

with parameters optimized with a half-automated parameter adjusting method is a big 649 

improvement to that simulated with the initial model parameters, but the simulated 650 

results with the PSO optimized model parameters are the best among the three results. 651 

Figure 8 is here 652 

To further analysis the model performance with parameter optimization, the 5 653 

evaluation index of the 13 simulated flood events have been calculated and listed in 654 

Table 7. 655 

Table 7 is here 656 

From Table 7 we found that the 5 evaluation index have been improved by parameter 657 

optimization at different extent. For the results simulated by the model with initial 658 

parameters, the 5 evaluation indices, including the Nash-Sutcliffe coefficient, 659 

correlation coefficient, process relative error, peak flow relative error and water 660 

balance coefficient, have an average values of 0.757, 0.771, 38.8%, 25.1% and 0.924 661 

respectively. While for the results simulated by the model with optimized parameters, 662 

the 5 evaluation indices have average values of 0.888, 0.960, 24.8%, 2.4% and 0.949 663 

respectively. The peak flow relative error has been reduced from 25.1% to 2.4% after 664 

parameter optimization, that is 90.44% down and also the biggest improvement 665 

among the 5 evaluation indices. While the average Nash-Sutcliffe coefficient has a 666 

17.31% increasing, the correlation coefficient a 24.51% increasing, process relative 667 

error a 36.08% decreasing and water balance coefficient a 2.71% increasing. The 668 
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results have similar trend with that in Tiantoushui Catchment, this also implies that 669 

with parameter optimization by using the PSO algorithm proposed in this paper, the 670 

model performance of Liuxihe Model for catchment flood forecasting has been 671 

improved in UMWC Catchment, i.e., even for a larger catchment, PSO works well for 672 

Liuxihe Model. Liuxihe Model’s capability for catchment flood forecasting could be 673 

improved by parameter optimiztion with PSO algorithm, and Liuxihe Model 674 

parameter optimization is necessary. 675 

5. Conclusion 676 

In this study, based on the scalar concept, a general framework for automatic 677 

parameter optimization of the physically based distributed hydrological model is 678 

proposed, and the improved Particle Swarm Optimization algorithm is employed for 679 

the Liuxihe Model parameter optimization for catchment flood forecasting. The 680 

proposed method have been tested in two catchments in southern China with different 681 

size, one is small, one is large. Based on the study results, the following conclusions 682 

have been found. 683 

1) When employing physically based distributed hydrological model for catchment 684 

flood forecasting, uncertainty in deriving model parameters physically from the 685 

terrain properties is high, parameter optimization is still necessary to improve the 686 

model’s capability for catchment flood forecasting. 687 

2) Capability of physically based distributed hydrological model for catchment flood 688 

forecasting, specifically the Liuxihe Model studied in this paper, could be improved 689 

largely by parameter optimization with PSO algorithm, and the model performance is 690 

quite good with the optimized parameters to satisfy the requirrment of real-time 691 

catchment flood forecasting. 692 
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3) Improved Particle Swarm Optimization(PSO) algorithm proposed in this paper for 693 

physically based distributed hydrological model for catchment flood forecasting, 694 

specifically the Liuxihe Model studied in this paper, has very good optimization 695 

performance, the optimized model parameters are global optimal parameters, and 696 

could be used for Liuxihe Model parameter optimization for catchment flood 697 

forecasting at different size catchments. 698 

4) The appropriate particle number of PSO algorithm used for Liuxihe Model 699 

parameter optimization for catchment flood forecasting is 20.  700 

5) The maximum evolution number of PSO algorithm used for Liuxihe Model 701 

parameter optimization for catchment flood forecasting is 30. 702 

6) The PSO algorithm has high computational efficiency, and could be used in large 703 

scale catchments flood forecasting. 704 
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(a) Tiantoushui Catchment 943 
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 945 

(b) Upper and middle Wujiang Catchment(UMWC) 946 

Figure 1 sketch map of the studied Catchments 947 
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(a) DEM 951 
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(b)Land use type 953 
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(c) Soil type 955 

Figure 2 terrain property of Tiantoushui Catchment 956 
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(a) DEM 961 
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(b) Land use type 964 
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 966 

(c) Soil type967 

Figure 3 terrain property data of UMWC 968 
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(a) Tiantoushui Catchment 971 

 972 

 973 
(b) UMWC Catchment 974 

Figure 4 model set up results in Tiantoushui Catchment 975 
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 979 

 980 
 981 

(a) evolution of objective function 982 

 983 

 984 
(b)evolution of parameters 985 

Figure 5 The evolution process of parameter optimization with PSO in Tiantoushui 986 

Catchment 987 
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 992 

Figure 6 The evolution processes of parameter optimization with PSO in UMWC  993 

 994 
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(a) flood1996071012 

 
(b) flood2001061206 
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(c) flood2008061114 

 
(d) flood2012060901 

Figure 7 simulated flood events of Tiantoushui Catchment 

 

 

 (a) flood1981040712 

 

  (b) flood1981041310 

 

(c) flood1983022720 

 

(d) flood1987052012 

Figure 8 simulated flood events of UMWC 
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Tables 

 

Table 1 Initial values of land use based parameters in Tiantoushui Catchment 

ID name evaporation coefficient roughness coefficient 

2 evergreen coniferous forest 0.7 0.4 

3 evergreen broadleaved forest 0.7 0.6 

5 shrub 0.7 0.4 

15 cultivated land 0.7 0.35 

 
 

Table 2 Initial values of land use based parameters in UMWC 

ID name evaporation coefficient roughness coefficient 

2 evergreen coniferous forest 0.7 0.4 

3 evergreen broadleaved forest 0.7 0.6 

5 shrub 0.7 0.4 

6 sparse wood 0.7 0.5 

7 mountains and alpine meadow 0.7 0.2 

8 slope grassland 0.7 0.3 

10 lakes 0.7 0.05 

15 cultivated land 0.7 0.35 

 

 
 

Table 3 Initial values of soil based parameters in Tiantoushui Catchment 

Soil Type Thickness/mm 

Saturated 

water 

content 

Field 

Capacity 

Saturated hydraulic 

conductivity/mm/h 
b 

wilting 

percentage 

Humicacrisol 700 0.515 0.362 3 2.5 0.2 

 Haplic and 

high activitive 

acrisol 
1000 0.517 0.369 3 2.5 0.206 

Ferralic 

cambisol 
700 0.419 0.193 15 2.5 0.1 

Haplicluvisols 1000 0.55 0.501 2 2.5 0.357 

Dystric 

cambisol 
820 0.385 0.164 34 2.5 0.076 

Calcaric 

regosol 
1000 0.5 0.324 3 2.5 0.172 

Dystric 

regosol 
950 0.388 0.169 33 2.5 0.077 

Artificial 

accumulated 

soil 

1000 0.459 0.25 8 2.5 0.121 

Dystric 

rankers 
150 0.43 0.203 10 2.5 0.113 
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Table 4 Initial values of soil based parameters in UMWC 

Soil Type 
Thickness

/mm 

Saturated 

water content 

Field 

Capacity 

Saturated hydraulic 

conductivity/mm/h 
b 

wilting 

percentage 

Humicacrisol 700 0.515 0.362 3 2.5 0.2 

 Haplic and high 

activitive acrisol 
1000 0.517 0.369 3 2.5 0.206 

Ferralic cambisol 700 0.419 0.193 15 2.5 0.1 

Haplicluvisols 1000 0.55 0.501 2 2.5 0.357 

Dystric cambisol 820 0.385 0.164 34 2.5 0.076 

Calcaric regosol 1000 0.5 0.324 3 2.5 0.172 

Dystric regosol 950 0.388 0.169 33 2.5 0.077 

Haplic and weak 

active acrisol 
1000 0.55 0.501 2 2.5 0.357 

Artificial 

accumulated soil 
1000 0.459 0.25 8 2.5 0.121 

Eutricregosols and 

Black limestone 

soil 

430 0.495 0.312 4 2.5 0.156 

Dystric rankers 150 0.43 0.203 10 2.5 0.113 

 

 

 

Table 5 Performances of PSO algorithm in Tiantoushui Catchment 

Particle 

number 
computation 

time/hours 

Nash-Sutcliffe 

coefficient/C 

correlation 

coefficient/R 

process 

relative 

error/P 

peak flow 

relative 

error/ E 

 water 

balance 

coefficient/W 

10 21 0.793 0.896 0.319 0.086 0.894 

15 13 0.849 0.925 0.235 0.077 0.903 

20 12.1 0.962 0.951 0.13 0.07 0.917 

25 18.6 0.852 0.927 0.237 0.056 0.884 

50 45 0.862 0.932 0.242 0.043 0.885 

100 86.8 0.838 0.92 0.256 0.054 0.867 
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Table 6 The evaluation index of the simulated flood events in Tiantoushui Catchment 

Flood events Nash-Sutcliff

e coefficient/ 

C 

correlation 

coefficient/ R 

process 

relative error 

P(%) 

peak flow 

relative error 

E(%) 

water balance 

coefficient 

/W 

(1)*1 (2)*2 (1)*1 (2)*2 (1)*1 (2)*2 (1)*1 (2)*2 (1)*1 (2)*2 

flood1996071012 0.964 0.85 0.990 0.79 16.3 0.3 11.2 0.156 1.102 2.19 

flood1998061811 0.862 0.613 0.930 0.876 21.4 1.946 20.8 0.397 0.963 1.194 

flood2001061206 0.836 0.758 0.926 0.969 31.8 0.35 0.9 0.311 0.841 0.64 

flood2007082100 0.866 0.343 0.942 0.775 13.9 0.409 0.7 0.329 0.966 0.581 

flood2008061114 0.882 0.74 0.943 0.883 20.8 0.71 2.5 0.31 0.930 0.36 

flood2012040607 0.792 0.766 0.893 0.891 27.0 0.764 5.0 0.115 0.913 1.058 

flood2012060901 0.912 0.454 0.958 0.752 37.0 0.745 3.2 0.015 1.072 1.238 

flood2012062113 0.91 0.778 0.955 0.896 0.301 0.498 0.005 0.084 0.972 0.987 

average 0.88  0.66  0.94  0.85  0.25  0.72  0.06  0.21  0.97  1.03  

*1: results simulated by model with optimized parameters, *2: results simulated by 

model with initial parameters 
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Table 7 The evaluation index of the simulated flood events in UMWC 

Flood events 
Nash-Sutcliffe 

coefficient/ C 

correlation coefficient/ R process relative error/ P 

(1)*1 (2)*2 (3)*3 (1)*1 (2)*2 (3)*3 (1)*1 (2)*2 (3)*3 

flood1980050620 0.906  0.610  0.810 0.958  0.831  0.931  0.168  0.480 0.288  

flood1980042313 0.892  0.724  0.824  0.972  0.768  0.968  0.282  0.270 0.307  

flood1981041014 0.917  0.700  0.451  0.967  0.830  0.883  0.141  0.417 0.317  

flood1981040712 0.805  0.686  0.686  0.964  0.738  0.938  0.154  0.550 0.255  

flood1981041310 0.739  0.796  0.796  0.938  0.758  0.958  0.221  0.260 0.265  

flood1982051014 0.831  0.793  0.793  0.924  0.852  0.952  0.271  0.440 0.174  

flood1983061513 0.904  0.810  0.839  0.954  0.850  0.925  0.327  0.530 0.363  

flood1983022720 0.896  0.750  0.850  0.974  0.740  0.934  0.152  0.220 0.102  

flood1984050310 0.971  0.800  0.816  0.989  0.684  0.980  0.085  0.380 0.388  

flood1985092216 0.967  0.840  0.940  0.986  0.785  0.978  0.375  0.480 0.380  

flood1987051422 0.961  0.853  0.913  0.986  0.731  0.973  0.266  0.241 0.281  

flood1987052012 0.902  0.727  0.927  0.951  0.628  0.968  0.332  0.362 0.262  

flood2008060902 0.850  0.756  0.800  0.923  0.825  0.820  0.140  0.414 0.214  

average 0.888  0.757  0.8  0.960  0.771  0.94  0.248  0.388 0.28  

Flood events 
peak flow relative 

error/E 

water balance 

coefficient/W 

(1)*1 (2)*2 (3)*3 (1)*1 (2)*2 (3)*3 

flood1980050620 0.004  0.230 0.013  0.913  0.760 0.796  

flood1980042313 0.003  0.270 0.008  0.867  0.620 0.792  

flood1981041014 0.043  0.180 0.185  0.973  0.729 0.729  

flood1981040712 0.159  0.228 0.228  0.990  0.850 1.328  

flood1981041310 0.006  0.146 0.146  0.830  1.160 1.061  

flood1982051014 0.013  0.230 0.230  0.922  1.230 1.010  

flood1983061513 0.007  0.350 0.072  0.944  0.680 0.967  

flood1983022720 0.018  0.420 0.078  1.017  0.650 1.045  

flood1984050310 0.010  0.210 0.010  0.951  0.720 0.820  

flood1985092216 0.022  0.320 0.055  1.071  1.350 1.034  

flood1987051422 0.012  0.280 0.013  0.925  1.510 0.892  

flood1987052012 0.015  0.160 0.034  0.955  0.840 0.979  

flood2008060902 0.004  0.240 0.104  0.985  0.910 0.850  

average 0.024  0.251 0.09  0.949  0.924 0.95  

*1: results simulated by model with optimized parameters, *2: results simulated by 

model with initial parameters, *3: results simulated by model with half-automated 

optimized parameters 

 


