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Abstract

The coarse spatial resolution of global hydrological models (typically>0.25◦) limits their
ability to resolve key water balance processes for many river basins and thus compromises
their suitability for water resources management, especially when compared to locally-tuned
river models. A possible solution to the problem may be to drive the coarse resolution mod-5

els with locally available high spatial resolution meteorological data as well as to assimilate
ground-based and remotely-sensed observations of key water cycle variables. While this
would improve the resolution of the global model, the impact of prediction accuracy remains
largely an open question. In this study we investigate the impact of assimilating streamflow
and satellite soil moisture observations on the accuracy of global hydrological model es-10

timations, when driven by either coarse- or high-resolution meteorological observations in
the Murrumbidgee river basin in Australia.

To this end, a 0.08◦ resolution version of the PCR-GLOBWB global hydrological model is
forced with downscaled global meteorological data (from 0.5◦ downscaled to 0.08◦ resolu-
tion) obtained from the WATCH Forcing Data methodology applied to ERA-Interim (WFDEI)15

and a local high resolution gauging station based gridded dataset (0.05◦). Downscaled
satellite derived soil moisture (from approx. 0.5◦ downscaled to 0.08◦ resolution) from
AMSR-E and streamflow observations collected from 23 gauging stations are assimilated
using an ensemble Kalman filter. Several scenarios are analysed to explore the added value
of data assimilation considering both local and global meteorological data.20

Results show that the assimilation of soil moisture observations results in the largest
improvement of the model estimates of streamflow. The joint assimilation of both stream-
flow and downscaled soil moisture observations leads to further improvement in streamflow
simulations (20 % reduction in RMSE).

Furthermore, results show that the added contribution of data assimilation, for both soil25

moisture and streamflow, is more pronounced when the global meteorological data are used
to force the models. This is caused by the higher uncertainty and coarser resolution of the
global forcing.
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We conclude that it is possible to improve PCR-GLOBWB simulations forced by coarse
resolution meteorological data with assimilation of downscaled spaceborne soil moisture
and streamflow observations. These improved model results are close to the ones from a
local model forced with local meteorological data. These findings are important in light of
the efforts that are currently done to go to global hyper-resolution modelling and can help5

to advance this research.

1 Introduction

In recent decades, a number of large-scale hydrological and land-surface models have
been developed to quantify the global water cycle components, to analyse the human in-
fluence on the global water balance, to study climate change impact on water resources10

and to assess global hydrological extremes, such as drought and flood risk. VIC (Liang
et al., 1994, 1996), WaterGAP (Alcamo et al., 2003), ORCHIDEE (d’Orgeval et al., 2008),
HTESSEL (Balsamo et al., 2009), JULES (Best et al., 2011), PCR-GLOBWB (Van Beek
et al., 2011), SURFEX-TRIP (Decharme et al., 2010, 2013) and W3RA (van Dijk, 2010;
van Dijk et al., 2014) are some examples of large-scale hydrological models recently ap-15

plied to provide water resources assessment over continental to global domains, but their
coarse spatial resolution, typically between 0.5–1◦, limits their ability to resolve key water
balance processes for many river basins (Lanza et al., 1997; Wu and Li, 2009) and thus
compromises their suitability for water resources management, especially when compared
to locally-tuned hydrological models.20

A possible solution to the problem may be to drive these original coarse resolution models
with high resolution meteorological data. Several meteorological forcing datasets at a global
scale are available, including the European Centre for Medium-Range Weather Forecasts –
EMCWF ERA-Interim – global atmospheric reanalysis data (Dee et al., 2011), the Climatic
Research Unit Time Series – CRU TS – (Mitchell and Jones, 2005), the NASA reanalysis25

Modern-Era Retrospective Analysis for Research and Applications – MERRA – (Rienecker
et al., 2011) and the WATCH Forcing Data methodology applied to ERA-Interim reanalysis

3
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data – WFDEI – (Weedon et al., 2014). They are the result of integrating Bayesian merg-
ing of the available earth observations, in situ datasets and models to construct consistent
large-scale meteorological time series. Some recent scientific efforts are conducted to im-
prove the quality and availability of these datasets, for example increasing their spatial and
temporal resolution (Cannon, 2011; Ebtehaj and Foufoula-Georgoiu, 2013; Atkinson, 2013).5

The use of high spatial resolution meteorological data would indirectly improve the resolu-
tion of the large-scale model, producing higher accuracy discharge estimates. However,
when models that are designed for coarse spatial resolution are used at smaller spatial
scale issues may arise with the representation of field scale processes. One of the major
issues in this respect is the neglect of lateral groundwater flow, misleading the represen-10

tation of the complex interactions between river water and groundwater (surface runoff,
subsurface runoff, soil moisture state, etc.). At the moment, more research is required to
understand the gain that can be obtained using this higher spatial resolution forcing data
for uncalibrated global hydrological models at finer spatial resolutions.

Another approach to bridge the gap between the different spatial scales is to assimi-15

late ground-based and remotely-sensed observations of key water cycle variables. Higher
resolution satellite data contain information at finer spatial resolution and could be used
to correct for sub-optimal model performance at these finer resolutions. Multiple studies
have used data assimilation techniques to obtain the best possible estimate of the hydro-
logical system status, merging the strengths of hydrological modelling and observations20

and mitigating their respective weaknesses (Moradkhani, 2008; Clark et al., 2008; van Dijk
et al., 2014). Among the sequential and variational data assimilation methods, the ensemble
Kalman filter (Evensen, 2003) has arguably emerged as the most popular choice for assim-
ilation into land surface and hydrological models. The various individual components of the
water cycle, such as surface water (Vrugt et al., 2006; Rakovec et al., 2012), soil moisture25

(van Dijk et al., 2014; Wanders et al., 2014a), snow water (Sun et al., 2004; Moradkhani,
2008) and groundwater (Zaitchik et al., 2008; Tangdamrongsub et al., 2015), which influ-
ence the hydrological system in different ways, can be assimilated into the model.
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Soil moisture assimilation has been considered to improve model estimates, due to its
key role in the terrestrial water cycle and its responsibility for the partitioning of precipitation
between surface water and storage through infiltration. Several studies have assimilated
soil moisture data (Draper et al., 2011; Chen et al., 2011; Wanders et al., 2014b;Massari
et al., 2015, Alvarez-Garreton et al., 2015; Lievens et al., 2015) both based on ground soil5

moisture measurements and remotely sensed satellite soil moisture products from remote
observation systems, such as ASCAT (Naeimi et al., 2009), SMOS (Kerr et al., 2012) and
AMSR-E (Owe et al., 2008). On the other hand, surface water information has often been
used for data assimilation frameworks (Vrugt et al., 2006; Rakovec et al., 2012) because
discharge provides integrated information of all hydrological states, which is often very ef-10

fective in improving model simulations. However, the risk of an integrated observation is that
in some scenarios accurate simulations could be obtained by adjusting the wrong states
variables.

An additional improvement could be made by the assimilation of downscaled or disaggre-
gated satellite soil moisture observations into a particular land surface model (Merlin et al.,15

2006; Sahoo et al., 2013). Recently, new soil moisture products of higher spatial resolution
have been released (Gevaert et al., 2015) but their impact on hydrological model predic-
tions has not yet been explored. For example, they could be used to correct for incorrectly
observed (or interpolated) precipitation patterns, which directly affect the input uncertainty
into the model.20

Moreover, improved results can be obtained by assimilation of multiple observational
dataset of different parts of the hydrological cycle into the hydrological model (Barrett and
Renzullo, 2009; Reichle et al., 2014). For example, the joint assimilation of discharge and
soil moisture could results in an improved understanding of the runoff generation mech-
anisms and increase the quality and quantity of information incorporated to the model25

system. However, the added value of this type of joint assimilation procedures is largely
unknown and should be further investigated (Aubert et al., 2003; Lee et al., 2011).

Many data assimilation experiments have been set up in conjunction with local-scale
hydrological models and the benefit of data assimilation for large-scale models remains

5



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

largely an open question. In this context, it is interesting to analyse whether the accuracy
of large-scale hydrological models can be improved and become more comparable with lo-
cally calibrated model estimates if satellite observations are assimilated. Understanding the
potential gain of assimilating satellite observations into large-scale models is a relevant re-
search opportunity and may have potential benefits for water resources management (Van5

Dijk and Renzullo, 2011). For example, in regions without or low quality meteorological
observations the use of large-scale models in combination with satellite data assimilation
could improve our understanding of the available water resources.The primary goal of the
present study is to investigate the impact of assimilating streamflow and satellite soil mois-
ture observations on the accuracy of global hydrological model estimations, when driven10

by either coarse- or high-resolution meteorological observations. The Murrumbidgee river
basin in the southeast of Australia was chosen as a case study for the investigation because
of the variety of land uses in the area, the high level of monitoring available for a large
number of relatively unimpaired catchments, and the extensive body of previous studies
observing and describing the hydrologic patterns across the basin (Renzullo et al., 2014;15

van Dijk and Renzullo, 2011). Eight data assimilation scenarios were considered in which
discharge and soil moisture observations were either independently or jointly used, and the
forcing data were obtained from either local or global data sets. In this context, comparison
of the eight scenarios with the locally calibrated model estimates provides insight into how
the estimations of global hydrological models driven by global forcing data can come closer20

to local-scale model predictions.

2 Approach, materials and methods

2.1 Study basin: Murrumbidgee river, Australia

The selected study area was the Murrumbidgee river basin (84 000 km2) located in south-
east Australia, specifically in the south west of New South Wales (Fig. 1). The Mur-25

rumbidgee river is the second largest river in the Murray–Darling system, flowing for a dis-
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tance of approximately 1600 km. Elevations range from over 1900m in the East to less than
50m on the Western plain. Forest and woodland coverage dominate in the East, with pas-
ture and cropping in the central region, and increasing grassland to the West. The Western
plain is dominated by clay-loam soils and with decreasing clay content in the middle and
eastern region (Peischl et al., 2012). The climate in the catchment is one of the most diverse5

in New South Wales, with an average annual rainfall that ranges from 1700mmyr−1 in the
higher elevations of the Snowy Mountains in the east, to less than 350mmyr−1 on the West-
ern plain. Average reference evapotranspiration varies from less than 1000mmyr−1 in the
south-east, to over 1800mmyr−1 in the West. Mean annual flow increases from less than
45m3 s−1 in the upstream tributaries to approximately 125m3 s−1 in the mid-Murrumbidgee10

(Green et al., 2011).

2.2 Hydrological models

The simulations for two distributed hydrological models, i.e. the local OpenStreams
wflow_sbm and the global PCR-GLOBWB, were performed for the period 2007–2010. The
period 2000–2007 was used to “spin up” the models. The local and large-scale models are15

described in detail in the following two sub-sections.

2.2.1 Local-scale model: OpenStreams wflow_sbm

The local-scale hydrological model employed in this study was the OpenStreams
wflow_sbm model (Schellekens, 2014). This is a distributed model derived from topog_sbm
simple bucket model developed by Vertessy and Elsenbeer (1999). The OpenStreams20

wflow_sbm model (OSWS) is programmed in the PCRaster-Python environment (Wes-
seling et al., 1996; Karssenberg et al., 2010) and it is publicly available through the
OpenStreams project (https://github.com/openstreams/wflow). The defined spatial resolu-
tion used in this study was 0.01◦× 0.01◦ (approx. 1km× 1km) and the temporal resolution
was daily. A schematic representation of OSWS is given in Fig. 2.25

7
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OSWS model structure consists of three main routines: (i) rainfall interception (schema-
tized by the Gash model – Gash, 1979), (ii) soil processes (schematized by the topog_sbm
model) and (iii) river drainage and overland flow (modelled by the kinematic wave routing
over a drainage network).

The water enters each model cell from precipitation to the canopy interception storage or5

snow storage. The remaining liquid water infiltrates into the soil. At the same time, water is
taken from the soil through evapotranspiration (based on soil water content and vegetation
type). The water exchange into the soil considers two vertical soil layers, the unsaturated
zone (UZ) and the saturated zone (SZ), based on topog_sbm structure. Total runoff is the
sum of the direct runoff, the melt water that does not infiltrate into the soil and the baseflow10

(lateral subsurface flow from the saturated zone). This total runoff is conducted along the
river network as discharge with kinematic wave routing.

The OSWS model was calibrated for the Murrumbidgee river basin using observations
from in situ streamflow gauges (BoM, 2015) for the time period 1990–2010. These gauges
are different from those considered in all the data assimilation scenarios to ensure an inde-15

pendent verification.

2.2.2 Large-scale model: PCR-GLOBWB

The large-scale hydrological model employed in this study was PCR-GLOBWB (Van Beek
and Bierkens, 2009; Van Beek et al., 2011). Similar to OpenStreams wflow_sbm, PCR-
GLOBWB is essentially a leaky-bucket type of model applied on a cell-by-cell basis. PCR-20

GLOBWB is coded in the PCRaster-Python environment. A spatial resolution of 0.08◦ (ap-
prox. 10km× 10km at the equator) and a daily temporal resolution were used in this study.
A schematic representation of PCR-GLOBWB is given in Fig. 3.

For each time step and cell, PCR-GLOBWB calculates the water balance components,
including the water storage in three vertical soil layers (0–5, 5–30 and 30–150 cm) and one25

underlying groundwater reservoir, as well as the water exchange between the layers (per-
colation, capillary rise) and between the top layer and the atmosphere (rainfall, evapotran-
spiration and snowmelt). Sub-grid variability is taken into account considering the variations

8
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of elevation, land cover, vegetation and soil. The total runoff of a cell consists of direct runoff
(saturation excess surface runoff), non-infiltrating melt water, interflow (lateral drainage from
the soil profile) and baseflow (groundwater runoff from the lowest linear reservoir). The sim-
ulated runoff is routed along the river network based on the Simulated Topological Networks
(STN30; Vörösmarty et al., 2000). Water abstraction and consumptive water use (domestic,5

industrial, livestock, irrigation) and reservoir management are included.
In contrast to the local-scale model, PCR-GLOBWB was not calibrated for the study

basin. Hydrological model parameters were derived from vegetation, soil properties or ge-
ological information and estimated at a global scale.

2.3 Datasets10

2.3.1 Meteorological forcing data

The forcing data required to drive both hydrological models are precipitation and air tem-
perature. Two types of forcing data were used in this study: local forcing data, representing
the best available data, and global forcing data representing a lower spatial resolution data
set but one which is available globally.15

Local precipitation and air temperature data were obtained from the gridded datasets
generated by the Australian Bureau of Meteorology under the Australian Water Availability
Project (AWAP) (Jones et al., 2009). The data are derived from station-level daily precipi-
tation and air temperature, and interpolated on a 0.05◦× 0.05◦ grid covering the Australian
continent. These data represent high resolution meteorology in this study which, we argue,20

will provide the modelling benchmark results.
Global precipitation and air temperature data were obtained from the WATCH Forcing

Data methodology applied to ERA-Interim reanalysis data – WFDEI – (Weedon et al., 2014).
The daily global precipitation and air temperature data were provided at a spatial resolution
of 0.5◦×0.5◦. To obtain finer spatial resolution climate maps, from 0.5◦×0.5◦ grid to 0.08◦×25

0.08◦ grid, a downscaling procedure was applied based on a linear regression analysis

9
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(Sutanudjaja et al., 2011). It makes use of precipitation and temperature lapse rates derived
from the 10’ CRU-CL2.0 climatology dataset (New et al., 2002).

Local and global reference evapotranspiration (ET) were obtained through Hamon
method (Allen et al., 1998; Lu et al., 2005).

Figure 4 shows the daily mean precipitation, temperature and reference evapotranspi-5

ration for the study time period (2007–2010) for both forcing data sets. Aside from the
resolution difference, precipitation ranges from higher values in the mountainous regions
of the catchment, with increasing variance in elevation and rainfall, to lower values in the
western plain. On the contrary, temperature, and subsequently reference evapotranspira-
tion decrease from West to East.10

Local and global forcing data show some differences in their spatial distribution and mag-
nitude. Each climate variable shows similar spatial distribution across the various resolu-
tions (rows in Fig. 4), with larger variations in the high elevation areas. However, local tem-
perature magnitude differs in 3–4 ◦C with the global temperature, which is also reflected in
the reference evapotranspiration. The downscaled global forcing data show a similar pattern15

to the global data with increasing resolution.
Table 1 shows the catchment daily mean values of the climate forcing variables for each

year individually. Global temperature deviates from local approximately 3–4 ◦C, which is
also reflected in reference evapotranspiration, but less pronounced. Local and global pre-
cipitation, by contrast, is very similar for each year.20

2.3.2 Soil moisture data

Soil moisture observations retrieved from AMSR-E (Advanced Microwave Scanning Ra-
diometer – EOS) brightness temperatures were provided by the Vrije Universiteit Amster-
dam (VUA) in collaboration with NASA. AMSR-E is a multi-frequency passive microwave
radiometer that uses C- (6.9GHz) and X-band (10.65 and 18.7GHz) radiance observations25

to derive near-surface soil moisture via the LPRM radiative transfer model (Owe et al.,
2008; De Jeu et al., 2008). In the present study, C-band AMSR-E data reported on a regu-
lar ∼ 50 km global grid with an observation depth of 2 cm and a revisit time of 1–3 days was

10
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considered (Owe et al., 2008). Brightness temperatures from C-band AMSR-E were down-
scaled using the smoothing filter-based modulation technique. In this technique, brightness
temperatures from the C-band (approx. 50km× 50km) are adjusted based on data from
the Ka-band (approx. 10km× 10km). From the downscaled C-band AMSR-E brightness
temperatures, soil moisture on a 0.08◦× 0.08◦ spatial resolution is estimated. To improve5

the quality of the final soil moisture products a precipitation mask is applied (Gevaert et al.,
2015).

Soil moisture observations from AMSR-E were compared to the unsaturated zone layer of
OSWS and the first of the three vertical layers constituting the soil profile in each grid cell of
PCR-GLOBWB. To match the remotely sensed soil moisture observations to the statistics of10

corresponding hydrological model states for soil water, different strategies can be followed,
such as linear or minimum–maximum (MM) matching (Brocca et al., 2011), mean-standard
deviation (µ-σ) matching (Draper et al., 2009) and cumulative distribution function (CDF)
matching (Reichle and Koster, 2004). In this study, a linear rescaling method was used.
The converted satellite soil moisture values θnew (in m3m−3) used for assimilation were15

calculated as

θnew = Imin +

(
Imax − Imin

θmax − θmin

)
(θ− θmin) (1)

where Imax and Imin are the field capacity and the wilting point of the modelled soil moisture
values at each grid cell [m3m−3] and θmax and θmin are the maximum and minimum of
AMSR-E satellite soil moisture values at the respective grid location [–].20

In situ soil moisture observations were obtained from the Australian moisture monitoring
network, OzNet (www.oznet.org.au; Smith et al., 2012). A total of 28 soil moisture monitor-
ing stations with daily observations was used in this study for the period January 2007 to
December 2010 (Table 2). Soil moisture monitoring sites were distributed evenly across 10
different study areas around and in the Murrumbidgee river basin, including the northern25

and eastern fringe of the catchment and those associated with the Yanco, Kyeamba Creek
and Adelong Creek sites. The instrumentation at the sites measures moisture content in
soil layers from either 0–8 cm or 0–5 cm depth.

11
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2.3.3 Discharge data

Discharge observations were provided by the Bureau of Meteorology (BoM) and the Com-
monweath Scientific and Industrial Research Organisation (CSIRO), under the Water In-
formation R+D Alliance (WIRADA). A total of 23 discharge monitoring stations with daily
observations in the Murrumbidgee river and its main tributaries was available for the period5

January 2007 to December 2010. To ensure an independent evaluation of model simula-
tions after the assimilation, a split sample approach of streamflow stations was used (e.g.
Lee et al., 2012; Rakovec et al., 2012; Wanders et al., 2014b). The discharge of 10 sta-
tions was used for assimilation into the large-scale hydrological model, the remaining 13
stations were used for evaluation. Assimilation and evaluation stations were selected such10

they are equally distributed over the catchment and are situated both in small tributaries and
the main Murrumbidgee river. Figure 1 shows a map with the discharge locations. Table 3
summarizes some key hydrological data.

2.4 Data assimilation

2.4.1 Ensemble Kalman filter15

The Ensemble Kalman filter (EnKF) is a sequential data assimilation method evolved from
the standard Kalman filter (Evensen, 1994) that has been used previously for assimilation
of observations into land surface and hydrological models (Chen et al., 2011; Draper et al.,
2011; Wanders et al., 2014a; Tangdamrongsub et al., 2015). It is a Monte Carlo based
approach that integrates an ensemble of model states forward in time to represent the error20

statistics of the model estimate when observations are assimilated (Burgers et al., 1998;
Evensen, 2003). The state equation in a discrete form is given as

xt+1 = f (xt,Ft+1,p,εt) (2)

12
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where f are the dynamical model equations that represents the hydrological processes in
the system, xt is the model state at time t, Ft is the forcing at time t (e.g. precipitation and
temperature), p are the model parameters and εt is the model error.

To assimilate observations into the hydrological model, the already mentioned observa-
tions, downscaled remotely sensed AMSR-E soil moisture and discharge, can be linearly5

described as

yt =Htxt+ ε (3)

where yt is the observations vector, H is the observation model or operator that relates the
model states xt to the observations y, and ε is the random noise with a zero mean and an
error given by the observations error covariance matrix Rt.10

The EnKF calculates the analysis at each time t, xat , of the model forecast, xft, as

xat = xft +Kt

[
yt−Ht

(
xft

)]
(4)

where Kt is defined as the Kalman gain

Kt = PtH
T
t

(
Rt+HtPtH

T
t

)−1
(5)

with HT
t the transpose matrix of the observation model at time t (which is equal to the15

identity matrix after linear rescaling) and Pt the state error covariance matrix of the model
prediction calculated from the spread between the different ensemble members given as

Pt =

N∑
n=1

(
xfn−xf

)(
xfn−xf

)T
N − 1

(6)

where xf the ensemble average of model simulations andN the number of ensemble mem-
bers considered.20

13
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2.4.2 Assimilating soil moisture and discharge observations

In this study, the EnKF was applied to update state variables of the large-scale hydrological
model, PCR-GLOBWB, on each daily time step using downscaled remotely sensed AMSR-
E soil moisture and discharge observations. We used 100 ensemble members and all the
observations were calculated and assimilated at each 0.08◦ model grid cell for each day that5

observations are available. The EnKF has been implemented in the PCRaster modelling
environment (Karssenberg et al., 2010).

Eight different data assimilation scenarios with PCR-GLOBWB were inter-compared and
compared to the OSWS estimates without any data assimilation. The data assimilation
(DA) scenarios are described in Table 3, indicating the meteorological forcing and the ob-10

servations used in each scenario. Simulations forced with local meteorological data are
denoted with LOCAL and simulations forced with global meteorological data are denoted
with GLOBAL. Independent assimilation of discharge (GLOBWB_Q) and soil moisture
(GLOBWB_SM) were investigated, as well as the joint assimilation of both observation
types (GLOBWB_SM+Q).15

In the EnKF, to account for model and observations uncertainty, stochastic noise can be
introduced in model forcing data, parameters, soil moisture and discharge observations.
For the local and global meteorological forcing, the precipitation was perturbed with addi-
tive Gaussian white noise with standard deviation of 10 % of the nominal value (Adam and
Lettenmaier, 2003; Hijmans et al., 2005). The errors were assumed to be spatially uncor-20

related. For the assimilation of the satellite soil moisture data, spatial information on the
measurement error covariance R (Eq. 5) was required. The structure of R was determined
from estimates of Wanders et al. (2012) over Spain, obtained by using high-resolution mod-
elling of the unsaturated zone. The average standard error of AMSR-E is 0.049m3m−3.
The error covariance between the discharge observations was set to zero while the stan-25

dard error for the discharge observations was assumed to be 10 % of the discharge. It was
additionally assumed that the covariance between the satellite soil moisture observations
and discharge observations equals zero. Some of the assumptions described in this section
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for data assimilation were investigated through a preliminary sensitivity analysis including
the number of ensemble members and the standard errors of precipitation and discharge
(Figures 1, 2, 3, 4, 5 and 6 in the supplement).

2.5 Evaluation

The impact of assimilating discharge and soil moisture observations into the large-scale5

hydrological model PCR-GLOBWB compared with the locally calibrated model OSWS, is
separately analysed: firstly, on soil moisture estimates and secondly, on discharge esti-
mates. A common regular 0.08◦× 0.08◦ grid (approx. 10 km) was adopted for the inter-
comparison of the two different resolution hydrological models estimates. For this purpose,
OSWS estimates were upscaled with a linear resampling from 0.01◦×0.01◦ (approx. 1 km)10

to 0.08◦× 0.08◦ (approx. 10 km).
Results were produced for each of the 23 locations listed in Table 3. For practical reasons,

the following section includes results for a limited number of evaluation locations only, both
in the Murrumbidgee river and its tributaries. This combination thus comprises stations with
varying sizes of contributing area.15

To understand and inter-compare the performance of the different data assimilation sce-
narios described in Table 3, an extensive evaluation was carried out, including the calcula-
tion of various evaluation metrics, such as Root Mean Squared Error (RMSE), Mean Abso-
lute Error (MAE), Pearson’s correlation coefficient (r) and Nash Sutcliffe efficiency (NSE –
Nash and Sutcliffe, 1970).20

3 Results

3.1 Impact of assimilation on soil moisture estimates

The time series of simulated soil moisture for 0–5 cm for each data assimilation scenario and
downscaled AMSR-E observations for the time period January 2008–May 2009 at 410057
gauging station (mountainous region) are shown in Fig. 5.25
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The use of global forcing data produces a different dynamic response of soil moisture
estimates compared to the local forcing data. This fact is due to the discrepancies between
both meteorological datasets, which govern the water exchange processes between the top
layer and the atmosphere (precipitation, evapotranspiration and temperature).

Even though global precipitation quite accurately depicts the overall character of the pre-5

cipitation (daily mean values of the local and global precipitations show similar spatial dis-
tributions and magnitudes – see Sect. 2.3.1), the global precipitation misses specific rainfall
events at particular days and locations due to its lower resolution. This is especially impor-
tant for warm season precipitation and regions in mountainous terrain (e.g. 410057 gauging
station in Fig. 5), which are dominated by convective storms. The differences in precipita-10

tion are reflected in soil moisture estimates of both hydrological models and their impact
is higher in PCR-GLOBWB estimates. When PCR-GLOBWB is forced with local data, soil
moisture estimates produce patterns with a more accurate description of the small-scale
variability of the observations in time. Whereas, when global forcing is used, soil moisture
results in a smoother estimation of the observations.15

Eight different data assimilation scenarios were investigated, with global and local forcing
data (Table 3). In the OL scenario, no data is assimilated into the model to correct intermedi-
ate model states. In this first scenario, soil moisture observations are underestimated when
local forcing is used. The assimilation of discharge observations, Q scenario, results in sim-
ilar soil moisture estimates compared to the OL scenario, as expected. This similarity is20

caused by the assimilation procedure which constrains the model to follow the discharge
observations directly affecting on groundwater and routing processes, which are a poor re-
flection of the upper soil moisture content from 0 to 5 cm. In contrast, the assimilation of soil
moisture observations in SM and SM_Q scenarios produces a reduction of the negative
bias, improving the soil moisture estimates, especially when local forcing is used.25

Figure 6 shows the impact of each data assimilation scenario on the considered evalua-
tion metrics (RMSE, MAE and r). Results of the catchment daily mean values are shown.
Each histogram shows the evaluation metric on the vertical axis vs. the data assimilation
scenarios on the horizontal axis. Figure 6 consists of a matrix of multiple panels, with rows
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showing the three considered evaluation metrics and columns showing local and global
forcing data.

From this figure, some general observations can be made. Evaluation results show dif-
ferences between the results from local and global forcing of the models. For example,
the use of local instead of global forcing produces a decrease of 4 and 2 % in RMSE and5

MAE, respectively and an increase of 6 % in r, when the OL scenario in PCR-GLOBWB is
considered.

The large-scale model, PCR-GLOBWB, without data assimilation shows a poorer per-
formance than the locally calibrated model OSWS on soil moisture predictions. Assimilat-
ing discharge observations (Q scenario) does not lead to an improvement on soil mois-10

ture estimates, whereas downscaled AMSR-E soil moisture observations assimilation (SM
scenario) results in an increase of r and a decrease of RMSE and MAE. Therefore, after
assimilating soil moisture observations, evaluation results of PCR-GLOBWB and OSWS
are closer to each other. For example, percent differences in RMSE between both mod-
els are reduced from 22 % (LOCAL GLOBWB_OL and LOCAL OSWS) to 16 % (LOCAL15

GLOBWB_SM+Q and LOCAL OSWS) and MAE from 14 % (LOCAL GLOBWB_OL and
LOCAL OSWS) to 16 % (LOCAL GLOBWB_SM+Q and LOCAL OSWS). However, the re-
duction in the differences between PCR-GLOBWB and OSWS performances due to the
assimilation of soil moisture and streamflow observations does not mean that both models
perform similarly. Maximum r values obtained with PCR-GLOBWB are approx. 0.5, whereas20

for OSWS maximum r values of 0.7 are reached.
Additionally, boxplots of the catchment daily mean values are included in Fig. 7 consider-

ing local (upper panel) and global (lower panel) forcing. The assimilation of soil moisture ob-
servations leads to an evident improvement in the statistical distribution of PCR-GLOBWB
soil moisture estimates, reducing the differences in dispersion with the observations.25

Assimilating soil moisture observations and forcing the model with high spatial resolution
meteorological datasets impacts the quality of soil moisture estimates with PCR-GLOBWB
to a similar extent. Results indicate that the highest improved performance is achieved when
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their combination occur, i.e. soil moisture observations are assimilated into a model driven
by local forcing data (LOCAL GLOBWB_SM and LOCAL GLOBWB_SM+Q scenarios).

3.2 Impact of assimilation on streamflow estimates

The simulated and observed streamflow estimates at 410088 gauging station are shown in
Fig. 8. From this figure, it is clear that the peaks in streamflow are poorly estimated by PCR-5

GLOBWB, whereas OSWS is able to capture them with higher accuracy, independently of
the forcing data used. This is most probably explained by the higher resolution and the
calibration of model parameters for the study.

Differences between local and global forcing data (see Sect. 2.3.1) are reflected in dif-
ferences in streamflow estimates from both models. When global data is used, evapotran-10

spiration is lower; hence a higher amount of water is introduced into the models, result-
ing in higher streamflow estimates. By assimilating discharge and soil moisture observa-
tions, intermediate hydrological processes, including groundwater state, percolation and
surface runoff among others, are corrected and errors in forcing data are reduced to improve
streamflow predictions (e.g. November 2008). The best performance is achieved when soil15

moisture and discharge data are jointly assimilated.
To further analyse and quantify the influence of each data assimilation scenario on

streamflow estimates, the evaluation metrics (RMSE, MAE, r and NSE) were calculated
and included for multiple discharge locations in Fig. 9.

The highest r and NSE and the lowest RMSEs and MAEs are obtained when models are20

forced with local meteorological data. The use of global forcing data leads to a reduction
in performance, which is more significant for the large-scale than for the local-scale model.
Without assimilation, forcing PCR-GLOBWB with local data (L_OL) instead of global data
(GLOBAL GLOBWB_OL) results in an increase of 80 % in r and a decrease of 70 % in
RMSE and 72 % in MAE on average. OSWS also improves its streamflow estimates but to25

a lesser degree, with increases of 7 % in r and decreases of 28 % in RMSE and 43 % in
MAE (LOCAL OSWS and GLOBAL OSWS).
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Both observations assimilation, discharge and soil moisture separately (Q and SM), im-
prove streamflow models estimates. The highest improvement is achieved when both obser-
vations are assimilated into the model (GLOBWB SM+Q), as expected. The improvement
is higher when soil moisture observations (SM) are assimilated than the case of discharge
assimilation alone (Q). For example, in terms of r GLOBAL GLOBWB_SM scenario results5

in an increase of 20 % and G_Q scenario of 5 % relative to GLOBAL GLOBWB_OL sce-
nario at 410107 gauging station. Some possible explanations could be the finer resolution
of AMSR-E soil moisture observations and/or the basin hydrological features, which char-
acterize it as a catchment mainly driven by direct runoff, where the highest contribution to
the total runoff comes from the upper soil layer and not from the groundwater zone.10

The largest improvements were found at gauging stations in the main channel of the
Murrumbidgee river, such as station 410001 where assimilating soil moisture and discharge
observations increases r from 0.56 to 0.79 and decreases RMSE and MAE from 49.54 to
28.77m3 s−1 and from 43.85 to 10.76m3 s−1, i.e. comparing the LOCAL GLOBWB_OL and
LOCAL GLOBWB_SM+Q scenarios. This improvement is more significant when the model15

is forced with global data than with local data. At station 410001, RMSE varies from 157.62
to 29.01m3 s−1, MAE from 148.29 to 10.88m3 s−1 and r from 0.26 to 0.72 when GLOBAL
GLOBWB_OL and GLOBAL GLOBWB_SM+Q scenarios are compared.

Boxplots of streamflow estimates are included in Fig. 10. The results clearly show that,
compared to the observed streamflow, the median values of PCR-GLOBWB streamflow20

without data assimilation are very biased. The greatest amount of spread is observed be-
tween OL scenarios and observations, across all stations. Every data assimilation scenario
(Q, SM and SM+Q) shows improvement in the statistics of streamflow, correcting not only
its median value, but also the overestimation.

In contrast with the soil moisture evaluation results, Figs. 8–10 indicate that for streamflow25

the use of local forcing provides a larger improvement than assimilating soil moisture and
discharge observations. Using a global model with local forcing and assimilating satellite soil
moisture data yields streamflow predictions comparable to a local model with local forcing
along the main river of this catchment. Moreover, also on the main channel, a global model
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with global forcing may still yield reasonable results as long as both discharge data and soil
moisture data are assimilated.

4 Discussion

PCR-GLOBWB poorly estimates streamflow and soil moisture, when forced either with high-
or coarse spatial resolution forcing data, without data assimilation. The derivation of the hy-5

drological model parameters from hydro-geological information at a global scale could be a
possible explanation. From the initial scenarios without assimilation, it can be inferred that
there is significant space for improvements when discharge and soil moisture observations
are assimilated. An alternative route to data assimilation to improve model estimates would
be to locally calibrate PCR-GLOBWB using discharge observations from in situ gauging10

stations. The improvement achieved through model parameters calibration would be possi-
bly even higher than when soil moisture and streamflow observations are assimilated into
the model (Wanders et al., 2014b) However, the present study means to be an attempt of
providing hydrological estimations with a global model that could be also used in ungauged
river basins where scarce in situ data are available.15

The joint assimilation of discharge and downscaled satellite soil moisture observations
produces the largest improvement on PCR-GLOBWB streamflow estimates (20 % reduction
in RMSE). These results agree with the findings made by Wanders et al. (2014a) in the
Upper Danube and it is also in line with the expectations, where more observations lead to
a better constrained model simulation.20

A major finding of this study is the positive impact of assimilating soil moisture obser-
vations on the streamflow estimates, compared to the independent discharge assimilation.
The estimations of a large-scale hydrological model driven with coarse resolution forcing
data are improved using globally available remotely sensed soil moisture observations. This
creates an opportunity for improved global model-based streamflow estimations as a result25

of the assimilation of remotely sensed soil moisture observations into large-scale hydrologi-
cal models. Additionally, the adopted methodology has the advantage that it is applicable in
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river basins all over the world independently of the availability of in situ hydrometeorological
information.

The variable effectiveness of soil moisture assimilation has been previously reported in
literature. Whereas some studies found improvements (Draper et al., 2011; Wanders et al.,
2014b), others obtained mixed or unsatisfactory results (Crow et al., 2005). The scale of5

soil moisture observations, the dominant runoff processes in the study basin and the model
structure and parameters uncertainties may partly explain this variability. In this particular
study, the novel use of a finer spatial resolution satellite soil moisture product together with
the climate and hydrogeological characteristics of the catchment could be a possible expla-
nation of the positive impact of soil moisture assimilation. Renzullo et al. (2014) assimilated10

satellite soil moisture observations from multiple sensors (ASCAT and AMSR-E) obtained
at scales coarser than the model (AWRA-L) resolution. In the present study, the scale of
soil moisture observations coincides with the model scale. A specific analysis of the impact
on streamflow and soil moisture estimates of assimilating non-dowsncaled AMSR-E soil
moisture assimilation could be a possible route to further investigate the effect of different15

spatial resolution soil moisture products. To this end, AMSR-E soil moisture observations
at the original spatial resolution were assimilated into PCR-GLOBWB and results analy-
sis presented in this manuscript were reproduced. Results showed that the assimilation
of non-downscaled soil moisture observations has a positive impact on soil moisture and
discharge estimates, but this improvement is smaller compared to the assimilation of the20

downscaled soil moisture estimates (Figures 7 and 8 in the supplement). Moreover, runoff in
the Murrumbidgee river basin is mainly dominated by direct runoff processes, with reduced
contribution from the groundwater zone (Green et al., 2011). These catchment conditions,
together with their representation in the model structure are most likely responsible for the
added value of assimilating soil moisture. There may be merit in analysing these scenarios25

in future research studies.
For the assimilation of AMSR-E soil moisture observations, spatial information on the

measurement error covariance R (Eq. 5) was based on results from previous studies over
Spain (Wanders et al., 2012). Our philosophy was to set the AMSR-E errors to realistic
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values determined and validated in previous studies, so that all the required information
was already available. The determination of AMSR-E observations uncertainty specifically
over the Murrumbidgee river basin with physically-based modelling or in-situ soil moisture
measurements (Su et al., 2013) could be further investigated.In addition, a linear rescaling
method was used to match AMSR-E soil moisture observations to the statistics of model5

states related with soil water. Different matching strategies could be applied in future stud-
ies. To account for model uncertainty, stochastic noise in precipitation data was introduced.
A sensitivity analysis on model parameters could be another possible approach.

Meteorological data play a key role in soil moisture and discharge model estimates. The
various model and data assimilation options were evaluated under both high- and low-10

resolution meteorological forcing. In general, the higher spatial resolution and the higher
quality of the local forcing data results in better model predictions (PCR-GLOBWB and
OSWS) of both soil moisture and streamflow. The coarse resolution of the global forcing
could lead to failures to detect extreme rainfall events or differences at specific regions, such
as mountainous areas. Recent studies have developed several downscaling procedures,15

e.g. geostatistical methods of blending satellite and gauge data (Chappell et al., 2013), that
could improve model predictions when global forcing is used.

To improve the representation of the global water cycle using global hydrological models,
one could follow multiple strategies. Improve the quality and quantity of ground observation,
increase the spatial resolution of the global models or obtain more detailed information on20

the catchment properties (e.g. soil data). Another way forward is the assimilation of obser-
vations and the use of high spatial resolution meteorological data to bridge the gap between
the different spatial scales for which large-scale hydrological models are designed and the
river basin scale. The advantage of this approach is that is provides a global improvement
of the hydrological simulation and the satellite data often have a global coverage. In this25

study we show the potential gain in model accuracy of using remotely sensed observations.
Previous studies on the potential gain of satellite observations for global and continental
hydrological models agree with the obtained results in the present manuscript (Andreadis
and Lettenmaier, 2006; Lievens et al., 2015).
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5 Conclusions

The study investigates the influence of discharge and soil moisture assimilation on the
accuracy of large-scale model (PCR-GLOBWB) predictions, when driven by meteorological
forcing datasets of high- and coarse-resolution, compared with local-scale model (OSWS)
estimations.5

Results show poor PCR-GLOBWB streamflow and soil moisture estimates when no ob-
servations are assimilated. The assimilation of soil moisture observations results in the
largest improvement of the model estimates of streamflow. The joint assimilation of both
streamflow and downscaled soil moisture observations leads to further improvement in
streamflow simulations (20 % reduction in RMSE).10

In general, the higher spatial resolution of the local forcing data results in better models
predictions of both soil moisture and streamflow. The added value of using higher spatial
resolution forcing data is more significant for PCR-GLOBWB than for OSWS. When the
impact on model accuracy of assimilating observations and forcing the models with higher
spatial resolution data are compared, the latter leads to a more substantial improvement of15

streamflow predictions.
Furthermore, results show that the added contribution of data assimilation, for both soil

moisture and streamflow, is more pronounced when the global meteorological data are used
to force the models. This is caused by the higher uncertainty and coarser resolution of the
global forcing.20

The greatest benefit is obtained when local coarse resolution forcing data are used in
combination with streamflow and soil moisture observations assimilation into the large-scale
hydrological model, PCR-GLOBWB.

In conclusion, the present research study shows that data assimilation of high resolution
soil moisture succeeds in resolving short-comings that exist nowadays in global hydrological25

models and can partly overcome the difference in model performance between a large-
scale hydrological model driven by coarse resolution forcing data and a local-scale model
forced with higher resolution meteorological data. Moreover, it demonstrates that further
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investments and improvements in remotely sensed observations, especially in soil moisture
products can benefit large-scale hydrological model predictions and bring these closer to
those obtained from local-scale hydrological modelling.
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Table 1. Catchment daily mean (µ)/standard deviation (σ) of precipitation (P ), temperature (T ) and
reference evapotranspiration (ET) in the Murrumbidgee river basin for 2007–2010.

P (mmday−1) T (◦C) ET (mmday−1)
Local Global Local Global Local Global
µ/σ µ/σ µ/σ µ/σ µ/σ µ/σ

2007 1.38/3.22 1.36/3.19 19.73/7.05 16.02/6.66 3.98/2.13 3.18/1.62
2008 1.24/3.19 1.26/3.32 18.89/6.65 15.18/6.24 3.88/2.06 3.00/1.51
2009 1.16/2.48 1.15/2.33 19.82/7.46 16.07/6.76 4.08/2.33 3.24/1.83
2010 2.35/5.46 2.45/5.19 18.50/6.91 15.03/6.46 3.69/2.04 2.95/1.56
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−
Table 2. Soil moisture monitoring sites information.

Monitoring site name Location Elevation (m)

Longitude Latitude

Adelong Creek 1 148.11 −35.50 772
Adelong Creek 3 148.10 −35.40 472
Adelong Creek 4 148.07 −35.37 457
Kyeamba Creek 1 147.56 −35.49 437
Kyeamba Creek 4 147.60 −35.43 296
Kyeamba Creek 6 147.46 −35.39 317
Kyeamba Creek 9 147.44 −35.32 241
Kyeamba Creek 12 147.49 −35.23 220
Kyeamba Creek 13 147.53 −35.24 261
Murrumbidgee catchment 1 148.97 −36.29 937
Murrumbidgee catchment 2 149.20 −35.31 639
Murrumbidgee catchment 3 148.04 −34.63 333
Murrumbidgee catchment 5 143.55 −34.66 62
Murrumbidgee catchment 6 144.87 −34.55 90
Murrumbidgee catchment 7 146.07 −34.25 137
Yanco 1 145.85 −34.63 120
Yanco 2 146.11 −34.65 130
Yanco 3 146.42 −34.62 144
Yanco 4 146.02 −34.72 130
Yanco 5 146.29 −34.73 136
Yanco 6 145.87 −34.84 121
Yanco 7 146.12 −34.85 128
Yanco 8 146.41 −34.85 149
Yanco 9 146.02 −34.97 122
Yanco 10 146.31 −35.01 119
Yanco 11 145.94 −35.11 113
Yanco 12 146.17 −35.07 120
Yanco 13 146.31 −35.09 121
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Table 3. Hydrometeorological and geographical information of analysed catchments at Mur-
rumbidgee river basin.

Station number Station name Basin area (km2) Outlet location Mean flow (m3 s−1)

Longitude Latitude

Assimilation

410088 Goodradidgee River at Brindabella 419.66 148.73 −35.42 3.719
410062 Numeralla River at Numeralla School 691.38 149.35 −36.18 1.164
410024 Goodradigbee River at Wee Jasper (Kashmir) 1050.60 148.69 −35.17 5.805
410044 Muttama Creek at Coolac 1058.49 148.16 −34.93 1.072
410033 Murrumbidgee River at Mittagang Crossing 1809.84 149.09 −36.16 2.228
410761 Murrumbidgee River below Lobbs Hole Creek 9332.28 149.10 −35.54 5.463
410130 Murrumbidgee river at D/S Balranald weir 28 651.21 143.49 −34.67 10.113
410023 Murrumbidgee river at D/S Berembed weir 34 133.07 146.84 −34.88 38.449
410021 Murrumbidgee river at Darlington Point 37 804.78 146.00 −34.57 29.899
410040 Murrumbidgee river at D/S Maude weir 43 110.97 144.30 −34.48 16.888

Evaluation

410107 Mountain Creek at Mountain Creek 140.54 148.84 −35.03 1.078
410705 Molonglo River at Burbong 350.22 149.31 −35.34 0.591
410048 Kyeamba Creek at Ladysmith 350.30 147.53 −35.20 2.41
410038 Adjungbilly Creek at Darbalara 390.89 148.25 −35.02 1.494
410734 Queanbeyan River at Tinderry 557.73 149.35 −35.61 0.893
410057 Goobarragandra River at Lacmalac 559.77 148.35 −35.33 4.964
410026 Yass River at Yass 1226.98 148.91 −34.84 1.198
410091 Billabong Creek at Walbundrie 2859.77 146.72 −35.69 2.113
410050 Murrumbidgee River at Billilingra 3353.91 149.13 −35.98 3.836
410001 Murrumbidgee River at Wagga Wagga 39 856.21 147.37 −35.10 59.638
410005 Murrumbidgee River at Narrandera 45 321.40 146.55 −34.76 48.074
410078 Murrumbidgee River at Carrathool 69 854.30 145.42 −34.35 27.057
410136 Murrumbidgee River at D/S Hay Weir 73 241.50 144.71 −34.52 25.243
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Table 4. Data assimilation scenarios including abbreviations, forcing data, hydrological model and
assimilated observations.

Identifier DA scenarios

Forcing data Hydrological model Assimilated observations

LOCAL GLOBWB_OL Local (AWAP) PCR-GLOBWB Open Loop (None)

LOCAL GLOBWB_Q Discharge stations

LOCAL GLOBWB_SM AMSR-E soil moisture

LOCAL GLOBWB_SM+Q Discharge stations and AMSR-E soil moisture

LOCAL OSWS OpenStreams wflow_sbm (OSWS) None

GLOBAL GLOBWB_OL Global (WFDEI) PCR-GLOBWB Open Loop (None)

GLOBAL GLOBWB_Q Discharge stations

GLOBAL GLOBWB_SM AMSR-E soil moisture

GLOBAL GLOBWB_SM+Q Discharge stations and AMSR-E soil moisture

GLOBAL OSWS OpenStreams wflow_sbm (OSWS) None
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Table A1. Evaluation results of the catchment daily means of soil moisture estimates.

Local Global
RMSE [m3m−3] MAE [m3m−3] r [–] RMSE [m3m−3] MAE [m3m−3] r [–]

OSWS 0.07571 0.05716 0.79865 0.07854 0.06082 0.77603
GLOBWB_OL 0.09735 0.07520 0.43071 0.10094 0.07662 0.40715
GLOBWB_Q 0.09738 0.07523 0.43041 0.10095 0.07664 0.40652
GLOBWB_SM 0.09085 0.06699 0.53452 0.09372 0.06811 0.50230
GLOBWB_SM+Q 0.09032 0.06609 0.52085 0.09302 0.06845 0.49623
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Figure 1. Map of the Murrumbidgee river basin and its location in Australia as part of the Mur-
ray–Darling system. Green squares indicate locations for assimilation of streamflow observations
and orange squares indicate locations for evaluation of streamflow observations. Each streamflow
location is identified with a gauging station number according to BoM (2015). Yellow points indicate
locations of field-measured soil moisture observations.
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Figure 2. OpenStreams wflow_sbm model structure, adapted from Vertessy and Elsenbeer (1999)
and Schellekens (2014). Symbols definition are as follows: Precip, precipitation; Evap, evapora-
tion; T, Temperature; UZ, unsaturated zone; SZ, saturated zone; Qchannel, total runoff; QDR, direct
runoff; QBF, baseflow and Inf, water flow from the river channel to the saturated zone.
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Figure 3. PCR-GLOBWB model structure, adapted from Van Beek et al. (2011). Symbols defini-
tion are as follows: Precip, precipitation; Evap, evaporation; T, Temperature; S1, first soil layer; S2,
second soil layer; S3 third soil layer; S4, groundwater reservoir; Qchannel, total runoff; QDR, di-
rect runoff; QIF, intermediate flow; QBF, baseflow and Inf, water flow from the river channel to the
groundwater reservoir.
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Figure 4. Daily mean precipitation, temperature and reference evapotranspiration for the time period
2007–2010 from the (i) global (0.5◦ × 0.5◦), (ii) downscaled global (0.08◦ × 0.08◦) and (iii) local
(0.05◦ × 0.05◦) forcing data sets.
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Figure 5. Simulated and observed soil moisture estimates at 410057 gauging station in a tributary
of the Murrumbidgee river for the time period January 2008–May 2009. The upper panel shows soil
moisture time series when local data is used as model forcing. Soil moisture time series obtained
with the global forced models are shown in the lower panel. Each panel contains results for each
data assimilation scenario plotted with different colours lines (OSWS – orange, GLOBWB_Q – blue,
GLOBWB_SM – green and GLOBWB_SM+Q – purple) ), downscaled AMSR-E observations with
dark grey points and in situ soil moisture observations with dark yellow points.
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Figure 6. Evaluation results of the catchment daily means of soil moisture in the Murrumbidgee river
basin. In the rows, three different evaluation metrics are shown; from top to bottom these are the
Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE) and the Pearson’s correlation
coefficient (r). Columns show various forcing data: local and global. (For clarity, the exact values are
included in Table A1.)
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Figure 7. Boxplots of the catchment daily means of soil moisture in the Murrumbidgee river basin.
The upper panel shows soil moisture when local data is used as model forcing. Soil moisture ob-
tained with the global forced models is shown in the lower panel. Boxplots of each panel illustrate
the first and third quantile ranges (box), the median (dark line) and the maximum–minimum range
(whiskers) of soil moisture estimates.
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Figure 8. Simulated and observed streamflow estimates at 410088 gauging station in a tributary
of the Murrumbidgee river for the time period January 2009-January 2010. The upper panel shows
streamflow when local data is used as model forcing. Streamflow obtained with the global forced
models is shown in the lower panel. Each panel contains results for each data assimilation sce-
nario and the observed streamflow estimates plotted with different colours lines (OSWS — orange,
GLOBWB_OL — red, GLOBWB_Q — blue, GLOBWB_SM — green, GLOBWB_SM+Q — purple
and obs — black). The ensemble mean is given for each data assimilation scenario.

44



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 9. Evaluation results for streamflow estimates at 410001, 410005, 410078 and 410136 lo-
cations in the Murrumbidgee river. Average values calculated across those locations are shown in
the rightmost bar of each histogram. In the rows, four diferent evaluation metrics are shown; from
top to bottom these are the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), the
Pearson’s correlation coefficient (r) and the Nash Sutcliffe efficiency. Columns show various forcing
data: local and global.
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Figure 10. Boxplots of streamflow estimates at 410001, 410005, 410078 and 410136 locations in the
Murrumbidgee river. The upper panel shows streamflow when local data is used as model forcing.
Streamflow obtained with the global forced models is shown in the lower panel. Boxplots of each
panel illustrate the first and third quantile ranges (box), the median (dark line) and the maximum–
minimum range (whiskers) of streamflow estimates.
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