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Abstract. Revisions to the abstract include only a change to the reference of the Buckingham Π

theorem to the Vaschy-Buckingham Π theorem following suggestions by Dr. Mesa.

1 Major revisions and additions

An addition on line 45 that attempts to give due credit to Mathematicians that contributed to the de-

velopment of what is widely known as the Buckingham Π theorem. Authors cited and included in the5

references are Macagno (1971), Fourier (1878), Strutt-Lord-Rayleigh (1877-1878), Carvallo(1891),

Vaschy (1892 a, b), Bertrand(1878), and Riabouchinsky (1911, 1915).

Following a suggestion by Dr. Haltas the Vaschy-Buckingham Π theorem is referened in the Buck-

ingham (1921) work and Sedov is cited as an accessible source of examples for engineering appli-

cations.10

Lines 73 and 74 cites an investigation of the scale invariance of kinematic wave overland flow

using the Lie group method by Haltas (2011).

Lines 80 - 84 add a reference to an investigation of scaling behaviour and invariance in hydrody-

namic processes using the one-parameter Lie scaling transformation by Haltas and Ulusoy (2015)

and a cites similarity of the present methodology to the Lie group of one-parameter stretching trans-15

formations in Logan (1987).

Lines 88 - 91 draw a comparison between invariance of a system with respect to a symmetry

transformation with various physical conservation laws as given in a theorem authored by Noether

(1918).

Lines 96 - 113 contain a discussion and definition of type-1 and type-2 self similarity as they20

are related to the Lie group of invariant transformations. Brief mention is made of the relationship

between type 1 and 2 self similarity to problems in hydrology and engineering, and references to

defining works on the subject. References include Barenblatt (1996), Polsinelli and Kavvas (2015),

Gupta and Mesa (2014), and Goldenfeld (1992).
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In section 2.2 the claim that: "the scaling of the 3-D system is similar to the scaling of the Dupuit25

approximation" was removed. I decided that justifying this claim would be lengthy and add little to

the content of the paper.

Lines 243 - 249 are a revision of a statement made originally claiming that "Preserving both kine-

matic and dynamic non dimensional groups was a choice that has substantially affected this anal-

ysis". This statement was replaced with observations that preserving both non dimensional groups30

may not be possible or desirable in all problem. For the analysis here, the equations relating the two

non dimensional groups was emphasised and a suggestion was made that these relationships may be

used to judge the relative effect / importance of variation of one parameter on the other.

The last major revision is contained in lines 473 - 477 stressing that the Lie scaling method is

a special case of the general method to identify the Lie group of transformation (scaling being a35

specific type of transformation). Authors are encouraged to explore simplifications gained through

application of the Lie group of symmetry transformations to difficult problems modeled by differen-

tial equations.

Note: major revision are highlighted in yellow in an annoted copy of the manuscript below.

2 Corrections and clarification to language40

On lines 2 - 3, following recommendation, the sentence "This new method has been applied by

engineers to several problems in hydrology and hydraulics including but not limited to groundwater

dynamics, sediment transport, and open channel hydraulics." was revised as: "This new method has

been applied by engineers to several problems in hydrology and hydraulics including but not limited

to overland flow, groundwater dynamics, sediment transport, and open channel hydraulics."45

Language was changed in various places to refer to dimensions rather than units following rec-

ommendations made by Dr. Haltas. Specifically lines 39, 258, and 412.

A suggestion was made to change the reference of "initial and boundary equations" to be consis-

tent throughout the paper to the more usual nomenclature of "initial and boundary conditions". Sim-

ilarly, several references to "interior equations" be changed to the more commen name of "governing50

equations". This suggesiton was followed and changes made throughout the paper (too numerous to

give a point by point).

On line 61 a suggestion was followed changing "A third scaling method is a special case of a

theoretical technique developed by mathematicians for symmetry analysis of differential equations."

to: "A third scaling method is a special case of a theoretical technique for symmetry analysis of55

differential equations."

A change was made in various places to reference the Reyonlds and Froude numbers instead of

the ratio between the model and prototype numbers as design parameters, which is more common

and practical in applications and the literature.
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Abstract. In the past two decades a new modern scaling technique has emerged from the highly de-

veloped theory on the Lie group of transformations. This new method has been applied by engineers

to several problems in hydrology and hydraulics including but not limited to overland flow, ground-

water dynamics, sediment transport, and open channel hydraulics. This study attempts to clarify the

relationship this new technology has with the classical scaling method based on dimensional anal-5

ysis, non dimensionalization, and the Vaschy-Buckingham-Π theorem. Key points of the Lie group

theory, and the application of the Lie scaling transformation, are outlined and a comparison is done

with two classical scaling models through two examples: unconfined groundwater flow and contami-

nant transport. The Lie scaling method produces an invariant scaling transformation of the prototype

variables which ensures the dynamics between the model and prototype systems will be preserved.10

Lie scaling can also be used to determine the conditions under which a complete model is dynam-

ically, kinematically, and geometrically similar to the prototype phenomenon. Similarities between

the Lie and classical scaling methods are explained, and the relative strengths and weaknesses of the

techniques are discussed.

1 Introduction15

Scaling is an important tool that is used extensively in engineering, mathematics, and physics. With

scaling, conclusions about the dynamics of a system can be based off of the dynamics of another

system at a more convenient scale. This is extremely important when it is necessary to understand

interactions of systems whose precise governing equations are either unknown or too difficult to

work with directly. Scaling can be used to build models of phenomena for study in the laboratory20

and has important implications in our understanding of very large and very small scale phenomena.

Examples of scaling in the sciences are numerous. Bluman and Anco (2002) explains that scaling

was used to estimate the explosive shockwave of the atomic bomb in the 1940’s, Sedov (1993)

contains many examples in engineering, in hydrology Dawdy et al. (2012); Gupta et al. (2010)

discuss scaling in flood frequency analysis, and in hydraulics Ercan et al. (2014) use scaling in open25

channel flow.
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The goal of any scaling method is to predict information on one scale from known information at

another scale. This is done by scaling relevant variables so that the dynamics of the system remain

essentially unchanged. The different scaling procedures each have a way of assigning relationships

between the variables being scaled. Three methods will be considered here. The first technique30

is a classical scaling methodology based on dimensionless groups of variables found through the

Vaschy-Buckingham-Π theorem. The second technique determines relationships through a scaling

transformation of the governing equations for the phenomenon. The third technique is based on a

general theory that has characterized all invariant symmetry transformations admitted by a system of

equations. The third method is a relatively new addition to modern scaling technology and is known35

as the Lie scaling method. This new method is applied and compared to results from classical scaling

in order to demonstrate its effectiveness and generality as a scaling technique.

The first technique is based on dimensional analysis, and the scaling is usually referred to as

dimensional scaling. The scaling relationships are determined based on the dimensions; e.g. dimen-

sionless groups of variables can be formed and related to ratios between forces, characteristic lengths40

and times, fluxes, and other factors. There are numerous dimensionless groups of variables that can

be formed, and scaling of the system is based on preserving the dimensionless groups. One of the

most widely used tools in dimensional scaling is the famous Vaschy-Buckingham-Π theorem, ex-

plained in detail in Sedov (1993) and a proof of the theorem is given in Bluman and Anco (2002).

Many authors have contributed to the present formulation of the theorem widely known through45

Buckingham (1921). Macagno (1971) discusses precursors and previous formulations of the theo-

rem. Notable precursors are Fourier (1878); Strutt-Lord-Rayleigh (1877-78); Carvallo (1891). An

early statement of the theorem can be seen in Vaschy (1892a, b). Two versions of the theorem were

developed [likely] independently by Bertrand (1878) and Riabouchinsky (1911, 1915). The theo-

rem establishes the existence, number, and composition of dimensionless groups for a given set of50

variables. Dimensional scaling has been applied extensively in a wide range of problems and is the

primary tool for scaling used by most scientists and engineers.

The second scaling technique relies on the governing equations of the system. In such methods,

scaling transformations of the governing equations are required to be invariant in order to preserve

the dynamics of the system. An invariant scaling method known as modified inspectional analysis55

is the basis for physical models known as sandbox models. Modified inspectional analysis is doc-

umented in Bear (1972). It is based on forming the scaling schemes for a system of differential

equations by enforcing invariance under the transformation for the scaled equations in the interior

of the flow domain. The modified inspectional analysis is a variation of the first technique and in

application resembles an intuitive version of the Lie scaling technique.60

A third scaling method is a special case of a theoretical technique for symmetry analysis of differ-

ential equations. The basis for this general theory is the discovery that the set of invariant transforma-

tions have a special group structure, known as the Lie group of transformations. This has led inves-
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tigators to develop an extensive theory completely characterizing all symmetry transformations that

hold a system of equations invariant. The Lie scaling methodology uses this extensive mathematical65

background to provide an approach to obtain a physically based scaling transformation that depends

on the system of equations modeling any dynamical process expressed as an initial-boundary value

problem.

The Lie group of transformations is well documented in many mathematical sources, and has been

applied by several engineers over the last few decades. The theory was originally put forth in Lie70

(1888). An accessible source of detailed mathematical explanation of the symmetry transformation

theory applied to differential systems is Bluman and Anco (2002). Another good applied reference

is Olver (1986). The Lie group method is used to investigate the scale invariance of kinematic wave

overland flow problem in I. Haltas (2011). An algorithm developed for finding symmetry transfor-

mations using the group structure has been discussed in Cayar and Kavvas (2009a) and applied by75

engineers in Cayar and Kavvas (2009b) to find symmetries in a heterogeneous unconfined aquifer

problem. Yung et al. (1994) used the Lie group method to classify symmetries in Richard’s equation

for heterogeneous flow in the vadose zone. Scaling of sediment transport problems using the Lie

group method was done by Carr et al. (2015). Lie scaling was applied to a variety of hydrological

problems in Haltas and Kavvas (2011). The scaling behavior and scale invariance conditions of the80

hydrodynamic processes were investigated by applying the one- parameter Lie scaling transforma-

tion directly to the conservation laws in the Reynolds transport theorem framework in Haltas and

Ulusoy (2015). The Lie group used here is analogous to the so called Lie group of one parameter

stretching transformations in (Logan, 1987, p. 447).

The focus of this study is in developing invariant scaling transformations, but the Lie group85

method has implications outside of scaling. Indeed, the discovery of any type of invariant sym-

metry transformation may have serious consequences regarding the understanding of a system of

equations. A theorem due to Noether (1918) states that invariance of a system with respect to a sym-

metry transformation (translational, time, or rotational) is equivalent to a conservation law. Transla-

tional invariance corresponds to conservation of linear momentum, rotational to angular momentum,90

and time invariance to energy conservation. Invariant similarity transformations may also lead to a

change of variables which reduce the order of a differential equation. Reduction of order may reduce

a partial differential equation to an ordinary differential equation (e.g. the Boltzman transforma-

tion may be derived from invariant similarity transformations and can be applied to some nonlinear

diffusion equations to reduce them to an ODE).95

Application of the Lie group of invariant transformations has a second important implication in

scaling. The successful application of a scaling transformation can be classified as one of two types

of self similarity. Type-1 self similarity corresponds to the usual result of a successful dimensional

scaling; when a set of dimensionless groups of parameters is found and at least one member of the
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group can be shown through a limit to be insignificant. This can be stated mathematically as:100

π = φ(π1,π2, · · · ,πk) (1)

with at least one dimensionless group, say π1, satisfying

lim
π1→0

φ(π1,π2, · · · ,πk) = φ(π2, · · · ,πk) 6= {0,∞}. (2)

Type-2 self similarity is a subset of the case where the limit as π1→ 0 results in a limit of 0 or∞
in (2). In some cases a real θ may exist so that:105

π = πθ1φ(π2, · · · ,πk) + o(πθ1). (3)

The exponents must be found by considerations outside of dimensional analysis, or the Lie analysis.

These exponents are called anomalous exponents. See Barenblatt (1996) for explanation.

Analysis of type-1 self similarity in scaling problems are most common in dimensional analysis

and have utility since they can result in the reduction of the number of arguments of the problem.110

Type-2 self similarity problems have been seen in Engineering and Statistical Mechanics and are

promising for solving difficult problems in Hydrology and Engineering. Examples can be seen in

Polsinelli and Kavvas (2015), Gupta and Mesa (2014), and Goldenfeld (1992).

2 Application of the Lie scaling method.

The Lie scaling method relies on theory developed to characterize all symmetry transformations115

that leave a system of equations invariant. A transformation x̄ = X(x;ε) depends on a vector of

parameters ε. The transformation leaves a system of equations F(x) invariant if F(x) = F(x̄). The

one parameter group of symmetry transformation will be considered in this study. The Lie scaling

method isolates a subgroup of the one parameter Lie group of point transformations. Theoretically,

all members of the Lie group of point transformations can be found using an algorithm, called the Lie120

algorithm. In the case of scaling transformations, the general form of the transformations is known.

Invariance can be enforced through performing a change of variables on the original equations to the

scaled variables and requiring that the boundary conditions and governing equations satisfy scaling

invariance. It will also be required that all known functions of scaled variables satisfy functional

scaling relationships known as self similarity (defined later). An example of the application of this125

Lie scaling will be given in section 2.2. A brief overview of the theory and the Lie algorithm will be

given below.

2.1 Summary of group symmetry theory

For a given system of equations F (x) = 0, the set of one parameter transformations which leaves

F invariant (are admitted by F in the parlance) forms the algebraic group structure. The transfor-130

mations can be expressed using the differentials of the transformation parameter through a Taylor
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series. In this way the group of transformations can be represented as an infinite series called the Lie

series. The Lie series is usually written in terms of differential operators, X = ξi∂/∂xi, where the

ξi(x) are the coefficients of the Taylor series. A compact expression is x̄= eεXx.

In general, finding the Lie groups of symmetries admitted by a system of equations involves135

extending the operator above to include the independent and dependent variables, as well as all

derivates up to the differential order of the system. The coefficients of the extended operator can be

shown to satisfy an overdetermined system of partial differential equations. In some special cases the

system of PDE for the coefficients will be linear and homogeneous. Special cases include the wave

equation, nonlinear diffusion equations, and the advection-dispersion equations; common equations140

for phenomena in hydrology and earth science. The solution to the overdetermined system of PDE

allows the transformations admitted by F (x) = 0 to be explicitly identified.

The main object of study here is the sets of scaling transformations. The general form of a scal-

ing transformation is known: x̄= eαx, ȳ = eβy, i.e. the operators satisfy X = αx∂/∂x+βy∂/∂y.

Rather than going through the full Lie algorithm it is sufficient to simply check for invariance of145

F (x) = 0 under the scaling transformation. This involves determining if there is a scaling trans-

formation so that the invariance condition is satisfied simultaneously on the complete system of

equations. The scaling coefficients are found in terms of a single scaling base ε, taken as the one and

only parameter of the transformation.

2.2 An example on Lie scaling: application to an unconfined aquifer150

As an example, consider a heterogeneous aquifer subject to a flux boundary condition where the

initial height of the saturated surface is ho. For simplicity the unconfined groundwater equations

will be modeled by the 2D Dupuit approximation to the 3D conservation equation and free surface

boundary condition. The Dupuit assumption is a good approximation when the slope of the free

surface (or the hydraulic gradient) is small. Scaling of the full 3D system and nonlinear boundary155

condition is possible, but it is relatively complex.

The Lie scaling transforms the entire system of equations: the governing equations, as well as

the boundary and initial conditions. The method begins by gathering all relevant flow or medium

variables and scaling them according to the scaling parameter ε. In this example:

{x,y, t,h,ho,K,S,W,q′nf}→ {εαx,εβy,εχt, εδh,ειho, εφK,εγS,εηW,εκq′nf}.

S is the specific yield, W the external stress (e.g. pumping, recharge, evapotranspiration), K is the

saturated hydraulic conductivity of the aquifer, q′nf is the specific discharge through the saturated

thickness of the aquifer (per unit width [L2/T]), h is the height of the free surface (above a specified

datum). The Dupuit approximating equations can be written as:160

S
∂h

∂t
=

∂

∂x

(
Kh

∂h

∂x

)
+

∂

∂y

(
Kh

∂h

∂y

)
+W. (4)
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Applying the scaling transformation and rearranging the Dupuit equations in terms of the scaled

variables,

εγ+δ−χS̄
∂h̄

∂t̄
= εφ+2δ−2α ∂

∂x̄

(
K̄h̄

∂h̄

∂x̄

)
+ εφ+2δ−2β ∂

∂ȳ

(
K̄h̄

∂h̄

∂ȳ

)
+ εηW̄, (5)

εφ+2δ−αK̄h̄
∂h̄

∂x̄
n̄x̄ + εφ+2δ−βK̄h̄

∂h̄

∂ȳ
n̄ȳ = ελq̄′ · n̄= εκq̄′nf , (6)165

εδh̄= ειh̄o. (7)

The scaled flow equations produce conditions on the scaling exponents, the external forcing, and

the hydraulic conductivity. The scaling exponents must satisfy the equations:

γ+ δ−χ= φ+ 2δ− 2α , φ+ 2δ− 2α= φ+ 2δ− 2β = η (8)

φ+ 2δ−α= κ , ι= δ. (9)170

In the event that any of the hydraulic or medium parameters are functions of scaled quantities

those functions must also satisfy scaling relationships. E.g. if K =K(x,y) then K(ε−αx̄, ε−β ȳ) =

εφK̄. Functions satisfying this condition are called self similar. Anything that is a function of scaled

variables must likewise be self similar in order for invariance to be possible. Hydrologic stresses

are a result of flow through the unsaturated zone or pumping; both processes can vary substantially175

in space and time. In certain flows, density and permeability may be spatially and/or time variable.

Viscosity may be a function of temperature, fluid velocity, and space.

In order to relate the Lie scaling technique to a more classical framework, label the prototype

system variables with subscript p and variables in the model system with subscript m. Then xm =

εαxp and similarly for the other variables. The equations (8) and (9) can be expressed in terms of the180

ratios between model and prototype variables:

Srhr
tr

=
Krh

2
r

x2
r

, xr = yr ,
h2
r

x2
r

=
Wr

Kr
,
h2
r

xr
=

q′r
Kr

, hor = hr. (10)

The saturated hydraulic conductivity depends on properties of the medium and the fluid. It is

often related to the permeability of the medium, as well as the density and viscosity of the fluid:

K = kρg/µ. The density, permeability, and viscosity each may vary as functions of space when185

the hydraulic conductivity varies. Each of these quantities may also vary with scale. The addition

of these new variables must be accounted for in the Lie scaling. The appropriate ratios will be

added to the list of scaled model-to-prototype quotients: kr = km/kp, ρr = ρm/ρp, gr = gm/gp,

and µr = µm/µp. Furthermore, Kr = krρrgr/µr. It will also be necessary to introduce the pore

diameter of the medium d, and the ratio dr = dm/dp. Gravity will be assumed constant in space and190

independent of scale, gr ≡ 1. The permeability is related to the to the square of the pore diameter

through a dimensionless quantity called the Darcy number, Vafai (2005). Referring to these relations

the first equation in (10) can be re-written:

(Srxr/tr)
2

grhr

d2
r

kr

x2
r

d2
r

=
(Srxr/tr)ρrxr

µr
. (11)
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Notice the quantity on the right resembles the Reynolds number ratio with characteristic velocity195

Vr = Srxr/tr, which is a measure of the horizontal fluid velocity through the pore space; the char-

acteristic length ratio is xr. The quantities on the left include the inverse of the dimensionless Darcy

number, defined as the ratio of the permeability to the cross-sectional pore area. Also present is the

ratio of the cross-sectional pore area to the horizontal area of the flow domain, and the ratio between

the height of the phreatic surface and the horizontal length of the domain. On the left-hand side of200

the equation is a quantity that resembles the square of the Froude number ratio with characteristic

velocity ratio the same as the right-hand side and characteristic length as the horizontal aspect ra-

tio. This indicates the conditions under which dynamic and kinematic similarity are simultaneously

preserved.

The third equation in (10) can be re-written as:205

ρrWrhr
µr

kr
d2
r

d2
r

x2
r

=
W 2
r

grhr
(12)

Once again, the quantity on the left is related to the Reynolds number with velocity W oriented in

the vertical direction either in or out of the aquifer depending on the specific conditions, and char-

acteristic length proportional to the height of the phreatic surface, h. On the right, the dimensionless

quantity is related to the square of the Froude number.210

The fourth equation in (10) can be manipulated similarly, here q′ is the discharge per unit width.

The characteristic velocity is related to the discharge, or specific discharge at the boundary.

(q′r/hr)ρrxr
µr

kr
d2
r

d2
r

x2
r

hr
xr

=
q′

2
r/h

2
r

grxr
(13)

The characteristic velocity is the specific discharge over the saturated height. The Reynolds num-

ber can be seen on the left-hand side, the square of the Froude number on the right-hand side, and215

the characteristic lengths will be proportional to the horizontal dimensions of the aquifer. The ratios

between the pore area and the aquifer area, and the saturated height to the horizontal extent serve as

relations between the dynamic quantities.

As may be seen from above the Lie scaling approach provides a grounded method for determining

scaling conditions for invariance of a set of equations. Scale invariance conditions may be phrased in220

terms of such quantities as the Reynolds number, Froude number, and other useful non dimensional

properties. This is useful when considering design specifications of experiments and the nature of

the forces that are preserved after transformation to the scaled system.

The equations (11), (12), and (13) give explicit relationships between the ratios of important di-

mensionless quantities in hydrology and fluid dynamics. It allows investigators to specify conditions225

in terms of the scaling of the flow domain (xr, yr ), medium properties (kr), fluid properties (ρr,

µr), and external forcing (Wr, q′r). The scaling of these variables may be chosen so that the system is

both invariant and dynamically similar, e.g. Rer = 1 and Frr = 1. Under the constraints of invariance
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and dynamic similarity, the scalings of the system (11), (12), and (13) must satisfy:

Wr =

(
µrgr
ρr

) 1
3

from (12), (14)230

Sr =
tr
√
grhr
xr

, hr =

(
µr
ρrxr

)2
1

gr
from (11), (15)

q′r = hr
√
grxr, xr =

(
µr
ρr

) 2
3
(

1

gr

) 1
3

from (13). (16)

From (11), (12), and (13) the non-Froude, Reynolds terms require that kr = x2
r which can be stated

as Dar = x2
r/d

2
r . Dar is the ratio of the Darcy numbers for the model and prototype. Combining

relevant quantities in (14), (15), and (16) gives:235

hr = xr =

(
µr
ρr

) 2
3
(

1

gr

) 1
3

, Sr = tr

(
g2
rρr
µr

) 1
3

, q′r =
µr
ρr
, Wr =

(
grµr
ρr

) 1
3

. (17)

This scaling scheme is trivial if gr = µr = ρr = tr = 1. For most practical problems on Earth, gr ≡
1. The kinematic viscosity can be modified in experimental setting. In problems where the Darcy

scale equations are upscaled to field, watershed, or regional scales the question is if the viscosity of

the fluid changes as the scale increases.240

The procedure above was structured to preserve two well known non dimensional fluid groups

as they are formed in the preceding analysis. Since xr = yr geometric similarity will be preserved.

Preserving both kinematic and dynamic non dimensional groups is often difficult and is not always

possible. In many problems preserving both dimensionless quantities may not be important. Whether

they are held invariant or not however, the two numbers are linked though (11), (12), and (13). This245

relationship may be referenced to understand the effect of a scaling scheme on the kinematic and

dynamic similarity. It may be desirable for investigators to take either Fr orRe as design parameters

in creating physical models or in upscaling the point scale equations, and observe the effect of scaling

in the chosen variable on the unchosen non dimensional group.

Other formulations may be of interest in terms of different characteristic velocities and lengths.250

There are other dimensionless groups that are used in fluid dynamics through porous media; one such

number is the Péclet number, defined as the ratio of advective transfer rate to diffusive transfer rate.

Investigation of the scaling implications in terms of the Péclet number could prove most interesting

for subsurface problems.

3 Classical models and dimensional scaling255

Dimensional scaling is based on the idea that non dimensional groups can be formed based on the

dimensions of the quantities involved in a physical phenomenon. Quantities are usually spatial and

temporal lengths, areas, volumes, velocities, forces, resistances/conductances, densities, etcetera. If

the dominant forces and the quantities that the forces act on are known, then dimensionless groups
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are formed using those forces and associated characteristic properties. This idea is formalized with260

the famous Buckingham Π theorem which operates under assumptions that are true of any physical

problem Bluman and Anco (2002).

Dimensional analysis in fluid dynamics usually resolves to requiring geometric, kinematic, and/or

dynamic similarity. Geometric similarity requires that all body/domain dimensions have the same

linear scale ratio. Kinematic similarity requires that the velocity scale ratios are identical. Dynamic265

similarity requires that the force scale, or mass scale, ratio be the same between the model and

prototype. White (2011) summarizes similarity scaling for incompressible flow according to the

presence or absence of a free surface. For problems with no free surface, dynamic similarity requires

equality in the Reynolds numbers between the model and prototype. In problems with a free surface,

the model and prototype Reynold and Froude numbers must be equal at least. In some cases the270

Webber and Euler numbers (inertial to surface tension and pressure to inertia, respectively) must be

equal as well.

As an example, consider flow in a confined aquifer. Under usual conditions the flow velocity is

quite low, so advective effects are reduced and the viscous effects dominate the problem. In this

case, there is no free surface and the most important dimensionless quantity is usually taken to be275

the Reynolds number, defined as the ratio of the inertial forces to the viscous forces. Under the

condition that the dynamics of the model be the same as the dynamics of the prototype, the ratio of

the Reynolds numbers should be the same.

Vmlmρm
µm

=
Vplpρp
µp

. (Dynamic Similarity)

In this dimensional analysis, the values are assigned to Vm,Vp, lm, lp,ρm,ρp,µm,µp that are thought280

to be characteristic or representative to the system. Choosing appropriate values is at the heart of the

dimensional analysis scaling problem. The choices that are made often reflect quantities that are

measured or observed.

For example, in a hydrologic study modeling the fate of water infiltrated into a hill slope during

a storm event, the rainfall rate at the surface can be measured, and the discharge through a seepage285

face can be measured. These two values give indications to the characteristic velocity of the water

in the subsurface. The characteristic lengths will depend on the process. For the vertical infiltration

through the hill slope, the characteristic length may be the depth from the surface to the water table.

Once the water reaches the saturated zone, the nature of its movement changes from being primarily

vertical flow to horizontal flow. For flow in the saturated zone the characteristic length will be related290

to the horizontal extent of the aquifer.

As a second example consider flow of water through an open channel. Flows like these have

relatively high velocities and large Reynolds numbers, and the dimensionless quantity thought to be

of greatest importance is known as the Froude number. The Froude number is the ratio of the inertial
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forces to the gravity forces. Scaling using this ratio proceeds by equating:295

Vm√
gmlm

=
Vp√
gplp

. (Kinematic Similarity)

The characteristic velocities are usually taken to be the average velocity of the flow in the channel

and the length is usually taken to be the depth of the channel. For closed channels the characteristic

length is the hydraulic diameter of the channel.

For the problem in section 2.2, since the aquifer is unconfined there will be a free surface and flow300

is relatively slow. In this case, the notion of Dynamic Similarity may need to be modified to include

equality of the relevant Froude number as well as the Reynolds number, i.e. Kinematic Similarity

and Dynamic Similarity must be satisfied simultaneously.

In typical problems, scaling is done either by Dynamic Similarity or Kinematic Similarity. It is not

usual for equality of both quantities to be satisfied simultaneously. Generally, information relating305

the various dimensionless quantities is not available, so the scaling of spatial and dynamic quantities

cannot be easily done in such a way as to preserve both kinematic and dynamic similarity.

In the scaling problem for unconfined aquifer flow, the condition that the Reynolds numbers be-

tween the model and prototype be the same is a condition of the scaling scheme in (17) derived from

conditions in (11), (12), and (13). This highlights the fact that the constraints of classical scaling310

by equating the model and prototype ratios of certain non dimensional variables may be added as

conditions in the Lie scaling methodology. The question that must be investigated in any Lie scaling

application is whether a non trivial scaling is possible under both the conditions of invariance of

the governing equations and boundary conditions, and dynamical / kinematic similarity. The dimen-

sional analysis using only the Reynolds number similarity will allow investigators a high degree of315

freedom in model design, while potentially sacrificing kinematic similarity as well as invariance of

the governing equations.

A second established approach for scaling is called modified inspectional analysis and is docu-

mented in (Bear, 1972, Ch. 11). In this reference, the sandbox model is based upon modified inspec-

tional analysis. The sandbox model is a scaled physical model of a subsurface zone. It consists of a320

rigid watertight container filled with a porous matrix. The materials which make up the porous ma-

trix are determined by the designer and the desired scaling properties. Materials can be sand, glass

beads, crushed glass, etc.

The scaling procedure is very similar to the Lie scaling technique. Application of the modified

inspectional analysis to the groundwater problem in section 2.2 begins with gathering the twelve325

independent variables: x, y, t, h, k, µ, ρ, qx, qy , S, W, A where A is the horizontal area and q is the

Darcy flux. The variables are scaled and the relationships between the model-prototype ratios are
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found according to (4):

Wr =
kxrρrh

2
r

x2
rµr

=
kyrρrh

2
r

y2
rµr

=
Srhr
tr

, (18)

qxr =
kxrρrhr
µrxr

, qyr =
kyrρrhr
µryr

, qxr =
Srxr
tr

, qyr =
Sryr
tr

; (19)330

Ar = Srxryr. (20)

Note that if the soil is isotropic then kx = ky = k. Isotropy and the middle two equations in (18)

implies that xr = yr.

Combining the six independent equations requires six variables to be chosen arbitrarily. For ex-

ample, if xr, Sr, µr, ρr, Wr, and tr are chosen, then:335

yr = xr, km = kp
Srx

2
rµr

hrtrρr
, hr =

Wrtr
Sr

.

qr and Ar given in (19) and (20) respectively. Further restrictions can be imposed on (18), (19), (20)

such as similarity of the Reynolds, Froude, or Péclet numbers similarly to the analysis in section 2.2.

The modified inspectional analysis is very similar in application to the Lie scaling, producing

similar results for the equations on the interior of the domain. This method is difficult to apply to340

problems where the parameters k,µ,ρ,S,W vary as functions of space, time, or with respect to flow

variables. The manner in which the variables must scale when they are non constant is made clear

through the Lie group theory.

3.1 An example comparing Lie and Dimensional scaling: contaminant transport

For a simple and straight forward example, consider a linear 1D contaminant transport problem, see345

Bear and Buchlin (1991) for a detailed explanation. The contaminant has concentration c moving

with velocity v and lumped dispersion-diffusion coefficientD. Assume that v,D are constant values.

The concentration of the contaminant at location (x,t) is given by ∂c/∂t+v∂c/∂x=D∂2c/∂x2.

This problem will be analyzed using first Dimensional analysis and scaling, then by Lie scaling.

Dimensional analysis can be applied very easily. The simplicity of the problem does not warrant350

the full Buckingham-Π theorem application. It is clear that the characteristic time scale is related

to the velocity v and the characteristic length scale L: T = vt/L, X = x/L. The non dimensional

concentration equation is

∂c

∂T
+
∂c

∂X
=
D

vL

∂2c

∂X2
. (21)

The dimensionless quantity vL
D is known as the Péclet number with characteristic length L: PeL.355

The non dimensional equation indicates that the Péclet number has a profound effect on the dy-

namics of the system. For large values of PeL (21) resembles a linear advection equation. For small

values of PeL the equation resembles the linear diffusion equation. When scaling this problem, it is
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desirable to keep the same Péclet number of the model as the prototype, given the importance of the

Pe on the dynamics. It will be required that:360

Pem =
vmLm
Dm

=
vpLp
Dp

= Pep. (22)

The Lie scaling approach begins with the direct scaling of all relevant variables and parameters.

Following the notation above the ratios xr = xm/xp, tr = tm/tp, vr, cr, and Dr are formed and a

change of variable to the model variables is performed. In order for the equations to be invariant the

following set of equations for the ratio relationships must be satisfied:365

cr
tr

=
crvr
xr

=
Drcr
x2
r

⇒ tr =
xr
vr

&
xrvr
Dr

= 1. (23)

The results for the equations on the interior domain are identical to the conclusions of the dimen-

sional analysis and dimensional scaling. In addition to (23), the Lie method requires the simultaneous

scaling of the boundary conditions. Two common boundary conditions in contaminant transport are

prescribed concentration and prescribed flux. Denoting Bc as the prescribed concentration boundary370

and Bf as the prescribed flux boundary, these boundary conditions are generally written as:

c(x,t) = g1(x,t) on Bc, (concentration)

cq−SD ∂c

∂x
= g2(x,t) on Bf . (flux)

S is the porosity of the medium ( = 1 if there is no porous matrix) and q is the specific discharge at

the boundary. g1 and g2 are the prescribed concentration and flux respectively. A special case of the375

flux condition is on an impervious boundary. In this case q ≡ 0 and g2 ≡ 0 hence D∂c/∂x= 0 on

Bf .

Invariance on the boundary requires that the functions g1(x,t) and g2(x,t) be self similar func-

tions with respect to the scaled variables x,t. It was shown in Ibragimov (1995) that if f(ax,aβt) =

aγf(x,t) then f(x,t) = xγΦ(tx−β) for an arbitrary function Φ(·). Changing variables in the bound-380

ary conditions and enforcing invariance leads to the requirements that:

crqr = Sr
Drcr
xr

= g2r ⇒ qr = Sr
Dr

xr
& cr =

(gr/Sr)xr
Dr

. (24)

Notice that gr/Sr is the velocity in the porous matrix at the boundary so (gr/Sr)xr/Dr is a Péclet

number ratio on the boundary with characteristic length scaled as xr. In the case of an impervious

boundary any scaling scheme preserves invariance on the boundary. For a prescribed concentration385

at the boundary, the scaling of the concentration must be the same as the scaling of the prescribed

concentration; cr = g1r.

Comparing the Lie scaling and dimensional scaling it is seen that the results are the same for the

equation on the interior of the flow domain. The differences between the methodologies stem from

the treatment of the boundary by the Lie scaling. The conclusions from the boundary dictate that390

the concentration must scale in the same way as the prescribed concentration (either or both at the
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boundary or the initial concentration), and according to (24) simultaneously. The functional form of

the prescribed flux and concentration functions, g1(x,t) and g2(x,t) is restricted by the condition of

self similarity as well.

The Lie scaling gives a complete picture of the requirements that must be satisfied in order for395

the full model to preserve the dynamics of the prototype boundary value problem. The other scaling

methods focus on preserving a subset of dynamics, e.g. the dynamical similarity, the kinematic

similarity, or invariance for the interior equations. The dimensional scaling methods do not consider

parameter functions as satisfying functional scaling relationships.

4 Conclusions400

The three scaling techniques were described, applied, and compared. Each method will briefly be

summarized below and comments made on each method’s strengths and weaknesses.

The classical scaling method and most widely used technique is known as dimensional scaling.

The basics of the method is an analysis through non dimensionalization when equations describing

the governing dynamics are known, and applying the Vaschy-Buckingham theorem when governing405

equations are either not known or poorly understood.

The relative strengths of this method are its universal applicability, ease of application, and iden-

tification of the important non dimensional parameter groups in a system and the effect they have on

the solution process in the system. It is extremely useful to be able to apply the Vaschy-Buckingham

theorem to analyze a problem about which very little is known. In cases where the closed form410

equations are not available to model dynamics, very basic information may be available on vari-

ables, parameters, and process that contribute to a phenomenon. Gathering the dimensions for these

quantities is enough to apply the Π theorem and make judgements on modeling and scaling of such

systems. In cases where governing equations are known and understood, dimensional analysis on

the equations similar to the example in section 3.1 can be used to derive the relevant dimensionless415

parameter groups and determine their effect on the system of equations.

The weakness of the classical dimensional scaling lies in the limited detail gained through an anal-

ysis. Generally, dimensional analysis is only applied to the dynamics in the interior of the domain

and not to the boundary phenomena. This results in the neglect of influences from the boundary,

which can be substantial in many problems. Dimensional scaling also overlooks the need for pa-420

rameter functions or processes depending on variables that are being scaled to satisfy self similarity

conditions in order to preserve the dynamics of the system. This is somewhat a strength and a weak-

ness. It is a strength in that it gives the modeler a larger amount of freedom in creating the model.

It is a weakness because it fails to identify the conditions in which a model system is truly a scaled

version of the prototype, i.e. when a scaling transformation is invariant.425
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The modified inspectional analysis is very similar to the Lie scaling method both in development

and in application. It is a somewhat intuitive version of the Lie scaling technique. It operates by

examining the governing equations, applying a scaling transformation to the variables in the system,

and enforcing invariance of the scaling transformation. Similarly to the dimensional scaling, this

method does not explicitly consider that parameters or secondary processes that are functions of430

the scaled state variables of the system need to satisfy self similarity relationships. Rather, model

processes can be chosen to have different dynamical properties than the prototype processes, Bear

(1972). E.g. an aquifer with an anisotropic hydraulic conductivity can be modeled as an isotropic

aquifer.

The Lie scaling technique is a powerful method based on a well developed mathematical theory.435

In fact, the Lie scaling is an instance of a much larger class of invariant transformations which act

on a system. In application, it involves development of the set of model variables by scaling all

quantities in the prototype system, performing the change of variables in the prototype governing

equations, and determining the precise scaling relationships by enforcing invariance on both the

governing equations and boundary conditions. Note that the scaling transformation may also be440

found by applying the Lie algorithm, outlined above and described in detail in Bluman and Anco

(2002), to determine the scaling transformation as well as the non scaling invariant transformations.

The strength of the Lie scaling technique is it gives a complete picture as to the set of condi-

tions that a complete model must satisfy in order to preserve the dynamics of the prototype system.

The precise nature of the dynamics to be preserved, e.g. kinematic similarity, dynamical similarity,445

etc, can be explored and specified along with the general invariance of the transformation on the

system of equations. It will not necessarily always be the case that a non trivial scaling is possi-

ble which preserves all similarity relationships, but the simple fact that this can be unambiguously

determined for the set of all possible invariant scaling transformations is itself fundamental. The

Lie scaling approach requires that any known function or process that depends on scaled variables450

satisfy a self similarity relationship. Investigation of when functions will satisfy self similarity rela-

tionships which gives insight into the applicable extent of scaling transformations and the regimes in

which multi scale models must be developed for a particular problem. Particularly for hydrological

phenomena, investigations have concluded that certain medium and fluid parameters, such as the hy-

draulic conductivity, undergo fundamental changes in their distribution as the scale increases from455

the pore scale to the watershed scale (and above) Kavvas (1999); Meerschaert et al. (2013).

The Lie scaling considers the complete model, meaning the interior and boundary conditions,

enforcing invariance in scaling for all regions in the problem. This ensures that the effects of the

boundary conditions will be accounted for in preservation of the dynamics. It also provides a link

between the flow problems in domains adjacent to the problem domain. E.g. for the investigation of460

a scaled model for a subsurface saturated zone receiving recharge from an unsaturated zone, either

the forcing function in the Dupuit approximating equations, or the boundary condition in the full 3D
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nonlinear problem will require self similarity of the flow in the unsaturated zone. This is important

for considering coupling dynamics between different systems. Examples include sea water intrusion

into the groundwater system and the interaction of regional climate models with groundwater.465

The Lie scaling method requires the governing equation for both the interior and the boundaries to

be known, and the functional scaling properties for any variable dependent parameters to be known as

well. Models based on the Lie scaling must include medium and flow parameters that have identical

(scaled) structure to the prototype. This may introduce technical difficulties in producing precisely

scaled physical models in the laboratory. The scaling procedure must be applied to problems indi-470

vidually. Any change in boundary conditions, initial conditions, flow, or medium parameters may

significantly alter the scaling structure and existence of invariant transformations.

Lastly, the Lie scaling method is a special case of the more general method to classify the Lie

group of transformations. The Lie group method systematically considers invariant changes of vari-

ables that make an equation integrable. While scaling is an important symmetry, other members475

may yield useful simplifications or insight into difficult problems and should be considered in future

research.
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