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Laser Vision: Lidar as a Transformative Tool to Advance Critical Zone Science 1 

Observation and quantification of the Earth’s surface is undergoing a revolutionary change due 2 

to the increased spatial resolution and extent afforded by light detection and ranging (lidar) 3 

technology. As a consequence, lidar-derived information has led to fundamental discoveries 4 

within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines 5 

form the cornerstones of Critical Zone (CZ) science, where researchers study how interactions 6 

among the geosphere, hydrosphere, and biosphere shape and maintain the “zone of life”, which 7 

extends from the top of unweathered bedrock to the top of the vegetation canopy. Fundamental 8 

to CZ science is the development of transdisciplinary theories and tools that transcend individual 9 

disciplines and inform other’s work, capture new levels of complexity, and create new 10 

intellectual outcomes and spaces. Researchers are just beginning to utilize lidar datasets to 11 

answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-12 

evolve over long-time scales and interact over shorter time scales to create thresholds, shifts in 13 

states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the 14 

transformative potential of lidar for CZ science to simultaneously allow for quantification of 15 

topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed studies 16 

utilizing lidar highlights the lag in the application of lidar for CZ studies as 38% of the studies 17 

were focused in geomorphology, 18% in hydrology, 32% in ecology, and the remaining 12% had 18 

an interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate that well-19 

integrated lidar observations can lead to fundamental advances in CZ science, such as 20 

identification of feedbacks between hydrological and ecological processes over hillslope scales 21 

and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst 22 

carbon, energy, and water cycles.  We propose that using lidar to its full potential will require 23 
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numerous advances across CZ applications, including new and more powerful open-source 24 

processing tools, exploiting new lidar acquisition technologies, and improved integration with 25 

physically-based models and complementary in situ and remote-sensing observations. We 26 

provide a five-year vision that advocates for the expanded use of lidar datasets and highlights 27 

subsequent potential to advance the state of CZ science. 28 

 29 

1. INTRODUCTION 30 

Complex interactions among the geosphere, ecosphere, and hydrosphere give rise to present-day 31 

landforms, vegetation, and corresponding water and energy fluxes. Critical Zone (CZ) science 32 

studies these interactions in the zone extending from the top of unweathered bedrock to the top 33 

of the vegetation canopy. Understanding CZ function is fundamental for characterizing regolith 34 

formation, carbon-energy-water cycles, meteorological controls on ecology, linked surface and 35 

subsurface processes, and numerous other Earth surface processes (NRC, 2012). Improved 36 

understanding of CZ functions is thus important for quantifying ecosystem services and 37 

predicting their sensitivity to environmental change. However, CZ processes are difficult to 38 

observe because they occur over time scales of seconds to eons and spatial scales of centimeters 39 

to kilometers, and thus require diverse measurement approaches (Chorover et al., 2011). Light 40 

detection and ranging (lidar) technologies can be helpful in this regard because they generate 41 

repeatable, precise three-dimensional information of the Earth’s surface characteristics. 42 

  43 

Lidar allows for simultaneous measurements of aboveground vegetation structure and human 44 

infrastructure, as well as the topography of the earth surface, including soils, exposed bedrock, 45 

stream channels, and snow/ice. Depending on the data collection system and platform, 46 



 4 

observations can be made at the landscape scale (>1000 km2) and at spatial resolutions capable 47 

of capturing fine-scale processes (<10 cm).  These unique measurement capabilities offered by 48 

lidar have the potential to help answer transdisciplinary research questions, which transcend a 49 

single discipline, capture greater complexity, and create new intellectual advances that are 50 

synergistic (across disciplines) in nature. Fundamental CZ science questions often require 51 

transdisciplinary approaches that surpass what is possible in multidisciplinary (i.e. collaborations 52 

across disciplines that pose their own questions) or interdisciplinary (i.e. collaborations where 53 

information is transferred amongst disciplines) research settings.  Because lidar can characterize 54 

geomorphic, ecologic, and hydrologic processes simultaneously across a range of scales, it is 55 

uniquely suited to address questions posed by CZ research. 56 

 57 

Lidar acquisition capabilities are increasing exponentially (Stennett, 2004; Glennie et al., 2013) 58 

and new ground-based (terrestrial laser scanning, TLS), mobile platforms (airborne laser 59 

scanning, ALS or other mobile platforms like trucks or boats), and space-based platforms 60 

(spaceborne laser scanning, SLS) are leading to increased availability of lidar datasets with CZ-61 

relevant information content. Different lidar platforms each have their own advantages and 62 

limitations, but operate based on a similar principle by emitting and measuring the round-trip 63 

time of travel of an energy pulse (laser light) and thus, measuring and mapping distance to a 64 

target.  Collection via TLS methods, for example, typically involves lidar scanners that are 65 

mounted on tripods or other fixed locations. Fixed targets surveyed with a high resolution GPS 66 

are used to georeference the lidar datasets and to composite multiple TLS scans into a single 67 

point cloud.  TLS scanners are becoming more affordable and available to individual researchers 68 

and groups. Lidar collections via mobile platforms are typically performed by mounting the lidar 69 
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unit on an aircraft, helicopter, or vehicle that moves over the study area of interest.  The aircraft 70 

must be equipped with a GPS unit and Internal Measurement Unit (IMU) to track the orientation 71 

and location of the scanner. Similar to TLS collection, ALS methods require ground targets with 72 

known GPS locations for georeferencing. Lidar collection via SLS are much less common, but 73 

have been successfully deployed on orbiting spacecraft and will become more prevalent in 2017 74 

with the planned launch of ICESat-2 (Abdalati et al., 2010). In addition to the laser system, the 75 

spacecraft must have a GPS unit and altitude determination system in order to georeference the 76 

data.  Each of these lidar platforms offer specifications that can be selected and adjusted for a 77 

given science application. Throughout this review we present studies using a suite of lidar 78 

methods and highlight the advantages of each method for differing scientific purposes.  79 

 80 

The objective of this paper is to present a five-year vision for applying lidar to advance 81 

transdisciplinary CZ research. To accomplish this, we first present the state of the science on 82 

applying lidar to disciplinary-specific research in geomorphology, hydrology, and ecology in 83 

Sections 1.1, 1.2, and 1.3, respectively. This is followed in Section 2.1 by an exploration of 84 

transdisciplinary studies that have utilized complementary lidar-derived datasets to propel CZ 85 

science beyond what is possible within disciplinary endeavors. We summarize these exemplar 86 

transdisciplinary studies with the intent to guide future research. In Section 2.2 we describe how 87 

lidar-derived information is uniquely suited to advance three CZ research topics beyond the 88 

current state of the science: 1) quantifying change detection, 2) parameterization and verification 89 

of physical models, and 3) improved understanding of CZ processes across multiple scales. 90 

These topics are limited by a set of common impediments that we outline in Section 2.3. Finally, 91 

in Section 2.4, we present a vision to advance CZ science with lidar using examples of 92 
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transdisciplinary research questions and provide a set of recommendations for the CZ community 93 

to increase usage and advocate for greater lidar resources over the next five years. 94 

  95 

1.1 Advances in Geomorphology Using Lidar 96 

High-resolution topographic datasets derived from lidar have greatly contributed to quantifying 97 

geomorphic change, identifying geomorphic features, and understanding ecohydrologically-98 

mediated processes at varying scales and extents. These advances have allowed testing of 99 

geomorphic models, pattern and process recognition, and the identification of unanticipated 100 

landforms and patterns (e.g. waveforms) that were not possible using previous survey 101 

techniques. Generally, lidar information complements rather than replaces field observations, 102 

with lidar observations leading to new hypothesis and process cognition (Roering et al., 2013). 103 

Broadly, lidar technology has been useful in studying geomorphic response to extreme events 104 

such as fire and storms (e.g., Pelletier and Orem, 2014; Sankey et al., 2013; Perignon et al., 105 

2013; Staley et al., 2014), human activities (e.g. James et al., 2009), and past climatic and 106 

tectonic forcings (e.g., Roering, 2008; Belmont, 2011; West et al., 2014). Meter and sub-meter 107 

scale time-varying processes, often derived from TLS, have been quantified in the response of 108 

point bar and bank morphodynamics (Lotsari et al., 2014) and in the formation of 109 

microtopography due to feedbacks with biota (e.g., Roering et al., 2010; Pelletier et al., 2012; 110 

Harman et al., 2014). Examples of larger scale change detection applications, typically ALS-111 

derived, include measuring changes in stream channel pathways resulting from Holocene climate 112 

change and anthropogenic activities (e.g., Day et al., 2013; Kessler, 2012; James 2012; Belmont 113 

et al., 2011), rates of change in migrating sand dunes (Pelletier, 2013), the influence of lithology 114 

and climate on hillslope form (e.g., Marshall and Roering, 2014; Hurst et al., 2013; Perron et al., 115 
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2008; West et al., 2014), and channel head formation (e.g., Pelletier et al., 2013; Pelletier and 116 

Perron, 2012; Perron and Hamon, 2012). Automated tools to identify geomorphic features (i.e., 117 

floodplains, terraces, landslides) and transitional zones (i.e., hillslope-to-valley, floodplain-to-118 

channel) have been used in conjunction with high-resolution elevation datasets from lidar, 119 

including Geonet 2.0 (Passalacqua et al., 2010), ALMTools (Booth et al., 2009), and TerrEX 120 

(Stout and Belmont, 2014).  121 

  122 

1.2 Advances in Hydrology Using Lidar 123 

Research utilizing lidar has advanced fundamental process understanding in snow hydrology 124 

(Deems et al., 2013), surface water hydraulics (Lane et al., 2004; Nathanson et al., 2012; Lyon et 125 

al., 2015), and land-surface-atmosphere interactions (Mitchell et al., 2011). Lidar-derived snow 126 

depths (derived by differencing snow-on and snow-off elevations) over large (>1 km2) spatial 127 

extents from both ALS and TLS (Deems et al., 2013) have yielded unprecedented contiguous 128 

maps of spatial snow distributions (e.g. Fassnacht and Deems, 2006; McCreight et al., 2014) and 129 

provided new insights into underlying processes determining spatial patterns in snow cover 130 

(Trujillo et al., 2009; Kirchner et al., 2014), accumulation and ablation rates (Grunewald et al., 131 

2010; Varhola and Coops, 2013), snow water resource planning (Hopkinson et al., 2012), and 132 

estimating the effects of forest cover and forest disturbance on snow processes (Harpold et al., 133 

2014a). Change detection techniques have been effective for determining glacier mass balances 134 

(Hopkinson and Demuth, 2006), ice surface properties (Williams et al., 2013), and calving front 135 

movements (e.g., Arnold et al., 2006; Hopkinson et al., 2006). Prior to lidar, many of these 136 

cryospheric processes had to be investigated using single point observations or through statistical 137 

rather than deterministic analyses; the additional information derived from lidar has yielded 138 
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important insights that have advanced scientific understanding. High- resolution topographic 139 

information from lidar has proved important for stream channel delineation (Kinzel et al., 2013), 140 

rating curve estimation (Nathanson et al., 2012; Lyon et al., 2015), floodplain mapping and 141 

inundation (Marks and Bates, 2000; Kinzel et al., 2007), and topographic water accumulation 142 

indices (Sørensen and Seibert, 2007; Jensco et al., 2009). Lidar measurements of micro-143 

topography shows potential for improving soil property and moisture information (e.g., 144 

Tenenbaum et al., 2006), surface and floodplain roughness (Mason et al., 2003, Forzieri et al., 145 

2010; Brasington et al., 2012; Brubaker et al., 2013), hydraulic dynamics and sediment transport 146 

(Roering et al., 2012; McKean et al., 2014), surface ponding and storage volume calculations (Li 147 

et al., 2011; French, 2003), and wetland delineation (e.g. Lane and D’Amico, 2010). Certain 148 

hydrological modeling fields are well poised to utilize high-resolution topography, such as 149 

movement of water in urban environments (Fewtrell et al., 2008), in-channel flow modeling 150 

(Mandlburger et al., 2009; Legleiter et al., 2011), and hyporheic exchange and ecohydraulics in 151 

small streams (e.g. Jensco et al., 2009). Finally, high-resolution, three-dimensional lidar 152 

measurements of canopy and vegetation structure (Vierling et al., 2008) have direct implications 153 

for modeling the surface energy balance (Musselman et al., 2013; Broxton et al., 2014) and 154 

evapotranspiration processes (Mitchell et al., 2011) at scales critical to increasing fidelity in 155 

physically-based models. 156 

 157 

1.3 Advances in Ecology Using Lidar 158 

Lidar-based remote sensing of vegetation communities has transformed the way ecologists 159 

measure vegetation across multiple spatial scales (e.g., Lefsky et al., 2002; Maltamo et al., 2014; 160 

Streutker and Glenn 2006). Substantial work has been undertaken using lidar to map vegetation 161 
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structure and biomass distributions (see reviews by Seidel et al., 2011 and Wulder et al., 2012). 162 

These include the estimation of Leaf Area Index (LAI) (Riaño et al., 2004; Richardson et al., 163 

2009; Hopkinson et al., 2013), vegetation roughness (Streuker and Glenn, 2006; Antonarakis et 164 

al., 2010), alpine tree lines (Coops et al., 2013), and total carbon storage and sequestration rates 165 

in forest, grassland, savannahs and/or shrubland communities (Asner et al., 2012a; Baccini et al., 166 

2012; Mascaro et al., 2011; Simard et al., 2011; Antonarakis et al., 2014). ALS has been used to 167 

characterize wildlife habitat in tree and shrub canopies (Hyde et al., 2005; Bork and Su, 2007; 168 

Vierling et al., 2008; Martinuzzi et al., 2009; Zellweger et al., 2014) and in aquatic systems 169 

(McKean et al., 2008; Wedding et al., 2008; McKean et al., 2009). ALS has been a critical tool 170 

in modeling catchment scale water-availability for vegetation at fine (Harmon et al., 2014) and 171 

broad spatial scales (Chorover et al., 2011). Radiation transmission and ray-tracing models 172 

utilizing lidar provide ecologists with better tools to quantify in-canopy and below-canopy light 173 

environments (Lee et al., 2009; Bittner et al., 2014; Musselman et al., 2013; Bode et al., 2014; 174 

Moeser et al., 2014). Additionally, ecologists are beginning to quantify the impact of vegetation 175 

on micro-topography (Sankey et al., 2010; Pelletier et al., 2012; Harmon et al., 2014), as well as 176 

larger landform processes (Pelletier et al., 2013). Broad-scale lidar data allows for quantification 177 

of patches and mosaics amongst plant functional types across landscapes (Antonarakis et al., 178 

2010; Dickinson et al., 2014) and global forest biomass estimates (Simard et al., 2011). 179 

Ecologists have fused data from hyperspectral imaging and lidar to enable species classification 180 

for close to a decade (e.g. Mundt et al., 2006). However, new opportunities exist to link species-181 

level detail and plant functional response through emerging technologies, including co-182 

deployment of hyperspectral and lidar sensors (Asner et al., 2012b), and hyperspectral 183 

(supercontinuum) laser technology (Kaasalainen et al., 2007; Hakala et al., 2012). By linking 184 
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lidar with additional observations, researchers have begun to quantify species-level detail and 185 

plant health estimation (Cho et al., 2012; Féret and Asner, 2012; Olsoy et al., 2014) and model 186 

forest carbon fluxes (Antonarakis et al., 2014).  187 

  188 

2. Current Toolkits and Open Questions Using Lidar in CZ Science 189 

Research based on lidar-derived information accounts for substantial advances within the 190 

cornerstone CZ disciplines. However, many open questions in CZ science require linked, 191 

transdisciplinary investigations across multiple disciplines that create new intellectual spaces for 192 

scientific advancements. For example: How do CZ processes co-evolve over long-time scales 193 

and interact over shorter time scales to develop thresholds and shifts in states and fluxes of 194 

water, energy, and carbon? What will be the response of the CZ structure to disturbance and land 195 

use change? These CZ science questions must elucidate feedbacks and interactions among the 196 

geosphere, ecosphere, and hydrosphere. This cannot be accomplished within the individual 197 

disciplines (multidisciplinary) or by sharing information across disciplines (interdisciplinary), 198 

but instead require synergistic transdisciplinary science that spans multiple spatial and temporal 199 

scales.  200 

 201 

A key advantage of lidar for understanding CZ feedbacks is the coupling of previously 202 

unprecedented coverage over both broad temporal and spatial scales (Figure 1). The utility of 203 

lidar for geosphere, ecosphere, and hydrosphere investigations is dependent on the platform (e.g. 204 

TLS, ALS, or SLS) with cross-platform observations capable of resolutions from 10-3 m to 205 

continental scales (Figure 1). In terms of temporal extent, TLS, ALS and SLS are capable of 206 

employing weekly to sub-hourly repeat scan rates (Figure 1). Technologies allowing for faster 207 
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scan rates will typically limit the spatial extent (Figure 1). Advances in technology described in 208 

Section 2.3 will increase the spatial and temporal resolutions for all lidar platforms in the next 209 

five years (Figure 1). The intersecting process scales shown in Figure 1 demonstrate the viability 210 

of extracting transdisciplinary information from lidar given thoughtful experimental design and 211 

data collection. 212 

 213 

2.1 Lidar as a Transdisciplinary CZ Tool 214 

To investigate the state of the science of lidar in CZ research we conducted a literature review of 215 

147 peer-review papers that employed lidar datasets to improve process-based understanding.  216 

Our review found that most lidar studies to date have had a single disciplinary objective and that 217 

the CZ community is less likely to utilize the overlapping information in space and time 218 

generated by lidar (Figure 1). This is not surprising given the rampant progress made in filling 219 

important knowledge gaps in the individual cornerstone CZ disciplines using lidar datasets 220 

(Sections 1.1 to 1.3). We organized the literature reviewed for this paper into a scoring system of 221 

geomorphic, hydrologic, and ecologic process knowledge advanced through individual lidar-222 

based studies. For each paper we assigned 10 points among the three disciplines to capture 223 

potential transdisciplinary lidar use. For example, a study leading purely to hydrologic process 224 

advances would rank as 10 in the hydrology category and zero in the ecology and 225 

geomorphology categories. A study balancing the process-based inferences among the three 226 

disciplines, with a more prominent ecological focus, would have been assigned scores of 3, 3, 227 

and 4 for geomorphology, hydrology, and ecology, respectively. Of course, this is a subjective 228 

scaling based on author opinions. To limit potential impacts of subjectivity, three different 229 
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authors of the current paper assigned independent scores to each study and we used the average 230 

score to place each paper in the relative ranking triangle (Figure 2).  231 

 232 

The motivation for developing the conceptualization in Figure 2 is to facilitate identification of 233 

studies employing transdisciplinary synergies (e.g., lie within the internal triangle) that rely on 234 

the multi-faceted nature of lidar datasets.  The review showed 38% of 147 studies were focused 235 

(score of 6 or higher) in geomorphology, 18% in hydrology, 32% in ecology, and the remainder 236 

had a more interdisciplinary focus. The few studies in the center of the triangle could be 237 

considered as potential exemplars of CZ science using lidar as they balance well among each 238 

cornerstone discipline. Several studies were transdisciplinary in nature, but focused on lidar-239 

derived topography and did not maximize information content on hydrological and ecological 240 

processes from lidar: Pelletier et al. (2012), Persson et al. (2012), Brubaker et al. (2013), Pelletier 241 

(2013), Coops et al. (2013), Rengers et al. (2014), and Pelletier and Orem (2014). We instead 242 

draw focus to transdisciplinary studies that demonstrate the potential for complementary 243 

information to be extracted from lidar and integrated into field campaigns to allow multi-scale 244 

observations of interacting geomorphologic, hydrologic, and ecologic processes. 245 

 246 

We highlight three studies that can serve as possible roadmaps to guide future transdisciplinary 247 

investigations using lidar datasets (Figure 2): Harman et al., 2014, Pelletier et al., 2013, and 248 

Perignon et al., 2013. These studies used complementary information from lidar to develop 249 

fundamental transdisciplinary advances in the theories and understanding of CZ processes and 250 

structure.  For example, Harman et al. (2014) applied TLS to investigate coevolution of lidar-251 

derived microtopography and vegetation (biovolume) at two 100-m long semi-arid hillslopes. 252 
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Integrating lidar and limited field measurements, Harman et al. (2014) found that both alluvial 253 

and colluvial processes were important in shaping vegetation and soil dynamics on hillslopes. 254 

The insights found by Harman et al. (2014) relied on the high resolution and precision of lidar 255 

information and would not have been possible using coarser traditional survey techniques for 256 

topography and vegetation structure.  Pelletier et al. (2013) investigated landscape-scale (>10 257 

km2) variability in above-ground biomass, hydrologic routing, and topography derived from lidar 258 

at two mountain ranges in southern Arizona and applied a landscape evolution model to 259 

demonstrate the need to include ecological processes (e.g. vegetation density) to correctly model 260 

topography. Lidar-derived vegetation structure provided new information not attainable from 261 

other methods that allowed for Pelletier et al. (2013) to test a novel model of CZ development 262 

based on eco-pedo-geomorphic feedbacks.  Perignon et al. (2013) investigated topographic 263 

change following a major flood along a 12 km stretch of the Rio Puerco in New Mexico. They 264 

found that sedimentation patterns reflected complex interactions of vegetation, hydraulics, and 265 

sediment at the scale of individual plants.  This example demonstrates the value of lidar for 266 

testing ecohydrological resilience to extreme events and to develop new understanding of the 267 

fine-scale ecological feedbacks (i.e. individual plants) on reach scale geomorphic response.  268 

 269 

These exemplar studies demonstrate the utility of lidar for transdisciplinary process 270 

investigations at scales ranging from hillslopes (e.g. Harman et al., 2014), to stream reaches (e.g. 271 

Perignon et al., 2013), to mountain ranges (e.g. Pelletier et al., 2013). We believe that these 272 

exemplar transdisciplinary studies should serve as motivation for increased use of lidar and 273 

integrated, multi-scale field observations for advancing CZ science. To this end, in Section 2.4 274 
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we provide additional examples to illustrate the overlapping processes observable with lidar that 275 

are motivated by CZ science questions.   276 

  277 

2.2 Applying Lidar in CZ Science 278 

Through our literature review and subsequent conceptualizations (e.g., Figure 1) we have 279 

identified three clear areas where lidar observations have the potential to advance the state of CZ 280 

science in the next five years: 1) quantifying change detection, 2) parameterization and 281 

verification of physical models, and 3) improving understanding of CZ processes across multiple 282 

scales. Applying these tools is not mutually exclusive and each area has different levels of 283 

previous research and development. For example, change detection utilizing lidar has received 284 

notable use in the CZ science community, particularly by geomorphologists analyzing 285 

topographic change over time. The use of lidar to quantify scaling relationships and thresholds 286 

remains relatively unexplored, despite robust scaling theories and analysis tools from other fields 287 

that are portable to lidar datasets. Similarly, integration of lidar datasets for either 288 

parameterization or verification has had limited development within CZ-relevant models. 289 

  290 

2.2.1 Change Detection 291 

Lidar-based change-detection analyses (CDA), i.e. mapping landscape adjustments through time 292 

in multi-temporal ALS and TLS datasets, have provided comprehensive measurements of snow 293 

depth (e.g. Harpold et al., 2014b; Tinkham et al., 2014) and ablation (Egli et al., 2012), co-294 

seismic displacements after earthquakes (e.g. Oskin et al., 2012; Nissen et al., 2014), changes in 295 

aeolian dune form and migration rates (e.g. Pelletier, 2013), fluvial erosion (e.g. Anderson and 296 

Pitlick, 2014; Pelletier and Orem, 2014), earthflow displacements (e.g. DeLong et al., 2012), 297 
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knickpoint migration in gully/channel systems (e.g. Rengers and Tucker, 2014), cliff retreat 298 

along coasts (Young et al., 2010), permafrost degradation (Levy et al., 2013; Barnhart and 299 

Crosby, 2013), forest growth (Yu et al., 2004; Næsset and Gobakken, 2005), and changes in 300 

biomass (e.g. Meyer et al., 2013; Olsoy et al., 2014). Traditionally, lidar point clouds have been 301 

rasterized prior to differencing using open-source processing toolkits (e.g. GCD; e.g. Wheaton et 302 

al., 2010). However, new methods such as Iterative Closest Point (Nissen et al., 2012), particle 303 

image velocimetry (Aryal et al., 2012), and Multiscale Model to Model Cloud Comparison 304 

(Lague et al., 2013) enable direct differencing of point clouds. Continued methodological 305 

advances, coupled with increasingly available repeat datasets will progress the capabilities and 306 

quality of CDA. Structure from Motion (SfM) estimates three-dimensional structures from two-307 

dimensional images providing an easily portable and low-cost method for making high-308 

frequency change detection measurements (Westoby et al., 2012; Fonstad et al., 2013). There is 309 

also potential to apply time-series multi/hyperspectral lidar datasets to quantify changes in forest 310 

health over time. Similarly, integration of bathymetric lidar with ALS opens the potential to 311 

monitor dynamic changes in river flow and sediment transport (Flener et al., 2013). Although 312 

researchers often implement CDA using historic datasets (Rhoades et al., 2009), challenges arise 313 

from sparse metadata and reduced accuracy, thereby limiting dataset utility (e.g. Glennie et al., 314 

2014). Future CDA may be improved by further establishing best practices for dataset sharing 315 

and archiving through repositories such as OpenTopography and UNAVCO. 316 

  317 

2.2.2 Scaling CZ Processes 318 

While researchers have harnessed existing scaling theories and tools utilizing lidar datasets, there 319 

is room for expansion using the range of scales afforded by lidar technologies (Figure 1). Two 320 
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complementary techniques, characterizing fractal patterns (e.g. Deems et al., 2006; Glenn et al., 321 

2006; Perron et al., 2008) and process changes expressed as fractal breaks (e.g. Drake and 322 

Weishampel, 2000), benefit from the extensive breadth of spatial scales offered by lidar data. 323 

Self-similar patterns across scales indicate consistent processes and thus provide a framework for 324 

sampling, modeling, and re-scaling processes. Variograms and semi-variograms are commonly 325 

employed to plot lidar-derived attributes of interest such as snow distribution (e.g. Deems et al., 326 

2008; Harpold et al., 2014a) or forest spatial patterns (e.g. Boutet et al., 2003) against scale. 327 

Fractal and fractal deviations, as well as the length-scales of landscape structure (Perron et. al., 328 

2008), convey important CZ information, e.g., the effect of tree-root spacing through time on soil 329 

production (Roering et al., 2010), patterns in tree gap-formation (Plotnick et al., 1996; Frazer et 330 

al., 2005), and underlying abiotic and biotic controls on forest fractal dimensions (Drake and 331 

Weishampel, 2000). Within the CZ framework, lidar allows consideration of topographic 332 

variation and biomass distribution (Chorover et al., 2011), and spatial thresholds for interactions 333 

among vegetation, hydrology, lithology, and surface processes ranging from the grain to 334 

landscape scale (e.g., Musselman et al., 2013; Pelletier et al., 2013; Harman et al., 2014). Zhao et 335 

al. (2009) developed a scale-invariant model of forest biomass, which illustrated the utility of 336 

scale-independent methods. However, we caution that one scientist’s signal may be another’s 337 

noise (Tarolli, 2014). Signal recognition may involve smoothing at one scale to quantify a 338 

relevant landscape metric, such as hillslope curvature (and derived erosion rates) (Hurst et al., 339 

2013), which in turn limits valuable information at another scale, such as hydrologically-driven 340 

surface roughness or the spacing of tree-driven bedrock disruption (Roering et al., 2010; Hurst et 341 

al., 2012). Overall, lidar datasets retain the promise of up- or down- scaling feedbacks among 342 

multiple processes that are just beginning to be fully utilized. 343 
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  344 

2.2.3 Model Parameterization and Verification 345 

The wealth of recently collected lidar data has potential to inform the choice of physically-based 346 

model parameters and verify model output. Improved terrain representation has helped 347 

characterize hysteretic relationships between water storage and contributing area in large wetland 348 

complexes within parameterized runoff models (Shook et al., 2013), improved mapping in and 349 

along river channels to parameterize network level structure and flood inundation models 350 

(French, 2003; Kinzel et al., 2007; Snyder, 2009; Bates, 2012), and expanded investigation of 351 

geomorphological change in floodplains (Thoma et al., 2005; Jones et al., 2007).  Lidar provides 352 

vertical information that permits the direct retrieval of forest attributes such as tree height and 353 

canopy structure (Hyyppä et al., 2012; Vosselman and Maas, 2010) that can be used to model 354 

canopy volume (Palminteri et al., 2012), biomass (Zhao et al., 2009), and the transmittance of 355 

solar radiation (Essery et al., 2008; Musselman et al., 2013; Bode et al., 2014).  Lidar has also 356 

proven to be instrumental in the verification of model states. For example, lidar datasets have 357 

been used to verify physically-based models, including landscape evolution models (Pelletier et 358 

al., 2014; Pelletier and Perron, 2012; Rengers and Tucker, 2014), aeolian models (Pelletier et al., 359 

2012; Pelletier, 2013), physiological models (Coops et al., 2013), snowpack energy balance 360 

models (Essery et al., 2008, Broxton et al., 2015), and an ecosystem dynamics model 361 

(Antonarakis et al., 2014). Simpler, empirical models have also been developed using lidar-362 

derived estimates of soil erosion (Pelletier and Orem, 2014) and snow accumulation and ablation 363 

(Varhola et al., 2014). Better recognition of the potential benefits of lidar for model calibration 364 

and verification within CZ modeling communities could lead to increased utilization and targeted 365 

acquisitions in the future. 366 
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  367 

2.3 Adoption and Utilization of Lidar Datasets  368 

New and improved lidar datasets are more likely to result in transformative CZ science if a 369 

number of key opportunities (and impediments) are recognized. The research topics discussed in 370 

Section 2.2 require attention to four key areas in order to maximize the applicability of lidar in 371 

CZ science: 1) Emerging data acquisition technologies, 2) Availability of processing and 372 

analysis techniques, 3) Linkages to in situ observations, and 4) Linkages to other remote sensing 373 

observations. The first two areas recognize the importance of technological advances and 374 

information sharing to enhance lidar data quality and coverage. The second two areas 375 

demonstrate the potential to extend scientific inferences made from lidar with linkages to 376 

multiple, complementary observations. 377 

 378 

2.3.1 Data Acquisition Technology 379 

Future advances in data acquisition technologies will provide greater information and 380 

spatiotemporal coverage from lidar (and similar high-resolution remote sensing technologies) 381 

datasets. Several new lidar technologies are rapidly increasing data quality (accuracy, precision, 382 

resolution, etc.) and information content. Full waveform lidar data promises to provide better 383 

definition of ground surface and vegetation canopy (Wagner et al., 2008, Mallet and Bretar, 384 

2009). Utilizing blue-green light spectrum, lidar systems are capable of bathymetric profiling 385 

(McKean et al., 2009; Fernandez-Diaz et al., 2014) and potentially determining turbidity and 386 

inherent optical properties of the water column. Lidar systems have demonstrated the benefits of 387 

combining point clouds with alternative data sources by, for example, including intensity and/or 388 

RGB cameras (Bork and Su, 2007) that collect data synchronously with the lidar and provide 389 
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metadata for each point in the cloud. Less expensive and more adaptable lidar systems (Brooks et 390 

al., 2013) and alternative 3-D remote sensing techniques, such as SfM or low-cost 3D cameras 391 

(Mankoff and Russo, 2013; Javernick et al., 2014; Lam et al., 2015), promise high resolution 392 

monitoring at finer temporal resolutions and lower costs. Increasingly, lidar observations are 393 

combined with passive electro-optical multispectral and hyperspectral images (Kurz et al., 2011). 394 

Lidar technology already includes active multispectral laser systems, and hyperspectral laser 395 

observations of object reflectance are likely only three to five years away (Hakala et al., 2012; 396 

Hartzell et al., 2014). These systems promise to lessen the need for multiple sensors, thus 397 

reducing uncertainties due to data registration, lowering costs, and reducing processing time. The 398 

combination of these technologies holds promise as a means to cost-effectively monitor aspects 399 

of the CZ at time scales of days or less and information content that includes not only 3D 400 

structure, but also spectral information that is potentially capable of determining vegetation 401 

composition and health, soil and exposed bedrock composition, and soil water content.  402 

  403 

In addition to emerging lidar acquisition systems, new and existing collection platforms are 404 

substantially broadening data coverage. Collection of lidar from fixed-wing aircraft is expanding 405 

to national scales through programs such as the U.S. Geological Survey’s 3-D Elevation Program 406 

(3DEP), Switzerland’s national lidar dataset collected by the Federal Office of Topography, 407 

Sweden’s Lantmäteriet (http://www.lantmateriet.se), Netherlands’ Public Map Service 408 

(http://www.pdok.nl/en/node), Denmark’s Geodata Agency (http://gst.dk), Finland’s National 409 

Land Survey (http://www.maanmittauslaitos.fi/en/maps-5), United Kingdom’s Environment 410 

Agency (http://www.geomatics-group.co.uk/GeoCMS), and Australia’s AusCover 411 

(http://www.auscover.org.au/). Additionally, acquisition of aircraft and lidar systems by 412 
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institutional research programs have led to greater capabilities for ecological research by the 413 

National Ecological Observatory Network (Kampe et al., 2010) and snow water resources via 414 

NASA’s Airborne Snow Observatory (http://aso.jpl.nasa.gov). Institutional systems and 415 

operational expertise are also available for short-term research projects across a range of Earth 416 

science applications (Glennie et al., 2013) via the National Center for Airborne Laser Mapping 417 

(NCALM) and UNAVCO. Of particular interest to the CZ community is the development of 418 

unmanned aerial systems (UASs) that are capable of mounting small lidar systems for rapid 419 

deployment (Lin et al., 2011; Wallace et al., 2012). Long-range UASs offer the potential for 420 

repeat lidar acquisitions at a fraction of the cost of current ALS platforms. Best practices for 421 

collecting, processing and analyzing lidar over increasing extents (i.e. continental scales) are 422 

generally lacking, which can limit the effectiveness of datasets collected over vastly different 423 

physiographic conditions.  424 

  425 

2.3.2 Data Access, Processing, and Analysis 426 

The crux of successfully leveraging a flood of new lidar (and other high-resolution topographic 427 

information) data for CZ science (e.g. Stennett, 2004) will be the ability to extract meaningful 428 

information from these rich and voluminous datasets. These new lidar datasets require data 429 

processing and analysis tools be optimized to handle increasingly large datasets with greater 430 

information content. Processing limitations are likely to reduce the usability and extent of very 431 

high information datasets, e.g. waveform or multispectral datasets pose processing challenges at 432 

the continental scale but may be more manageable at the watershed scale. Further, new software 433 

and workflows need to be developed that enable scientists to incorporate lidar data into detailed 434 

models of the CZ without expertise in remote sensing. The CZ science community must engage 435 
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in a concerted effort to develop (and/or adopt from other domains) new open source tools that 436 

leverage high performance computing resources available through programs such as NSF’s 437 

XSEDE (https://www.xsede.org/home). By increasing the scalability of CZ lidar-oriented 438 

processing and analysis tools, computationally intensive analysis and modeling at the highest 439 

resolution of the lidar datasets will be possible. In addition to increasing software scalability, 440 

new processing tools are necessary to take advantage of new data types, such as full waveform 441 

lidar (Wagner et al., 2008, Mallet and Bretar, 2009) and hyperspectral laser technology (Hakala 442 

et al., 2012). Cloud computing and the “big data paradigm” that is increasingly common in both 443 

industry and academia (Mattman, 2013) present opportunities for the CZ lidar community. One 444 

such opportunity for big data sharing is EarthCube (http://www.earthcube.org), a relatively new 445 

program that has potential to integrate lidar information (among other geospatial information) 446 

into data sharing efforts in the geosciences. Due to efforts such as NSF’s OpenTopography 447 

(Crosby et al., 2011), there is a large volume of CZ-oriented lidar online and freely available to 448 

the community. For example, OpenTopography already offers on-demand processing services 449 

(Krishnan et al., 2011) that permit users to generate standard and commonly used derivatives 450 

from the hosted lidar point cloud. By coupling data processing with data access, users are not 451 

required to download large volumes of data locally or have the dedicated computing and 452 

software resources to process these data. Although many CZ-oriented lidar datasets are already 453 

available to the community through resources such as OpenTopography in the U.S., there are 454 

numerous other lidar datasets globally that are not accessible because they are not available 455 

online or access is restricted. Many of these “legacy” datasets are likely to be important temporal 456 

baselines for comparison against future datasets (Glennie et al., 2014; Harpold et al., 2014a). 457 

  458 
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2.3.3 Linkages To In Situ Observations 459 

Many CZ studies have incorporated in situ observations to extend or confirm inferences made 460 

with lidar-derived datasets. In situ measurements are time consuming to collect, often expensive 461 

to analyze, and limited in terms of spatial coverage. As a result, researchers must be judicious 462 

with in situ data collection and maximize integration with lidar datasets. Physical and chemical 463 

properties of soil and rock, and vegetation structure are among the in situ observations 464 

commonly integrated with lidar datasets. For example, lidar-based studies have integrated 465 

distributed measurements of soil hydraulic properties (Harman et al., 2014) and soil thickness 466 

(Roering et al., 2010; Pelletier et al., 2014; West et al., 2014), as well as radioactive isotopes in 467 

soils (West et al., 2014). Lidar datasets have also been used to extend in situ observations of 468 

snow depth (Harpold et al., 2014a; Varhola and Coops, 2013) and carbon fluxes (Hudak et al., 469 

2012) in both space and time. In situ observations of vegetation structural characteristics are 470 

commonly made to develop relationships with lidar observations and extend these relationships 471 

for forest inventory (e.g. Wulder et al., 2002). In addition to scientific inferences, lidar can be 472 

used to improve sampling design to reduce field time and analytical expenses. For example, lidar 473 

has improved insight into sampling snow measurements necessary for water management 474 

(McCreight et al., 2014). A number of challenges remain to link lidar-derived information to in 475 

situ measurements, including poor GPS information for historical datasets, constraining the 476 

observational footprint of different measurements, and comparing lidar-derived metrics to typical 477 

field measurements. Despite these challenges, opportunities exist to better integrate historical 478 

measurements into lidar-based studies and develop new in situ observations that use lidar 479 

datasets to up-scale CZ processes. 480 

 481 
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2.3.4 Linkages to Satellite Remote Sensing 482 

Satellite observations of surface-altimetry, reflectance, permittivity, and atmospheric profiles 483 

provide observations of CZ processes at multiple spatiotemporal scales, frequently with global 484 

coverage. The high spatial resolution offered by lidar technology complements the regular 485 

temporal frequency of optical and radar satellite observations, which could be used to co-486 

calibrate and co-validate these types of datasets. Satellites also provide another platform for lidar 487 

acquisition. There are numerous examples where lidar datasets have been used to calibrate and 488 

verify coarser estimates of vegetation, cryosphere (e.g. glaciers, permafrost, snowpacks, etc.), 489 

and geomorphic processes and states made via optical and radar satellites. For example, Mora et 490 

al. (2013) used detailed lidar measurements of vegetation structure to quantify the spatial and 491 

temporal scalability of above ground biomass of continental forests measured with the very high 492 

spatial resolution (VHSR) satellite. In data-limited regions of Uganda, lidar fused with Landsat 493 

datasets have improved modeled biomass predictions and understanding of phenologic processes 494 

(Avitable et al., 2012). Varhola and Coops (2013) and Ahmed et al. (2014) introduce methods 495 

for detecting changes in vegetation structure and function from disturbance by fusing Landsat 496 

and lidar measurements, and Bright et al. (2014) used similar fused datasets to investigate 497 

changes following forest mortality. Applications combining lidar and satellite measurements to 498 

change detection have also been applied to evaluate the effects of vegetation on snowpack 499 

dynamics (Varhola et al., 2014) and for comparison with model and satellite-derived estimates of 500 

snow-covered area (Kirchner et al., 2014; Hedrick et al., 2014). A multifaceted approach for the 501 

prediction and monitoring of landslides by Guzzeti (2012) used measurements from optical 502 

satellites and lidar. The Ice, Cloud, and land Elevation Satellite (ICESat) was a NASA mission 503 

from 2003 to 2009 that mapped changes in glacier mass balance using SLS (Kohler et. al. 2013). 504 
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Scientists have used ICESat’s Geoscience Laser Altimeter System (GLAS) to identify areas of 505 

forest regeneration along the Mississippi (Li et al., 2011) and it has been applied in development 506 

of a global forest height map (Simard et al., 2011). A second mission (ICESat-2) is slated to 507 

launch in 2017 and while focused on ice sheet and sea ice change, it will provide complementary 508 

products to characterize terrestrial ecology. Furthermore, other current and future satellite 509 

missions will provide CZ observations that integrate with lidar, including soil moisture, 510 

groundwater storage, soil freeze/thaw, carbon flux, and primary productivity (Schimel et. al., 511 

2013). Of particular interest might be the Surface Water and Ocean Topography (SWOT) 512 

mission that provides coarse water and land topography using radar that has potential to 513 

complement finer-scale measurements acquired with lidar. To fully realize the potential 514 

information available from fused lidar and satellite datasets, critical attention must be paid to 1) 515 

efficient processing of large datasets that span collection platforms and spatiotemporal 516 

variability, and 2) maintaining expert knowledge in data interpretation (Mattmann, 2013).  517 

  518 

2.4 A Proposed Five-Year Vision 519 

The fields of CZ science and lidar-based technology are both advancing rapidly. Here, we 520 

present a vision that keeps CZ researchers abreast of advances in lidar technologies and positions 521 

CZ science at the forefront of the lidar revolution, particularly with regards to new hardware, 522 

processing capabilities, and linkages with complementary observations. These ideas are guided 523 

by the recognition that lidar is capable of simultaneously observing process signatures from 524 

multiple CZ disciplines (Figure 1). To elucidate this point, we discuss three examples of 525 

transdisciplinary CZ research questions and suggest how they could benefit from current and 526 

future lidar technologies. We also provide specific recommendations for CZ researchers working 527 



 25 

with (or considering working with) with lidar datasets. Our intent is to catalyze CZ interest in the 528 

transdisciplinary possibilities of lidar datasets, while increasing the influence of CZ scientists 529 

within the broader group of lidar end-users. 530 

  531 

Technological advances can be conceptualized as increasing data coverage, quality, and 532 

information, including new acquisition platforms or higher acquisition rates (Figure 3). Other 533 

advances, such as full-waveform information or hyperspectral lasers, will increase the data 534 

quality and information content extractable from lidar datasets. Three examples of linked 535 

transdisciplinary research questions (Figure 3) demonstrate the value of technological advances 536 

in lidar for CZ science: 1) How does co-variation between vegetation and hydrological flowpaths 537 

control the likelihood and distribution of earth flows and landslides?,  2) How is the rapidly 538 

changing cryosphere influencing hydrological connectivity, drainage network organization, 539 

nutrient and sediment fluxes, land-surface energy inputs, and vegetation structure?,  3) How does 540 

above- and below-ground biomass control bedrock to soil production rates, sediment mixing and 541 

transport, and associated carbon fluxes via bioturbation and hillslope transport? These example 542 

questions demonstrate the need for research that transcends information sharing across 543 

disciplines to develop synergistic new theories and advances in CZ science. 544 

 545 

These research questions span a wide-range of spatial and temporal scales, from smaller and 546 

faster (10-2 m and 101 s) in Question 3 to larger and more long-term (105 m and 106 s) in 547 

Question 2 (see Figure 1). Our ability to answer these questions benefits from several facets of 548 

improved lidar technologies, including higher acquisition rates and larger ranges, more rapid and 549 

robust deployment options, and improved processing resources for extracting information. Future 550 
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lidar technologies could address Question 1 by identifying specific vegetation species via 551 

hyperspectral laser technologies, increasing accuracy of bare-earth estimation to improve 552 

hydrologic routing using full waveform analysis, and increasing coverage of landslide-prone 553 

areas from different physiographic regions (Figure 3). New technology will address Question 2 554 

by providing estimates of riparian vegetation productivity, measuring channel bathymetry using 555 

blue-green lidar, and with new platforms that increase sampling frequency via UASs or other 556 

low cost systems. Lastly, new technology will address Question 3 by providing improved 557 

estimates of above-ground biomass and bare-earth extraction using full waveform analysis, and 558 

improved fine-scale change detection with greater processing resources. These example 559 

questions and their conceptualization (Figure 3) demonstrate what well-integrated lidar datasets 560 

can provide to stimulate and improve future CZ research. 561 

  562 

We propose five recommendations as an attempt to unite the CZ community around improved 563 

utilization and advocacy of lidar technology in important transdisciplinary scientific contexts that 564 

integrate the opportunities and impediments discussed previously: 565 

·  Open lines of communication: Develop communication within and among groups, 566 

including individual CZ disciplines, remote sensing scientists, computer scientists, private 567 

industry, and funding agencies. Workshops have the potential to increase communication 568 

between “data users” and “data creators”. CZ scientists must find ways to communicate their 569 

data acquisition specifications to the scientists and engineers who create lidar hardware and 570 

processing software through venues such as meetings with private industry, the development of 571 

advisory committees, and commentary pieces in trade journals that present a vision for the future 572 

needs of CZ scientists.  Open communication among diverse CZ scientists is fundamental to 573 



 27 

developing collaborations capable of transdisciplinary advances. Working groups within CZ 574 

communities, like the critical zone exploration network (http://www.czen.org), and townhall 575 

meetings at international Earth science conferences have initiated sustainable communication 576 

venues.  Future efforts focused on early-career CZ scientists that demonstrate the benefits of 577 

transdisciplinary efforts, such as focused conferences and pilot research projects, should be 578 

pursued. 579 

·  Increase information extraction: Advocate for lidar repositories that are interoperable 580 

and broaden data access, as well as open-source and community-centric processing resources. 581 

Ultimately, enhanced and streamlined data processing and analysis tools will enable CZ 582 

researchers to concentrate on understanding fundamental science problems instead of struggling 583 

with data access, processing, and analysis. Specifically, recent efforts focused on cloud storage 584 

and computing resources, and open source software tools could greatly aid this effort.  Efforts to 585 

improve the efficiency of processing will become more important as the acquisition of lidar 586 

expands to continental scales. Information extraction at larger extents will require judicious 587 

tradeoffs between acquisition parameters and costs that consider variability in local 588 

physiographic conditions (i.e. higher sampling densities in areas with dense vegetation cover and 589 

high topographic complexity). Programs to support open source software and their long-term 590 

sustainability are required to support CZ science. Increasing open access to lidar datasets 591 

facilitates greater information extraction and the potential for meta-analysis studies. The value of 592 

open-access datasets will increase as improved processing tools become available. CZ scientists 593 

should also consider working with private lidar acquisition companies and their customers (i.e. 594 

forestry, mining, and urban planning organizations) to release what has previously been 595 

proprietary data to the public.  596 
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·   Increase accessibility of lidar systems: Advocate for new acquisition technologies that 597 

lower the cost of lidar collection and increase its availability, such as unmanned platforms and 598 

less expensive and longer-range lidar systems. Institutional acquisitions of lidar systems also 599 

significantly increase accessibility. Community-supported lidar systems available to researchers, 600 

through agencies, such as UNAVCO and NCALM, should also be encouraged. A powerful 601 

advancement would be a “clearinghouse” where agencies and institutions could exchange 602 

information on lidar systems, seek expert advice on lidar acquisition, and potentially trade or rent 603 

hardware to better meet the needs of individual projects.   604 

·   Focus on key technologies: Support the development of new lidar technologies that are 605 

useful for linking disciplinary observations. For example, our review has stressed the potential 606 

benefits for linking CZ functions to processes offered by hyperspectral laser technologies (Figure 607 

3). Other key technologies include new acquisition platforms (UASs) and improved open-source 608 

processing capabilities and open-source industry-standard data formats. The community should 609 

continue a dialogue about critical technologies within CZ science venues in parallel with 610 

interactions with technology developers (as mentioned previously). The more united the CZ 611 

community is about the benefits of a particular technology (i.e. hyperspectral lidar) the more it 612 

can advocate within public and private sectors for its advancement. 613 

·   Link complementary observations: Consider other remote sensing observations that 614 

may be complementary to lidar (e.g. thermal, infrared, optical, and microwave). While fusing 615 

remote sensing data is becoming more common, the value of lidar information to coarser remote 616 

sensing products is vast and underutilized. Be mindful of the potential synergistic benefits of 617 

collecting lidar data over areas with in situ observations and vice versa, consider how to improve 618 

collection of in situ observations based on lidar information. In particular, in situ information 619 
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collected during lidar data collection can be extremely valuable and difficult to substitute for at a 620 

later date. Maintain awareness of competing, less expensive technologies, such as SfM, that may 621 

be more appropriate in some conditions and geographical locations. The multi-scale nature of 622 

transdisciplinary research (Figures 1 and 3) demands that lidar be integrated into a broader 623 

observational framework that does not neglect the value of in situ and coarser remote sensing 624 

observations. 625 
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 1184 

Figure 1. Important CZ processes graphed as a function of time versus space for geomorphology 1185 

(a), hydrology (b), and ecology (c). The spatial and temporal scales that lidar is currently 1186 

addressing are shown as colored bars, with dotted bars indicating increasing resolutions and 1187 

larger extents available in the next five years. Overlapping spatiotemporal scales that encompass 1188 

the example questions in the Figure 3 are also noted with red boxes.  1189 
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 1192 

  1193 

Figure 2. Depiction of the disciplinary focus of 147 journal articles using lidar. Articles were 1194 

qualitatively ranked based on their applicability to geomorphological, hydrological, and/or 1195 

ecological process understanding. Articles in the center are examples of transdisciplinary lidar 1196 

applications, with those shown in blue used as exemplars in the text.  1197 
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  1199 

 1200 

Figure 3. Example CZ research questions conceptualizing the transdisciplinary potential of lidar 1201 

datasets when coupled with future technological advances. The questions encompass processes 1202 

from geomorphology (a), hydrology (b), and ecology (c) that overlap spatial and temporal scales. 1203 

These scales are noted in Figure 1. The text in the panel notes specific improvements offered and 1204 

the technology needed in parentheses. The arrows qualitatively represent whether the 1205 

technological advance expands data coverage and/or data quality/content. 1206 
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