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Laser Vision: Lidar as a Transformative Tool to Advance Critical Zone Science 1 

Observation and quantification of the Earth surface is undergoing a revolutionary change due to 2 

the increased spatial resolution and extent afforded by light detection and ranging (lidar) 3 

technology. As a consequence, lidar-derived information has led to fundamental discoveries 4 

within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines 5 

form the cornerstones of Critical Zone (CZ) science, where researchers study how interactions 6 

among the geosphere, hydrosphere, and biosphere shape and maintain the 'zone of life', 7 

extending from top of unweathered bedrock to the top of the vegetation canopy. Fundamental to 8 

CZ science, is the development of transdisciplinary theories and tools that transcend individual 9 

disciplines and inform other’s work, capture new levels of complexity, and create new 10 

intellectual outcomes and spaces. Researchers are just beginning to utilize lidar datasets to 11 

answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-12 

evolve over long-time scales and interact over shorter time scales to create thresholds shifts in 13 

states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the 14 

transformative potential of lidar for CZ science to simultaneously allow for quantification of 15 

topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed studies 16 

utilizing lidar highlights a lag in utilizing lidar for CZ studies as 38% of the studies were focused 17 

in geomorphology, 18% in hydrology, 32% in ecology, and the remaining 12% had an 18 

interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate that well-19 

integrated lidar observations can lead to fundamental advances in CZ science, such as 20 

identification of feedbacks between hydrological and ecological processes over hillslope scales 21 

and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst 22 

carbon, energy, and water cycles.  We propose that using lidar to its full potential will require 23 
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numerous advances across CZ applications, including new and more powerful open-source 24 

processing tools, exploiting new lidar acquisition technologies, and improved integration with 25 

physically-based models and complementary in situ and remote-sensing observations. We 26 

provide a five-year vision that advocates for the expanded use of lidar datasets and highlights 27 

subsequent potential to advance the state of CZ science. 28 

 29 

1. INTRODUCTION 30 

Complex interactions among the geosphere, ecosphere, and hydrosphere give rise to present-day 31 

landforms, vegetation, and corresponding water and energy fluxes. Critical Zone (CZ) science 32 

studies these interactions in the zone extending from top of unweathered bedrock to the top of 33 

the vegetation canopy. Understanding CZ function is fundamental to characterizing regolith 34 

formation, carbon-energy-water cycles, meteorological controls on ecology, linked surface and 35 

subsurface processes, and numerous other Earth surface processes (NRC, 2012). Improved 36 

understanding of CZ functions is thus important for quantifying ecosystem services and 37 

predicting their sensitivity to environmental change. However, CZ processes are difficult to 38 

observe because they occur over time scales of seconds to eons and spatial scales of centimeters 39 

to kilometers, and thus require diverse measurement approaches (Chorover et al., 2011). Light 40 

detection and ranging (lidar) technologies can be helpful in this regard because they generate 41 

repeatable, precise three-dimensional information of the Earth’s surface characteristics. 42 

  43 

Lidar allows for simultaneous measurements of aboveground vegetation structure and human 44 

infrastructure, as well as the topography of the earth surface, including soils, exposed bedrock, 45 

stream channels, and snow/ice. Depending on the data collection system and platform, 46 
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observations can be made at the landscape scale (>1000 km2) and at spatial resolutions capable 47 

of capturing fine-scale processes (<10 cm).  These unique measurement capabilities offered by 48 

lidar have the potential to lead to transdisciplinary research questions, which transcend a single 49 

discipline, capture greater complexity, and create new intellectual advances that are synergistic 50 

(across disciplines) in nature. Fundamental CZ science questions often require transdisciplinary 51 

approaches that surpass what is possible in multidisciplinary (i.e. collaborations across 52 

disciplines that pose their own questions) or interdisciplinary (i.e. collaborations where 53 

information is transferred amongst disciplines) research settings.  Because lidar can characterize 54 

geomorphic, ecologic, and hydrologic processes simultaneously across a range of scales, it is 55 

uniquely suited to address questions posed by CZ research. 56 

 57 

Lidar acquisition capabilities are increasing exponentially (Stennett, 2004; Glennie et al., 2013) 58 

and new ground-based (terrestrial laser scanning, TLS), mobile platforms (airborne laser 59 

scanning, ALS or other mobile platforms like a truck or boat), and space-based platforms 60 

(spaceborne laser scanning, SLS) are leading to increased availability of lidar datasets with CZ-61 

relevant information content. Different lidar platforms each have their own advantages and 62 

limitations, but operate based on a similar principle by emitting and measuring the time of travel 63 

of an energy pulse (laser light) and thus, measuring and mapping distance to a target.  Collection 64 

via TLS methods typically involves lidar scanners that are mounted on tripods or other fixed 65 

locations. Fixed targets are used to georeference the lidar datasets, with a high resolution GPS, to 66 

composite multiple TLS scans into a single point cloud.  TLS scanners are becoming more 67 

affordable and available to individual researchers and groups. lidar collections via mobile 68 

platforms are typically performed by mounting the lidar unit on an aircraft, helicopter, or vehicle 69 
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that is moved over the study area of interest.  The aircraft must be equipped with a GPS unit and 70 

Internal Measurement Unit (IMU) to track the orientation and location of the scanner. Similar to 71 

TLS collection, ALS methods require ground targets with known GPS locations for 72 

georeferencing. Lidar collection via SLS are much less common, but have been successfully 73 

deployed on orbiting spacecraft, and will become more prevalent in 2017 with the planned 74 

launch of ICESat-2 (Abdalati et al., 2010). In addition to the laser system, the spacecraft must 75 

have a GPS unit and altitude determination system in order to georeference the data.  Each of 76 

these lidar platforms offer specifications that can be selected and adjusted for a given science 77 

application. Throughout this review we present studies using the suite of lidar methods and 78 

highlight the advantages of each method for differing scientific purposes.  79 

 80 

The objective of this paper is to present a five-year vision for applying lidar to advance 81 

transdisciplinary CZ research. To accomplish this we first present the state of the science on 82 

applying lidar to disciplinary-specific research in geomorphology, hydrology, and ecology in 83 

Sections 1.1, 1.2, and 1.3, respectively. This is followed in Section 2.1 by an exploration of 84 

transdisciplinary studies that utilized complementary lidar-derived datasets to propel CZ science 85 

beyond what is possible within disciplinary endeavors. We summarize these exemplar 86 

transdisciplinary studies with the intent to guide future research. In Section 2.2 we describe how 87 

lidar-derived information is uniquely suited to advance three CZ research topics beyond the 88 

current state of the science: 1) quantifying change detection, 2) parameterization and verification 89 

of physical models, and 3) improved understanding of CZ processes across multiple scales. 90 

These topics are limited by a set of common impediments that we outline in Section 2.3. Finally, 91 

in Section 2.4, we present a vision to advance CZ science with lidar using examples of 92 
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transdisciplinary research questions and provide a set of recommendations for the CZ community 93 

to increase usage and advocate for greater lidar resources over the next five years. 94 

  95 

1.1 Advances in Geomorphology Using Lidar 96 

High-resolution topographic datasets derived from lidar have greatly contributed to quantifying 97 

geomorphic change, identifying geomorphic features, and understanding ecohydrologically-98 

mediated processes at varying scales and extents. These advances have allowed testing of 99 

geomorphic models, pattern and process recognition, and the identification of unanticipated 100 

landforms and patterns (e.g. waveforms) that were not possible using previous survey 101 

techniques. Generally, lidar information complements rather than replaces field observations, 102 

with lidar observations leading to new hypothesis and process cognition (Roering et al., 2013). 103 

Broadly, lidar technology has been useful in studying geomorphic response to extreme events 104 

such as fire and storms (e.g., Pelletier and Orem, 2014; Sankey et al., 2013; Perignon et al., 105 

2013; Staley et al., 2014), human activities (e.g. James et al., 2009), and past climatic and 106 

tectonic forcings (e.g., Roering, 2008; Belmont, 2011; West et al., 2014). Meter and sub-meter 107 

scale time-varying processes, often derived from TLS, have been quantified in the response of 108 

point bar and bank morphodynamics (Lotsari et al., 2014) and in the formation of 109 

microtopography due to feedbacks with biota (e.g., Roering et al., 2010; Pelletier et al., 2012; 110 

Harman et al., 2014). Examples of larger scale change detection applications, typically ALS-111 

derived, include measuring changes in stream channel pathways resulting from Holocene climate 112 

change and anthropogenic activities (e.g., Day et al., 2013; Kessler, 2012; James 2012; Belmont 113 

et al., 2011), rates of change in migrating sand dunes (Pelletier, 2013), the influence of lithology 114 

and climate on hillslope form (e.g., Marshall and Roering, 2014; Hurst et al., 2013; Perron et al., 115 



 7 

2008; West et al., 2014), and channel head formation (e.g., Pelletier et al., 2013; Pelletier and 116 

Perron, 2012; Perron and Hamon, 2012). Automated tools to identify geomorphic features (i.e., 117 

floodplains, terraces, landslides) and transitional zones (i.e., hillslope-to-valley, floodplain-to-118 

channel) have been used in conjunction with high-resolution elevation datasets from lidar, 119 

including Geonet 2.0 (Passalacqua et al., 2010), ALMTools (Booth et al., 2009), and TerrEX 120 

(Stout and Belmont, 2014).  121 

  122 

1.2 Advances in Hydrology Using Lidar 123 

Research utilizing lidar has advanced fundamental process understanding in snow hydrology 124 

(Deems et al., 2013), surface water hydraulics (Lane et al., 2004; Nathanson et al., 2012; Lyon et 125 

al., 2015), and land-surface-atmosphere interactions (Mitchell et al., 2011). Lidar-derived snow 126 

depths (derived by differencing snow-on and snow-off elevations) over large (>1 km2) spatial 127 

extents from both ALS and TLS (Deems et al., 2013), have yielded unprecedented contiguous 128 

maps of spatial snow distributions (e.g. Fassnacht and Deems, 2006; McCreight et al., 2014) and 129 

provided new insights into underlying processes determining spatial patterns in snow cover 130 

(Trujillo et al., 2009; Kirchner et al., 2014), accumulation and ablation rates (Grunewald et al., 131 

2010; Varhola and Coops, 2013), snow water resources for planning (Hopkinson et al., 2012), 132 

and estimating the effects of forest cover and forest disturbance on snow processes (Harpold et 133 

al., 2014a). Change detection techniques have been effective for determining glacier mass 134 

balances (Hopkinson and Demuth, 2006), ice surface properties (Williams et al., 2013), and 135 

calving front movements (e.g., Arnold et al., 2006; Hopkinson et al., 2006). Prior to lidar, many 136 

of these cryospheric processes had to be investigated using single point observations or through 137 

statistical rather than deterministic analyses; the additional information derived from lidar has 138 
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yielded important insights that advanced scientific understanding. High- resolution topographic 139 

information from lidar has proved important for stream channel delineation (Kinzel et al, 2013), 140 

rating curve estimation (Nathanson et al., 2012; Lyon et al., 2015), floodplain mapping and 141 

inundation (Marks and Bates, 2000; Kinzel et al., 2007), and topographic water accumulation 142 

indices (Sørensen and Seibert, 2007; Jensco et al., 2009). Lidar measurements of micro-143 

topography measured using lidar shows potential for improving soil property and moisture 144 

information (e.g., Tenenbaum et al, 2006), surface and floodplain roughness (Mason et al., 2003, 145 

Forzieri et al., 2010; Brasington et al., 2012; Brubaker et al., 2013), hydraulic dynamics and 146 

sediment transport (Roering et al., 2012; McKean et al., 2014), surface ponding and storage 147 

volume calculations (Li et al., 2011; French, 2003), and wetland delineation (e.g. Lane and 148 

D’Amico, 2010). Certain hydrological modeling fields are well-poised to utilize high-resolution 149 

topography, such as movement of water in urban environments (Fewtrell et al., 2008), in-channel 150 

flow modeling (Mandlburger et al., 2009; Legleiter et al., 2011), and hyporheic exchange and 151 

ecohydraulics in small streams (e.g. Jensco et al., 2009). Finally, high-resolution, three-152 

dimensional lidar measurements of canopy and vegetation structure (Vierling et al., 2008) have 153 

direct implications for modeling the surface energy balance (Musselman et al., 2013) and 154 

evapotranspiration processes (Mitchell et al., 2011) at scales critical to increasing fidelity in 155 

physically-based models (Broxton et al., 2014). 156 

 157 

1.3 Advances in Ecology Using Lidar 158 

Lidar-based remote sensing of vegetation communities has transformed the way ecologists 159 

measure vegetation across multiple spatial scales (e.g. Lefsky et al. 2002; Maltamo et al. 2014; 160 

Streutker and Glenn 2006). Substantial work has been undertaken using lidar to map vegetation 161 
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structure and biomass distributions (see reviews by Seidel et al. 2011 and Wulder et al. 2012). 162 

These include the estimation of Leaf Area Index (LAI) (Riaño et al. 2004, Richardson et al. 163 

2009; Hopkinson et al., 2013), vegetation roughness (Streuker and Glenn, 2006; Antonarakis et 164 

al., 2010), alpine tree lines (Coops et al., 2013), and total carbon storage and sequestration rates 165 

in forest, grassland, savannahs and/or shrubland communities (Asner et al. 2012a, Baccini et al. 166 

2012, Mascaro et al. 2011, Simard et al. 2011; Antonarakis et al., 2014). ALS has been used to 167 

characterize wildlife habitat in tree and shrub canopies (Hyde et al. 2005, Bork and Su, 2007; 168 

Vierling et al. 2008, Martinuzzi et al. 2009; Zellweger et al., 2014) and in aquatic systems 169 

(McKean et al. 2008, Wedding et al. 2008, McKean et al., 2009). ALS has been a critical tool in 170 

modeling catchment scale water-availability for vegetation at fine (Harmon et al. 2014) and 171 

broad spatial scales (Chorover et al. 2011). Radiation transmission and ray-tracing models 172 

utilizing lidar provide ecologists with better tools to quantify in-canopy and below-canopy light 173 

environments (Lee et al., 2009; Bittner et al. 2014; Musselman et al. 2013; Bode et al., 2014; 174 

Moeser et al., 2014). Additionally, ecologists are beginning to quantify the impact of vegetation 175 

on micro-topography (Sankey et al. 2010; Pelletier et al., 2012; Harmon et al., 2014), as well as 176 

larger landform processes (Pelletier et al. 2013). Broad-scale lidar data allows for quantification 177 

of patches and mosaics amongst plant functional types across landscapes (Antonarakis et al., 178 

2010, Dickinson et al., 2014) and global forest biomass estimates (Simard et al., 2011). 179 

Ecologists have fused data from hyperspectral imaging and lidar to enable species classification 180 

for close to a decade (e.g. Mundt et al., 2006). However, new opportunities exist to link species-181 

level detail and plant functional response through emerging technologies, including co-182 

deployment of hyperspectral and lidar sensors (Asner et al. 2012b), and hyperspectral 183 

(supercontinuum) laser technology (Kaasalainen et al. 2007, Hakala et al. 2012). By linking lidar 184 
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with additional observations, researchers have begun to quantify species-level detail and plant 185 

health estimation (Cho et al. 2012, Féret and Asner 2012; Olsoy et al., 2014) and model forest 186 

carbon fluxes (Antonarakis et al., 2014).  187 

  188 

2. Current Toolkits and Open Questions Using Lidar in CZ Science 189 

Research based on lidar-derived information accounts for substantial advances within the 190 

cornerstone CZ disciplines. However, many open questions in CZ science require linked, 191 

transdisciplinary investigations across multiple disciplines that create new intellectual spaces for 192 

scientific advancements. For example: How do CZ processes co-evolve over long-time scales 193 

and interact over shorter time scales to develop thresholds and shifts in states and fluxes of 194 

water, energy, and carbon? What will be the response of the CZ structure to disturbance and land 195 

use change? These CZ science questions must elucidate feedbacks and interactions among the 196 

geosphere, ecosphere, and hydrosphere that cannot be accomplished within individual disciplines 197 

(multidisciplinary) or sharing information across disciplines (interdisciplinary), but instead 198 

require synergistic transdisciplinary science that spans multiple spatial and temporal scales.  199 

 200 

A key advantage of lidar for understanding CZ feedbacks is the coupling of previously 201 

unprecedented coverage over both broad temporal and spatial scales (Figure 1). The utility of 202 

lidar for geo- eco- and hydro-sphere investigations is dependent on the platform (e.g. TLS, ALS, 203 

or SLS) with cross-platform observations capable of resolutions from 10-3 m to continental scales 204 

(Figure 1). In terms of temporal extent, TLS, ALS and SLS are capable of employing weekly to 205 

sub-hourly repeat scan rates (Figure 1). Technologies allowing for faster scan rates will typically 206 

limit the spatial extent (Figure 1). Advances in technology described in Section 2.3 will increase 207 
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the spatial and temporal resolutions for all lidar platforms in the next five years (Figure 1). The 208 

intersecting process scales shown in Figure 1 demonstrate the viability of extracting 209 

transdisciplinary information from lidar given thoughtful experimental design and data 210 

collection. 211 

 212 

2.1 Lidar as Transdisciplinary CZ Tool 213 

To investigate the state of the science of lidar in CZ research we conducted a literature review of 214 

147 peer-review papers that employed lidar datasets to improve process-based understanding in 215 

the CZ domain.  Our review found that most lidar studies to date have had a single disciplinary 216 

objective and that the CZ community are less likely to utilize the overlapping information in 217 

space and time generated by lidar available for transdisciplinary CZ advancement (Figure 1). 218 

This is not surprising given the rampant progress made in filling important knowledge gaps in 219 

the individual cornerstone CZ disciplines using lidar datasets (Sections 1.1 to 1.3). We organized 220 

the literature reviewed for this paper into a scoring system of geomorphic, hydrologic, and 221 

ecologic process knowledge advanced through individual lidar-based studies. For each paper we 222 

assigned 10 points among the three disciplines to capture potential transdisciplinary lidar use. 223 

For example, a study leading purely to hydrologic process advances would rank as 10 in the 224 

hydrology category and zero in the ecology and geomorphology categories. A study balancing 225 

the process-based inferences among the three disciplines, with a more prominent ecological 226 

focus, would have been assigned scores of 3, 3, and 4 for geomorphology, hydrology, and 227 

ecology, respectively. Of course, this is a subjective scaling based on author opinions. To limit 228 

potential impacts of subjectivity, three different authors of the current paper assigned 229 
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independent scores to each study and we used the average score to place each paper in the 230 

relative ranking triangle (Figure 2).  231 

 232 

The motivation for developing the conceptualization in Figure 2 is to facilitate identification of 233 

studies employing transdisciplinary synergies (e.g., lie within the internal triangle) that rely on 234 

the multi-faceted nature of lidar datasets.  The review showed 38% of 147 studies were focused 235 

(score of 6 or higher) in geomorphology, 18% in hydrology, 32% in ecology, and the remainder 236 

had a more interdisciplinary focus. The few studies in the center of the triangle (i.e., studies 237 

receiving a minimum of 20% in each discipline) could be considered as potential exemplars of 238 

CZ science using lidar as they balance well among each cornerstone discipline. Several studies 239 

were transdisciplinary in nature, but focused on lidar-derived topography and did not maximize 240 

information content on hydrological and ecological processes from lidar: Pelletier et al. (2012), 241 

Persson et al. (2012), Brubaker et al. (2013), Pelletier (2013), Coops et al. (2013), Rengers et al. 242 

(2014), and Pelletier and Orem (2014). We instead draw focus to transdisciplinary studies that 243 

demonstrate the potential for complimentary information to be extracted from lidar and 244 

integrated into field campaigns to allow multi-scale observations of interacting geomorphologic, 245 

hydrologic, and ecologic processes. 246 

 247 

We highlight three studies that can serve as possible roadmaps to guide future transdisciplinary 248 

investigations using lidar datasets (Figure 2): Harman et al., 2014, Pelletier et al., 2013, and 249 

Perignon et al., 2013. These studies used complimentary information from lidar to develop 250 

fundamental transdisciplinary advances in the theories and understanding of CZ processes and 251 

structure.  For example, Harman et al. (2014) applied TLS to investigate coevolution of lidar-252 



 13 

derived microtopography and vegetation (biovolume) at two 100-m long semi-arid hillslopes. 253 

Integrating lidar and limited field measurements, Harman et al. (2014) found that both alluvial 254 

and colluvial processes were important in shaping vegetation and soil dynamics on hillslopes. 255 

The insights found by Harman et al. (2014) relied on the high resolution and precision of lidar 256 

information and would not have been possible using coarser traditional survey techniques for 257 

topography and vegetation structure.  Pelletier et al. (2013) investigated landscape-scale (>10 258 

km2) variability in above-ground biomass, hydrologic routing, and topography derived from lidar 259 

at two mountain ranges in southern Arizona and applied a landscape evolution model to 260 

demonstrate the need to include ecological processes (e.g. vegetation density) to correctly model 261 

topography. Lidar-derived vegetation structure provided new information not attainable from 262 

other methods that allowed for Pelletier et al. (2013) to test a novel model of CZ development 263 

based on eco-pedo-geomorphic feedbacks.  Perignon et al. (2013) investigated topographic 264 

change following a major flood along a 12 km stretch of the Rio Puerco in New Mexico. They 265 

found that sedimentation patterns reflected complex interactions of vegetation, flow, and 266 

sediment at the scale of individual plants.  This example demonstrates the value of lidar for 267 

testing ecohydrological resilience to extreme events to develop new understanding of the fine-268 

scale ecological feedbacks (i.e. individual plants) on reach scale geomorphic response.  269 

 270 

These exemplar studies demonstrate the utility of lidar for transdisciplinary process 271 

investigations at scales ranging from hillslopes (e.g. Harman et al., 2014), to stream reaches (e.g. 272 

Perignon et al., 2013), to mountain ranges (e.g. Pelletier et al., 2013). We believe that these 273 

exemplar transdisciplinary studies should serve as motivation for increased use of lidar and 274 

integrated, multi-scale field observations for advancing CZ science. To this end, in Section 2.4 275 
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we provide additional examples to illustrate the overlapping processes observable with lidar that 276 

are motivated by CZ science questions.   277 

  278 

2.2 Applying Lidar in CZ Science 279 

Through our literature review and subsequent conceptualizations (e.g., Figure 1) we have 280 

identified three clear areas where lidar observations have the potential to advance the state of CZ 281 

science in the next five years: 1) quantifying change detection, 2) parameterization and 282 

verification of physical models, and 3) improved understanding of CZ processes across multiple 283 

scales. Applying these tools is not mutually exclusive and each area has different levels of 284 

previous research and development. For example, change detection utilizing lidar has received 285 

notable use in the CZ science community, particularly by geomorphologists analyzing 286 

topographic change over time. The use of lidar to quantify scaling relationships and thresholds 287 

remains relatively unexplored, despite robust scaling theories and analysis tools from other fields 288 

that are portable to lidar datasets. Similarly, integration of lidar datasets for either 289 

parameterization or verification has had limited development within CZ-relevant models. 290 

  291 

2.2.1 Change Detection 292 

Lidar-based change-detection analyses (CDA), i.e. mapping landscape adjustments through time 293 

in multi-temporal ALS and TLS datasets, have provided comprehensive measurements of snow 294 

depth (e.g. Harpold et al., 2014b; Tinkham et al., 2014) and ablation (Egli et al., 2012), co-295 

seismic displacements after earthquakes (e.g. Oskin et al., 2012; Nissen et al., 2014), changes in 296 

aeolian dune form and migration rates (e.g. Pelletier, 2013), fluvial erosion (e.g. Anderson and 297 

Pitlick, 2014; Pelletier and Orem, 2014), earthflow displacements (e.g. DeLong et al., 2012), 298 
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knickpoint migration in gully/channel systems (e.g. Rengers and Tucker, 2014), cliff retreat 299 

along coasts (Young et al., 2010), permafrost degradation (Levy et al., 2013; Barnhart and 300 

Crosby, 2013), forest growth (Yu et al., 2004; Næsset and Gobakken, 2005), and changes in 301 

biomass (e.g. Meyer et al. 2013; Olsoy et al., 2014). Traditionally, lidar point clouds have been 302 

rasterized prior to differencing using open-source processing toolkits (e.g. GCD; e.g. Wheaton et 303 

al., 2010). However, new methods such as Iterative Closest Point (Nissen et al., 2012), particle 304 

image velocimetry (Aryal et al., 2012), and Multiscale Model to Model Cloud Comparison 305 

(Lague et al., 2013) enable direct differencing of point clouds. Continued methodological 306 

advances, coupled with increasingly available repeat datasets will progress the capabilities and 307 

quality of CDA. Structure from Motion (SfM) estimates three-dimensional structures from two-308 

dimensional images providing an easily portable and low-cost method for making high-309 

frequency change detection measurements (Westoby et al., 2012; Fonstad et al., 2013). There is 310 

also potential to apply time-series multi/hyperspectral lidar datasets to quantify changes in forest 311 

health over time. Similarly, integration of bathymetric lidar with ALS opens the potential to 312 

monitor dynamic changes in river flow and sediment transport (Flener et al., 2013). Although 313 

researchers often implement CDA using historic datasets (Rhoades et al., 2009), challenges arise 314 

from sparse metadata and reduced accuracy, thereby limiting dataset utility (e.g. Glennie et al. 315 

2014). Future CDA may be improved by further establishing, through repositories such as 316 

OpenTopography and UNAVCO, best practices for dataset sharing and archiving. 317 

  318 

2.2.2 Scaling CZ Processes 319 

While researchers have harnessed existing scaling theories and tools utilizing lidar datasets, there 320 

is room for expansion using the range of scales afforded by lidar technologies (Figure 1). Two 321 
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complementary techniques, characterizing fractal patterns (e.g. Deems et al. 2006; Glenn et al., 322 

2006; Perron et al., 2008) and process changes expressed as fractal breaks (e.g. Drake and 323 

Weishampel, 2000), benefit from the extensive breadth of spatial scales offered by lidar data. 324 

Self-similar patterns across scales indicate consistent processes and thus provide a framework for 325 

sampling, modeling, and re-scaling processes. Variograms and semi-variograms are commonly 326 

employed to plot lidar-derived attributes of interest such as snow distribution (e.g. Deems et al. 327 

2008; Harpold et al., 2014a) or forest spatial patterns (e.g. Boutet et al. 2003) against scale. 328 

Fractal and fractal deviations, as well as the length-scales of landscape structure (Perron et. al. 329 

2008), convey important CZ information, e.g., the effect of tree-root spacing through time on soil 330 

production (Roering et al., 2010), patterns in tree gap-formation (Plotnick et al. 1996; Frazer et 331 

al., 2005), and underlying abiotic and biotic controls on forest fractal dimensions (Drake and 332 

Weishampel, 2000). Within the CZ framework, lidar allows consideration of topographic 333 

variation and biomass distribution (Chorover et al. 2011), and spatial thresholds for interactions 334 

among vegetation, hydrology, lithology, and surface processes ranging from the grain to 335 

landscape scale (e.g., Musselman et al. 2013, Pelletier et al. 2013; Harman et al., 2014). Zhao et 336 

al. (2009) developed a scale-invariant model of forest biomass, which illustrated the utility of 337 

scale-independent methods. However, we caution that one scientist’s signal may be another’s 338 

noise (Tarolli, 2014). Signal recognition may involve smoothing at one scale to quantify a 339 

relevant landscape metric, such as hillslope curvature (and derived erosion rates) (Hurst et al. 340 

2013), which in turn limits valuable information at another scale, such as hydrologically-driven 341 

surface roughness or the spacing of tree-driven bedrock disruption (Roering et al. 2010, Hurst et 342 

al 2012). Overall, lidar datasets retain the promise of up- or down- scaling feedbacks among 343 

multiple processes that are just beginning to be fully utilized. 344 
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  345 

2.2.3 Model Parameterization and Verification 346 

The wealth of recently collected lidar data has potential to inform the choice of physically-based 347 

model parameters and verify model output. Improved terrain representation has helped 348 

characterize hysteretic relationships between water storage and contributing area in large wetland 349 

complexes within parameterized runoff models (Shook et al., 2013), improve mapping in and 350 

along river channels to parameterize network level structure and flood inundation models 351 

(French, 2003; Kinzel et al., 2007; Snyder, 2009; Bates 2012), and expanded investigation of 352 

geomorphological change in floodplains (Thoma et al., 2005; Jones et al., 2007).  Lidar provides 353 

vertical information that permits the direct retrieval of forest attributes such as tree height and 354 

canopy structure (Hyyppä et al., 2012; Vosselman and Maas, 2010) that can be used to model 355 

canopy volume (Palminteri et al., 2012), biomass (Zhao et al., 2009), and the transmittance of 356 

solar radiation (Essery et al., 2008; Musselman et al., 2013; Bode et al., 2014).  Lidar has also 357 

proven to be instrumental in the verification of model states. For example, lidar datasets have 358 

been used to verify physically-based models, including landscape evolution models (Pelletier et 359 

al., 2014; Pelletier and Perron, 2012; Rengers and Tucker, 2014), aeolian models (Pelletier et al., 360 

2012; Pelletier, 2013), physiological models (Coops et al., 2013), snowpack energy balance 361 

models (Essery et al. 2008, Broxton et al., 2015), and an ecosystem dynamics model 362 

(Antonarakis et al., 2014). Simpler, empirical models have also been developed using lidar-363 

derived estimates of soil erosion (Pelletier and Orem, 2014) and snow accumulation and ablation 364 

(Varhola et al., 2014). Better recognition of the potential benefits of lidar for model calibration 365 

and verification within CZ modeling community could lead to increased utilization and targeted 366 

acquisitions in the future. 367 
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  368 

2.3 Adoption and Utilization of Lidar Datasets  369 

New and improved lidar datasets are more likely to result in transformative CZ science if a 370 

number of key opportunities (and impediments) are recognized. The research topics discussed in 371 

Section 2.2 require attention to four key areas in order to maximize the applicability of lidar in 372 

CZ science: 1) Emerging data acquisition technology, 2) Availability of processing and analysis 373 

techniques, 3) Linkages to in situ observations, and 4) Linkages to other remote sensing 374 

observations. The first two areas recognize the importance of technological advances and 375 

information sharing to enhance lidar data quality and coverage. The second two areas 376 

demonstrate the potential to extend scientific inferences made from lidar with linkages to 377 

multiple, complementary observations. 378 

 379 

2.3.1 Data Acquisition Technology 380 

Future advances in data acquisition technologies will provide greater information and 381 

spatiotemporal coverage from lidar (and lidar-like) datasets. Several new lidar technologies are 382 

rapidly increasing data quality (accuracy, precision, resolution, etc.) and information content. 383 

Full waveform lidar data promises to provide better definition of ground surface and vegetation 384 

canopy (Wagner et al, 2008, Mallet and Bretar, 2009). Utilizing blue-green light spectrum, lidar 385 

systems are capable of bathymetric profiling (McKean et al., 2009; Fernandez-Diaz et al., 2014) 386 

and potentially determining turbidity and inherent optical properties of the water column. Lidar 387 

systems have demonstrated the benefits of combining point clouds with alternative data sources 388 

by, for example, including intensity and/or RGB cameras (Bork and Su, 2007) that collect data 389 

synchronously with the lidar and provide metadata for each point in the cloud. Less expensive 390 
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and more adaptable lidar systems (Brooks et al, 2013) and alternative 3-D remote sensing 391 

techniques, such as SfM or low-cost 3D cameras (Mankoff and Russo, 2013; Javernick et al., 392 

2014; Lam et al., 2015), promise high resolution monitoring at finer temporal resolutions and 393 

lower costs. Increasingly, lidar observations are combined with passive electro-optical 394 

multispectral and hyperspectral images (Kurz et al., 2011). Lidar technology already includes 395 

active multispectral laser systems, and hyperspectral laser observations of object reflectance are 396 

likely only three to five years away (Hakala et al, 2012; Hartzell et al., 2014). These systems 397 

promise to lessen the need for multiple sensors, thus reducing uncertainties due to data 398 

registration, lowering costs, and reducing processing time. The combination of these 399 

technologies holds promise as a means to cost-effectively monitor aspects of the CZ at time 400 

scales of days or less, with information content that includes not only 3D structure, but also 401 

spectral information that is potentially capable of determining vegetation composition and health, 402 

soil and exposed bedrock composition, and soil water content.  403 

  404 

In addition to emerging lidar acquisition systems, new and existing collection platforms are 405 

substantially broadening data coverage. Collection of lidar from fixed-wing aircraft is expanding 406 

to national scales through programs such as the U.S. Geological Survey’s 3-D Elevation Program 407 

(3DEP), Switzerland’s national lidar dataset collected by the Federal Office of Topography, 408 

Sweden’s Lantmateriet (http://www.lantmateriet.se), Netherlands’ Public Map Service 409 

(http://www.pdok.nl/en/node), Denmark’s Geodata Agency (http://gst.dk), Finland’s National 410 

Land Survey (http://www.maanmittauslaitos.fi/en/maps-5), United Kingdom’s Environment 411 

Agency (http://www.geomatics-group.co.uk/GeoCMS), and Australia’s AusCover 412 

(http://www.auscover.org.au/). Additionally, acquisition of aircraft and lidar systems by 413 
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institutional research programs have led to greater capabilities for ecological research by the 414 

National Ecological Observatory Network (Kampe et al., 2010) and snow water resources via 415 

NASA’s Airborne Snow Observatory (http://aso.jpl.nasa.gov). Institutional systems and 416 

operational expertise are also available for short-term research projects across a range of Earth 417 

science applications (Glennie et al., 2013) by the National Center for Airborne Laser Mapping 418 

(NCALM) and UNAVCO. Of particular interest to the CZ community is the development of 419 

unmanned aerial systems (UASs) that are capable of mounting small lidar systems for rapid 420 

deployment (Lin et al., 2011; Wallace et al., 2012). Long-range UASs offer the potential for 421 

repeat lidar acquisitions at a fraction of the cost of current ALS platforms. Best practices for 422 

collecting, processing and analyzing lidar over increasing extents (i.e. continental scales) are 423 

generally lacking, which can limit the effectiveness of datasets collected over vastly different 424 

physiographic conditions.  425 

  426 

2.3.2 Data Access, Processing, and Analysis 427 

The crux in successfully leveraging a flood of new lidar (and other high-resolution topographic 428 

information) data for CZ science (e.g. Stennett, 2004) will be the ability to extract meaningful 429 

information from these rich and voluminous datasets. These new lidar datasets require data 430 

processing and analysis tools be optimized to handle increasingly large datasets with greater 431 

information content. Processing limitations are likely to reduce the usability and extent of very 432 

high information datasets, e.g. waveform or multispectral datasets pose processing challenges at 433 

the continental scale that may be more manageable at the watershed scale. Further, new software 434 

and workflows need to be developed that enable scientists to incorporate lidar data into detailed 435 

models of the CZ without expertise in remote sensing. The CZ science community must engage 436 
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in a concerted effort to develop (and/or adopt from other domains) new open source tools that 437 

leverage high performance computing resources available through programs such as NSF’s 438 

XSEDE (https://www.xsede.org/home). By increasing the scalability of CZ lidar-oriented 439 

processing and analysis tools, computationally intensive analysis and modeling at the highest 440 

resolution of the lidar datasets will be possible. In addition to increasing software scalability, 441 

new processing tools are necessary to take advantage of new data types, such as full waveform 442 

lidar (Wagner et al, 2008, Mallet and Bretar, 2009) and hyperspectral laser technology (Hakala et 443 

al, 2012). Cloud computing and the ‘big data paradigm’ that is increasingly common in both 444 

industry and academia (Mattman, 2013) present opportunities for the CZ lidar community. One 445 

such opportunity for big data sharing is EarthCube (www.earthcube.org), a relatively new 446 

program that has potential to integrate lidar information (among other geospatial information) 447 

into data sharing efforts in the geosciences. Due to efforts such as NSF’s OpenTopography 448 

(Crosby et al., 2011), there is a large volume of CZ-oriented lidar online and feely available to 449 

the community. For example from the U.S., OpenTopography already offers on-demand 450 

processing services (Krishnan et al., 2011) that permit users to generate standard and commonly 451 

used derivatives from the hosted lidar point cloud. By coupling data processing with data access, 452 

users are not required to download large volumes of data locally or have the dedicated 453 

computing and software resources to process these data. Although many CZ-oriented lidar 454 

datasets are already available to the community through resources such as OpenTopography in 455 

the U.S., there are numerous other lidar datasets globally that are not accessible because they are 456 

not available online or access is restricted. Many of these ‘legacy’ datasets are likely to be 457 

important temporal baselines for comparison against future data focused on understanding CZ 458 

processes (Glennie et al., 2014; Harpold et al., 2014a). 459 
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  460 

2.3.3 Linkages To In Situ Observations 461 

Many CZ studies have incorporated in situ observations to extend or confirm inferences made 462 

with lidar-derived datasets. In situ measurements are time consuming to collect, often expensive 463 

to analyze, and limited in terms of spatial coverage. As a result, researchers must be judicious 464 

with in situ data collection and maximize integration with lidar datasets. Physical and chemical 465 

properties of soil and rock, and vegetation structure are among the in situ observations 466 

commonly integrated with lidar datasets. For example, lidar-based studies have integrated 467 

distributed measurements of soil hydraulic properties (Harman et al., 2014) and soil thickness 468 

(Roering et al., 2010; Pelletier et al., 2014; West et al 2014), as well as radioactive isotopes in 469 

soils (West et al., 2014). Lidar datasets have also been used to extend in situ observations of 470 

snow depth (Harpold et al., 2014a; Varhola and Coops, 2013) and carbon fluxes (Hudak et al., 471 

2012) in both space and time. In situ observations of vegetation structural characteristics are 472 

commonly made to develop relationships with lidar observations and extend these relationships 473 

for forest inventory (e.g. Wulder et al., 2002). In addition to scientific inferences, lidar can be 474 

used to improve sampling design to reduce time and analytical expenses. For example, lidar has 475 

improved insight into sampling snow measurements necessary for water management 476 

(McCreight et al., 2014). A number of challenges remain to link lidar-derived information to in 477 

situ measurements, including poor GPS information for historical datasets, constraining the 478 

observational footprint of different measurements, and comparing lidar-derived metrics to typical 479 

field measurements. Despite these challenges, opportunities exist to better integrate historical 480 

measurements into lidar-based studies and develop new in situ observations that use lidar 481 

datasets to up-scale CZ processes. 482 
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 483 

2.3.4 Linkages to Satellite Remote Sensing 484 

Satellite observations of surface-altimetry, reflectance, permittivity, and atmospheric profiles 485 

provide observations of CZ processes at multiple spatiotemporal scales, frequently with global 486 

coverage. The high spatial resolution offered by lidar technology complements the regular 487 

temporal frequency of optical and radar satellite observations, which could be used to co-488 

calibrate and co-validate these types of datasets. Satellites also provide another platform for lidar 489 

acquisition. There are numerous examples where lidar datasets have been used to calibrate and 490 

verify coarser estimates of vegetation, cryosphere (e.g. glaciers, permafrost, snowpacks, etc.), 491 

and geomorphic processes and states made via optical and radar satellites. For example, Mora et 492 

al. (2013) used detailed lidar measurements of vegetation structure to quantify the spatial and 493 

temporal scalability of above ground biomass of continental forests measured with the very high 494 

spatial resolution (VHSR) satellite. In data-limited regions of Uganda, lidar fused with Landsat 495 

datasets have improved modeled biomass predictions and understanding of phenologic processes 496 

(Avitable et al., 2012). Varhola and Coops (2013) and Ahmed et al. (2014) introduce methods 497 

for detecting changes in vegetation structure and function from disturbance by fusing Landsat 498 

and lidar measurements, and Bright et al. (2014) used similar fused datasets to investigate 499 

changes following forest mortality. Applications combining lidar and satellite measurements to 500 

change detection have also been applied to evaluate the effects of vegetation on snowpack 501 

dynamics (Varhola et al., 2014) and for comparison with model and satellite-derived estimates of 502 

snow-covered area (Kirchner et al., 2014; Hedrick et al., 2014). A multifaceted approach for the 503 

prediction and monitoring of landslides was proposed by Guzzeti (2012) using measurements 504 

from optical satellites and lidar. The Ice, Cloud, and land Elevation Satellite (ICESat) was a 505 
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NASA mission from 2003 to 2009 that mapped changes in glacier mass balance using SLS 506 

(Kohler et. al. 2013). Scientists have used ICESat’s Geoscience Laser Altimeter System (GLAS) 507 

to identify areas of forest regeneration along the Mississippi (Li et al., 2011) and it has been 508 

applied in development of a global forest height map (Simard et al., 2011). A second mission 509 

(ICESat-2) is slated to launch in 2017 and while focused on ice sheet and sea ice change, it will 510 

provide complementary products to characterize terrestrial ecology. Furthermore, other current 511 

and future satellite missions will provide CZ observations that integrate with lidar, including soil 512 

moisture, groundwater storage, soil freeze/thaw, carbon flux, and primary productivity (Schimel 513 

et. al. 2013). Of particular interest might be the Surface Water and Ocean Topography (SWOT) 514 

mission that provides coarse water and land topography using radar that has potential to 515 

complement finer-scale measurements acquired with lidar. To fully realize the potential 516 

information available from fused lidar and satellite datasets, critical attention must be paid to 1) 517 

efficient processing of large datasets that span collection platforms and spatiotempral variability, 518 

and 2) maintaining expert knowledge in data interpretation (Matmann, 2013).  519 

  520 

2.4 A Proposed Five-Year Vision 521 

The fields of CZ science and lidar-based technology are both advancing rapidly. Here, we 522 

present a vision that recognizes advances in science and technology to best position CZ 523 

researchers at the forefront of the lidar revolution, particularly with regards to new hardware, 524 

processing capabilities, and linkages with complementary observations. These ideas are guided 525 

by the recognition that lidar is capable of simultaneously observing process signatures from 526 

multiple CZ disciplines (Figure 1). To elucidate this point, we discuss three examples of 527 

transdisciplinary CZ research questions and suggest how they could benefit from current and 528 
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future lidar technologies. We also provide specific recommendations for CZ researchers working 529 

(or considering working) with lidar datasets. Our intent is to catalyze CZ interest in the 530 

transdisciplinary possibilities of lidar datasets, while increasing the influence of CZ scientists 531 

within the broader group of lidar end-users. 532 

  533 

Technological advances can be conceptualized as increasing data coverage, quality, and 534 

information, including new acquisition platforms or higher acquisition rates (Figure 3). Other 535 

advances, such as full-waveform information or hyperspectral lasers, will increase the data 536 

quality and information content extractable from lidar datasets. Some examples of linked 537 

transdisciplinary research questions (Figure 3) that demonstrate the value of technological 538 

advances in lidar for CZ science are, 1) How does co-variation between vegetation and 539 

hydrological flowpaths control the likelihood and distribution of earth flows and landslides?  2) 540 

How is the rapidly changing cryosphere influencing hydrological connectivity, drainage network 541 

organization, nutrient and sediment fluxes, land-surface energy inputs, and vegetation structure?  542 

3) How does above- and below-ground biomass control bedrock to soil production rates, 543 

sediment mixing and transport and associated carbon fluxes via bioturbation and hillslope 544 

transport? These example questions demonstrate the need for research that transcends 545 

information sharing across disciplines to develop synergistic new theories and advances in CZ 546 

science. 547 

 548 

These research questions span a wide-range of spatial and temporal scales, from smaller and 549 

faster (10-2 m and 101 s) in Question 3 to larger and more long-term (105 m and 106 s) in 550 

Question 2 (see Figure 1). Our ability to answer these questions benefits from several facets of 551 
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improving lidar technologies, including higher acquisition rates and larger ranges, more rapid 552 

and robust deployment options, and improved processing resources for extracting information. 553 

Future lidar technologies could address Question 1 by identifying specific vegetation species via 554 

hyperspectral laser technologies, increasing accuracy of bare-earth estimation to improve 555 

hydrologic routing using full waveform analysis, and increasing coverage of landslide-prone 556 

areas from different physiographic regions (Figure 3). New technology will address Question 2 557 

by providing estimates of riparian vegetation productivity, measuring channel bathymetry using 558 

blue-green lidar, and with new platforms that increase sampling frequency via UASs or other 559 

low cost systems. Lastly, new technology will address Question 3 by providing improved 560 

estimates of above-ground biomass and bare-earth extraction using full waveform analysis, and 561 

improved fine-scale change detection with greater processing resources. The goal of these 562 

example questions and their conceptualization (Figure 3) is to provide the reader with concrete 563 

examples of what well-integrated lidar datasets can provide to stimulate and improve future CZ 564 

research. 565 

  566 

We propose five recommendations as an attempt to unite the CZ community around improved 567 

utilization and advocacy of lidar technology in important transdisciplinary scientific contexts that 568 

integrate the opportunities and impediments discussed previously: 569 

·  Open lines of communication: Develop communication within and among groups, 570 

including individual CZ disciplines, remote sensing scientists, computer scientists, private 571 

industry, and funding agencies. Workshops have the potential to increase communication 572 

between ‘data-users’ and ‘data-creators’. CZ scientists must find ways to communicate their data 573 

acquisition specifications to the scientists and engineers who create lidar hardware and 574 
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processing software through venues such as meetings with private industry, the development of 575 

advisory committees, and commentary pieces in trade journals that present a vision for the future 576 

needs of CZ scientists.  Open communication among diverse CZ scientists is fundamental to 577 

developing collaborations capable of transdisciplinary advances. Working groups within CZ 578 

communities, like the critical zone exploration network (www.czen.org), and townhall meetings 579 

at international Earth science conferences have initiated sustainable communication venues.  580 

Future efforts focused on early-career CZ scientists that demonstrate the benefits of 581 

transdisciplinary efforts, such as focused conferences and pilot research projects, should be 582 

pursued. 583 

·  Increase information extraction: Advocate for lidar repositories that are interoperable 584 

and broaden data access, as well as open-source and community-centric processing resources. 585 

Ultimately, enhanced and streamlined data processing and analysis will enable CZ researchers to 586 

concentrate on understanding fundamental science problems instead of struggling with data 587 

access, processing, and analysis. Specifically, recent efforts focused on cloud storage and 588 

computing resources, and open source software tools could greatly aid this effort.  Efforts to 589 

improve the efficiency of processing will become more important as the acquisition of lidar 590 

expands to continental scales. Information extraction at larger extents will require judicious 591 

tradeoffs between acquisition parameters and costs that consider variability in local 592 

physiographic conditions (i.e. higher sampling densities in areas with dense vegetation cover and 593 

high topographic complexity). Programs to support open source software and their long-term 594 

sustainability are required to support CZ science. Increasing open access to lidar datasets 595 

facilitates greater information extraction and the potential for meta-analysis studies. The value of 596 

open-access datasets will increase as improved processing tools become available. CZ scientists 597 
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should also consider working with private lidar acquisition companies and their customers (i.e. 598 

forestry, mining, and urban planning organizations) to release what has previously been 599 

proprietary data to the public.  600 

·   Increase accessibility of lidar systems: Advocate for new acquisition technologies that 601 

lower the cost of lidar collection and increase its availability, such as unmanned platforms and 602 

less expensive and longer-range lidar systems. Institutional acquisitions of lidar systems also 603 

significantly increase accessibility. Community-supported lidar systems available to researchers, 604 

through agencies, such as UNAVCO and NCALM, should also be encouraged. A powerful 605 

advancement would be a ‘clearinghouse’ where agencies and institutions could exchange 606 

information on lidar systems, seek expert advice on lidar acquisition, and potentially trade or rent 607 

hardware to better meet the needs of individual projects.   608 

·   Focus on key technologies: Support the development of new lidar technologies that are 609 

useful for linking disciplinary observations. For example, our review has stressed the potential 610 

benefits for linking CZ functions to processes offered by hyperspectral laser technologies (Figure 611 

3). Other key technologies include new acquisition platforms (UASs) and improved open-source 612 

processing capabilities and open-source industry-standard data formats. The community should 613 

continue a dialogue about critical technologies within CZ science venues in parallel with 614 

interactions with technology developers (as mentioned previously). The more united the CZ 615 

community is about the benefits of a particular technology (i.e. hyperspectral lidar) the more it 616 

can advocate within public and private sectors for its advancement. 617 

·   Link complementary observations: Consider other remote sensing observations that 618 

may be complementary to lidar (e.g. thermal, infrared, optical, and microwave). While fusing 619 

remote sensing data is becoming more common, the value of lidar information to coarser remote 620 
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sensing products is vast and underutilized. Be mindful of the potential synergistic benefits of 621 

collecting lidar data over areas with in situ observations and vice versa, consider how to improve 622 

collection of in situ observations based on lidar information. In particular, in situ information 623 

collected during lidar data collection can be extremely valuable and difficult to substitute for at a 624 

later date. Maintain awareness of competing, less expensive technologies, such as SfM, that may 625 

be more appropriate in some conditions and geographical locations. The multi-scale nature of 626 

transdisciplinary research (Figure 1 and 3) demands that lidar be integrated into a broader 627 

observational framework that does not neglect the value of in situ and coarser remote sensing 628 

observations. 629 
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 1188 

Figure 1. Important CZ processes graphed as a function of time versus space for geomorphology 1189 

(a), hydrology (b), and ecology (c). The spatial and temporal scales that lidar is currently 1190 

addressing are shown as colored bars, with dotted bars indicating increasing resolutions and 1191 

larger extents available in the next five years. Overlapping spatiotemporal scales that encompass 1192 

the example questions in the Figure 3 are also noted with red boxes.  1193 

 1194 
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 1196 

  1197 

Figure 2. Depiction of the disciplinary focus of 147 journal articles using lidar. Articles were 1198 

qualitatively ranked based on their applicability to geomorphological, hydrological, and/or 1199 

ecological process understanding. Articles in the center are examples of transdisciplinary lidar 1200 

applications, with those shown in blue used as exemplars in the text.  1201 

 1202 
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  1203 

 1204 

Figure 3. Example CZ research questions conceptualizing the transdisciplinary potential of lidar 1205 

datasets when coupled with future technological advances. The questions encompass processes 1206 

from geomorphology (a), hydrology (b), and ecology (c) that overlap spatial and temporal scales. 1207 

These scales are noted in Figure 1. The text in the panel notes specific improvements offered and 1208 

the technology needed in parentheses. The arrows qualitatively represent whether the 1209 

technological advance expands data coverage and/or data quality/content. 1210 
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