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Abstract  

The fate of seasonal rivers ecosystems habitats under climate change essentially depends on the 

changes in annual recharge of the river, which related to alterations in precipitation and 

evaporation over the river basin. Therefore, the change in climate conditions is expected to 

significantly affect hydrological and ecological components, particularly in fragmented 

ecosystems. This study aims to assess the impacts of climate change on the streamflow in the 

Dinder River Basin (DRB), and infer its relative possible effects on the Dinder National Park 

(DNP) ecosystems habitats in the Sudan. Four global circulation models (GCMs) from Coupled 

Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined 

with hydrological model (SWAT) were used to project the climate change conditions over the 

study periods 2020s, 2050s and 2080s. The results indicated that the climate over the DRB will 

become warmer and wetter under the most scenarios. The projected precipitation variability 
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mainly depends on the selected GCM and downscaling approach. Moreover, the projected 

streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this 

century. In contrast to drought periods during (1960s, 1970s and 1980s), the predicted climate 

change is likely to affect ecosystems in DNP positively and promote the ecological restoration 

for the habitats of flora and fauna.        

1 Introduction 

The climate change over the next century expected to severely impact water resources; arid and 

semi-arid areas are particularly more vulnerable to that change and projected to suffer from water 

shortage due to precipitation reduction (Tavakoli and De Smedt, 2011;Setegn et al., 2011). 

Alteration in hydrologic conditions will affect almost every aspect of natural resources and 

human well-being (Xu, 1999). For instance, ecosystem integrity is influenced either directly or 

indirectly by climate change and hydrologic variability globally, regionally and at catchment 

scale. The responses of ecosystems to alterations in the hydrological process usually include 

complex interactions of biotic and abiotic processes. Hence, the hydrological variability can 

highly impact the ecosystem species in a variety of ways, such as the linkage between water 

availability and metabolic and reproductive processes of that species (Burkett et al., 2005). 

Among all ecosystems, freshwater aquatic ecosystems seem to have the highest proportion of 

species threatened with extinction caused by climate change (Millennium Ecosystem 

Assessment, 2005). The empirical framework of (Mantyka‐pringle et al., 2012)  illustrated that 

the effects of habitat loss and fragmentation were greatest where maximum temperature of 

warmest month was highest (i.e., effects were greatest in areas with high temperatures). In 

contrast, the effects of habitat loss and fragmentation were lowest in areas where precipitation 

has increased. In other words, smaller effects occurred in areas where average rainfall has 

increased over time than in areas where rainfall has decreased. This deduced that the maximum 

temperature and precipitation were the most important variables, with mean temperature change 

as the third. Thus, both current climate (i.e. maximum temperature) and climate change (i.e. 

precipitation change) appear to be key determinants of habitat loss and fragmentation effects on 

terrestrial biodiversity. In some part of the world, ecosystems are already being affected by 

climate variability. Furthermore, it is very likely that the magnitude and frequency of ecosystem 

changes will possible rapidly increase and continue in the future (Thomas et al., 2004). As the 
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climate conditions have changed in both precipitation and temperature trends over recent 

decades, the timing of these events has become vulnerable for alteration as well. According to 

the Gitay et al. (2002) projections, the ecosystem components in the Northern Hemisphere will 

experience serious alterations in terms of earlier flowering of plants, migration of birds, animal 

breeding seasons and emergence of insects. Consequently, under the smallest climatic change 

scenarios, 18% of species were found to be ‘‘committed to extinction’’ while the largest change 

scenario projected as many as 35% of species to be at risk (Thomas et al., 2004). Many studies 

investigated the impact of the streamflow change on the freshwater ecosystems, which will 

probably have strong effects on the system components and abiotic characteristic (Poff and 

Ward, 1989;Poff and Zimmerman, 2010;Döll and Zhang, 2010;Mantyka‐pringle et al., 2012). 

Erwin (2009), concluded that the wetlands will strongly be influenced due to climate alteration 

and to overcome all these impacts, assessment of the affect should firstly be conducted. These 

assessments should be applied, particularly in semi-arid and arid regions which will be more 

vulnerable areas (Finlayson et al., 2006).  

The climate change in the Upper Blue Nile Basin has been addressed by many previous studies 

using different climate models and techniques (Elshamy et al., 2009;Beyene et al., 2010;Taye et 

al., 2011;Setegn et al., 2011;Enyew et al., 2014;Gebre et al., 2015). The Dinder River (DR) is 

one of the largest tributary of the Blue Nile River and major water resource in the Dinder 

National Park (DNP). It seasonally flows down from western parts of the Ethiopian highlands 

and flows through the centre of the DNP (AbdelHameed et al., 1997). Seasonality of DR makes 

it more sensitive to climate change effects, because it mainly depends on seasonal rainfall, which 

expected to be altered in timing and magnitude. Furthermore, ecosystem habitats in the Dinder 

river basin (DRB) is basically controlled by the river runoff and climate variables such as 

temperature and precipitation. Whereas, DNP biodiversity is related to high flow events of DR 

that influence the river channel shape and allow access to other disconnect floodplain habitats, 

and to low flow events that limit overall habitats availability and quality. Ecosystem in the DNP 

contains a group of islands, and wetlands (Mayas) consist of a diverse array of fauna and flora 

and represent adequate environment for most nutritious grasses to the herbivores, especially 

during the most severe part of the dry season. Thus, relative changes in hydrological process and 

climate variables over DRB directly affect the ecosystem habitats and components in the DNP as 
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general. It should be mentioned that the whole African countries during the last five decades 

exposed to drought periods, which started in the 1960s and reached the peak in 1984. 

Consequently, these drought periods affected every African environmental system, particularly 

Sudan and Ethiopia (Mattsson and Rapp, 1991;Elagib and Elhag, 2011;Masih et al., 2014).  

In order to evaluate the effects of climate change on natural resources and maintain ecosystem 

integrity at the local and territorial scales, further researches should be conducted within the 

context of water resources management. One of the best tools for simulating current and future 

prediction of climate change scenarios is GCMs (Xu, 1999). However, there is a general 

consensus among the scientific community that GCM outputs  cannot be used directly as input to 

hydrological models, which often operate on spatial scales smaller than those of GCMs (Wilby et 

al., 2002). To predict changes in hydrology and water resources, downscaling the outputs of the 

GCM on the global scale into the inputs of the hydrological model on the regional scale has been 

widely applied to obtain the hydrological response (Charlton et al., 2006;Steele-Dunne et al., 

2008). Statistical downscaling is thus often used to bridge the scale gap in linking  GCM outputs 

with hydrological models because it does not require significant computing resources and can 

more directly incorporate observations into method (Fowler et al., 2007). The hydrologic models 

should provide a link between climate changes and water yields through simulation of 

hydrologic processes within watersheds. The Soil and Water Assessment Tool (SWAT) is one of 

the widely used model which has the capability of incorporating the climate change effect for 

simulation (Ficklin et al., 2010).  

Up to the authors’ knowledge, the impact of climate change in the DRB has never been 

thoroughly investigated, and the hydrological alteration affecting the DNP wetland habitats has 

not been explicitly explored.  This paper is the first step toward reporting the impact of climate 

change on streamflow in the DR and ecosystem habitats in the DNP. The study area has an 

ecological importance as a national park and biosphere reserve falls on the ecotone between the 

Sahel and Ethiopian highlands ecoregions. In addition, the change in climate conditions is 

expected to significantly affect hydrological and ecological components in the DNP fragmented 

ecosystems. Moreover, projected the hydroclimatic conditions over the DNP and assessed how 

ecosystem habitats respond to the changes of these variables would provide benchmark 

information that can be used to increase the capacity of the water resources management and 
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ecosystem conservation strategies through identify suitable actions for the future. The objectives 

of this paper are; (1) assess the effect of climate change on the future streamflow magnitude in 

the DRB, using SWAT model coupled with four GCMs under various climate change scenarios 

and two downscaling approaches;(2) investigate the potential impact of climate change on the 

DNP ecosystem components, in order to provide benchmarked information for the decision-

makers to be included in adaptation strategies for water resources and environment sustainable 

development. 

The rest of the paper is organized as follows. Section 2 describes the study area and DNP 

ecosystem components. Section 3 includes a brief description of the SWAT model and two 

downscaling approaches used to downscale the GCMs model outputs, while the Standardized 

Precipitation Index (SPI) is also highlighted. Section 4 provides the results and discussion of the 

projected climate variables and streamflow when applying the two downscaling methods, and 

investigates the effects of theses variables on the ecosystem habitats. Section 5 concludes this 

works. 

 Notations:  Table 1 presents a list of all symbols, variables and notations used in this paper. 

2 Study area and Dinder national park ecosystem 

2.1 Study area 

The DR is the largest tributary of the Blue Nile in Sudan. It has a seasonal character where it 

starts surging in June, peaking around the middle of August each year, and in normal conditions 

ceases flowing in November. The entire basin ranges in elevation from 2,646 m at an Ethiopian 

plateau to 407 m at the northwest point where it joined the Blue Nile and its catchment area 

about 31,422 km
2
. DRB geographic coordination is 11°41' to 13°85'N and 34° to 36°20'E (Fig. 

1). The average annual discharge for the previous 40 years at the Al Gwisi hydrological station is 

about 2.2 billion cubic meters (BCM). The main land use and land cover classes in DRB are 

agriculture, forest, grass, bush, shrubs and others (Abdel Hameed, 1983;Abdel Hameed and 

Eljack, 2003). Land use of the study area has changed over time due to over increasing 

population density and agricultural practices. El Moghraby and Abdu (1985), stated that over the 

past decades there was a remarkable population growth due to the successive migration and 
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immigration to the Dinder area. Consequently, the related human activities such as farmland 

expansion for both traditional and mechanized rain-fed agriculture have been dramatically 

increased. The clay plains of DRB are probably the most striking feature of the geomorphology 

of Sudan (Whiteman, 1971). There are some types of soil in DRB such as Eutric Cambisols, 

Chromic Cambisols, Eutric Gleysols, Eutric Regosols, Chromic Vertisols and Pellic Vertisols. 

The sandy river bed is left with only a few pools which may hold water up to the next rainy 

season after it ceases to flow (Abdel Hameed, 1983). The annual rainfall amount is normally 

increased gradually from 500 mm in the north-western part to 1,110 mm in the south-eastern 

part. The DRB drainage system contains of four sub-drainages namely Khor Galegu drainage 

system, which is the biggest tributary of the Dinder River,  Khor Masaweek, East bank of Dinder 

River and West bank of Dinder River . Each one of these sub-drainages consists of a number of 

Mayas, which mainly fed by the main DR stream and its tributaries through distinct feeder 

channels according to the amount of overflow of the river in flood months (AbdelHameed et al., 

1997).  

2. 1 Dinder national park ecosystem 

The DNP is considered as one of the largest natural reserves in northeast Africa, which was 

proclaimed as a national park in 1935 following the London Convention (Dasmann, 1972) for 

the conservation of African flora and fauna. The entire area of DNP is located inside Sudan 

between longitude 34°30' and 36°00'E and latitude 11°00' and 13°00'N, covering an area of 

10,846 km
2
 (Fig. 1). The DNP is the only national park north of the 10

th
 parallel, which forms an 

important ecological zone in the arid and semiarid Sudano-Saharan region. It has high elevation 

variation ranges from 800 m at an Ethiopian Plateau to about 515 m at the south-eastern part and 

100 m at north-eastern part. The Park has unique biodiversity contain a variety with over 250 

species of birds, 27 species of large mammals; some of them are listed by the International 

Union for Conservation of Nature (IUCN) as endangered, vulnerable or threatened species, in 

addition to an unknown number of smaller mammals. Therefore, the park is considered as 

adequate habitation for a large number of animals during the dry season and a few numbers when 

it rains from June through October. The Mammalian fauna leave the Mayas of the park during 

the rainy season to the high grounds at the east part, in Ethiopia and return with the onset of the 

dry season. The Mayas are formed by meanders and oxbows along the rivers. It provides 
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dwelling and support for a large number of animal species, such as tiang (Damaliscus korrigum), 

lion (Panthera leo), Elephant (Loxodonta africana, leopard (Panthera pardus), wild dog (Lycaon 

pictus), the red–fronted gazell (Gazella rufifrons), greater kudu (Tragelaphus strepsicerus), 

Nubian giraffe (Giraffa camelopardalis), black-backed jackal (Conis mesomelas), Arabian 

bustard and greater bustard. There are also numerous hides of insects, which serve a vital 

function in recycling of the organic compounds (Abdel Hameed and Eljack, 2003). 

3 Methods and data  

3.1 Hydrological model   

Several hydrological models have been developed for application in hydrologic systems and 

water resources management. One such model utilized in this study is SWAT, which is a 

distributed watershed-scale hydrological model developed by the United States Department of 

Agriculture (Arnold et al., 1998). SWAT is a continuous, i.e. a long-term yield model, 

distributed-parameter hydrological model designed to predict the impact of land management 

practices on the hydrology and sediment and contaminant transport in agricultural watersheds 

(Arnold et al., 1998). SWAT subdivides a watershed into sub-basins connected by a stream 

network, and further delineates hydrologic response units (HRUs) consisting of unique 

combinations of land cover and soils within each sub-basin. The model assumes that there are no 

interactions among HRUs, and these HRUs are virtually located within each sub-basin. HRUs 

delineation minimizes the computational efforts of simulations by lumping similar soil and land 

use areas into a single unit (Neitsch et al., 2002). SWAT model is broadly documented in many 

literature (e.g.,Neitsch et al., 2005a;Neitsch et al., 2005b). SWAT provides two methods for 

estimating surface runoff, which are the SCS curve number and the Green-Ampt infiltration 

method. The model calculates the peak runoff rate with a modified rational method (Chow et al., 

1988). In this study, SWAT was used to simulate streamflow in the DRB. In Arc-SWAT, the 

basin was divided into 38 subbasins, which were further sub-divided into 116 HRUs based on, 

soil, land cover and slope attributes. The surface water runoff volume was estimated using the 

SCS Curve Number method.  SWAT was calibrated for the whole basin during the period 1989–

1993 based on daily and monthly stream flow at the Al-Gwisi hydrological station and the model 

inputs. Then, the model further validated over the period 1995 – 1999. The most sensitive 
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parameters were identified with the built in sensitivity analysis tool in SWAT. We choose 10 

most sensitive parameters (Cn2, Alpha_BF, GW_DELAY, Ch_K2, Esco, GWQMN, Ch_N2, 

GW_REVAP, EPCO, ALPHA_BNK) based on the ranking of sensitivity analysis. Those 

sensitive parameters were automatically calibrated using the Sequential Uncertainty Fitting 

(SUFI-2) algorithm (Abbaspour et al., 2007). The Nash–Sutcliffe efficiency coefficient (NS) and 

the correlation coefficient (R
2
) were used to assess the predictive power of the SWAT in this 

study. 

3.2 Global circulation model selection  

To investigate the local impact of climate change researchers need to select GCMs able to 

capture the present-day climate of the study area. Therefore, a comparison between the intra-

annual variability of monthly statistics of rainfall (i.e., mean, variance and correlation) and 

temperature provided by the four GCMs and actual observations is conducted. As the World 

Meteorological Organization (WMO) recommended the use of the period 1961 – 1990 as a 

representative period of the present-day climate, since it incorporates some of the natural 

alterations of the climate, containing both dry (1970s) and wet (1980s) periods (Wigley and 

Jones, 1987), this period was selected as baseline.  

3.3 Statistical downscaling of temperature and rainfall time series  

The GCMs outputs resolution is too coarse for regional impact assessment study; therefore, 

downscaling must be performed before applying GCM outputs into the SWAT model (Dessu and 

Melesse, 2013). Both change factor (CF) and quantile mapping (QM) downscaling methods were 

used to downscale GCM outputs.  

3.3.1 Change factor downscaling method (CF) 

In general, the CF method (Hay et al., 2000;Diaz-Nieto and Wilby, 2005) is an ordinary bias 

correction method. The CF method is often used to exclude or minimize the bias between 

observations and the model outputs. The CF procedures rely on modifying the daily time step 

series of the climate variables such as precipitation and temperature for prediction periods 

(2020s, 2050s and 2080s) by adding the monthly mean changes of GCM outputs. The adjusted 
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formulas which are used to modify daily temperature and precipitation are expressed in Eq. (1) 

and Eq. (2). 

T����; 	
�; � = T�
��; � + � pi�T_������; 	
�; � − T�_���; ���� �; �!
"

#$%
 (1) 

P_���; 	
�; � = P_
��; � × � pi�P_� ���; 	
�; � ∕ P�_���; ���� �; �!
"

#$%
 (2) 

Where T_adj; fur; d is the adjusted daily temperature (Tmax and Tmin) for the future years, T_OBS; d is 

the observed daily temperature for the baseline years, T_GCM; fur; m is the monthly mean 

temperature of the GCM outputs for the future years, T_GCM; basper; m is the monthly mean 

temperature of the GCM outputs for the baseline years, pi is the weight of each grid cell and k is 

the number of the grid cells. 

3.3.2 Quantile mapping downscaling method (QM) 

The QM is an emerging downscaling approach that utilized to remove bias of observed and 

simulated rainfall using cumulative distribution functions (CDF). The QM method basically 

replaces the simulated (GCMs) rainfall/temperature value with the observed value that has the 

same non-exceedance probability. It shifts the occurrence distributions of 

precipitation/temperature through creating a transfer function (Sennikovs and Bethers, 

2009;Teutschbein and Seibert, 2012). The recommended function for distributions of 

precipitation events is the Gamma distribution (Thom, 1958) as shown in (Eq. 3). 

fγ+X/α, β1 = x3�% .  1
β3. Γ+α1 . e

�8
9  ; x ≥ 0;  α, β > 0                                              (3) 

Where α is shape parameter of Gamma distribution, β is scale parameter of Gamma distribution, 

ƒ is Distribution function, e is Euler’s number, Γ is Gamma function, γ is Gamma distribution, X 

is Percentile and x is independent (random) variable.  

For temperature time series, the Gaussian distribution with location parameter μ and scale 

parameter σ (Eq. (4)) is usually assumed to fit best (Thom, 1958;Cramér, 1999): 
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The scale parameter σ determines the standard deviation, i.e., how much the range of the 

Gaussian distribution is stretched or compressed. A smaller value for σ results in a more 

compressed distribution with lower probabilities of extreme values. Contrary, a larger value for σ 

indicates a stretched shape with higher probabilities of extreme values. The location parameter μ 

directly controls the mean and, therefore, the location of the distribution. 

In this paper, we used an advanced version of QM approach developed recently by Willems et al. 

(2012). The CDFs were set up on a daily basis for observed (1961 – 1990) and the GCM-

simulated rainfall for the baseline period (1961 – 1990). Then the GCM outputs value of a 

certain day was looked up based on the constructed CDF relative to the GCM simulations with 

their corresponding cumulative probability (Fig. 2). Subsequently, the same cumulative 

probability of the precipitation value was located on the empirical CDF of observations. Next, 

this value was used to adjust the GCM baseline simulation (1961 – 1990). The Gamma CDF (Fγ) 

and its inverse (Fγ
−1

) can elucidate this procedure mathematically as follows: 

P���� �∗ +d1 = FT�%+ FT+P���� �+d1⎸V���� �,� , W���� �,�1⎸VX��,� , WX��,�1                   (5) 

    P	
Y∗ +d1 = FT�%+ FT+P	
Y+d1⎸V	
Y,�,   W	
Y,�1⎸VX��,� , WX��,�1                                                (6) 

Where P
*
basper is precipitation bias corrected for the base period of GCM, P

*
fut is precipitation 

bias corrected for the future period of GCM, Z is a cumulative distribution function ([\Z), Fγ
−1

 

is the inverse of (CDF) and ] is gamma distribution (Willems et al., 2012).  

With regard to temperature, the same procedure can be expressed in terms of the Gaussian CDF 

(FN) and its inverse (F
-1

 N) as: 

T���� �∗ +d1 = F�̂%+ F^+T���� �+d1⎸B���� �,�   , σD���� �,�1⎸BX��,� , σDX��,�1    (7) 

T	
Y∗ +d1 = F�̂%+ F^+T	
Y+d1⎸B	
Y,� , σD	
Y,�1⎸BX��,� , σDX��,�1                       (8) 

Where T
*
basper is temperature bias corrected for the base period of GCM, T

*
fut is temperature bias 

corrected for the future period of GCM, T is temperature, µ  is mean (location parameter of 

Gaussian distribution), σ is standard deviation (scale parameter of Gaussian distribution) and σ
2
 

is variance (Teutschbein and Seibert, 2012). 



11 

 

The stationarity assumption, i.e., the same correction algorithm applies to both current and future 

climate conditions, is considered the main drawback of the QM method. Furthermore, the 

difference between the two downscaling approaches is that the CF method can obtain daily 

future precipitation time series by adding the average monthly changes of GCM outputs to the 

observed data. Conversely, QM approach directly adjusted the daily time series generated by the 

GCM based on linkage of GCM outputs and observed data in the baseline period (Camici et al., 

2013).  

3. 4  Dryness and wetness pattern over the DRB 

Monitoring the drought phenomena and quantifying the wet/dry conditions of the climate are 

characterized using various drought indices (Kallis, 2008;Mishra and Singh, 2010;Elagib and 

Elhag, 2011;Elagib, 2013). The Standardized Precipitation Index (McKee et al., 1993) is most 

widely used to estimate drought indices. SPI quantifies precipitation deficiency at different 

timescales based on the probability of recording a given quantity of precipitation, and the 

probabilities are standardized in such way that an index of zero indicates the median 

precipitation amount. The index is positive for wet conditions, and negative for drought. 

Although SPI-1, SPI-3, and SPI-6 captured historical drought events, SPI-12 is usually tied to 

streamflows and reservoir levels at longer timescales. SPI at 12-month is a evaluation of the 

precipitation for 12 consecutive months compared with that recorded in the same 12 consecutive 

months in all previous years of available data. Since these timescales are the cumulative results 

of shorter periods that may be above or below normal conditions, the longer SPIs tend to 

gravitate toward zero unless a distinctive wet or dry trend is taking place. Moreover, the long-

term droughts of 12 months may represent hydrological droughts (Svoboda et al., 2012). 

Therefore, in this study, SPI at 12-month timescale was computed using observed monthly 

precipitation at 6 stations from 1961 to 1990 to represents the historical dryness and wetness 

events over the DRB. For the future, the 90-year SPI-12 series of the rainfall over the DRB was 

computed for each future precipitation scenario and compared with those from the baseline 

precipitation. The gamma distribution was chosen in this study for description of the 

precipitation time series according to McKee et al. (1993) recommendation. 
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3.5  Data  

The topographic data used in this study were generated from a 90 m resolution DEM (digital 

evaluation model) (Fig. 1) obtained from http://gdex.cr.usgs.gov/gdex/ and processed within 

Arc-SWAT to provide local elevation, slope, and flow direction. The soil map (1000 m × 1000 m 

resolution) for the study area was extracted from the digital soil map of the world (FAO) 

(http://www.fao.org/geonetwork/srv/en/main.home) and African soil map (http://africasoils.net/). 

Land use map (1 km) in this study was obtained from the land cover institute (LCI) 

(http://landcover.usgs.gov/). Daily meteorological data, such as temperature and precipitation 

were collected from Ministry of Water resources and Electricity and other different sources for 

the period 1961 to 2008. The meteorological data were interpolated using high intensity stations 

distributed over Blue Nile region. Daily records of the river discharge at the Al-Gwisi 

hydrological station obtained from the Ministry of Water Resources and Electricity of Sudan 

were used to calibrate and validate SWAT. Four GCMs have been selected for future climate 

change projections over the DRB. Table 2 gives an overview of GCMs. The selection of the 

GCM model was base on other studies related to the impact of climate change on the Upper Blue 

Nile watershed in Ethiopian plateau. The MPI-ESM-LR and MPI-ESM-MR models as a recent 

amendment version of ECHAM5 model are recognized to be capable to reproduce the 

precipitation and temperature pattern in Ethiopian plateau (Beyene et al., 2010;Taye et al., 

2011;Enyew et al., 2014;Gebre et al., 2015). The MIROC-ESM and CCSM4 (Jury, 2015) models 

similarly have been selected (Elshamy et al., 2009;Beyene et al., 2010;Setegn et al., 2011). 

However, for CCSM4, there is clear difference in rainfall trend (base period) in some months. 

The RCP4.5 is considered as a moderate mitigation scenario, while RCP8.5 is the higher 

stabilization pathway, which would provide a wider range of radiative forcing across the RCP 

extensions. Therefore, RCP4.5 and RCP8.5 might be suitable to study the impact of climate 

change over DRB and infer the possible response of the DNP ecosystem’s habitats, because they 

have the ability to consider the moderate and extreme scenarios required for planning a better 

ecosystem restoration management strategy. The daily precipitation, àbJ and àcd from 1961 to 

2095 were extracted from grid cells covering the DRB. The period from 1961 – 1990 was 

defined as the baseline period (denoted by 1980s), while the future periods which covered by this 
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study are 2006 – 2035, 2036 – 2065 and 2066 – 2095 (denoted by the 2020s, 2050s and 2080s, 

respectively), except precipitation for CCSM4 model under RCP8.5 scenario (2066 – 2093). 

3.6  Climatic condition of the study area  

The precipitation and temperature vary spatially and temporally over the DRB. The annual 

precipitation increases about 30 mm every 10 km from the northwest to the southeast (Ethiopian 

Plateau), while the temperature decreases with the rainfall increase. Fig. 3 displays the mean 

monthly rainfall and temperature regimes of all the climate stations in the DRB for the period of 

1961–1990. It is clear from Fig. 3 and Table 3 the DRB is hotter in the north-western part, with 

mean àbJ of 37.39 °C than the south-eastern part (30.09 °C). The whole basin has a mean àbJ  

of 34.77 °C. The hottest months are April and May in the whole basin, while July and August are 

the coldest ones. The annual rainfall spatial distribution varies conversely with the àbJ , the 

Sub-1 (with an annual rainfall of 480.92 mm) and Sub-6 (with an annual rainfall of 1201.12 mm) 

are the lowest and heaviest stations, respectively.  

4 Results and discussions   

4.1 Calibration and validation for SWAT model  

Firstly, SWAT was calibrated for the whole basin during the period 1989 – 1993 based on daily 

and monthly stream flow at the Al Gwisi hydrological station and the model inputs. Then, the 

model further validated over the period 1995–1999. Results showed that SWAT could 

successfully simulate reasonable daily and monthly streamflow in the DRB as shown in Fig. 4. 

The coefficient of determination (R
2
) and Nash-Sutcliffe coefficient of efficiency values (NSE) 

were 0.83 and 0.81 for the calibration period and 0.82 and 0.76 during the validation period, 

respectively. For the daily simulation, R
2
 and NSE values were 0.63 and 0.61 for the calibration 

period and 0.56 and 0.51 for the validation period as listed in Table 4.  

4.2 Global circulation models analysis 

The annual variability of the monthly mean, variance and autocorrelation of daily precipitation 

for the four GCM outputs, and the observed data averaged for the period 1961 – 1990 is given in 
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Fig. 5. For the MPI-ESM-LR and MPI-ESM-MR models, the annual variability of the monthly 

mean precipitation data is completely well, corresponding to the observed data. For the MIROC-

ESM and CCSM4 models, most months were quite well, while other months (April and June) 

showed clear difference. Furthermore, the MPI-ESM-LR and MPI-ESM-MR models have a 

general tendency to underestimate the monthly variance throughout the year, while other models 

have high variance in the some months. For the autocorrelation, the four models have an 

opposite behavior. Figurer 6 illustrates the comparison between the four GCM outputs, and the 

observed data for the  àbJ  and àcd  data in terms of monthly mean and variance. The four 

GCMs are capable to reproduce, the observed mean   àbJ   and àcd values with small biases. 

With regard to the variance, the MIROC-ESM and CCSM4 showed clear differences in some 

months, while the MPI-ESM-LR and MPI-ESM-MR presented slight variance.  

In general, the result of the statistical tests on GCMs performance to simulate historical records 

of climatic variables show better simulation results for temperature than rainfall. The poor result 

of rainfall simulation is due to GCMs failure to simulate the seasonal migration of the Inter-

Tropical Convergence Zone (ITCZ) in these equatorial regions (Wu et al., 2003). It is also 

attributed to the complex climate system and topography of the Blue Nile basin. For instance,  

the summer (JJA) rainfall in the catchment is influenced by monsoon activity (Beyene et al., 

2010), which might not be accurately considered by the GCMs (Taye et al., 2011). 

Taking into account these results and the uncertainties estimated by GCMs, the four models have 

been selected for representing the actual climate over the DRB. This selection is also supported 

by the capability of these models to reproduce the mean annual precipitation, which is 

considered as the main factor leads to huge impact on the DRB and DNP.  

4.3 Statistical downscaling of GCMs outputs 

Figures 7 and 8 show the results for the downscaling of the annual average àbJ and àcdtime 

series provided by the four models through the CF and QM methods. In the base period 

comparison between the observed data (T − OBS���� �) and the results provided by the GCMs 

before (T − GCM���� � ) and after+T − GCMk�
���� �

), the application of the QM approach is 

depicted. While, in the future periods (RCP4.5 and RCP8.5) the GCM outputs for future 

(T − GCM	
�) and the results provided by the application of the QM +T − GCMk�	
Y ) and CF 
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methods +T − OBS�l	
Y) are compared. As it is shown in the figures, there is no such big difference 

between temperature predicted by the MPI-ESM-L, MPI-ESM-MR and MIROC-ESM models 

when the CF and QM approaches were used, corresponding to their simulated output, whilst the 

CCSM4 gave remarkable different. Figures 9a displays the relationship between the mean daily 

àbJ projected by the two downscaling approaches and GCMs outputs for the study periods. 

There is slight difference between àbJ obtained by GCM outputs and that projected by MPI-

ESM-LR, MPI-ESM-MR and MIROC-ESM using the two downscaling methods, while under 

the CCSM4 model, the CF method demonstrated clear difference in the some months. Moreover, 

the correlation between the mean daily àbJ  projected by the CF, QM and baseline period 

corresponding to the GCM outputs is illustrated in Fig. 9b. It can be seen that the QM is highly 

correlated with GCMs outputs in contrast to the CF method. Figure 9c demonstrates the variance 

of the mean daily àbJ  generated by the CF and QM relative to the simulations of the four 

GCMs. The MPI-ESM-LR, MPI-ESM-MR and MIROC-ESM models showed slight variance 

when the CF and QM methods were applied. The CCSM4 model under CF approach showed 

significant variance in some months compared with the QM method. For the mean daily àcd 

results, it is found that the two downscaling methods obtain the same trend of àbJ in the mean, 

correlation and variance values for the four GCMs.  

For precipitation, referring to Fig. 10 in the base period, the comparison between the observed 

data of annual average rainfall time series (P − OBS���� � ) and the results provided by the 

GCMs before (P − GCM���� �) and after +P − GCMk�
���� �

) the application of the QM approach is 

depicted. Whereas, the future periods (RCP4.5 and RCP8.5) show the annual average rainfall 

time series of the GCM outputs before (P − GCM	
�) and after +P − GCMk�	
� ) applying the QM 

method and future data obtained by the application of the CF method (P − OBS�l	
Y,). There is a 

slight difference between the mean annual rainfall projected by the QM approach and GCMs 

outputs, while the CF elaborates remarkable dissimilarity. For statistical analysis, the relationship 

between the mean daily rainfall projected by the two downscaling approaches and GCMs outputs 

for the study periods is shown in Fig. 11a The MPI-ESM-LR and MPI-ESM-MR models showed 

slight difference in mean daily rainfall when the QM and CF are applied corresponding to their 

simulated outputs, while the MIROC-ESM and CCSM4 model observed a significant difference 

when the CF is used. Nevertheless, the MIROC-ESM and CCSM4 model showed insignificant 
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difference when the QM approach is employed. Figure 11b displays the correlation between the 

mean daily rainfalls projected using the CF and QM approaches, and the observed data, 

corresponding to the GCM outputs. The QM method showed high correlation to GCMs outputs 

compared with the CF method. Figure 11c demonstrates the variance of the mean daily rainfall 

generated by the CF and QM relative to the simulations of the four GCMs. The QM method 

showed slight variance when was applied for four models. For the CF approach, the MPI-ESM-

LR and MPI-ESM-MR observed slight variance. Conversely, there is a significant variance in 

mean daily rainfall provided by MIROC-ESM and CCSM4. 

4. 4 Historical climate impact  

4.4.1  Historical dryness and wetness pattern over the DRB  

Figure 12 shows the time series of the SPI on annual bases over the DRB. The SPIs for the 1960s 

were a mixture of below-and above-normal values, but the first half of the decade had very wet 

(1.72) and moderately dry (–1.4) conditions in 1963 – 1964 and 1964 – 1965 respectively. The 

period 1970s saw wet conditions in the first half of the decade with some years lying in the 

extremely (2.42) in the 1973 – 1974 and moderately wet (1.46) in the 1974 – 1975 while, the 

latter were near normal records. The 1980s had persistent dry conditions continue until the end of 

the decade. This period was the driest throughout the study period (moderate and severe dry). 

The year 1981-1982 was revealed the worst single drought with severe dry condition (1.62). 

Moreover, the year (1980, 1987) and 1988 were exceptionally near normal to moderate wet 

respectively. 

4.4.2 Impact of climate change during the drought periods (1960s, 1970s and 

1980s) on the streamflow and ecosystem  

For the best of our knowledge, the DNP ecosystem has three major components namely 

woodlands (A. Seyal- Balanites), river stream and the Mayas (Wetlands). Moreover, the DNP 

ecosystem provides sustainable habitations for many species of flora and fauna, which they live 

or spend in it a part of essential key stages of their annual life cycle. Precisely,  river stream and 

the Mayas which offer sustainable refuge and protection for the living organisms after the flood 

season, they consider as a valuable store for that reactive link to keep on their flora and fauna 
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existence until the next flood start and recharge the pools and Mayas (Hakim et al., 1978;Abdel 

Hameed and Eljack, 2003). The climate change had pronounced effects on the streamflow of DR 

and the Mayas through changing the precipitation and occurrence of drought waves. The hugely 

impact of the drought intervals caused significant variability in the water level in the DR and the 

Mayas during the flood season. These changes could be the main agent in the wetlands 

ecosystem alteration, and accordingly influenced all the ecosystem components. This consistent 

with (Woo et al. (1993)) who pointed out that, the fate of the wetlands under climate change is 

mainly depending to changes in external recharge, which related to alterations in precipitation 

and evaporation over the wetland itself. Moreover, comparatively tiny increments in 

precipitation change can significantly influence wetlands flora and fauna at various phases of 

their lives cycle (Keddy, 2000). As a result, the entire wetland's ecosystem was affected by 

alterations in precipitation and streamflow (Bauder, 2005). Therefore, according to the 

seasonality of the DR, small decrease or increase in the annual rainfall leads to decline or 

increment the water level, and the impact will extend to the next seasons as happened during the 

drought periods. 

The rainfall over the DRB during the first drought period (1963, 1965 and 1969 to 1972) 

declined about 23 and 11 %, respectively, which led to decline the runoff about 9.8 % during 

(1972 to 1977). The second wave of drought started in 1976 to 1987 that decreased the rainfall 

about 14.8 %, led to decrease the runoff about 42.25 % compared to the baseline period (1961 

to1971). These alterations caused a sharp decline in the DR runoff and seriously affected the 

water availability in many Mayas. Moreover, the waves of drought followed by a flood season 

led to the remarkable damage in the river stream by closing the channels’ feeder from the main 

stream to Mayas and increasing the erosion and sedimentation. Consequently, it decreased the 

water amounts and many of Mayas dried. There are about 40 Mayas distributed in the DNP such 

as Ras Amir, Gadahat, and Godah influenced by alterations in the rainfall trend during drought 

periods. Ras Amir considers as the largest Maya (4.5 km
2
), was dried up during the drought 

periods (1970s) and since that time became less enduring, haphazardly every few years, and full 

of water in other years. Farash el Naam is the second biggest Maya (1.6 km
2
) after drought 

periods (1980s) became more inconstant and lesser eternal. The last one is Godaha, consists of a 

series of eleven small Mayas; Godahat is the major one (0.2 km
2
), which was affected by the 
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drought period as well (Hakim et al., 1978;Abdel Hameed, 1983;AbdelHameed et al., 

1997;Abdel Hameed and Eljack, 2003). Thus, changes in temperature, precipitation and 

streamflow magnitude affected the sustainability of ecosystem in terms of the habitats’ 

components in the DNP. Consequently, the damage in habitats impacted most of the flora and 

fauna in the DNP.  

In this century, the DNP habitats virtually certain expose to the climate change impact, such as 

temperature increment or rainfall increase and/or decline, which will very likely affect the flora 

and fauna and their migration, blooming and mating timing.  

4.5   Future climate change 

The CF and QM methods were employed to downscale the climate variables (temperature and 

precipitation) for the selected GCMs.  

4.5.1 Mean of Tmax and Tmin 

The future climate conditions were determined using the combination of climate change 

scenarios (RCP 4.5 and RCP 8.5) and four GCM models. Tables 5 and 6 represent the difference 

between projected ` abJ and àcd and the baseline period (1961 – 1990) when the CF and QM 

methods were applied. ` abJ and àcd  project a more consistent change trend than precipitation. 

Stability increases were projected for each variable (` abJ  and àcd) by all the models and two 

emissions scenarios in the futures. The ` abJ trend analysis shows an obvious increment under 

the two downscaling approaches in the future. For annual mean ` abJ and àcd, the MPI-ESM-

LR gave the largest increases and MIROC-ESM gave the lowest increases in the future under the 

two downscaling approaches and scenarios. By using the QM and CF methods, the projected 

` abJ increases ranges are between 0.9 °C to 1.8 °C, 1.3 °C to 3.2 °C and 1.6 °C to 5.2 °C  in 

2020s, 2050s and 2080s respectively. For the annual àcd the four models projected increase 

ranged from 0.9 °C to 1.8 °C, from 1.6 °C to 3.3 °C and from 1.7 °C to 5.3 °C in 2020s, 2050s 

and 2080s respectively. The RCP8.5 scenario under the QM and CF projected higher 

temperature increases than the RCP4.5 scenario in the whole periods. Whereas, 2080s period 

showed the highest increase change in temperature based on the four models. Broadly, the 

expected temperature under different climate changes scenarios and conditions indicate that the 
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overall climate will become much warmer as time passes. This result was consistent with the 

conclusions of (Elshamy et al., 2009;Taye and Willems, 2013;Enyew et al., 2014), which 

indicated that the temperature projected by multi-GCM will increase over the Upper Blue Nile. 

4.5.2 Mean precipitation  

Table 7 illustrates the projected change in the annual precipitation under the four GCMs and two 

scenarios (RCP4.5 and RCP8.5) using the CF and QM downscaling approaches. For annual 

precipitation, all GCMs projected increase under the two downscaling methods, RCPs and three 

periods, corresponding to the drought period (1977 – 1988). Mean annual precipitation projected 

by CCSM4 and MIROC-ESM models generated a dramatic increase when the CF method is 

applied, while MPI-ESM-LR and MPI-ESM-MR models showed a significant upward trend. The 

four models under the QM method and two RCPs showed significant and convergent increase 

during the three periods. The mean annual precipitation changes using the CF method for the 

four GCMs ranged from 5 to 48.4 %, from 3.2 to 43 % and from 2.6 to 35.4 % under RCP4.5 for 

the three periods respectively, whereas under RCP8.5 changes ranged from 9 to 50.9 %, from 

12.3 to 48.1% and from 9.5 to 44 % in 2020s, 2050s 2080s respectively. Conversely mean 

annual precipitation projected by using the QM method showed a convergent significant upward 

trend under the four models. The four models generated increment ranged between 7.8 to 13.1 

%, from 7.1 to 14.7 % and from 7.4 to 19.1 % under RCP4.5 for three periods respectively, 

whereas under RCP8.5 changes ranged from 7.5 to 14.3 %, from 15.7 to 26 % and from 16.8 to 

25.3 % in 2020s, 2050s 2080s respectively. Scenario RCP8.5 always suggests a greater increase 

in precipitation than RCP4.5, especially in 2080s. In general, results showed that the alterations 

in precipitation amount increases for some months of the year, while it decreases for the other 

months. Among the future years, the MIROC-ESM, CCSM4 and MPI-ESM-LR under the two 

downscaling method and RCPs showed the largest value in 2080s. The predicted change 

magnitudes of the annual precipitation for the four GCMs and the two RCPs using QM methods 

were consistent during three periods. Broadly, the four GCMs projected upward trends in the 

annual precipitation in this century. The CCSM4 and MIROC-ESM showed a dramatic increase 

when the CF method is applied, which may attributed to the difference between the rainfall 

pattern in the historical period for the GCM model and the study area in some months. In 

general, studies by (Elshamy et al., 2009;Beyene et al., 2010;Taye et al., 2011;Enyew et al., 
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2014) indicated that, the directions of projected precipitation changes are mixed and highly 

variable both from sub-basin to sub-basin and from season to season over Upper Blue Nile basin. 

4.5.3 Response of stream flow to climate change 

The highest flow decline which observed to be more influential on the DNP ecosystem habitats 

was during two drought periods. Accordingly, comparing streamflow in the future periods with 

that average simulated of the drought periods could produce more reliable results rather than 

comparing with period including extreme flood years. Therefore, the drought period from 1977 

to 1988 which has a low average flow rates (except for 1988) was set as baseline period in this 

study. The potential effect of future climate change on annual streamflow generated by the 

outputs of the four models and two downscaling approaches is shown in Table 8 and Fig.13. It 

can be seen that the expected change rate in 2020s, 2050s and 2080s range from 0.3 to 87.9 %, 

from 4.7 to 78.1 % and from 2.5 to 87.6 % respectively, for the four models when CF approach 

is applied. While, the possible annual streamflow changes in the same period, when the QM 

method applied is predicted to be fluctuated from −11.9 to 9.2 %, from −3.45 to 38.9 % and from 

−5.7 to 22.4 %. Under the two downscaling methods, RCP8.5 scenario indicated a greater 

increase in runoff than RCP4.5, particularly in 2080s. The streamflow projected by the MPI-

ESM-LR and MPI-ESM-MR under the two downscaling methods showed consistent changes 

trend with precipitation, particularly when the QM was applied. However, the CCSM4 and 

MIROC-ESM models under the CF method predicted significant increase trend in the annual 

streamflow in contrast to the QM method. The CCSM4 and MIROC-ESM models under the QM 

and RCP4.5 scenario showed decreases in the future periods, except 2080s for the MIROC-ESM 

which gave a significant increase. Meanwhile, under RCP8.5 the streamflow suggested 

remarkable increments except the 2020s period for the CCSM4 model which showed significant 

decline. The increment, which predicted by the CF approach is seemingly due to its high rainfall 

projection. For the monthly scale, streamflow projected by MPI-ESM-LR and CF method 

showed reasonable variability in June and October from 4.8 to 2.73 m
3
 s

−1
 and from 47.64 to 111 

m
3
 s

−1
 respectively and changes range of ±46 % in all other months. However, by applying the 

QM method, streamflow increased significantly in October from 47.64 to 107 m
3
 s

−1
, while other 

months were fluctuated within ±39 %. The MPI-ESM-MR model through the CF method 

suggested reasonable variability in streamflow in June and October from 4.8 to 5.1 m
3
 s

−1
 and 
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from 47.64 to 77.1 m
3
 s

−1
 respectively, and alterations range of ±84 % in all other months. 

While, by applying the QM method, streamflow increased significantly in October from 47.64 to 

140 m
3
 s

−1
, while other months were fluctuated within ±95 %. The mean monthly streamflow 

projected by the CF method in 2020s under the CCSM4 and MIROC-ESM model showed 

remarkable increases in June and October from 4.8 to 7.9 m
3
 s

−1
 and from 47.64 to 165.1 m

3
 s

−1
 

respectively, and varied with percentage rate of 87 % in the other months. While, by applying the 

QM method to the same models, monthly streamflow in June and October observed to increase 

from 4.8 to 5.4 and from 47.64 to 160 m
3
 s

−1
 respectively, and fluctuated within ±93 % in the 

other months. Although the percentage of streamflow increment in 2050 was somewhat less than 

that of 2020s, the prediction of the four GCMs and the two approaches generally showed a 

similar upward trend in the two periods. Similar to 2020s and 2050s, the monthly streamflow 

predictions for future period 2080s showed the upward trend with a slight difference in the 

magnitude in some months comparing to baseline period. The high percentage of change in 

monthly streamflow which displayed by CCSM4 and MIROC-ESM models under the CF and 

QM approaches could be attributed to the uncertainty of the models and the difference in the 

pattern of some monthly rainfall between the model and the study area. Furthermore, the DR is a 

seasonal river (June - October) flows from elevation 2646 m to 400 m thus, runoff is rapid and a 

small amount of precipitation is retained by deep percolation (UNESCO, 2004). Moreover, as 

mountain region, the streamflow in the DR showed high sensitivity to precipitation changes 

particularly in the last five decades. Although the CCSM4 and MIROC-ESM models under the 

QM method and RCP4.5 showed an increment in rainfall projection in the three periods, the 

streamflow projected decrease. This could be owing to the uncertainty of hydrological model 

parameters. Among the four models, MPI-EMI-LR and MPI-ESM-MR projected reasonable 

increment in streamflow over the study area.  

Despite the projected streamflow varied between increase and decline, the increase trend was the 

dominate characteristic in streamflow prediction. Based on the results obtained in this study, 

there is an uncertainty in the simulated streamflow under given climate change conditions, this 

uncertainty can be attributed to different sources of variability represented in future emissions 

scenarios, GCMs projections, downscaling approaches and hydrological model parameterization. 
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4.5.4 Future dryness and wetness pattern over the DRB  

The future rainfall time series projected by the four GCMs and the two downscaling approaches 

were analyzed by applying the SPI-12 to investigate the hydrological wetness/dryness events 

(Fig. 14 and 15). In general, the future dryness/wetness of the DRB showed a different trend than 

the past. Results showed that compared to the baseline period, severity dry and very wet 

conditions are expected to increase, but the duration is expected to decrease. In the other words, 

dry/wet conditions will likely become more frequent during the next ten decades, i.e. it recurs at 

shorter time intervals, in particular when the QM approach is applied. However, for the future 

projected using the CF methods, the dryness/wetness suggested a symmetric pattern to the 

baseline period (Fig. 15). For the MPI-ESM-LR model under the QM method and the two RCP 

scenarios, the annual dryness/wetness events during three periods projected to be range from 10 

to 23 % dry (moderately-sever-extreme) and from 10 to 24 % wet (moderately-very-extreme) 

while the remaining are near moderate. Moreover, dry/wet conditions are likely became less 

frequent, but it presumably be increased in term of severity, particularly in 2050s. For the MPI-

ESM-MR model under the QM method, the percentage of dry years suggested to be range 

between 7 to 23 %, while the wet ones (moderately-very-extreme) ranged between 13 to 23 %. 

The RCP4.5 scenario in 2050s and 2080s gave extreme dry and wet events, while RCP8.5 

scenario predicted the same events in 2050s. The dry conditions that projected by MIROC-ESM 

model using QM method, were found to be range from 6 to 20 % (moderately-very-extreme), 

whilst wet conditions ranged between 10 to 23 % (moderately-very-extreme) during the three 

periods. Under RCP8.5 and the QM method, the 2050s and 2080s suggested having long 

duration of severe and moderate draught. Regarding to the CCSM4 model under RCP8.5 

scenario and the QM method, in 2020s projected to have moderate-sever dry conditions (27 %) 

whereas, the wetness condition was found to be 7 %. Conversely, 2080s showed highest 

percentage of wetness events (30 %) while the dryness events were 16%. 

4.5.5 Impact of projected climate change on DNP ecosystem habitats 

Based on the climate change projections scenarios, the changes in temperature and precipitation 

will impact either directly or indirectly the streamflow magnitude. Consequently, the DNP 

ecosystem will very likely be exposed to a variety of negative and positive effects based on these 
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projections. Although climatic warming in this century is expected to start a drying trend in 

wetland ecosystems in most parts of the world (Gorham, 1991), the results obtained by this work 

accomplished that the DRB wetlands will experience increment in water magnitude according to 

the projected increment in the annual rainfall and streamflow. Generally, the temperature 

increase and greater changes in precipitation will occur in the DNP over this century. The Four 

GCMs projected annually increases in Tmax ranged from 0.9 to 4.9 ºC and Tmin ranged from 0.9 to 

5.3 ºC, whilst the RCP8.5 scenario projected the greatest increase. Alterations in precipitation are 

projected to temporally vary when the CF and QM approaches applied between 2.6 to 50.6 % 

and between 7.1 to 26 % respectively. The DNP is expected to get drier in the summer, whereas 

more likely to be wetter in autumn. The rainfall increment will be greater in the southeast part of 

DNP more than the northwest. Moreover, the maximum magnitude of precipitation, will likely 

increase as well.  

The upward trend in the rainfall amount which predicted by the four models will have distinctive 

positive impacts on the DNP ecosystems in terms of habitats sustainability of many living 

organisms. The four GCM models when the CF and QM approaches applied, projected increase 

in rainfall over the DRB ranged between 2.6 to 50.6 % and between 7.1 to 26 % respectively, 

which will likely lead to an increment in streamflow. Furthermore, the long duration of 

hydrological dryness that happened in the past which led to the huge impact in the DNP 

ecosystem, was projected to decrease. These increases in the streamflow likely will be suitable 

amounts to restoration of the DNP ecosystem components. The DNP lies on the road of winter 

migration for many African birds during their pass to eastern Africa Rift valley lakes or 

southward. Accordingly, the increase of water during the flood season in this century will lead to 

increase the capacity of the Mayas and pools to receive more numbers of these migrant birds. 

Furthermore, these habitats will not be a breed effective threat and danger on the life cycle for 

that birds and defect on the ecosystem balance of DNP and regional scale. Otherwise, the four 

GCMs predictions indicated that precipitation most probably tends to increase in the future over 

the DNP. Consequently, this positive variation will likely greatly influence the water level in the 

Mayas and pools and promote the intensity of vegetation cover and growing of the grasses which 

are considered as a major food source for most the DNP fauna. 
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The analysis presented here indicates that the four GCMs and the two scenarios projected 

significant annually and monthly increment in temperature. This increment will likely affect the 

habitats’ component in the DNP, as the water level will be affected by the evapotranspiration 

over the DRB, particularly under the MPI-ESM-LR and MPI-ESM-MR models and RCP8.5 

scenario at the end of this century. 

According to the projected alterations in the temperature, precipitation and streamflow, we 

expected that the DNP ecosystems events, and habitats will very likely to be shifted. In fact, the 

spatial and temporal of the temperature and precipitation over the DNP offer DNP ecosystem the 

same habitat with different climatic conditions. Consequently, most of the fauna and flora have 

high resilience to adapt to the impact of the climate change and habitats loss as happened during 

drought periods. This implies that, during drought periods some of the fauna and flora have 

changed their habitats to the areas that have the same climate conditions of their previous 

habitats as a form of adaptation. Furthermore, over the last 100 years, maximum temperature 

with mean rainfall as secondary driver was the determinant factor in habitat loss and 

fragmentation, averaged across species and geographic regions. Habitat loss and fragmentation 

effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in 

areas where average rainfall has increased over time (Mantyka‐pringle et al., 2012). Based on the 

projected climate determinants and the DNP ecosystem characteristics, it can be concluded that, 

ecosystem components will likely expect to start restoration of ecosystem habitats. 

5 Conclusion  

This paper analyzed the response of streamflow and ecosystem habitats in the DRB to possible 

future climate conditions change that predicted by using four GCMs coupled with two 

downscaling approaches and physically based distributed hydrologic model (SWAT). Moreover, 

the future rainfall time series projected by the four GCMs were analyzed by applying the SPI-12 

to estimate the hydrological dryness/wetness events over the DRB during three periods. 

Predictions of the four GCMs pointed out the temperature and precipitation will increase in the 

next century, while the severe dry and very wet events of short durations are predicted to be 

more frequent in the future. Consequently, the streamflow is likely to increase according to the 

rainfall increase. Type of the used downscaling approach was the key factor in climatic 

variables’ projection. The annual rainfall predicted by using the QM approach based on the four 
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GCM models tend to have the same increasing trend, particularly under RCP8.5 scenario. The 

CF approach showed huge increment with the CCSM4 and MIROC-ESM models corresponding 

to the other models. In contrast, the MPI-ESM-LR and MPI-ESM-MR models under the CF and 

QM approaches, predicted convergent annual rainfall upward trend. The similarity of the result 

obtained by applying the QM method for the four GCM models was regarded to the fact that the 

QM approach takes into account daily rainfall time series generated by the GCM. There is 

uncertainty in the Streamflow projection basically depend on the GCMs, scenarios, downscaling 

approach and model parameterization. Relying on prediction of potential possible changes in 

climate condition, ecosystem components in the DNP substantially will likely be affected in a 

way that make that living organism habitats and life cycle have recovery conditions rather than 

extinction and destruction circumstances, as it was happening during the drought periods (1960s, 

1970s and 1980s). On the other hand, the projected rainfall and the seasonality of the river will 

make more uneven distribution of annual flow from year to another. Thus, high attentions to 

extreme events (floods and drought) to avoid the negative hydrological effect on the DNP 

ecosystem habitats should be considered. This study projected the hydroclimatic condition over 

the DNP and assessed how ecosystem habitats respond to the changes of these variables. 

Although the presences of the uncertainties, the results provide benchmark information that can 

be used to increase the capacity of the water resources management and ecosystem conservation 

strategies through identify suitable actions for the future. That is to create more resilience to 

climate changes related to habitats restoration and continued management of other stressors in 

the DNP ecosystem. Furthermore, integrity of hydrological conditions in the DR stream and 

Mayas’ should be considered, to reduce the negative impact of climate change on fragmented 

wetlands’ ecosystem, particularly in terms of dryness and wetness events. Finally, this work 

would offer quite useful information required by rain-fed agriculture, hydrologists, ecologists 

and zoologist for further researches.  
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Table 1. Symbols, variables and notations  
Symbols 

m, n Parameter 

mop adjusted 

V Shape parameter of Gamma distribution 

W Scale parameter of Gamma distribution 

nmqrIs Baseline period (1961-1990) 

[\Z Cumulative distribution function 

[Z Change factor method 

o daily 

I Euler’s number 

> Distribution function 

Z Cumulative distribution function (CDF) 

Z�%  Inverse of CDF 

>ts Future period (2020s, 2050s and 2080s) 

u Gamma function 

v number of the grid cells 

w month 

? Gaussian (normal) distribution 

μ Mean (location parameter of Gaussian distribution) 

xyz Observed data (day)  

{ Precipitation (mm) 

r| the weight of each grid cell 

C Standard deviation (scale parameter of Gaussian distribution) 

CD Variance 

` Temperature (ºC) 

N Independent (random) variable 

@ Percentile 

] Gamma distribution 

∗ final bias-corrected 
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Table 2. Information of the climate models. 

Model name Model centre Grid resolution 

CCSM4 the National Centre for Atmospheric Research, USA 0.9424°  x 1.25° 

MIROC-ESM JAMSTEC, AORI, and NIES, Japan 2.7906° x 2.8125° 

MPI-ESM-LR Max-Planck-Institute for Meteorology, Hamburg, Germany 1.8653° x 1.875° 

MPI-ESM-MR Max-Planck-Institute for Meteorology, Hamburg, Germany 1.865° x 1.875° 

 

Table 3. Statistics of climate stations for the period of 1961-1990 in the DRB. 

Sub-station Elevation Annual rainfall 

(mm) 
Mean Tmax (ºC) Mean Tmin ( ºC) 

Sub-1 425 480.92 37.39 21.49 

Sub-2 442 630.16 36.81 21.53 

Sub-3 487 716.34 36.23 18.84 

Sub-4 714 894.04 32.09 21.19 

Sub-5 824 1042.6 33.49 17.73 

Sub-6 886 1201.12 30.09 16.15 

 

 

Table 4. Calibration (1989–1993) and validation (1995–1999) for the SWAT model. 

Period Monthly Daily 
 

 NS R
2
 NS R

2
 

Calibration (1989-1993) 0.81 0.83 0.62 0.63 

Validation (1995-1999) 0.76 0.82 0.51 0.56 
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Table 5. Annual changes in àbJ in the future under the four GCMs and two scenarios (RCP4.5 

and RCP8.5). 

Period’s                Annual change in Tmax (ºC) 

 CF method QM method 

RCP 4.5 MPI-ESM 

-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 MPI-

ESM-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 

2020s 1.4 1.2 0.9 0.9 1.7 1.2 0.7 0.8 

2050s 2.4 2.4 1.5 1.5 2.7 2.4 1.3 1.5 

2080s 3.0 2.9 1.9 1.7 3.2 2.9 1.6 1.7 

RCP 8.5         

2020s 1.6 1.4 0.6 1.0 1.8 1.5 0.6 1.2 

2050s 2.9 2.9 1.4 1.9 3.2 3.0 1.3 2.1 

2080s 4.9 4.8 3.3 3.5 5.2 4.7 3.3 3.7 

 

Table 6. Annual changes in àcd in the future under the four GCMs and two scenarios (RCP4.5 

and RCP8.5). 

Period’s                Annual change in Tmin (ºC) 

 CF method QM method 

RCP 4.5 MPI-

ESM-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 MPI-

ESM-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 

2020s 1.4 1.4 1.2 0.9 1.6 1.3 1.2 1.0 

2050s 2.4 2.6 2.0 1.6 2.6 2.4 1.9 1.9 

2080s 2.9 3.1 2.5 1.7 3.1 2.9 2.5 2.1 

RCP 8.5         

2020s 1.6 1.7 1.0 1.0 1.8 1.5 1.0 1.5 

2050s 3.0 3.3 2.1 1.9 3.2 2.9 2.2 2.7 

2080s 5.1 5.3 4.3 3.4 5.3 4.9 4.3 4.4 
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Table 7. Annual changes in precipitation in the future under RCP4.5 and RCP8.5 scenarios for 

the GCMs. 

Period’s            Annual change in precipitation (%) 

 CF method QM method 

RCP 4.5 MPI-

ESM-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 MPI-

ESM-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 

2020s 8.1 5 11 48.4 13.1 10.3 7.8 12 

2050s 7.2 3.2 18.4 43 13.6 7.1 12.9 14.7 

2080s 8.9 2.6 29.9 35.4 14.8 7.4 19.1 17 

RCP 8.5         

2020s 10.8 9 24.2 50.6 14 7.5 11.1 14.3 

2050s 15.4 12.3 48.1 47.7 17.2 15.7 26 20.7 

2080s 16.7 9.5 38.2 44 25.3 16.8 22 21.7 

 

Table 8. Possible annual streamflow changes in the future years (2020s, 2050s and 2080s) of the 

DRB. 

Period’s                Annual change in streamflow (%) 

 CF method QM method 

RCP 4.5 MPI-

ESM-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 MPI-

ESM-LR 

MPI-

ESM-MR 

MIROC-

ESM 

CCSM4 

2020s 23.5 15.3 29.5 87.9 9.2 -2.1 -9.4 -8.5 

2050s 19.9 4.7 55.0 78.1 5.1 -3.45 -2.1 -0.41 

2080s 26.5 2.5 66.4 82.8 11.4 4.2 12.3 -5.7 

RCP 8.5         

2020s 27.3 0.3 61.3 86.7 3.1 -7.1 13.4 -11.9 

2050s 37.1 23.2 78.2 71.0 5.9 10.8 38.9 3.1 

2080s 44.3 17.0 81.3 87.6 22.4 6.9 15.7 9.0 



 

Figure 1. Topography (m) of the DRB based on a 90 m DEM and geographic locations of DNP 

and hydrological and meteorological stations
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Figure 1. Topography (m) of the DRB based on a 90 m DEM and geographic locations of DNP 

and hydrological and meteorological stations. 

 

Figure 1. Topography (m) of the DRB based on a 90 m DEM and geographic locations of DNP 



 

Figure 2. (a) Comparison between the empirical cumulative density function of the observed 

rainfall data and the one provided by the MIROC

(solid line) the application of the QM method: the 

RCP8.5); over the study area. (b) 

for the MPI-ESM-LR model. 

 

Figure 3.The mean monthly rainfall and 

study for the period of 1961–1990

35 

. (a) Comparison between the empirical cumulative density function of the observed 

rainfall data and the one provided by the MIROC-ESM model, before (dashed line) and after 

(solid line) the application of the QM method: the Based period; and future climate

RCP8.5); over the study area. (b) Same comparison done for T��8 by using Gaussian

The mean monthly rainfall and T��8 regimes of all the climate stations used in this 

1990. 

 

. (a) Comparison between the empirical cumulative density function of the observed 

ESM model, before (dashed line) and after 

; and future climate (RCP4.5 and 

Gaussian distribution 

 
regimes of all the climate stations used in this 



 

 

 

Figure 4. SWAT simulated and observed monthly stream flow in Al Gwisi gauge during the 

calibration period (1989-1993) (lift panel) and validation period (1995

indicates the observed flow and Sim indicates the simulated flow

 

 

 

 

Figure. 5. Comparison between the statistical properties 

for the period 1961– 1990 and the four GCM outputs.
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Figure 4. SWAT simulated and observed monthly stream flow in Al Gwisi gauge during the 

1993) (lift panel) and validation period (1995-1999) (r

Sim indicates the simulated flow. 

Comparison between the statistical properties of the observed daily precipitation data 

1990 and the four GCM outputs.  

 

Figure 4. SWAT simulated and observed monthly stream flow in Al Gwisi gauge during the 

1999) (right panel), Obs 

 

the observed daily precipitation data 



 

 

 

Figure. 6. Comparison between the

and the four GCM outputs; the T
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between the statistical properties of the observed temperature 

T��8 (upper panel) and Tmin (lower panel) data. 

 

temperature (1961-1990) 



 

 

Figure 7. Comparison between the annual 

provided by the four GCM models, before (grey line) and after (dashed line) 

approach (CF method is added for 

RCP4.5 and RCP 8.5). 
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. Comparison between the annual T��8  data observed for the DRB and the results 

provided by the four GCM models, before (grey line) and after (dashed line) applying

added for the future climate): the Based period; and future climate (

 

 

DRB and the results 

applying the QM 

; and future climate (for 



 

 

Figure 8. As in Fig. 7, but for the 
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the T�#}.  

 

 



 

 

Figure 9. The MPI-ESM-LR, MPI

DRB. Comparison at monthly level between the statistical properties of the GCM outputs (

data and its downscaled data using the CF (

more explanation, the observed data for the baseline period (
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MPI-ESM-MR, MIROC-ESM and CCSM4 model

Comparison at monthly level between the statistical properties of the GCM outputs (

and its downscaled data using the CF (P − OBS�l	
Y) and QM +P − GCMk�	
Y ) approaches. 

he observed data for the baseline period (P − OBS���� �) are also shown. 

ESM and CCSM4 models results over the 

Comparison at monthly level between the statistical properties of the GCM outputs (T��8) 

) approaches. For 

) are also shown.  



 

 

Figure 10. As in Fig. 7, but for the rainfall. 
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, but for the rainfall.  

 



 

 

Figure 11. As in Fig. 9, but for the rainfall
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As in Fig. 9, but for the rainfall



 

Figure 12. Historical time series of SPI for long
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Historical time series of SPI for long-term scale 

 

 



 

Figure 13. Possible changes in the average annual discharge cycle (on a monthly basis)

upstream portion of the DRB for the four models when the two downscaling (QM and CF) 

methods were applied.  
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changes in the average annual discharge cycle (on a monthly basis)

upstream portion of the DRB for the four models when the two downscaling (QM and CF) 

 

 

 

changes in the average annual discharge cycle (on a monthly basis) at the 

upstream portion of the DRB for the four models when the two downscaling (QM and CF) 



 

Figure 14.  Future time series of SPI

models and two scenarios (RCP4.5 and RCP8.5) when the QM approach is applied.  

Figure 15. As in Fig. 14, but when the CF approach is applied.

 

45 

Future time series of SPI-12 (long-term scale) for rainfall projected by the four 

models and two scenarios (RCP4.5 and RCP8.5) when the QM approach is applied.  

4, but when the CF approach is applied. 

 

term scale) for rainfall projected by the four 

models and two scenarios (RCP4.5 and RCP8.5) when the QM approach is applied.   

 


