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Abstract. This paper analyzes the sensitivity of a hydrological model to different methods to sta-

tistically downscale climate precipitation and temperature over four western Mediterranean basins

illustrative of different hydro-meteorological situations. The comparison was conducted over a com-

mon 20-year period (1986–2005) to capture different climatic conditions in the basins. The daily

GR4j conceptual model was used to simulate streamflow that was eventually evaluated at a 10-day5

time step. Cross-validation showed that this model is able to correctly reproduce runoff in both dry

and wet years when high-resolution observed climate forcings are used as inputs. These simulations

can thus be used as a benchmark to test the ability of different statistically downscaled datasets to

reproduce various aspects of the hydrograph. Three different statistical downscaling models were

tested: an analog method (ANALOG), a stochastic weather generator (SWG) and the “cumulative10

distribution function – transform” approach (CDFt). We used the models to downscale precipitation

and temperature data from NCEP/NCAR reanalyses as well as outputs from two GCMs (CNRM-

CM5 and IPSL-CM5A-MR) over the reference period. We then analyzed the sensitivity of the hydro-

logical model to the various downscaled data via five hydrological indicators representing the main

features of the hydrograph. Our results confirm that using high-resolution downscaled climate values15

leads to a major improvement of runoff simulations in comparison to the use of low-resolution raw

inputs from reanalyses or climate models. The results also demonstrate that the ANALOG and CDFt

methods generally perform much better than SWG in reproducing mean seasonal streamflow, inter-

annual runoff volumes as well as low/high flow distribution. More generally, our approach provides a

guideline to help choose the appropriate statistical downscaling models to be used in climate change20

impact studies to minimize the range of uncertainty associated with such downscaling methods.

1 Introduction

Climate Change Impact Studies (CCIS) focusing on water resources have become a hot topic in the

last decade. However, such studies need reliable climate simulations to drive hydrological models
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efficiently. General circulation models (GCMs) have demonstrated significant skills in simulating25

climate variables at continental and hemispherical scales but are inherently incapable of represent-

ing the local sub-grid-scale features and dynamics required for regional impact analyses. For most

hydrologically relevant variables (precipitation, temperature, wind speed, humidity, etc.), GCMs

currently do not provide reliable information at scales that are appropriate for impact studies (e.g.

Maraun et al., 2010). The mismatch between the spatial resolution of the GCM outputs and that of30

the data required for hydrological models is a major obstacle (e.g. Fowler et al., 2007). Some post-

processing is thus required to improve these large-scale models for impact studies and downscaling

methods have been developed to meet this requirement.

Downscaling methods can be dynamical or statistical, both approaches being driven by GCMs

or reanalysis data. Dynamical downscaling methods correspond to the so-called “Regional Climate35

models” (RCMs), aiming at generating detailed regional and local information (from a few dozen km

down to a few km) from low-resolution simulations (generally with a horizontal resolution ranging

from 100 to 300 km) by simulating high-resolution physical processes consistent with the required

large-scale dynamics. Easier and less costly to implement as compared to dynamical downscaling

techniques, statistical downscaling models (SDMs) are also used in anticipated hydrologic impact40

studies under climate change scenarios (for a review, see e.g. Fowler et al., 2007). SDMs rely on

determining statistical relationships between large- and local-scale variables and do not try to solve

the physical equations that model atmospheric dynamics. Due to their statistical formulation, they

generally have a low computational cost and provide simulations relatively rapidly. SDMs are based

on a static relationship, i.e. the mathematical formulation of the relation between predictands (i.e.45

the local-scale variable to be simulated) and predictors (i.e. the large-scale information or data used

as inputs in the SDMs) has to be valid not only for the current climate on which the relationship

is calibrated, but also for future climates, for example. Most state-of-the-art SDMs belong to one

of the four following families (Vaittinada Ayar et al., 2015): “transfer functions”, “weather typing”,

methods based on “stochastic weather generators” and “Model Output Statistics” (MOS) models,50

which generally work on cumulative distribution functions (CDFs). Many studies demonstrated that

caution is required when interpreting the results of climate change impact studies based on only one

downscaling model (e.g. Chen et al., 2011). It is thus recommended to use more than one SDM to

account for the uncertainty of the downscaling (e.g. Chen et al., 2012). However, uncertainty can be

very high due to the inability of some SDMs to realistically reproduce the local climate, and this can55

be critical when the aim is to produce accurate inputs for hydrological models at the basin scale in

the context of CCIS. On the other hand, a sensitivity analysis of hydrological modeling to different

downscaling methods can produce an indicator to assess the quality of downscaled climate forcings

via their ability to generate reasonable simulations of discharge from hydrological modeling. This

analysis can also help to quantify the impact of the error in a runoff simulation that stems from60

SDMs.
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Several works have already attempted to compare climate simulations, downscaled or not, from a

hydrological point of view. Although these studies revealed significant differences between SDMs

on hydrological responses including seasonal variability of runoff (e.g. Dibike and Coulibaly, 2005;

Prudhomme and Davies, 2009; Chen et al., 2012; Teng et al., 2012), interannual discharge dynamics65

(e.g. Wood et al., 2004; Salathé, 2005), or the distribution of extreme events (e.g. Diaz-Nieto and

Wilby, 2005), they were not able to clearly conclude on how to choose one method over another.

Difficulties in selecting among different SDMs may arise from the choice of relevant criteria. While

some may be appropriate from the statistical or climatological point of view, these criteria may not

adequately highlight the differences between the methods with respect to the hydrological responses.70

As a result, the aforementioned studies generally suggest an ensemble approach including several

methods to offer a range of downscaling uncertainty when studying climate change impact on runoff.

However, this uncertainty range can be reduced to a minimum if inappropriate statistical downscaling

methods are excluded from the ensemble approach.

Our analysis of the literature revealed that no consensus has emerged on the best downscaling75

techniques among the state-of-the-art SDMs in the context of CCIS on runoff. This calls for an

original protocol to assess the strengths and weaknesses of the different SDMs in providing accurate

hydrological simulations according to different insights. Indeed, assessing water resource availability

for different uses requires accounting for different aspects of the hydrograph including interannual

runoff volumes, mean seasonal streamflow, and low/high flow distribution. First, hydrologists need80

to correctly reproduce the interannual water balance in order to evaluate changes in the storage

capacity of the hydrosystems, for instance. Second, analysis of the interannual variability of flows

makes it possible to test the ability of the climate simulations to reproduce the occurrence of dry and

wet years, as well as the frequency and intensity of change. Third, surface water resources can be

evaluated through a seasonal analysis so as to focus on intra-annual high and low flow events. While85

high flows are particularly important, e.g. when the focus is on flood risk, low flows are generally

studied in connection with the water needed for agriculture and tourism, as in these cases, there is

generally an increase in water demand when flows are low (see e.g. Fabre et al., 2015; Grouillet et al.,

2015). Consequently, assessing water availability means focusing on low flows, which generally

occur during peak water demand.90

Water resource issues are particularly important in the Mediterranean region, which has been

identified as a hot-spot of climate change (Giorgi, 2006). The western Mediterranean basins are of

particular interest since they are characterized by complex and varying hydro-climatic conditions

due to the contrasted influences of the Atlantic Ocean and the Mediterranean Sea, and of mountain

ranges. These contrasted conditions offer an opportunity to account for the uncertainty linked to95

the differences in spatial and temporal patterns that may arise from one downscaling technique to

another.
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The aim of this study is to propose a method to analyze the sensitivity of hydrological responses

to different methods used to statistically downscale climate values by means of criteria that are

commonly used in CCIS to assess the impact on water resources: volume of water flow, interannual100

and seasonal variability of runoff, distribution of extreme events including high and low flows. We

compare statistical downscaling methods via a guideline aimed at providing an overview of their

capabilities to reproduce the main features of the hydrograph in view of their use in CCIS.

The rest of this article is organized as follows. In section 2 we describe the basins in the western

Mediterranean and a hydro-climatic analysis based on the available data. In section 3, we provide an105

overview of downscaling models and of the steps involved in hydrological modeling. In section 4,

we summarize the results for each hydrological indicator, and in section 5 we discuss these results

and provide a short conclusion.

2 Study areas and hydro-climatic context

2.1 Four catchments in the western Mediterranean110

Four catchments were chosen to account for the variety of hydro-climatic conditions in the western

Mediterranean region (Fig. 1): the Herault basin at Laroque (910 km2, France), the Segre basin at

Seo de Urgel (1 265 km2, Spain), the Irati basin at Liedena (1 588 km2, Spain) and the Loukkos

basin at Makhazine (1 808 km2, Morocco). These basins were also chosen because they are located

upstream from storage dams and in areas in which withdrawals are negligible (Ruelland et al., 2015),115

so their streamflow regime can be considered as natural. For brevity’s sake, the basins are referred

to as Herault, Segre, Irati and Loukkos.

The Herault basin, from 165 to 1 565 masl. comprises two-thirds karstified limestone favoring

delayed and sometimes sudden restitution and one third of basement rocks with low groundwater

reserves favoring surface runoff. The mountainous basin of Segre, located upstream from the Ebro120

basin in northern Spain from 670 to 2 830 masl., is characterized by basement rocks (granite and

quartzite) and a rugged topography that favors runoff. The Irati basin, from 407 to 2 017 masl., is

located upstream from the Ebro basin. This mountainous catchment, composed mainly of limestone

and conglomerate, is characterized by a high upstream-downstream topographic gradient, favoring

a rapid hydrological response. The Loukkos basin, from 55 to 1 668 masl., is characterized by125

sandstone and marl successions favoring surface runoff.

2.2 Hydro-climatic data

Preliminary studies (Tramblay et al., 2013; Fabre et al., 2015; Ruelland et al., 2015) provided

daily hydro-climatic data (precipitation, temperature and streamflow) over a common 20-year pe-

riod (1986–2005), thus making it possible to compare the basins. Climate data for the Herault basin130

were extracted from the SAFRAN 8× 8 km meteorological analysis system (Vidal et al., 2010) and
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observed runoff was provided by the French Ministry of ecology and sustainable development from

their database Banque Hydro (MEDDE, 2010). As mentioned by Vidal et al. (2010), SAFRAN is

a gauge-based analysis system using the Optimal Interpolation (OI) method described by Grandin

(1965). This method has been found to outperform other objective techniques for precipitation no-135

tably in studied in France over the Cévennes area, a region with very high spatial and temporal

variability (Creutin and Obled, 1982). Climate data for the Segre and Irati basins were obtained by

interpolating daily precipitation and temperature measurements on an 8× 8 km grid with the inverse

distance weighted (IDW) method (Shepard, 1968). This method is particularly efficient for gauge-

based analyses of global daily precipitation (Chen et al., 2008). The precipitation and temperature140

data were extracted based on numerous stations available at the Ebro basin scale (Dezetter et al.,

2014), of which around 19 and 6 precipitation stations, and 10 and three temperature stations con-

cern the Irati and Segre catchments respectively. Elevation effects on temperature distribution were

taken into account using a digital elevation model and a lapse rate of −6.65°C/1 000 m estimated

from the data. Daily streamflow data were provided by the Center of studies and experiments on145

hydraulic systems (CEDEX, 2012). In the Loukkos basin, precipitation data were interpolated on a

8× 8 km grid based on 11 stations using the IDW method. Since daily temperature data were only

available from a station located at the basin outlet, a universal lapse rate of −6.5°C/1 000 m was

used for temperature interpolation. Hydro-climatic data including daily streamflow were provided

by the Moroccan Département de Planification des Ressources en Eau (DPRE). Due to the lack of150

additional data such as wind and humidity in the Moroccan basin, a simple formula relying on solar

radiation and temperature was chosen (Oudin et al., 2005) to assess daily potential evapotranspira-

tion (PE) in each basin.

The atmospheric variables used for the calibration of the SDMs as predictors were selected

from the National Centers for Environmental Prediction/National Center for Atmospheric Research155

(NCEP/NCAR) daily reanalysis data (Kalnay et al., 1996) with a 2.5° spatial resolution, from Jan-

uary 1, 1976 to December 31, 2005. The variables covered the region [−15°E; 42.5°E]×[27.5°N;

50°N] encircling the Mediterranean Sea as defined in Vrac and Yiou (2010) and corresponding to

240 grid cells. For the temperature models, five predictors were used: the temperature at 2 m (T2),

the sea level pressure (SLP), as well as the geopotential height and the zonal and meridional wind160

components at 850 hPa (respectively Z850, U850 and V850). For precipitation models, the same five

predictors were used, and the dew point temperature at 2 m (D2) was added. The predictors and the

pre-processing of those predictors according to the SDM and the predictands are summarized in the

table 1. Calibration was performed over the usual four seasons in the northern hemisphere. The cal-

ibrated SDMs were forced with three different datasets: NCEP reanalysis data over the 1976–2005165

calibration period and with the IPSL-CM5A-MR (from the French “Institut Pierre Simon Laplace”,

IPSL Climate Modelling Centre, Dufresne et al., 2013) and CNRM-CM5 (from the French National

Centre for Meteorological Research, CNRM, Voldoire et al., 2013) GCMs, regridded at a 2.5° spa-
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tial resolution, over the GCMs historical (or CTRL) period (i.e. 1986–2005).The regridding was

done through a bilinear interpolation in order to have the GCMs and NCEP data at the same resolu-170

tion. This is a requirement in order to use GCMs as predictors in the different SDMs calibrated from

NCEP at a 2.5° resolution. Over the mid-latitudes, 2.5° correspond approximately to 250km. The

Herault, Segre and Loukkos basins are included in a single GCM grid cell. The Irati basin straddles

two grid cells, split equally. Also, the basins are not on the edge of the GCM grid and therefore are

not subject to border effects in interpolation.175

The SDMs have been calibrated over a 30-year period (1976–2005) for the Herault, Irati and Segre

basins and a 20-year period (1986–2005) for the Loukkos due to data availability before 1986. This

choice results from the need to use the maximum available time period for the SDM calibrations to

have them as robustly calibrated as possible. However, the GCM historical period was defined over

1986–2005 in order to have a 20-year common period for all the SDMs to be evaluated through their180

ability to provide reliable hydrological simulations.

2.3 Hydro-climatic analysis

The four basins are characterized by a more or less pronounced Mediterranean climate with low

precipitation in summer and more abundant precipitation in winter (see Fig. 1). Mean annual pre-

cipitation decreases from north to south, from 1 397 mm in the Herault basin to 935 mm in the185

Loukkos basin. Mean annual precipitation in the Segre basin (813 mm) is low compared to neigh-

boring basins because of the rain shadow effect of the mountains surrounding the basin, which often

stops precipitation from the Atlantic (West) as well as from the Mediterranean sea (East). Summer

is hot and dry, especially in the Loukkos basin, which causes severe low flows during this season.

In contrast, winter is milder and wetter. In the Herault and the Irati basins, the precipitation peaks190

in spring and fall are produced by precipitation events whose intensity can vary greatly over short

periods. The spring and fall streamflows are strongly influenced by these precipitation events as well

as by snowmelt in spring in the mountainous basins (mostly in the Segre and the Irati basins).

No significant trends in interannual variations in precipitation and streamflow were observed in

the four basins over the period 1986–2005. Nevertheless, mean precipitation during the first 10 years195

of the study period was from 4% to 19% higher than during the last 10 years, except in the Segre

basin (–3%). Furthermore, the analysis of the precipitation indices (Eq. 1) showed that the wet and

dry years observed in the four basins occurred at the same time in nearly half the years (grey lines

in Fig. 2). Mean annual temperature remained almost constant during the 1986–2005 period and the

temperature indices (Eq. 2) were the same in the four basins in two thirds of the years (Fig. 2).200

IP = (Py −Py)/σP (1)

IT = (Ty −Ty)/σT (2)
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where Py is the annual precipitation for the year y, Py is the mean of the annual precipitation, σP is

the standard deviation of the annual precipitation. Ty is the annual temperature for the year y, Ty is205

the mean of the annual temperature, σT is the standard deviation of the annual temperature.

3 Models and evaluation procedures

3.1 Statistical downscaling models

Based on the preliminary climatological study of Vaittinada Ayar et al. (2015), three downscaling

methods were retained according to their ability to reproduce commonly used climatic patterns on210

E-OBS (Haylock et al., 2008) grid scale (0.44° or approximatively 50 km spatial resolution). These

SDMs were thus used to provide the climate data, i.e. precipitation and temperature, used as inputs

for the hydrological model at the basin scale. For each variable, three models were calibrated and

applied: analogs of atmospheric circulation patterns (ANA), the “cumulative distribution function

– transform” approach (CDFt) and a stochastic weather generator (SWG). The analog method and215

the stochastic weather generator are both calibrated and run on a seasonal basis, using the usual four

seasons of the northern hemisphere, whereas the CDFt approach is run on a monthly basis. For ANA-

LOG and SWG, the calibration was performed on NCEP reanalysis. Conversely, for CDFt, coming

from the family of the bias correction (BC) techniques, the calibration was performed directly on

the GCM to downscale. Although CDFt is derived from the quantile-mapping technique, none of the220

three SDMs is bias corrected. Those three models (i.e., CDFt included) have all the particularity of

providing high-resolution precipitation and temperature simulations (constrained by large-scale re-

analysis or GCM data) and therefore belong all to the family of the statistical downscaling methods.

For all the three models, calibration was done over 1976–2005 (except for Loukkos on which data

availability limited the calibration to 1986–2005). Their assessment when applied to NCEP reanal-225

ysis and GCM data was performed according to a common 20-year 1986–2005 evaluation period.

Sections 3.1.1 to 3.1.3 describe the different models.

3.1.1 The Analog model

The “analogs” model used here is based on the approach of Yiou et al. (2013) and applied on the

fields of anomalies fields over the Mediterranean region [−15°E; 42.5°E]×[27.5°N; 50°N] as230

defined in section 2.2. For any given day to be downscaled in the validation period, it consists in

determining the day in the calibration period with the closest large-scale atmospheric situation XANA.

More precisely, for a given day, the analog is taken from the 15 days before and after this date in the

calibration data set. Note that the days in the same year are excluded. Therefore, this prevents the

analog day to be too close (in time) to the day to be downscaled. The closest large-scale atmospheric235

situation XANA is determined by minimizing a distance metric (here the Euclidian distance) between

the large-scale situation (Xd) of the day to be downscaled and the large-scale situation (Xc) of all the
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days in the calibration period. More technically, this can be written as:

XANA = argmin(dist(Xd,Xc)) (3)

where argmin(f) is the function returning the minimum value of a function f, here computed over all240

the Xc situations of the calibration period. The daily large-scale atmospheric situations correspond to

the daily fields of anomalies of the predictors. Those anomalies were calculated with respect to the

seasonal cycle, as is classically done in analog techniques, see e.g., Yiou et al. (2013) and references

therein. Xd – the large-scale situation of the day to be downscaled – corresponds to the fields of

anomalies of all the predictors of that day. Xc corresponds to any large-scale situation (defined in the245

same way) in the calibration period. Hereafter this model is referred to as ANA.

3.1.2 The CDFt model

The “cumulative distribution function – transform” (CDFt) method was originally developed by

Michelangeli et al. (2009) to downscale wind velocity and was later applied to temperature and

precipitation, in, for example Vrac et al. (2012) and Vigaud et al. (2013). The CDFt model is a250

quantile-mapping-based approach, which consists in relating the local-scale cumulative distribution

function (CDF) of the variable of interest to the large-scale CDF (here from NCEP or GCMs) of the

same variable. Let FGc(x) and FOc(x) define the CDFs of the variable of interest, respectively from

a GCM (subscript G) and from local-scale observations-based dataset (subscript O) over the calibra-

tion period (subscript c), and FGv(x) and FOv(x) the CDFs over the validation period (subscript v).255

First, CDFt estimates FOv(x) as:

FOv(x) = FOc

(
F−1
Gc (FGv)

)
(4)

with x in the range of the physical variable of interest. Then, a quantile-mapping between FGv and

FOv is performed to retrieve the physical variable of interest at the local scale. All the technical

details on Eq. (4) and subsequent quantile-mapping can be found in Vrac et al. (2012). Note that for260

this method, only the variable of interest (i.e. precipitation or temperature) at a large scale is used as

predictor. Contrary to ANALOG and SWG, the CDFt approach comes from the family of the bias

correction (BC) techniques. In that sense, CDFt does not need NCEP reanalyses for its calibration

but is directly calibrated to link GCM simulations and high-resolution data (through their CDF).

Note that CDFt is used here as a downscaling technique and not a BC, since it is applied here to265

downscale (i.e., to go from large-scale to high-resolution) temperature and precipitation time series.

3.1.3 The Stochastic Weather Generator model

The stochastic weather generator (SWG) model used in this study is based on conditional probability

distribution functions in a vector generalized linear model (VGLM) framework, as in Chandler and

Wheater (2002). This means that the distribution family is fixed and the distribution parameters are270

estimated as functions of the selected predictors.
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Modeling precipitation is usually divided into two steps: first the occurrence and second the in-

tensity. The modeling of intensity has been introduced in previous sections. The rain occurrence at

a given location is modeled as a binomial distribution B(1,p) using a logistic regression (LR, e.g.

Buishand et al., 2004; Fealy and Sweeney, 2007). Let pi be the probability of rainfall on day i condi-275

tionally on an N-length predictor (or covariate) vectorXi = (Xi1, ···,XiN ) as defined in the previous

section. The conditional probability of occurrence pi is formulated through a LR as:

log

(
pi

1− pi

)
= p0 +

S=︷ ︸︸ ︷
N∑
j=1

pjXi,j (5)

pi =
exp(S)

1+ exp(S)
(6)280

where (p0,· · ·,pN) is the vector of coefficients to be estimated. The LR is only used for SWG. The

analog and CDFt models directly provide zeros or positive precipitation values.

Temperature is expected to follow a Gaussian distribution and rain intensity a Gamma distribution.

The mean µ and the standard deviation σ of the Gaussian distributions and the shape α and the rate β

of the Gamma distributions are estimated as functions of the large-scale predictors. The parameters285

σ, α and β at day i are computed with a common formulation, illustrated here for the α parameter:

log(αi) = α0 +

N∑
j=1

αjXi,j (7)

with (αj)j=0,· · ·,N the regression coefficients to be estimated, N the number of predictors, and Xi,j the

jth daily large-scale predictor for day i. Note that Eq. (7) models the logarithm of the parameter of

interest to ensure that the parameter obtained (σ, α or β) is positive. The parameter µ is formulated290

in the same way but without the positivity (i.e. log) constraint:

µi = µ0 +

N∑
j=1

µjXi,j (8)

As in Vaittinada Ayar et al. (2015), the predictors used for this model are the two first principal

components (PCs) calculated from a principal component analysis (PCA, Barnston and Livezey,

1987) applied separately to each variable.295

3.2 Hydrological simulations

3.2.1 Hydrological model

The GR4j lumped conceptual model (Perrin et al., 2003), was chosen to simulate the seasonal and

interannual variations in runoff at a daily time step (see Fig. 3). Many studies have demonstrated

the ability of the model to perform well under a wide range of hydro-climatic conditions (e.g. Perrin300
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et al., 2003; Vaze et al., 2010; Coron et al., 2012) and notably in the Mediterranean region (e.g.

Tramblay et al., 2013; Fabre et al., 2015; Ruelland et al., 2015). This model relies on precipitation

(P) and potential evapotranspiration (PE) and is based on a production function that determines the

effective precipitation (the fraction of the precipitation involved in runoff) that supplies the produc-

tion reservoir and on a routing function based on a unit hydrograph. According to the available data305

(cf Section 2.2), a simple formula relying on solar radiation and temperature (cf Eq. 9) was chosen

(Oudin et al., 2005) to assess daily potential evapotranspiration (PE).

PE =
Re

λρ
× T +5

100
if (T +5)> 0 else PE = 0 (9)

where Re is the extraterrestrial solar radiation (MJ/m2/d) given by the Julian day and the latitude,

λ net latent heat flux (2,45 MJ/kg), ρ water density (kg/m3) and T is the mean air temperature at a310

2 m height (°C).

Four parameters are used in the GR4j basic version: the maximum capacity of the soil moisture ac-

counting store x1, a groundwater exchange coefficient x2, the maximum capacity of routing storage

x3, and a time base for unit hydrographs x4. A three-parameter snow module based on catchment-

average areal temperature (Ruelland et al., 2011, 2014) was activated to account for the contribution315

of snow to runoff from the catchments. Below a temperature threshold x5, a fraction x6 of precip-

itation is considered as snowfall; this fraction feeds the snow reservoir. Above the threshold x5, a

fraction x7, weighted by the difference between the daily temperature and the threshold x5, is taken

from the snow reservoir to represent snowmelt runoff.

3.2.2 Optimization of hydrological simulations320

The model parameters were calibrated and the simulation performances were analyzed by com-

paring simulated and observed streamflow at a 10-day time step (averaged from daily streamflow

outputs) in a multi-objective framework. This time step was retained because it constitutes an inter-

esting compromise for CCIS on water resources, between a daily time step useful to represent small

runoff effects and a monthly time step too coarse to capture hydrological variability. The following325

objectives were considered: (i) the overall agreement of the shape of the hydrograph via the Nash-

Sutcliffe efficiency (NSE) metric (Nash and Sutcliffe, 1970); (ii) the agreement of the low flows via

a modified, log version of the NSE criterion; and (iii) the agreement of the runoff volume via the

cumulated volume error (V EC) and the mean annual volume error (V EM ).

NSE = 1−
{∑N

t=1

(
Qt

obs−Qt
sim

)2
/
∑N

t=1

(
Qt

obs−Qsim

)2}
(10)330

NSElog = 1−

{∑N
t=1 (log(Q

t
obs +0.1)− log(Qt

sim +0.1))
2∑N

t=1

(
log(Qt

obs +0.1)− log(Qobs)
)2

}
(11)
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V EC =

(∑Nyears

y=1
V y
obs−

∑Nyears

y=1
V y
sim

)
/
∑Nyears

y=1
V y
obs (12)

335

V EM =
∑Nyears

y=1
(|V y

obs−V
y
sim|/V

y
obs)/Nyears (13)

where Qt
obs and Qt

sim are, respectively, the observed and simulated discharges for the time step t, N

is the number of time steps for which observations are available, Qy
obs and Qy

sim are the observed

and simulated volumes for year y, and Nyears is the number of years in the simulation period.

The NSE criterion is as well-known form of the normalized least squares objective function. Per-340

fect agreement between the observed and simulated values yields an efficiency of 1, whilst a negative

efficiency represents a lack of agreement worse than if the simulated values were replaced with the

observed mean values. The optimal value of the V EC and V EM criteria is zero. The latter criteria

express the relative difference between observed and simulated values. This multi-objective cali-

bration problem was transformed into a single-objective optimization problem by defining a scalar345

objective function Fobj that aggregates the different objective functions:

Fobj = (1−NSE)+ (1−NSElog)+ |V EC |+V EM (14)

Calibration was performed in a 7D parameter space by searching for the minimum value of Fobj .

To achieve this high-dimensional optimization efficiently, the shuffle complex evolution (SCE) al-

gorithm was used (Duan et al., 1992).350

3.2.3 Cross-calibration and validation of hydrological model

To test the performance of the hydrological model in contrasted conditions, the calibration-validation

periods were sub-divided using a differential split-sample testing (DSST) scheme (Klemeš, 1986).

Thus, two sub-periods of 10 years each divided according to the median annual precipitation for the

period were used either for calibration or for validation.These two sub-periods define dry and wet355

year periods.

For the cross calibration-validation process, three calibration-validation periods (for the whole

period, for dry years, and for wet years) were used to test the performance of the hydrological model

in contrasted conditions. A 2-year warm-up period was included at the beginning of each period to

attenuate the effect of the initialization of storage. In addition, hydrological years starting in typical360

low-flow period in the Mediterranean region (from September to August) were used in the modeling

process to minimize the boundary limits of the model reservoir. The quality of the simulations was

then assessed by comparing the “optimal” parameter set for each calibration period. For each basin,

three simulations based on the three sets of parameters were compared (see Fig. 4). The four criteria

employed for the multi-objective function (NSE, NSElog, V EC and V EM ) were used to assess365

the quality of the simulations. Fobj is optimal at 0, and considered satisfactory below 1.
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The hydrographs in figure 4a illustrate the ability of the model to correctly simulate runoff in

the basins, according to the parameter sets used for the calibration periods: “whole period”, “dry

years” and “wet years”. All Fobj values were below 1, underlining the quality of the simulations.

Whatever the calibration period (whole period, dry or wet years), the objective function Fobj did370

not vary more than 0.1 over the validation period (except the Segre basin in the wet year validation

period). This shows the stability of the simulations when the model is calibrated under contrasted

hydro-climatic conditions.The lower quality of the simulations for the Segre basin may be attributed

to: (i) complex snowmelt processes that are not well represented by the hydrological model; (ii)

insufficient quality of data inputs due to the limited number of precipitation and temperature gauges375

(e.g. only 2 precipitation gauges on a total of 6 stations are included within the Segre basin while

10 stations for the Irati basin); (iii) the very particular hydro-climatic context characterized by a

mountainous climatic barrier, which limits Atlantic influence and reduces the quantity of solid and

liquid precipitation supplying the streamflow inside the basin. Although the hydrological simulations

were less efficient in this basin than in the others, we found them sufficiently correct to provide an380

additional basin for the inter-comparison of the SDMs through a regional analysis in different hydro-

climatic contexts.

Figure 4b shows that the parameter sets are quite stable whatever the calibration period used for

the basins. However, the model parameters were normalized with respect to the lower and upper

limits of the parameters obtained. As a result, the more the bounds are widened, the less the normal-385

ized parameters are able to account for the differences between the calibration periods. Nonetheless,

the relative stability of the normalized parameters underlines the robustness of the model under con-

trasted climatic conditions. However in the Segre basin, differences on the GR4j native parameters

reflect the difficulty to correctly simulate runoff in this basin including NSE values of around 0.7.

Snow module parameters (x5, x6 and x7) in the Herault and Loukkos basins are less stable but the390

contribution of snowfall in these basins is rather small.Finally, the low drift of the parameters and

the relatively homogeneous simulations obtained whatever the calibration period led us to retain the

parameter set from the whole period to simulate streamflow under the various climate datasets. To

facilitate interpretation and to limit biases in hydrological modeling, the simulated streamflow pro-

duced with the best parameter set for the “whole period” calibration period was used as a benchmark395

(instead of the observed data) for the comparison between the climate datasets in the following steps.

3.3 Comparing downscaling methods from the point of view of water resources

Based on the preliminary calibration of the hydrological model, runoff simulations forced by sta-

tistically downscaled climate simulations were compared using hydrological indicators that reflect

the main issues of impact studies on water resources. Figure 5 illustrates the different steps of this400

approach.
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First, three low-resolution climate datasets (NCEP, CNRM and IPSL) were downscaled using

three different statistical methods (ANALOG, CDFt and SWG) to produce new high-resolution

hydro-climatic datasets (P and T). Daily PE time series were calculated using the same formula

(Oudin et al., 2005) as that used to estimate PE from observed temperature.405

After preliminary calibration over the whole reference period under observation-based climate in-

puts, the hydrological model was then forced with the nine sets of downscaled hydro-climatic data

(high resolution) and the three raw datasets (low resolution) to produce an ensemble of 12 runoff

simulations. These simulations were compared to a reference runoff simulation (REF) correspond-

ing to the model ouputs over the whole reference period calibrated with observation-based climate410

inputs. This comparison relies on hydrological indicators that are relevant to the water resource

challenges according to four complementary aspects of the hydrograph: volume of the water flow,

interannual and seasonal variability of runoff, and streamflow distribution. The water flow volume

was assessed according to the cumulated volume error (V EC , see Eq. 12). Interannual variability

was assessed according to a root mean square error applied to the sorted annual flows. This crite-415

rion was then normalized by dividing the RMSE value by the mean of annual observed discharge.

Choosing a normalized root mean square error criterion (NRMSE, Eq .15) applied to this distribu-

tion gets round the non-synchronicity of the simulations. Note that applying the NRMSE criterion to

sorted flows may favor high flows. Seasonal variability was assessed using a NSE criterion (Eq. 10)

applied to the mean 10-day discharge series. The last comparison criterion was based on the flow420

duration profile, divided between high and low flows. High flows correspond to daily flows exceed-

ing the 95th percentile (> Q95), i.e. the 5% highest daily flows or flows exceeded 5% of the time.

Low flows correspond to daily flows not exceeding the 80th percentile (< Q80), i.e. the 80% lowest

daily flows or flows exceeded 20% of the time. This value was deliberately chosen to cover a wide

range of flows to enable a meaningful distinction between simulations while correctly representing425

low flows. Both high and low flows were evaluated using a NSE criterion applied to the high and

low flow time series.

NRMSE =

√∑N
i=1 (Xobs,i−Xsim,i)

2
/N

Xobs

(15)

where Xobs is observed values and Xsim is simulated values at time/place i. Xobs is the mean of

observed values.430

The 12 runoff simulations were compared via these five hydrological indicators. Finally, the

downscaling methods (from the runoff simulations forced by the downscaled climate time series)

were ranked using the same indicators. The median of the related criterion (V EC , NRMSEINT ,

NSESEAS , NSEHF or NSELF ) in the four study areas made it possible to rank the downscaling

methods according to their respective performances in a given configuration “climate data – indica-435

tor”. Next, the simulations were combined by computing the median of the criteria values of the four

basins and the three climate datasets to make it possible to rank them. Finally, an additional criterion
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(Eq. 16) was used to aggregate the different goodness-of-fit criteria to provide an overview of the

performance of the different downscaling models driven by distinct climate datasets. The lower the

aggregation criterion, the better the ranking.440

IAGG = |V EC |+NRMSEINT +(1−NSESEAS)+ (1−NSEHF )+ (1−NSELF ) (16)

For the remainder of this paper, REF refers to the simulated runoff with the parameters calibrated

over the whole period based on the observed climate data. RAW refers to the simulations with raw

low-resolution climate data from NCEP/NCAR reanalysis or GCMs outputs over the reference pe-

riod. ANA, CDFt and SWG refer to the simulations based on climate data downscaled via ANALOG,445

CDFt and SWG methods respectively.

4 Comparative analysis of hydrological responses to downscaled climate forcings

4.1 Water volumes

Water volumes were assessed through the cumulative volume error, i.e. the error in the percentage

of the cumulated volume of water flow over the whole period (Table 2). ANALOG-based simula-450

tions generally reproduced water volumes better than the other simulations. Nevertheless, differences

appeared depending on the input data used (NCEP, CNRM or IPSL) and on the basin concerned

(Fig. 6). Except in the Loukkos basin and for CNRM in the Herault and Segre basin, RAW-based

simulations were always improved by downscaling. CDFt-based simulations were slightly better

than ANALOG-based simulations in reproducing cumulated volume of water with V EC absolute455

values averaged between the four basins, with 12% for CDFt and with 14% for ANALOG. In addi-

tion, the results of ANALOG-based simulations were more constant without outlier criterion values.

Criterion values can be considered as outliers when V EC is greater than 50%, which may be seen as

an unacceptable error. In the Loukkos basin, simulations provided many outliers with both SWG and

CDFt. The CDFt method improved the results according to the V EC criterion better than the other460

models. SWG-based simulations ranked first for both criteria with NCEP as inputs, but performed

poorly with GCMs.

4.2 Interannual variability of streamflow

The ability to reproduce interannual runoff variability was assessed through a root mean square error

(NRMSEINT ) criterion applied to the sorted time series of annual discharge and normalized by465

dividing RMSE by the mean annual discharge of the reference (see Fig. 7). In other words, for each

basin, the downscaling method and input data, and the annual discharge values were sorted from the

highest value to the lowest one to generate new decreasing time series on which the NRMSE criterion

was calculated with respect to the sorted reference time series. The results show that the interannual

variability of runoff is correctly reproduced by the simulations based on most of the downscaled cli-470
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mate datasets, particularly ANALOG- and CDFt-based simulations in which NRMSE values rarely

reached more than 30%. On the whole, RAW-based simulations were improved by downscaling,

especially when driven by NCEP and IPSL, except for SWG-based simulations driven by GCMs

(Fig. 7). Indeed, when driven by NCEP, the SWG method reproduced interannual variability better

than the other methods for three of the four basins, but produced poor results with GCMs, in which475

case ANALOG- and CDFt-based simulations generally performed better.

4.3 Seasonal variability of streamflow

Seasonal variability was assessed using an NSE criterion (Eq. 10) applied to the mean 10-day dis-

charge series. In most cases, the downscaling methods improved the reproduction of the seasonal

variability of streamflow compared to the low-resolution raw datasets (see Fig. 8). This was particu-480

larly true of NCEP reanalyses, for which downscaled inputs considerably improved the simulation of

the seasonal dynamics more realistically than with RAW-based simulations. Although the ANALOG

method did not systematically match the best NSE values, on the whole, the method reproduced the

seasonal variability better than CDF-t and SWG. The CDFt method performed particularly well with

GCMs as inputs, but proved to be unsuitable with NCEP under the particular hydro-climatic condi-485

tions that prevail in the Segre basin. Except with NCEP, SWG-based simulations reproduced poorly

the seasonal variability of runoff, due notably to systematic overestimation of high-flow events.

4.4 Streamflow distribution: high and low flows

Streamflow distribution was divided between high flows, i.e. the 5% highest daily flows, and low

flows, i.e. the 80% lowest daily flows. Both were evaluated using a NSE criterion applied to the490

high and low flow time series. On the whole, the downscaling methods improved the reproduction

of the distribution of sorted high flows (Fig. 9a). However, it should be noted that the downscaled

simulations with CNRM data deteriorated raw data in the Segre basin. Results showed that ANA-

LOG generally reproduced the 5% highest flows best; the NSE values were quite stable and never

below 0.47. The CDFt-based simulation results were very close to those obtained with ANALOG,495

with equivalent scores when NCEP or GCM data were used as inputs. Nevertheless, it should be

noted that ANA and CDFt reproduced less accurately high flows in the Segre basin than in the other

basins. This can be explained by a lower efficiency of the hydrological model in this area as shown

in the section 3.2.3., thus leading to a reference simulated streamflow more uncertain than in the

other basins. The SWG method reproduced high flows well with NCEP data as inputs, but not with500

GCM data.

Figure 9b shows the distribution of sorted low flows and the associated NSE criterion. Moreover,

applying a NSE criterion to the sorted low flows tended to emphasize the differences between the

simulations and thus made it easy to distinguish simulations that reproduced low flows poorly. The

downscaling methods improved the representation of the 80% lowest flows in all basins, except505
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for the SWG method with GCM data used as inputs. In general, the best results were obtained from

ANALOG-based simulations, with NSE values always above 0.81. The CDFt-based simulations per-

formed significantly better when forced with GCMs than with NCEP. The SWG-based simulations

were unable to reproduce low flows when GCMs data were used as inputs.

5 Discussion and conclusions510

The aim of this study was to test the ability of different statistical downscaling climate models

to provide accurate hydrological simulations for use in climate change impact studies (CCIS) on

water resources. To get round the constraints represented by the inherent characteristics of each cli-

mate model, we compared three statistical downscaling methods applied on three low resolution

raw datasets: NCEP/NCAR reanalysis data and two GCM data (CNRM and IPSL). The three down-515

scaling methods were an analog method (ANALOG), a stochastic weather generator (SWG) and

the “cumulative distribution function – transform” approach (CDFt). This allowed us to analyze the

sensitivity of runoff modeling at the catchment scale to 12 climatic series (three raw low-resolution

datasets and nine downscaled high-resolution datasets). The sensitivity analysis was based on a pre-

viously calibrated hydrological model validated with local hydro-climatic observed data over a 20-520

year reference period. The model simulations served as a benchmark for the comparison between

the raw and downscaled datasets from NCEP reanalysis and GCM outputs over the same period.

The comparison with the runoff simulations forced with raw and downscaled climate datasets was

based on hydrological indicators describing the main features of the hydrograph: the ability to re-

produce the cumulated volume of water flow, interannual and seasonal variability of runoff, and525

the distribution of streamflow events, including high and low flows. To account for uncertainty re-

lated to the spatial variability of the downscaled climate simulations, this approach was applied over

four western Mediterranean basins of similar size but that represent a with a wide range of hydro-

meteorological situations.

The proposed sensitivity analysis enabled us to identify the strengths and weaknesses of different530

statistical downscaling methods with respect to the sensitivity of runoff simulations to low-resolution

and high-resolution downscaled climate datasets (see Fig. 10). Our study revealed the performances

that could be expected from downscaling techniques applied to large-scale datasets to provide accept-

able hydrological simulations. To complement the usual calibration/validation exercises conducted

by climatologists for assessing the suitability of SDMs based on predictors and reanalyze grids (see535

e.g. Vaittinada Ayar et al., 2015), we focused on a validation protocol directly based on streamflow

thus allowing the combined impacts of the downscaled precipitation and temperature inputs to be

considered through the hydrological response.

On the whole, the ANALOG-based simulations performed well in all the situations tested, what-

ever the large-scale climate dataset used as inputs (NCEP or GCMs), notably in reproducing in-540
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terannual and seasonal runoff and low flows. ANALOG-based simulations were closely followed

by CDFt-based simulations, notably when GCM outputs were used, but with a lower variability

of scores than with ANALOG. To the contrary, the results clearly showed that the SWG method

should not be used ‘as is’ in climate change impact studies on water resources. Indeed, although the

SWG-based simulations were satisfactory when based on the NCEP large-scale climate dataset, they545

significantly underperformed when based on GCM outputs. Biases of the GCM data with respect to

the NCEP/NCAR reanalyses may explain the poor performances of the SWG method. As SWG is

calibrated with “perfect” predictors from reanalyses, its application to biased GCM predictors led to

unsatisfactory SWG-based hydrological simulations. To make the SWG method more applicable in

climate change impact studies on runoff, one solution could be correcting the GCMs predictors with550

respect to reanalyses, as done for example by Colette et al. (2012) before performing a dynamical

downscaling.

Although the ANALOG method appeared to be the best SDM in this study, it may suffer from

certain limitations when used in a climate change context, notably when downscaling GCM pro-

jections over the 21st century. One main limitation is that ANALOG is not able to provide suitable555

simulations for the extreme events if such events increase in intensity in the future (see e.g. Teng

et al., 2012). Indeed, by construction, as ANALOG works by resampling the calibration set, it never

supplies downscaled values beyond the range of the calibration reference dataset.

On the other hand, although CDFt-based simulations were less consistent than ANALOG simula-

tions, they were more sensitive to climate forcing and also more sensitive to the chosen indicators.560

The CDFt method was particularly appropriate when we focused on the cumulated volume, seasonal

variability and high flows. In addition, it should be noted that the CDFt method is the most parsi-

monious technique since it generally needs only one variable as predictor. This could obviously be

considered an advantage since the complexity of CDFt is very low. However, this low level of com-

plexity could mean that some climate information needed to drive the CDFt more efficiently will be565

missing. In that sense, one possible improvement could consist in incorporating additional covariates

in CDFt, as done by Kallache et al. (2011). Nevertheless, the approach including those additional

predictors means that this conditional CDFt has to be calibrated on reanalyses or, at a minimum,

on the outputs of a climate model of which the day-to-day evolution of large-scale weather states

matches that of the real world. This could be a limitation, since additional biases may appear with570

those constraints.

The next step will be exploring the potential impact of climate change on the runoff in the basins

studied here. To this end, an ensemble approach will be proposed based on the construction of high-

resolution climate scenarios using different climate models, gas emission scenarios, and downscaling

techniques. In view of the acceptable hydrological simulations obtained with ANALOG and CDFt575

methods, it may be useful to develop high-resolution climate forcings downscaled with these two

methods in order to account for the uncertainty of the downscaling, as recommended by some authors
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(e.g. Chen et al., 2011, 2012) for applications in climate change impact studies. Our study also

showed the benefits of evaluating the relevance of SDMs in a given hydro-climatic context using a

suitable validation protocol. Indeed, selecting unsuitable downscaling methods, such as SWG with580

GCM outputs, can expand the range of uncertainty linked to the range of SDMs.

Furthermore, our study showed that hydrological responses were sensitive to the climate datasets

used as inputs. Indeed, despite the significant contribution of the downscaling methods, hydrologi-

cal simulations are better from reanalysis data than from GCM data. This demonstrates the limits of

GCMs to reproduce current climatic conditions and therefore the associated hydrological responses.585

This point raises the question about the use of GCM, and thus about the need to correct them af-

terwards for the evaluation of future hydrological impact in CCIS. Finally, although it is commonly

acknowledged that the uncertainty resulting from climate modeling (GCMs, gas emission scenarios

and downscaling methods) is highest in a context of climate change (e.g. Wilby and Harris, 2006;

Arnell, 2011; Teng et al., 2012), it should be noted that the uncertainty stemming from hydrological590

modeling may also be high. Several authors (e.g. Benke et al., 2008; Brigode et al., 2013; Hublart

et al., 2015; Ruelland et al., 2015) showed that the choice of the hydrological model (structural

uncertainty) and its parameterization (parameter uncertainty) could cause significant variability in

runoff simulations. Consequently, further analyses of the applicability of the model parameters in a

non-stationary context and with different calibration criteria are needed before the model is used in595

future climate conditions.

Similarly, the different sources of uncertainties and their propagation in the hydrological projec-

tions need to be evaluated. To this end, a standard ensemble approach based on various climatic,

downscaling and hydrological models may not be sufficient, since using many models without prior

validation of their efficiency can lead to very large uncertainty bounds due to the poor quality of600

some models in the ensemble framework. Minimizing uncertainty thus requires selecting models

that perform reasonably well over the reference period in the context of current climate. Although

this cannot guarantee the quality of the models for future conditions, we believe it is an essential

step to provide more reliable and relevant hydrological projections.
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Table 1. Selected predictors according to the SDM and the predictand. These variables are: the dew point at 2m

(D2), the temperature at 2m (T2), the sea level pressure (SLP), the relative humidity, the zonal and meridional

wind components, the geopotential height at 850 hPa pressure level (R850, U850, V850 and Z850) and the

large-scale precipitation (PR). The pre-processing (PC) of the predictors depends on the SDM.

SDM Predictand D2 SLP T2 U850 V850 Z850 PR

ANA
PR Field of

anomalies

Field of

anomalies

Field of

anomalies

Field of

anomalies

Field of

anomalies

Field of

anomalies

-

T - Field of

anomalies

Field of

anomalies

Field of

anomalies

Field of

anomalies

Field of

anomalies

-

CDFt
PR - - - - - - Raw

T - - Raw - - - -

SWG
PR 2 first PCs 2 first PCs 2 first PCs 2 first PCs 2 first PCs 2 first PCs -

T - 2 first PCs 2 first PCs 2 first PCs 2 first PCs 2 first PCs -

Table 2. Cumulative volume error (V EC ) between hydrological simulations based on downscaled or raw cli-

mate data (ANA, CDFt, SWG, RAW) and the reference (REF). Values are expressed in % of difference in the

total volume of water flowed during the period.

NCEP CNRM IPSL

RAW ANA CDFt SWG RAW ANA CDFt SWG RAW ANA CDFt SWG

Herault -98% -13% 18% -13% -12% -17% 14% 42% -53% -13% 2% 57%

Segre -77% -15% 38% -18% -4% -14% 1% 49% -90% -20% 12% 61%

Irati -71% -9% 19% -4% 65% 6% 21% 34% -70% -2% 21% 54%

Loukkos -79% -31% 7% -10% -96% -39% -14% 124% -100% -20% 9% 195%

Yiou, P., Salameh, T., Drobinski, P., Menut, L., Vautard, R., and Vrac, M.: Ensemble reconstruction of

the atmospheric column from surface pressure using analogues, Climate Dynamics, 41, 1333–1344,

doi:10.1007/s00382-012-1626-3, http://dx.doi.org/10.1007/s00382-012-1626-3, 2013.
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Figure 1. Study catchments (Herault, Segre, Irati and Loukkos) in the western Mediterranean region with their

topography and mean seasonal variability in precipitation (P) and discharge (Q) for the period 1986–2005.
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Figure 2. Precipitation (IP = (Py −Py)/σP ) and temperature indices (IT = (Ty −Ty)/σT ) applied on the

four basins over the 1986–2005 period. The grey lines highlights years when the signs of the indices are the

same for the four basins. Py is the annual precipitation for the year y, Py is the mean of the annual precipitation,

σP is the standard deviation of the annual precipitation. Ty is the annual temperature for the year y, Ty is the

mean of the annual temperature, σT is the standard deviation of the annual temperature.
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Figure 3. Schematic diagram of the hydrological model GR4J. Adapted from Perrin et al. (2003); Ruelland

et al. (2011).

Figure 4. Cross calibration/validation of the hydrological model. (a) Seasonal representation (from September

to August) of simulated and observed runoff during the whole period (WHO, first row), dry years (DRY, second

row) and wet years (WET, third row) according to parameter sets optimized respectively for the whole period

(in grey), dry years (red) and wet years(yellow). Fobj (Fobj = (1−NSE)+(1−NSElog)+ |V EC |+V EM )

is computed on daily series. Fobj is optimal at 0, but considered satisfactory below 1. (b) Normalized model

parameters obtained over the three calibration periods.
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Figure 5. Flow chart illustrating the method used to compare the three downscaling methods through a hydro-

logical sensitivity analysis.

Figure 6. Comparison of the downscaling methods according to the cumulative volume error (V EC ) used as

criterion to compare the downscaling methods applied to NCEP, CNRM and IPSL climate inputs in the four

basins. The smaller the absolute value of the criterion, the better the simulation.
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Figure 7. Comparison of the sorted annual discharge simulated using REF data, RAW (NCEP or GCM) data,

and the three downscaling methods (applied to NCEP, CNRM and IPSL) for each basin. The NRMSE values

above each panel represent a root mean square error applied to the sorted time series of annual discharge

normalized by dividing RMSE by the mean annual discharge of the reference time series. The best values are

in bold.
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Figure 8. Comparison of seasonal variations in streamflow simulated using REF data, RAW (NCEP or GCM)

data, and the three downscaling methods (applied to NCEP, CNRM and IPSL) for each basin. The NSE values

for the mean 10-day discharge between REF and the simulation concerned are given above each panel. The best

values are in bold.
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Figure 9. Comparison of (a) the 5% daily high flows and (b) the 80% daily low flows simulated with REF data,

RAW (NCEP or GCM) data, and the three downscaling methods (applied to NCEP, CNRM and IPSL) for each

basin. The NSE values calculated on the 5% high and the 80% low flows are indicated on the right in each

panel. NSE values higher than 0.5 for high flows and 0.8 for low flows are in bold.
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Figure 10. Efficiency of the different climatic datasets to reproduce different aspects of the hydrographs from

the four basins over the period 1986–2005: comparison of low resolution datasets (RAW) and high reso-

lution datasets downscaled using the ANALOG, CDFt or SWG methods forced by NCEP/NCAR reanaly-

ses and outputs from the CNRM and IPSL. The bars represent the median of the indicator values of the

four basins. The smaller is the bar, the better the result. The row “Median of NCEP-CNRM-IPSL” corre-

sponds to the median of the four basins for the three large-scale climate datasets (NCEP, CNRM and IPSL).

The column “Aggregation of indicators” sums the six indicators values according to the following equation:

IAGG = |V EC |+NRMSEINT +(1−NSESEAS)+ (1−NSEHF )+ (1−NSELF ).
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