
HESS 2015-325  

“Parameter Regionalization of a Monthly Water Balance Model for the Conterminous 

United States” 

Major Manuscript Changes 

Pg. 2, Line 1-2 (Abstract):  removed “and model uncertainty information” 

1. Introduction 

Pg. 4, lines 81-89, 98:  Re-formatted text to include some recent work recommended by referee 2 

Pg. 5, lines 110-111:  Removed the sentence “These methods ignore parameter interaction and 

often assume that model algorithms have linear responses to different parameters (Cuo et al., 

2011)” 

2.1 Monthly Water Balance Model 

Pg. 6, lines 155-160:  Removed definitions and descriptions of parameters and their ranges. 

Pg. 7, lines 177-178:  Substituted reference for url.  Added reference (USEPA and USGS, 2010) 

to references list. 

Pg. 7, lines 171:  Added “Processes influenced by” to Figure 1 Caption 

2.2  Fourier Amplitude Sensitivity Test 

Pg. 8, lines 200, 217, 218; Pg. 9 lines 221, 230:  Changed “first order partial variance (FOPV)” 

to a more meaningful term. 

Pg. 8, line 204:  deleted the statement “requiring much less information and parameter sets than 

other global methods 

Pg. 8, lines 205-206:  Added the sentence for seasonal adjustment factors. 

Pg. 8, line 211:  Deleted Fig.3 reference (Fig. 3 is replaced by a different figure). 

Pg. 9, lines 222-224:  Deleted caption for old Fig. 3 

Pg. 9, lines 225-228:  Simplified sentence based on Ref. 1 recommendation. 

Pg. 9, lines 230-235:  Clarified information on the number of FAST runs. 

3  Parameter regionalization procedure 

Pg. 10, lines 252-254:  Added Fig. 3 (Schematic Flowchart) 



3.1 Parameter sensitivities 

Pg. 10, lines 265:  Deleted “The patterns of” to start sentence  

Pg. 11, lines 299-302:  Added details for FAST results 

Pg. 12, line 305:  Changed FOPV to parameter sensitivities for caption of Figure 5. 

3.2  Calibration regions 

Pg. 12, lines 312-315:  Modified this sentence to add clarification on the HRU grouping 

procedure 

Pg. 12, lines 318-333:  Substantially modified this paragraph to better explain the derivation and 

purpose of the two HRU classifications based on sensitivity analysis results 

Pg. 13, lines 335-336:  Changed reference for this sentence to Tang et al., 2007 from Pianosi et 

al., 2015 (removed Pianosi et al., 2015 from reference list) 

Pg. 13, lines 342-333, 345-347:  Modified text to add some clarification to additional 

classification steps. 

Pg. 13, lines 349-351:  Moved this sentence from earlier in the paragraph the end 

Pg. 13, Lines 352-356:  Modified figure caption 

3.4.2 Grouped streamgage calibration 

Pg. 16, lines 422-24:  Added sentence defining USGS Reference streamgages 

Pg. 16-17, lines 434-441:  Added equation (Eq. 1) for the objective function used for grouped 

calibration. 

Pg. 17, line 444:  changed “variable” to “streamflow” 

Pg. 17, lines 451-453:  Added sentences clarifying how 25% error bound for SWe worked 

Pg. 17, lines 456-457:  added comment re-call this papers definition of a sensitive parameter 

Pg. 17, line 460:  deleted “on a monthly basis” 

4.2.2 Nash-Sutcliffe efficiency 

Pg. 21, lines 571-573:  modified caption for figure 14. 

5.1  Regionalized Parameters 

Pg. 22, lines 582-586:  Added some more details to help explain the results of Fig. 13 



6 Conclusions 

Pg. 24, line 638:  removed “and model uncertainty information” 

7  References 

Added the following references: 

Pg. 25, lines 688-690: 

Bárdossy, A., Huang, Y., and Wagener, T.:  Simultaneous calibration of hydrological models in 

geographical space, Hydrol. Earth Syst. Sci. Discuss., 12, 1123-11268, doi:10.5194/hessd-12-

11223-2015, 2015.  

Pg. 31, lines 806-808: 

Qamar, M.U., Ganora, D., and Claps, P.:  Monthly Runoff Regime Regionalization Through 

Dissimilarity-Based Methods, Water Resour. Manag., 29, 4735-4751, doi:10.1007/s11269-015-

1087-7, 2015. 

Pg. 32, lines 844-847: 

USEPA (United States Environmental Protection Agency) and USGS (United States Geological 

Survey):  NHDPlus User Guide, available at ftp://ftp.horizon-

systems.com/NHDPlus/documentation/NHDPLUS_UserGuide.pdf (last access 12 Nov 2014), 

2010. 

Removed the following references: 

Pg. 31, 804-805: 

Pianosi, F., Sarrazain, F., and Wagener, T.:  A Matlab toolbox for Global Sensitvity Analysis, 

Environ. Modell. Softw., 70, 80-85, doi:10.1016/j.envsoft.2015.04.009, 2015. 

Figures 

Fig. 3, Pg. 37 – removed previous fig. 3 (FAST parameter waves), replaced with schematic 

flowchart of Section 3 



 Fig. 5, Pg. 40 – modified y-axis to “Param Sens.” From “FOPV” 
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Reviewer Minor Points: -p. 10024, lines 1-2 “to transfer ... model uncertainty informa-
tion”. What type of uncertainty information is transferred and how? This is mentioned
here and in the conclusion but it is not clearly discussed throughout the paper.

AB: Mean Monthly errors for each calibration region (visualized in Figure 8 and 10a)
can be estimated and added back to simulated streamflow estimates at ungaged lo-
cations as a source of model uncertainty. This is not explicitly discussed or applied in
detail in this paper, so authors may need to add more detail at one location of text or
remove.
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-p. 10026: lines 28: “these methods ignore parameter interaction, and often assume
that model algorithms have linear responses to different parameters”. I think this sen-
tence is misleading and I would suggest to delete it. Parameter interactions can be
evaluated in local SA by computing second-order derivatives (see for example Nor-
ton, 2015). Also, when estimating local sensitivities the linearity assumption finds its
rationale in the Taylor series expansion and hence it is quite reasonable.

AB: Authors agree to removing sentence.

-p. 10028, line 25 to the end of page: this list of parameter names and meaning does
not add much to the information provided in the Table, I would probably avoid it.

AB: Authors agree, parameter definitions and functions are also well-explained in the
cited McCable/Wolock papers listed in the reference section. Sentence at p. 10028,
lines 23-24 “Table 1 lists. . .”, and climate adjustments sentence beginning with “The
Ppt_adj and. . .” (p. 10029, lines 2-3) should be moved to the concluding sentence of
the opening paragraph of Section 2.1. The remaining sentences can be removed.

-p. 10030, line 8: the term FOPV is not particularly self-explaining to readers not
familiar with GSA. I would explain what it is (“contribution to output variance from ...”)

AB: Authors agree. The sentence “FAST is a variance-based global sensitivity algo-
rithm that estimates the first-order partial variance (FOPV). . .” can be re-worded to
“FAST is a variance-based global sensitivity algorithm that estimates the contribution
to output variance. . .” . “Output Variance’ should replace FOPV in text, including the
Y-axis labels for Figure 5 will be re-named to “Output Variance” with a single axis label.

-p. 10030, line 12: “much less information and parameter sets”. What do you mean by
“information”? Unclear. As for "parameter sets, it is possibly less ambiguous if you call
them parameter samples or even directly model evaluations

AB: This second half of the sentence is pretty ambiguous. The application of FAST
discussed in the paper used a larger number of parameter sets than the minimally
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sufficient number suggested by R, so the sentence should probably be removed.

-p. 10032, lines 12-13: “The patterns of ...”. Sentence needs rewording

AB: Agreed. Change to: “Tsnow, Train, and Meltcoef all share similar patterns of areas
with higher sensitivity across the CONUS.”

-p. 10032, lines 12-13: “The patterns of ...”. Sentence needs rewording

AB: Agreed. Change to: “Tsnow, Train, and Meltcoef all share similar patterns of areas
with higher sensitivity across the CONUS.”

-p. 10033, line 25: “While this idea...”. What idea? The one described in the previous
sentence? But then is it really in contrast with the one illustrated on lines 27-28? Please
clarify.

AB: This is a good point on semantics. The emphasis should be on grouping proximate
areas based on similar model behavior, rather than physiographic characteristics. The
authors suggest this sentence be changed to: “This idea is rooted in the hypothesis that
geographically proximate HRUs share similar forcings and conditions, and thus will be-
have similarly. This application uses similarity in SA results as a basis for organization,
rather than similarity in physiographic characteristics.”

-p. 10034, lines 11-13: citation of Pianosi et al., 2015 does not seem to be appropriate
here. That paper introduces a toolbox for Sensitivity Analysis but it does not discuss the
issue of setting the threshold for sensitive and non-sensitive parameters. The threshold
issue is (partially) discussed in Tang et al. (2007). Pianosi et al. have another paper
under review which is more focused on the threshold issue, however it has not been
published yet. The authors might cite that paper when it will be published (title is “Global
Sensitivity Analysis of environmental models: Convergence and validation”, journal is
Environmental Modelling and Software).

AB: We have referenced Tang et al (2007) already in the paper, so we will replace
Painosi et al 2015 with Tang et al (2007). Thanks for the heads up on the upcoming
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paper.

-p. 10037, line 17: Please give a very brief definition of a reference streamgage.

AB: Reference quality stramgages are judged to be largely free of human alterations.
From Kiang et al. (2013), these sites were “categorized as either reference quality or
nonreference quality by calculating a hydrologic disturbance index (presence of dams,
change in reservoir storage, number of canals, road density, proximity to major pollu-
tant discharge site, estimates of water withdrawals, and fragmentation of undeveloped
land), reviewing historical digital maps and imagery for evidence of hydrologic alteration
and human activity, and reviewing comÂňments in USGS annual water data reports
for information on regulation or diversions.”. We will paraphrase this to: “Reference
streamgages are USGS streamgages deemed to be largely free of anthropogenic im-
pacts and flow modificaitons, and can subsequently be used for estimation of natural
flow statistics (Falcone, 2010; Kiang et al., 2013). ”

-p. 10038, line 9: “simulated streamflow” should be “simulated variable” (since one of
the four is SWE and not runoff)

AB: Authors agree to the suggested change.

-p. 10038, line 20: Recall here that a parameter is deemed insensitive if sensitivity
index is below 5%

AB: Authors agree to the suggested addition to text

-p. 10038, lines 21-23: “on a mean monthly based”. Unclear. Possibly it might just
be dropped, since it was already said that monthly variables are used to compute the
Zscores.

AB: Authors agree “mean monthly” should be removed from 21 and 23 since other
terms were used in the objective function.

-caption of Fig. 1: “model parameters used in..." Maybe better: “processes influenced
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by the model parameters used in...”

AB: Authors agree to the suggested change

-Figure 3: maybe not needed. Anyway, if maintained, vertical axis should show units
of measurements. Also, it would probably be better to show Drofac and Rfactor in a
separate panel.

AB: Between the two suggestions (Remove or make two panesl), authors would prefer
remove graphic (though Andy B. really likes this graphic).
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Author’s Responses to referee #1:

Reviewer Main Points:

-[1] The parameter regionalisation procedure could be explained more effectively. In
the first place, it would be good to have a schematic of the procedure to clearly see
what is the role, inputs and outputs of each step (sensitivity analysis, classification of
regions, individual calibration, grouped calibration, etc.).

AB: A schematic is a good idea. We will create an example for inclusion into the paper,
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as well as locations within the text where references to the schematic would be helpful.

-The structure of Sec 2-3-4 could be revised to better separate out the methodology
from the illustration of results. For instance, I find a bit odd that sensitivity analysis
results are presented in Sec. 3.1, before describing how they will be used in the pro-
posed methodology. Another example is the first paragraph of Sec. 4.1, which explains
why the individual streamgage calibration is needed, it would fit better in a “methods”
section rather than the “results”section.

AB: We built the main methodology presented in the paper based on the results from
the sensitivity analysis. Because we wanted to stress the independence of the sensi-
tivity analysis from the calibration and regionalization procedure, we pushed the sensi-
tivity analysis results to 3.1. The way sensitivity estimates are used for regionalization
(described on page 10034,line 7 onward) needs to be explained more clearly, espe-
cially since this is the most novel aspect of the proposed methodology. Specifically:

-What is the connection between the first and second classification? They are indepen-
dent from each other and then intersected to obtain the actual classification? Please
clarify

-Description of the second classification (lines 10-11) is also unclear. What are the
“unique combinations of parameter sensitivities”? How are they defined? What is their
meaning?

AB: Correct, the two classifications are independent. The first classification (p. 10034,
lines 6-9) derives regions based on hydrologic response units (HRUs) with unique com-
binations of magnitudes of the five parameter sensitivities (highest to lowest). The in-
tent is to identify geographic regions of similar model response or behavior based on
the numerical orders of the sensitivities.

AB: The second classification (p.10034, lines 10-11) identifies regions based on HRUs
with unique combinations of parameters with FAST-based parameter sensitivities that
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exceed 5% (of the cumulative 100%). The intent with the second classification is to
identify geographic regions with similar important parameters identified by the sensitiv-
ity analysis). The resulting polygons of these two classifications are merged to create
the final region classification.

-Be more specific on how the two classification approaches work. Sentence on lines
7-8 of page 10034 is too generic, does it mean that the parameter ranking is the same
in each region?

AB: Yes, all hydrologic response units (HRUs) identified within each region in classifi-
cation 1 (p. 10034, lines 6-9) have the same ranking of the 5 model parameters from
highest sensitivity to lowest sensitivity. Additionally, all HRUs within each region iden-
tified in classification 2 (p. 10034, lines 10-11) had the identical subset of parameters
which exceeded 5% from FAST.

-From lines 17-20, I understand that the sensitivity-based classification is further re-
fined using a more ‘conventional’ approach that looks at proximity and topographic
divides. How does this refinement step works? Does it introduce significant changes
in the classification? This is important to know in order to understand the value of the
proposed sensitivity-based classification versus proximity or topography-based classi-
fication.

AB: This more conventional approach was necessary because of the lack of stream-
gages available for calibration in some of the calibration regions. The density of the
stream gage network can be very sparse for some geographic regions of the U.S.,
especially in arid/semi-arid areas (see Kiang et al., 2013 in the discussion paper refer-
ence list). Following the “unsupervised” merging of the two classifications, the authors
conducted a “supervised” classification of regions with less than 3 gages, where these
regions where merged with geographically proximate regions with adequate stream-
gage representation that also shared the most similar parameter sensitivity results.

AB: The primary topographic divides utilized were topographically-derived boundaries
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from the NHDPlus or Hydrologic Unit Code boundaries (black lines in Figure 2). These
are sub-boundaries of both the model discretization and many USGS water resource
management efforts. We felt it was important to maintain these boundaries, especially
for the western United States where orographic climate effects are very important to
the hydrologic cycle.

-[2] Some of the numerical results are a bit surprising and should be double-checked.
In particular, in Fig. 5.a the fact that one parameter has sensitivity of exactly 100 and
all others of exactly 0 seems odd.

AB: For regions with homogeneous, sub-tropical type climatic conditions, such as the
Southeast, results such as Figures 5a and 5c were consistent across many of the ob-
jective functions we had used to measure parameter sensitivity with FAST (including
parameter sensitivity measured for NSE at select reference streamgages). In areas
such as the Lower Mississippi (Region 8, Figure 2), the amount of snowfall is negli-
gible, so the three parameters that control snowfall and snowpack accumulation have
negligible effect on total runoff. If there is minimal occurrence of snow in a region, then
snow parameters won’t be important, even in a complex model. For further discussion,
a colleague has submitted a paper to HESS that strictly examines results of FAST
applied to a 35-parameter daily streamflow model across the U.S.

-Also, the result of Figure 13 is very puzzling. As the authors note on page 10041 (line
27 onward), the groupNSE values are expected to be lower than the gageNSE values.
Figure 13 instead shows many cases were groupNSE is much larger than gageNSE. I
really struggle to believe that NSE can be increased so much and so often when using
a model calibrated with a different objective function. The only explanation I can think
of is that either the calibration algorithm in the gageNSE failed (for instance by getting
stuck in a local minimum or being terminated too early) or that the comparison is not
fair (for example that NSE refer to different time periods?). This needs clarification.

AB: What we wanted to emphasize with this plot is not a comparison of two calibration
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methods, but that the grouped calibration strategy that focuses on the sensitive param-
eters can provide just as much information as traditional NSE-based individual stream-
gage calibration. There is quite a bit of difference between the two calibration methods
compared: the individual gage calibration used the entire period of record for each
streamgage, while the grouped calibration uses an odd/even calibration/validation cali-
bration strategy, different objective functions are used (NSE versus multi-term weighted
objective function for the grouped calibration), and climate adjustments are derived for
each streamgage in the individual calibration, and for the entire region in the grouped
calibration.

Author’s response to remaining minor remarks

-p. 10030, lines 14-15: please justify why you do not incorporate the adjustment factors
in the FAST analysis

AB: We viewed the adjustment factors as more related to the forcing data itself and
independent from the model structure.

-p. 10031, lines 6-7 “parameter ranges were based...” Are these the ranges in Table 1
and already commented on p.10028, line 24? If so, just refer to the Table here.

AB: The parameters listed in Table 1 were the bounding ranges. We will make the
adjustment to the text.

-p. 10031, lines 7-9: What do you mean by “standard application”? Also, I suppose the
R package uses the equation N = 2Nharm max(!) + 1 to determine the minimal number
of runs. If so, better cite Cuckier et al (1973), which is where the formula comes from.
Also, please mention what is this number in your case, it would help readers to get an
idea of how computationally demanding is the proposed approach.

AB: “In standard application” is ambiguous and should be removed. We accept the
referee’s recommendations and the sentence on lines 8-10 should be re-worded to:
“The fast R package can determine the minimal number of runs necessary to estimate
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the output variance all parameters (Cukier et al., 1973). For our application we gener-
ated an ensemble of 1000 sets (above the minimal number of 71 suggested by fast) to
have the potential capability for further research into comparison of different sensitivity
analysis methods.”

-p. 10038, lines 1-4: The definition of the multi-term objective function is unclear. Are
the four terms summed up? Why considering both mean monthly runoff and annual
runoff (I would imagine that they convey the same information, the former being equal
to the latter divided by 12)? I think inserting an equation with the mathematical defini-
tion of the objective function would help here.

AB: The objective function minimizes the sum of difference between the Z-scores of
measured and simulated variables for four terms: Mean Monthly Streamflow (As shown
in figures 8 and 10a), Monthly Streamflow (Raw monthly time series), Annual Stream-
flow (Time Series aggregated to annual time steps), and Mean Monthly SWE with a
25% error bound. The first three terms of the objective function were chosen because
they conveyed information that can be used to easily inform other models (such as
daily time-step models). Just to note, annual and mean monthly objective functions as
we defined them are very different; the former is not equal to the latter/12.

We can include an equation with the appropriate text to help elucidate the different
terms of the objective function.

-p. 10038, lines 14-16: Please clarify how the error bounds were taken into account.
Did you modify the definition of the Z score for the SWE?

AB: Z-scores were calculated from basin mean monthly measured (SNODAS) and
simulated SWE values. Upper and lower bounds of 25% were calculated for the mean
monthly SWE Z-score (Zobs *1.25 for the upper bound; Zobs *.75 for the lower bound).
If the simulated MWBM SWE value was contained within the upper and lower 25%
bounds, the absolute difference was designated as 0. If the simulated MWBM SWE
Z-score value was above the upper 25% error bound, the absolute Z-score difference
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Abstract 25 

A parameter regionalization scheme to transfer parameter values and model uncertainty 26 

information from gaged to ungaged areas for a monthly water balance model (MWBM) was 27 

developed and tested for the conterminous United States (CONUS). The Fourier Amplitude 28 

Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate 29 

parameter sensitivities on a set of 109,951 hydrologic response units (HRUs) across the CONUS.  30 

The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities.  31 

Subsequently, measured runoff from 1,575 streamgages within the calibration regions were used 32 

to calibrate the MWBM parameters to produce parameter sets for each calibration region.  33 

Measured and simulated runoff at the 1,575 streamgages showed good correspondence for the 34 

majority of the CONUS, with a median computed Nash-Sutcliffe Efficiency coefficient of 0.76 35 

over all streamgages.  These methods maximize the use of available runoff information, resulting 36 

in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water 37 

availability at the HRU resolution for both gaged and ungaged areas of the CONUS. 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 
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1 Introduction 48 

The WaterSMART program (http://water.usgs.gov/watercensus/WaterSMART.html) was started 49 

by the United States (U.S.) Department of the Interior in February 2010. Under WaterSMART, 50 

the National Water Census (NWC) was proposed as one of the U.S. Geological Survey’s (USGS) 51 

key research directions with a focus on developing new hydrologic tools and assessments. One 52 

of the major components of the NWC is to provide estimates of water availability at a sub-53 

watershed resolution nationally (http://water.usgs.gov/watercensus/streamflow.html) with the 54 

goal of determining: (1) if the Nation has enough freshwater to meet both human and ecological 55 

needs and (2) if this water will be available to meet future needs.  Streamflow measurements do 56 

not provide direct observations of water availability at every location of interest; approximately 57 

72 percent (%) of land within the conterminous U.S. is gaged, with approximately 13% of these 58 

gaged areas being unaffected by anthropogenic effects (Kiang et al., 2013).  This creates the 59 

challenge of determining the best method to transfer information from gaged catchments to data-60 

poor areas where results cannot be calibrated or evaluated with measured streamflow (Vogel, 61 

2006).  This transfer of model parameter information from gaged to ungaged catchments is 62 

known as hydrologic regionalization (Bloschl and Sivapalan, 1995).   63 

Many hydrologic regionalization methods have focused on developing measures of similarity 64 

between gaged and ungaged catchments using spatial proximity and physical characteristics.   65 

These methods are highly dependent on the complexity of the terrain and scale at which the 66 

relations are derived.  Spatial proximity is considered the primary explanatory variable for 67 

hydrologic similarity (Sawicz et al., 2011) because of the first-order effects of climatic and 68 

topographic controls on hydrologic response. Close proximity, however, does not always result 69 

in hydrologic similarity (Vandewiele and Elias, 1995; Smakhtin, 2001; Ali et al., 2012).   70 

Physical characteristics have been used as exploratory variables to develop a better 71 

understanding of the relation between model parameters that represent model function, and 72 

physical properties of the catchment (Merz and Bloschl, 2004).  The relation between model 73 

parameters and the relevant physical characteristics, expressed for example as a form of 74 

multivariate regression, can be transferred to ungaged catchments (Merz and Bloschl, 2004).  75 

Model parameter definitions are by nature ambiguous and often difficult to correlate to a small 76 
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number of meaningful variables such as physical and climatic characteristics (Zhang et al., 77 

2008); some studies have found no significant correlation between catchment attributes and 78 

model parameters (Seibert, 1999; Peel et al., 2000), whereas others found that high correlation 79 

does not guarantee parameters that result in reliable model simulations of measured data (Sefton 80 

and Howarth, 1998; Kokkonen et al., 2003; Oudin et al., 2010).  Physical and hydrologic 81 

characteristics are also used to derive measures of similarity (or dissimilarity) from multi-82 

dimensional attribute space, which can be used to identify donor catchments (Qamar et al., 83 

2015), or classify catchments into discrete regions or clusters (Oudin et al, 2008, 2010; Samuel et 84 

al., 2011).Physical characteristics also are used to classify catchments into discrete regions or 85 

clusters based on similarity in multi-dimensional attribute space (Oudin et al, 2008, 2010; 86 

Samuel et al., 2011). While these methods have indicated some success in simulating behavior of 87 

specific hydrologic components, such as base flow (Santhi et al., 2008) or monthly flow regimes 88 

(Qamar et al., 2015), other efforts utilizing discrete clusters  performed poorly in explaining 89 

variability of measured streamflow (McManamay et al., 2011). 90 

Two important components of the transfer of parameters to ungaged catchments are the 91 

identification of (1) influential (and non-influential) parameters, and (2) geographic extents and 92 

scales at which parameters exert control on model function.  Reducing the number of parameters 93 

is important for calibration efficiency by reducing the structural bias of the model and the 94 

uncertainty of results where they cannot be verified or confirmed (Van Griensven et al., 2006). A 95 

high number of calibrated, poorly constrained parameters can often mask data or structural 96 

errors, which can go undetected and reduce the skill of the model in replicating results outside of 97 

calibration conditions (Kirchner, 2006; Bloschl et al., 2013; Bárdossy et al., 2015).  This 98 

increases the potential for equifinality of parameter sets and higher model uncertainty that can be 99 

propagated to model results (Troch et al., 2003). 100 

Sensitivity analysis (SA) has advanced the understanding of parameter influence on model 101 

behavior and structural uncertainty.  SA measures the response of model output to variability in 102 

model input and/or model parameter values.  SA partitions the total variability in the model 103 

response to each individual model parameter (Reusser et al., 2011) and results in a more-defined 104 

set of parameters and parameter ranges.  Identification of sensitive parameters and their ranges is 105 
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important for hydrologic model applications as key model parameters can vary spatially across 106 

physiographic regions, and also temporally (Tang et al., 2007; Guse et al., 2013).  107 

Until recently, the high computational demands of SA have limited most implementations of 108 

hydrologic model SA to local sensitivity algorithms that evaluate a single parameter at a time 109 

(Tang et al., 2007).  These methods ignore parameter interaction, and often assume that model 110 

algorithms have linear responses to different parameters (Cuo et al., 2011).  Global SA uses 111 

random or systematic sampling designs of the entire parameter space to quantify variation in 112 

model output (Van Griensven et al. 2006, Reusser et al. 2011).  Some of these methods can 113 

account for parameter interaction and quantify sensitivity in non-linear systems.  Global SA 114 

methods are computationally intensive (Cuo et al., 2011), but ever increasing computational 115 

efficiency has allowed for the development and application of a large number of global SA 116 

algorithms. 117 

Previous work has suggested that isolating the key parameters that control model performance 118 

can be used to infer dominant physical processes in the catchment, as well as which components 119 

of the model dominate hydrologic response (Van Griensven et al. 2006, Tang et al., 2007, 120 

Reusser et al., 2011).  To date, there has been little analysis of the use of SA for deriving 121 

measures of hydrologic similarity across catchments that can be applied towards hydrologic 122 

regionalization of model parameters.  The spatially-distributed application of SA could be used 123 

to provide additional information for the delineation of homogeneous regions for parameter 124 

transfer based on similarity of model results from the SA.  This strategy allows for the use of the 125 

existing model information and configuration to develop a calibration and regionalization 126 

framework without significantly changing the model structure or implementation 127 

In this study, we present a hydrologic regionalization methodology for the CONUS that derived 128 

regions of hydrologic similarity based on the response of a Monthly Water Balance Model 129 

(MWBM) to parameter SA.  Groups of streamgages within each region are calibrated together to 130 

define a single parameter set for each region. By extending model calibration to a large number 131 

of sites grouped by similarity through a quantified measure of model behavior, a more specific 132 

and constrained parameter space that fits each region can be identified.  133 

Comment [Bock4]: Response to Ref 1:  
“these methods ignore parameter interaction, 
and often assume 
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different parameters”. I think this sentence 
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2 Methods 134 

2.1 Monthly Water Balance Model  135 

The MWBM (Fig. 1) is a modular accounting system that provides monthly estimates of 136 

components of the hydrologic cycle by using concepts of water supply and demand (Wolock and 137 

McCabe 1999; McCabe and Markstrom, 2007).  Monthly temperature (T) is used to compute 138 

potential evapotranspiration (PET) and to partition monthly precipitation (P) into rain and snow 139 

(Fig. 1). Precipitation that occurs as snow is accumulated in a snow pack (snow storage as snow 140 

water equivalent, or SWE); rainfall is used to compute direct runoff (Rdirect) or overland flow, 141 

actual evapotranspiration (AET), soil-moisture storage recharge, and surplus water, which 142 

eventually becomes runoff (R) (Fig. 1). When rainfall for a month is less than PET, AET is equal 143 

to the sum of rainfall, snowmelt, and the amount of moisture that can be removed from the soil. 144 

The fraction of soil-moisture storage that can be removed as AET decreases linearly with 145 

decreasing soil-moisture storage; that is, water becomes more difficult to remove from the soil as 146 

the soil becomes drier and less moisture is available for AET. When rainfall (and snowmelt) 147 

exceeds PET in a given month, AET is equal to PET; water in excess of PET replenishes soil-148 

moisture storage. When soil-moisture storage reaches capacity during a given month, the excess 149 

water becomes surplus and a fraction of the surplus (Rsurplus) becomes R, while the remainder of 150 

the surplus is temporarily held in storage. The MWBM has been previously used to examine 151 

variability in runoff over the CONUS (Wolock and McCabe, 1999; Hay and McCabe 2002; 152 

McCabe and Wolock, 2011a) and the global extent (McCabe and Wolock, 2011b).  Table 1 lists 153 

the MWBM parameters, with definitions and parameter ranges for calibration.  154 

The parameter ranges were determined in previous work (Wolock and McCabe, 1999; Hay and 155 

McCabe, 2002). The Drofac parameter specifies the fraction of monthly P that becomes direct 156 

runoff. The Rfactor parameter specifies how much surplus in a month becomes runoff. The Train 157 

parameter specifies the temperature threshold above which all precipitation is rain. The Tsnow 158 

parameter specifies the temperature threshold below which all precipitation is snow. The 159 

Meltcoef parameter specifies the proportion of snowpack that becomes runoff. The Ppt_adj and 160 

Tav_adj parameters specify seasonal adjustments for precipitation and temperature, respectively.  161 

The seasonal adjustment  162 

Comment [Bock5]: Response to Ref. 1:  “-p. 
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The Ppt_adj and Tav_adj parameters were included to account for errors in the precipitation and 163 

temperature data used in this analysis. Sources of systematic and non-systematic errors of 164 

climate forcing data are well documented from the precipitation gage-derived sources (Groisman 165 

and Legates, 1994; Adam and Lettenmaier, 2003).  Interpolation of these systematic errors from 166 

point-scale to gridded domains may propagate these biases, especially in complex terrain (Clark 167 

and Slater, 2006; Oyler et al, 2015).  The use of adjustment factors allows uncertainty associated 168 

with forcing data and model parameter values to be treated separately (Vrught et al., 2008).  169 

Figure 1.  Conceptual diagram of the Monthly Water Balance Model (McCabe and Markstrom 170 

2007).  Processes influenced by mModel parameters used in Fourier Amplitude Sensitivity 171 

Test (FAST) are identified by green arrow and numbered (Table 1). 172 

 Monthly Water Balance Model parameters and ranges. Table 1. 173 

The MWBM was applied to the CONUS with 109,951 hydrologic response units (HRUs) from 174 

the Geospatial Fabric (Viger and Bock, 2014), a national database of hydrologic features for 175 

national hydrologic modeling applications (Fig. 2). This HRU derivation is based on an 176 

aggregation of the NHDPlus dataset (USEPA and USGS, 2010http://www.horizon-177 

systems.com/nhdplus/), an integrated suite of geospatial data that incorporates features from the 178 

National Hydrography Dataset (http://nhd.usgs.gov/), the National Elevation Dataset 179 

(http://ned.usgs.gov/), and the Watershed Boundary Dataset (http://nhd.usgs.gov/wbd.html).  The 180 

sizes of the HRUs range from less than 1 square kilometer (km
2
) up to 67,991 km

2
, with an 181 

average size of 74 km
2
.  182 

Inputs to the MWBM by HRU are: (1) monthly P (millimeters), monthly mean T (degrees 183 

Celsius), (2) latitude of the site (decimal degrees), (3) soil moisture storage capacity 184 

(millimeters), and (4) monthly coefficients for the computation of PET (dimensionless).  185 

Monthly P and mean T were derived from the daily time step, 1/8
o
 gridded meteorological data 186 

for the period of record from January 1949 through December 2011 (Maurer et al., 2002).  187 

Monthly P and T data were aggregated for each HRU using the USGS Geo Data Portal 188 

(http://cida.usgs.gov/climate/gdp/) (Blodgett et al., 2011).  Latitude was computed from the 189 

centroid of each HRU.  Soil moisture storage capacity was calculated using a 1 km
2
 grid derived 190 

Comment [Bock6]: Changed based on Ref1 
suggstion :  “-caption of Fig. 1: “model 
parameters used in..." Maybe better: “processes 
influenced by the model parameters used in...” 
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from the Soils Data for the Conterminous United States (STATSGO) (Wolock, 1997).  The 191 

monthly PET coefficients were calculated by calibrating the Hamon PET values to Farnsworth et 192 

al. (1982) mean monthly free-water surface evapotranspiration. McCabe et al. (2015) describes 193 

these PET coefficient calculations in detail.     194 

Figure 2.  Hydrologic Response Units of the Geospatial Fabric, differentiated by color, overlain 195 

by NHDPlus region boundaries (R01-R18). 196 

2.2 Fourier Amplitude Sensitivity Test  197 

A parameter SA for the CONUS was conducted for the MWBM using the Fourier Amplitude 198 

Sensitivity Test (FAST) to identify areas of hydrologic similarity.  FAST is a variance-based 199 

global sensitivity algorithm that estimates the first-order partial variance (FOPV)contribution to 200 

of model output variance (or objective functions) explained by each parameter (Cukier et al. 201 

1973, 1975; Saltelli et al. 2000).  Advantages of using FAST over other SA methods are that 202 

FAST can calculate sensitivities in non-linear systems, and is extremely computationally 203 

efficient, requiring much less information and parameter sets than other global methods.  The 204 

seasonal adjustment factors were not incorporated into the FAST analysis.;  We viewed the 205 

seasonal adjustment factors as related more to the forcing data, and for this application only 206 

parameters associated with model structure were included (first five parameters in Table 1). 207 

FAST transforms a model’s multi-dimensional parameter space into a single dimension of 208 

mutually independent sine waves with varying frequencies for each parameter, while using the 209 

parameter ranges to define each wave’s amplitude (Cuker et al., 1973, 1975; Reusser et al., 2011) 210 

(Fig. 3).  This methodology creates an ensemble of parameter sets numbering from 1 to N, each 211 

of which is unique and non-correlated with the other sets.  Parameter sets are derived using the 212 

corresponding y-values along each parameter’s sine wave given a value on the x-axis.  The 213 

model is executed for all parameter sets using identical climatic and geographic inputs for each 214 

simulation.  The resulting series of model outputs are Fourier-transformed to a power spectrum 215 

of frequencies for each parameter.  Parameter sensitivity is calculated as the sum of the powers 216 

offor the output variance for each parameter (FOPV), divided by the sum of the powers of all 217 

parameters (Total Variance).  FOPV The parameter sensitivities for all parameters are scaled so 218 

that the FOPV sensitivities for all parameters sum to 1. Thus, pParameters that explain a large 219 
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amount of variability in the model output have higher values oflarge (i.e. closer to 1) parameter 220 

sensitivityFOPV values.   221 

A portion (0 to 500 parameter sets) of the parameter sampling scheme for the Monthly Water 222 

Balance Model in the Fourier Amplitude Sensitivity Test (FAST).  A total of 1000 parameter 223 

sets were generated for implementation in FAST. 224 

FAST was implemented with the MWBM using the ‘fast’ library in the statistical software R 225 

(Reusser, 2012; R Core Team, 2013).  To help constrain the Pparameter ranges used by FAST 226 

for generating wave amplitudes of parameter ensembles across the CONUS, parameter ranges 227 

were based on table 1information from previous MWBM calibrations at selected streamgages 228 

(Hay and McCabe, 2002).  In standard application, Tthe ‘fast’ R package pre-determines the 229 

minimal number of runs necessary to estimate the sensitivities FOPV for the given number ofall 230 

parameters (Cukier et al., 1973).  For our application we generated an ensemble of 1000 231 

parameter sets (as compared to the minimally suggested number of 71 estimated by ‘fast’) to 232 

have the capability to compare results of different sensitivity analysis methods.  The 233 

computational efficiency of the MWBM allowed the parameter sets to be simulated quickly 234 

through parallel processing. 235 

Many applications of SA in hydrologic modeling have evaluated parameter sensitivity for 236 

measured streamflow using performance-based measures such as bias, root mean squared error 237 

(RMSE), and the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970; Moriasi et al., 238 

2007).  In this study, parameter sensitivity is examined using two hydroclimatic indices that 239 

account for the magnitude and variability of both climatic input and model output: the (1) Runoff 240 

Ratio (RR), a ratio of simulated runoff to precipitation, and (2) Runoff Variability (RV) index, 241 

the standard deviation of simulated runoff to the standard deviation of precipitation 242 

(Sankarasubramanian and Vogel, 2003).   243 

3 Parameter regionalization procedure 244 

The MWBM parameter sensitivities from the FAST analysis using an ensemble of 1000 MWBM 245 

parameter sets were evaluated across the CONUS. The spatial patterns and magnitudes of 246 

parameter sensitivities then were used to organize the 109,951 HRUs across the CONUS into 247 
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hydrologically similar regions for parameter regionalization through MWBM calibration. 248 

Potential streamgages were identified for use in two automated calibration procedures. The 249 

calibration procedures were used to produce an ‘optimal’ set of MWBM parameters for each 250 

calibration region. The following sections describe the parameter regionalization procedure in 251 

detail (Fig. 3).. 252 

Figure 3.  Schematic flowchart of the parameter sensivitiy analysis and regionalization method 253 

described in this paper (Section 3). 254 

3.1 Parameter sensitivities 255 

The relative sensitivities derived from the FAST analysis using the RR and RV indices at each of 256 

the 109,951 HRUs across the CONUS were scaled so that the five MWBM parameter 257 

sensitivities derived for each HRU summed to 100 (Fig. 4).  RR (Fig. 4a) is most sensitive to the 258 

parameter Drofac in regions where MWBM runoff is not dominated by snowmelt and orographic 259 

precipitation, such as arid and sub-tropical areas of the CONUS.  MWBM parameters that 260 

control snowpack accumulation and melt (Meltcoef, Tsnow, and Train) are more important to the 261 

RR in the extensive mountain ranges in the Western CONUS, and northerly latitudes around the 262 

Great Lakes and in the Eastern CONUS.  The RR indicates the highest sensitivity to the Rfactor 263 

parameter in mountainous areas of the CONUS and areas of the West Coast, and moderate to 264 

high sensitivity in areas where the sensitivity of RR to Drofac is low.  The patterns of Tsnow, 265 

Train, and Meltcoef all share similar patterns across the CONUS.  The spatial variability of the 266 

sensitivity of RR to Meltcoef indicates different physical mechanisms controlling Metlcoef 267 

parameter influence on RR in different areas of the CONUS.  In the Western CONUS, the 268 

sensitivity of RR to Meltcoef is greatest in mountainous areas that accumulate and hold 269 

snowpack through the late spring, such as the Rocky Mountains, Cascade, and Sierra Nevada 270 

mountain ranges.  In the Eastern and Midwestern CONUS, the sensitivity of RR to Meltcoef is 271 

greatest for HRUs with more northerly latitudes.   272 

Figure 4.  Relative sensitivity of the (a) Rainfall Ratio (RR) and (b) Runoff Variability (RV) 273 

indices to Monthly Water Balance Model parameters. 274 
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The spatial patterns of sensitivities of RV to the five MWBM parameters (Fig. 4b) show both 275 

similarities and deviations from the patterns shown in the RR maps.  For the central part of the 276 

CONUS, the relative sensitivity for the parameter Drofac is high for both indices, and low for the 277 

parameter Rfactor for both indices.  Meltcoef, Tsnow, and Train share the same relations between 278 

higher sensitivity and higher elevation (primarily in the western part of the CONUS), and higher 279 

sensitivity and more northerly latitude (primarily in the eastern half of the CONUS) for both 280 

indices.  However, Drofac and Rfactor show distinctly different patterns of relative sensitivities 281 

for the eastern part of the CONUS for RV as compared to RR.  The other three parameters 282 

follow the same general spatial patterns for RV as compared to RR, but with greater fine-scale 283 

spatial variation and patchiness. The differences between the spatial distributions of the 284 

sensitivities between the two indices highlight that applying SA to different model outputs can 285 

generate different levels of sensitivities for each parameter.  In addition, the choice of objective 286 

function or model output for which to measure parameter sensitivity is important, as parameter 287 

sensitivities will differ depending on whether a user evaluating measures of magnitude, the 288 

variability of distribution, or timing (Krause et al., 2005; Kapangaziwiri et al, 2012).   289 

Figure 5 illustrates the variability of parameter sensitivities between NHDPlus regions 08 (Lower 290 

Mississippi) and 14 (Upper Colorado) (see Fig. 2) for the RV and RR indices. The Lower 291 

Mississippi and Upper Colorado NHDPlus regions have a similar number of HRUs (4,449 and 292 

3,879, respectively) and cover a similar area (26,285 and 29,357 km
2
, respectively).  The Lower 293 

Mississippi region has homogenous topography, with humid, subtropical climate, while the 294 

Upper Colorado region has highly variable topography, and thus highly variable climatic 295 

controls on hydrologic processes.  For the Lower Mississippi region only one parameter 296 

dominates modeled RV variance (Rfactor, Fig. 5a) and modeled RR variance (Drofac, Fig. 5c). 297 

In contrast, for the Upper Colorado River region several parameters influence RV variability 298 

(Drofac, Rfactor and Meltcoef, Fig. 5b) and RR variability (Drofac and Meltcoef, Fig. 5d).   In 299 

the Lower Mississippi Region, the amount of snowfall is negligible, so the three parameters that 300 

control snowfall and snowpack accumulation in the MWBM have negligible effect on simulated 301 

total runoff.  The comparison of the parameter sensitivities for these two regions illustrates how 302 

variable parameter sensitivities are for different regions (i.e. different climatic and physiographic 303 

regions) 304 
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First-order partial variance (FOPV)Figure 5.  Parameter sensitivities of Runoff Variability (RV; 305 

a-b) and Runoff Ratio (RR; c-d) indices for Monthly Water Balance Model parameters in the 306 

Lower Mississippi (R08) and Upper Colorado (R14). 307 

3.2. Calibration regions 308 

The spatial patterns and magnitudes of parameter sensitivities across the CONUS were used as a 309 

basis for organizing HRUs into hydrologically similar regions for parameter regionalization 310 

through MWBM calibration.  While Tthis idea is rooted in the hypothesis that geographically 311 

proximate HRUs share similar forcings and conditions, and thus will behave similarly.,  This 312 

application the uses similarity inof SA results as a basis for organization, rather than similarity in 313 

physiographic characteristics provides a quantification of similarity based on similar model 314 

responses to a wide ensemble of model conditions.  The derived regions are subsequently used to 315 

simplify model calibration across the CONUS and provide a basis for the transfer and application 316 

of parameters to ungaged areas.  317 

The parameter sensitivities derived using from the RR were used to organize the HRUs into two 318 

independently-derived calibration regions; the first derived by identifying HRUs with unique 319 

combinations of the order of parameter sensitivities to the RR (highest parameter sensitivities to 320 

lowest, i.e. 1-Drofac (78%), 2-Rfactor (16%), 3-Meltcoef (4%), 4-Tsnow (1%), 5-Train (1%)), 321 

and the second classification based upon identifying HRUs with unique sets of parameters whose 322 

sensitivities exceeded a specified threshold of parameter sensitivity (i.e. only Drofac and Rfactor 323 

using a 5% threshold in the first classification example).  Using the parameter sensitivities for 324 

each HRU, two different classifications of HRUs were derived.  The purpose of the first 325 

classification was to delineate regions of similar model response or behavior based on the order 326 

of importance of the MWBM parameters to the RR for each HRU.  Thise first classification 327 

identified 16 distinct regions of HRUS across the CONUS based on the order of the FOPV for 328 

theparameter sensitivities of the five parameters (derived using the RR index).  Sizes of these 329 

regions ranged from 94 km
2
 to almost 2 million km

2
.  The second classification delineated 330 

regions with an identical set of the most important parameters to the RR based on parameters 331 

whose sensitivities exceeded a 5% threshold. This step e second classification  identified 12 332 

regions of HRUs with unique combinations of parameter sensitivities  with FOPV  exceeding 333 
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5%.  There has been progress in providing quantitative thresholds for the identification of 334 

sensitive and non-sensitive parameters for hydrologic modelers (Pianosi et al., 2015Tang et al., 335 

2007), but no definitive consensus yet exists. Therefore a 5% threshold was used based on visual 336 

delineation of major physiographic features such as mountain ranges across the CONUS.  The 337 

sizes of this second group of regions ranged from 94 km
2
 to more than 15 million km

2
. Maps of 338 

the two groupings of HRUS were intersected to create a total of 49 regions across the CONUS.  339 

NHDPlus region and sub-region boundaries, proximity, and significant topographic divides were 340 

used to further divide the groups into 159 geographically unique calibration regions across the 341 

CONUS.  The lack of streamgages available in some regions, especially areas with arid and 342 

semi-arid climates, necessitated merging regions together.  Calibration regions that contained 343 

less than 3 streamgages from the 8,410 gages present in the Geospatial Fabric (see section 3.3) 344 

were combined with the proximate and most similar group based on thewhich shared the most 345 

similar parameter sensitivities  (both order and magnitude), of parameter sensitivities resulting in 346 

110 calibration regions across the CONUS (Fig. 6).  Additionally, Wwithin each region the 347 

FAST results for both the RR and RV indices were used to determine which parameters to 348 

calibratee.  Parameters with a median parameter sensitivity of 5% for the RR and RV among the 349 

region’s HRUs were selected for group calibration.  Parameters not shown as sensitive were kept 350 

at the default value for the group.     351 

Figure 6.  Final 110 Monthly Water Balance Model calibration regions differentiated by colors.  352 

A subset of streamgages within each calibration region were calibrated in a group-wise 353 

fashion to produce a single optimized parameter set for the entire region (Fig. 3). Monthly 354 

Water Balance Model calibra 355 

tion regions differentiated by color.  356 

3.3 Initial streamgage selection 357 

The initial set of streamgages used for testing in the MWBM calibration procedures was selected 358 

from 8,410 streamgages identified in the Geospatial Fabric (Fig. 7).  The Geospatial Fabric 359 

includes reference and non-reference streamgages from the Geospatial Attributes of Gages for 360 

Evaluating Streamflow dataset (GAGES-II, Falcone et al., 2010). Of the 8,410 streamgages in 361 
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the Geospatial Fabric, 1,864 were identified as having reference-quality data with at least 20 362 

years of record. These reference quality streamgages were judged to be largely free of human 363 

alterations to flow (Falcone et al., 2010). In the current study, reference quality was not 364 

considered in the initial streamgage selection because the 20 years of record was considered too 365 

restrictive. Therefore a subset of the 8,410 streamgages was selected for initial testing in the 366 

MWBM calibration procedures based on the following criteria:  367 

(1) Remove streamgages with less than 10 years of total measured streamflow (120 months) 368 

within the time period 1950 – 2010. 369 

(2) Remove streamgages with a drainage area defined by the Geospatial Fabric that are not 370 

within 5% of the USGS National Water Information System (NWIS) reported drainage 371 

area (U.S. Geological Survey, 2014). This eliminated many of the streamgages with 372 

smaller drainage areas due to the resolution of the Geospatial Fabric.   373 

(3)  Remove streamgages that did not have at least 75% of its drainage area contained within 374 

a single calibration region.  375 

These criteria resulted in 5,457 potential streamgages for testing in the MWBM calibration 376 

procedures (Fig. 7).  Streamflow at these streamgages was aggregated and converted from daily 377 

(cubic feet/second) to a monthly runoff depth (mm) (streamflow per unit area).  378 

Figure 7.  Streamgages tested in the study.  GF notes geospatial fabric for national hydrologic 379 

modeling (Viger and Bock, 2014).  380 

3.4   Monthly Water Balance Model calibration   381 

Two automated calibration procedures were implemented to produce an ‘optimal’ set of MWBM 382 

parameters for each calibration region. The first procedure, Individual Streamgage Calibration, 383 

calibrated each of the 5,457 streamgages individually. Results from the individual calibrations 384 

were used to further filter the streamgages within the second procedure, Grouped Streamgage 385 

Calibration, which calibrated selected streamgages together by calibration region.  386 
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3.4.1 Individual streamgage calibration 387 

The first calibration procedure was an automated process that individually calibrated each of the 388 

5,457 streamgages from the initial streamgage selection with measured streamflow (U.S. 389 

Geological Survey, 2014). Results from these individual streamgage calibrations quantified the 390 

‘best’ performance of the MWBM at each gage, providing a ‘baseline’ measure for evaluation.  391 

The Shuffled Complex Evolution (SCE) global-search optimization algorithm (Duan et al., 1993) 392 

has been frequently used as an optimization algorithm in hydrologic studies (Hay et al., 2006; 393 

Blasone et al. 2007; Arnold et al., 2012), including previous studies with the MWBM (Hay and 394 

McCabe, 2010).  Further details can be found in Duan et al. (1993). SCE was used to maximize a 395 

combined objective function based on: (1) Nash-Sutcliffe Efficiency (NSE) coefficient using 396 

measured and simulated monthly runoff and (2) NSE using natural log-transformed measured 397 

and simulated runoff (logNSE), using the entire period of record for each streamgage.  The NSE 398 

measures the predictive power of the MWBM in matching the magnitude and variability of the 399 

measured and simulated runoff (Nash and Sutcliffe, 1970).  The NSE coefficient ranges from −∞ 400 

to 1, with 1 indicating a perfect fit, and values less than 0 indicating that measured mean runoff 401 

is a better predictor than model simulations.  The NSE has been shown to give more weight to 402 

the larger values in a time series (peak flows) at the expense of lower values (low flows) 403 

(Legates and McCabe, 1999), so the logNSE was incorporated into the objective function to give 404 

weight to lowflow periods (Tekleab et al., 2011). 405 

3.4.2 Grouped streamgage calibration 406 

The second calibration procedure was an automated process that calibrated groups of 407 

streamgages together for each calibration region to derive a single set of MWBM parameters 408 

(Table 1) for each calibration region (Fig. 6).  The NSE and logNSE values from the individual 409 

streamgage calibrations (described in the previous section) were used to identify streamgages 410 

that should not be used for grouped streamgage calibration. If the individual streamgage 411 

calibration was not ‘satisfactory’, then it was felt that it would not provide useful information for 412 

the grouped streamgage calibration procedure.  413 

Satisfactory individual streamgage calibrations were identified with the following procedure:  414 
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 (1) Eliminate all streamgages with NSE values < 0.3. 415 

(2) If the number of remaining streamgages for a given calibration region is > 10, then 416 

eliminate all streamgages with NSE < 0.5.  417 

(3) If the number of streamgages for a given calibration region is > 25, then eliminate all 418 

streamgages with NSElog < 0.   419 

(4) If the number of remaining streamgages for a calibration region is < 5, check to see if any 420 

of the eliminated streamgages were reference streamgages (as defined in Falcone et al., 2010), 421 

then add the reference streamgages back in if the NSE value > 0.0.  Reference streamgages are 422 

USGS streamgages deemed to be largely free of anthropogenic impacts and flow modifications 423 

(Falcone et al., 2010; Kiang et al., 2013).  424 

These criteria, while somewhat arbitrary, were chosen so that no calibration region had less than 425 

5 streamgages for the grouped streamgage calibration. Using the above criterion, of the 5,457 426 

streamgages individually calibrated, 3,125 remained as candidates for the grouped streamgage 427 

calibration procedure.  428 

The grouped streamgage calibration procedure used the SCE global-search optimization 429 

algorithm with a multi-term objective function (Eq. 1). Measured and simulated values for 430 

selected streamgages contained within a calibration region were scaled toby Z-scores to remove 431 

differences in magnitudes between streamgages (Eq. 2). The multi-term objective function 432 

minimized the sum of the absolute differences between Z-scores from four measured and 433 

simulated time series:   (mean monthly runoff (MMO,MMS), monthly runoff (MO,MS), mean 434 

monthly runoff, annual runoff (AO,AS) (U.S. Geological Survey, 2014), and monthly snow 435 

water equivalent (SO,SSSWE)) for all selected streamgages within a given calibration region: 436 

. The observed and simulated Z-scores (Z) were calculated at each streamgage as: 437 

𝑚𝑖𝑛 ∑ [3|MMOi − MMSi| + |MOi − MSi| + |AOi − ASi| + 0.5|SOi − SSi|
𝑛
𝑖=1 ] (Eq.1) 438 

   439 
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where {

0 if 0.75 < SOi − SSi < 1.25

|SOi − SSi| 𝑖𝑓 SSi <  SOi
0.75

|SOi − SS𝑖| SSi >  SOi
1.25 

 

The measured and simulated Z-scores were calculated as: 440 

Z = (x-u)/σ                  (Eq. 21) 441 

where x is the time-series value, u is the mean, and σ the standard deviation of the measured and 442 

simulated variablestreamflow.  443 

‘Measured’ SWE was determined for each HRU from the Snow Data Assimilation System 444 

(SNODAS; National Operational Hydrologic Remote Sensing Center, 2004) and included a +/-445 

25% error bound. The unconstrained automated calibration (without a restriction on SWE) led to 446 

unrealistic sources of snowmelt in the summer that enhanced the low-flow simulations. The 25% 447 

error bound is arbitrary; calibrating to the actual SNODAS SWE values was found to be too 448 

restrictive, but adding this error bound to the SWE values resulted in better overall runoff 449 

simulations.  The absolute difference of the simulated SWE Z-scores within +/- 25% of the 450 

measured SWE Z-score were designated as 0.  Otherwise, the absolute difference was computed 451 

between the simulated SWE Z-score and either the upper or lower bounds (Eq. 1).  452 

The grouped calibration procedure was run for all 110 calibration regions. For each calibration 453 

region the seasonal adjustment parameters and the sensitive parameters (identified by the FAST 454 

analysis -- section 3.1) were calibrated; parameters deemed not sensitive (parameter sensitivitiy 455 

< 5% of total variance) were set to their default values (see Table 1). The entire period of the 456 

streamflow record for each streamgage was split by alternating years. After calibration, mean 457 

monthly measured and simulated Z-scores for runoff at all selected streamgages within a 458 

calibration region were compared on a mean monthly basis.  459 

Figure 8 shows an example of the graphic used to evaluate the measured and simulated mean 460 

monthly Z-scores for 21 streamgages selected for the region located in the Tennessee River 461 

calibration region (part of NHDPlus Region R06 in Fig. 2); the orange, red, and black dots 462 

indicate calibration, evaluation, and the entire period of record, respectively. A tight grouping 463 

around the one-to-one line indicates good correspondence between measured and simulated Z-464 
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scores.  Points closer to the upper right corner of each plot represent high-flow periods. Points 465 

closer to the lower left corner of the plot represent low-flow periods.  Streamgages within a 466 

calibration region were assigned the same parameter values; therefore streamgages that plotted 467 

outside (two standard deviations) of the one-to-one line were considered to not be representative 468 

of the calibration region, and the calibration procedure for that calibration region was repeated 469 

without those streamgages.  470 

Figure 8.  Measured versus simulated mean monthly Z-scores for the Tennessee River calibration 471 

region  (see Fig. 10b for location). Orange is calibration, red is evaluation, and black is all 472 

years. 473 

The goal of the second calibration procedure was to find a single parameter set for each 474 

calibration region. Past applications of the MWBM (Wolock and McCabe, 1999, McCabe and 475 

Wolock, 2011a) used a single set of fixed MWBM parameters for the entire CONUS. Many of 476 

the streamgages included in the second calibration procedure could be affected by significant 477 

anthropogenic effects; the seasonal adjustment factors, calibrated at each individual streamgage, 478 

could account for these effects and result in satisfactory NSE values. Streamgages that were 479 

removed due to poor performance in the second calibration were assumed to have anthropogenic 480 

effects not consistent with the streamgages that plotted along the one-to-one line. Poor 481 

performance may result because the MWBM fails to reliably simulate runoff for a watershed 482 

because of model limitations (i.e. not including all important hydrologic processes), but the 483 

calibration regions are assumed to be homogeneous based on the FAST analysis. Therefore it is 484 

assumed that if some of the streamgages within a region have satisfactory results, then the 485 

MWBM is able to simulate runoff in that region. 486 

4 MWBM calibration region results 487 

4.1 Individual streamgage calibration results 488 

The individual streamgage calibrations provided information regarding: (1) the potential 489 

suitability of a given streamgage for inclusion in a grouped calibration, and (2) a ‘baseline’ 490 

measure for evaluation of the grouped calibration results. Reference and non-reference 491 

streamgages were considered in this application; if the runoff at a streamgage could not be 492 
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calibrated individually to a ‘satisfactory’ level (based on criterion outlined in section 3.4.2), then 493 

it was felt that it would not provide useful information for the grouped streamgage calibration 494 

procedure.  Figure 9 shows the NSE (Fig. 9a) and logNSE (Fig. 9b) coefficients from the 495 

individual streamgage calibrations for the CONUS. Scattered throughout the CONUS are NSE 496 

and logNSE values less than 0.0 (triangles in Fig. 9). These poor results are likely streamgages 497 

with poor streamflow records, either due to measurement error or anthropogenic effects (dams, 498 

water use, etc.).    499 

Figure 9.  Individual streamgage calibration results: (a) Nash-Sutcliffe Efficiency (NSE) 500 

coefficient  and (b) log of the NSE (logNSE). 501 

4.2 Grouped streamgage calibration results 502 

4.2.1 Mean monthly z-scores 503 

Figure 10a shows a scatterplot of measured versus simulated mean monthly Z-scores for runoff, 504 

similar to Figure 8, but based on all available years (the black dots in Fig. 8) for all the final 505 

calibration streamgages (1,575 streamgages). Four regions are highlighted to illustrate the 506 

monthly variability in MWBM results across the CONUS (see Fig. 10b for locations). The four 507 

regions are: New England (67 streamgages, red); Tennessee River basin (21 streamgages, 508 

orange); Platte Headwaters (15 streamgages, blue); and Pacific Northwest (33 streamgages, 509 

green) (Fig. 10b).   510 

Figure 10.  (a) Measured versus simulated mean monthly Z-scores for runoff at all streamgages 511 

and (b) location of highlighted streamgages for four calibration regions: New England (67 512 

streamgages, red); Tennessee River (21 streamgages, orange); Platte Headwaters (15 513 

streamgages, blue); and Pacific Northwest (33 streamgages, green).  514 

In Fig. 10a, three of the regions (New England, Tennessee River, and Pacific Northwest), show 515 

simulated Z-scores that correspond favorably to measured Z-scores for each of the twelve 516 

months, including periods of low and high runoff.  These regions represent marine or humid 517 

climates with homogenous physio-climatic conditions and  an even spatial distribution of 518 

streamgages, where models should be expected to perform well (see Fig. 9) There is a higher 519 
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variability in model results for the high-flow months (May - June) for streamgages within the 520 

Platte Headwaters (Fig. 10a; blue dots) than for low-flow months.  This variability may be 521 

related to factors controlling the magnitude and timing of snow melt runoff (Fig. 9).  522 

For each calibration streamgage, a set of four months were identified that represent different 523 

parts of the measured mean monthly hydrograph (highest- and lowest- flow month and the two 524 

median-flow months). The measured and simulated mean monthly streamflow Z scores 525 

corresponding to the four months are plotted as cumulative frequencies (Fig. 11) to compare how 526 

well the simulated Z scores matched measured Z scores for different parts of the hydrograph 527 

over the entire set of calibration gages.  For the highest-flow, there is an under-estimation of 528 

runoff, with the greatest divergence between the two distributions in the middle to lower half of 529 

the distribution (Fig. 11a).  For the median-flow, the measured and simulated Z scores are well 530 

matched. For the 10 lowest-flow, simulated Z scores are greater than measured Z scores, with the 531 

greatest divergence between the two distributions in the middle to upper half of the distribution 532 

(Fig. 11c). 533 

Figure 11.  Z-score cumulative frequency for (a) highest-, (b) median-, and (c) lowest-flow 534 

months. 535 

The median Z-score errors (simulated - measured) by region for the (a) highest-, (b) median-, 536 

and (c) lowest-flows are shown in Figure 12. The largest errors are for the highest-flows (Fig. 537 

12a).  The MWBM simulations under-estimate the highest flows for much of the CONUS.  The 538 

errors for median-flows are fairly uniform and consistent across the CONUS (Fig. 12b), with a 539 

median error close to 0.  For the lowest-flow months the MWBM over-estimates low flows for a 540 

large portion of the Midwest (Fig. 12c).   541 

Figure 12.  Z-score error (simulated - measured) for (a) highest-, (b) median-, and (c) lowest-542 

flow months. 543 

4.2.2 Nash-Sutcliffe efficiency 544 

Figure 13 compares the NSE from the individual streamgage calibrations (gageNSE) with the 545 

grouped calibrations (groupNSE) for all final streamgages used in the second calibration 546 

procedure. NSE values > 0.75 (dashed line) and > 0.5 (solid line) indicate very good and 547 
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satisfactory results (Moriasi et al., 2007).  Overall, most NSE values fall above the 0.5 NSE 548 

threshold of satisfactory performance (median of gageNSE and groupNSE = 0.76). The gageNSE 549 

values are used here as a ‘baseline’ for evaluation of the groupNSE results. The groupNSE 550 

values were not expected to be greater than the gageNSE values since (1) NSE was not used as 551 

an objective function in the grouped calibration, and (2) grouped calibrations found the ‘best’ 552 

parameter set for a set of streamgages versus an individual streamgage. Figure 13 shows an equal 553 

distribution of NSE values around the one-to-one line, indicating that the grouped calibration 554 

provided additional information over the individual streamgage calibrations (cases where 555 

groupNSE are greater than gageNSE in Fig. 13). The difference between the gageNSE and 556 

groupNSE becomes larger as the NSE values decrease, reflecting the increasing uncertainty in 557 

the grouped calibrations in areas with lower gageNSE values.  558 

Figure 13.  Nash Sutcliffe Efficiency from individual (gageNSE) and grouped (groupNSE) 559 

calibration.  Calibration regions in New England (67 streamgages, red); Tennessee River (21 560 

streamgages, orange); Platte Headwaters (15 streamgages, blue); and Pacific Northwest (33 561 

streamgages, green) are highlighted (see Fig. 10b for location). 562 

Four regions are highlighted in Fig. 13 to illustrate the variability of NSE across the CONUS 563 

(see Fig. 10b for locations). The highlighted regions in New England (red), Tennessee River 564 

(orange), and Pacific Northwest (green), show good groupNSE and gageNSE results.  Four of 565 

the 15 streamgages in the Platte Headwaters (blue) have groupNSE values < 0.5.  This is 566 

probably related to simulation error during the snowmelt period (May - June, Fig. 10a).   567 

Figure 14 shows the median groupNSE by calibration region for the CONUS. The pattern is very 568 

similar to that shown for the individual streamgage calibration results in Fig. 9a and highlights 569 

the problem areas shown in Fig. 12.  570 

Figure 14.  Median Nash Sutcliffe Efficiency (NSE) by calibration region.Median Nash Sutcliffe 571 

Efficiency (NSE) by calibration region of streamgages used for calibration. 572 

 573 
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5 Discussion 574 

This study presented a parameter regionalization procedure for calibration of the MWBM, 575 

resulting in an application that can be used for simulation of hydrologic variables for both gaged 576 

and ungaged areas in the CONUS. The regionalization procedure grouped HRUs on the basis of 577 

similar sensitivity to five model parameters.  Parameter values and model uncertainty 578 

information within a group was then passed from gaged to ungaged areas within that group. 579 

5.1 Regionalized parameters 580 

Results from this study indicate that regionalized parameters can be used to produce satisfactory 581 

MWBM simulations in most parts of the CONUS (Fig. 13).  Despite the differences between the 582 

individual streamgage calibration and grouped calibration, Figure 13 illustrates that the grouped 583 

calibration strategy, which focused only on only sensitive parameters, can provide just as much 584 

information as the individual streamgage calibration with no constraints on the parameters 585 

optimization other than the default ranges.  The MWBM is a simple hydrologic model as it has 586 

minimal parameters, which are conceptual in nature (not physically based). It may be that this 587 

type of model is best for regionalization when parameter sensitivity can be identified and HRU 588 

behavior can be classified by a small number of clearly defined spatial groups.  More 589 

complicated models with many more interactive parameters may not respond as well to this 590 

simple type of regionalization; more parameters may lead to more parameter interaction and 591 

situations of equifinality which might confuse the analysis. 592 

The adjustments of precipitation and temperature parameters for the individual streamgage 593 

calibrations accounted for local errors such as rain gage under catch of precipitation. In addition 594 

these climate adjustments also account for local anthropogenic effects on streamflow (e.g. dams, 595 

diversions) since streamgages were not screened for these effects prior to individual streamgage 596 

calibration. In the grouped streamgage calibrations, the same precipitation and temperature 597 

adjustments are applied at every streamgage within the calibration region, making these climate 598 

adjustments more of a regional adjustment and producing more of a ‘reference’ condition for 599 

each calibration region. 600 
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5.2 Parameter sensitivities and dominant process 601 

The MWBM parameter sensitivities varied by hydroclimatic index (RR and RV) and across the 602 

CONUS (Fig. 4).  The parameter sensitivity patterns give an indication of dominant hydrologic 603 

processes based on MWBM. The dominant process can be seasonal and MWBM performance 604 

may be enhanced by extending the use of SA along the temporal domain to identify and 605 

temporally vary the parameters that are seasonally important to the MWBM. For example, error 606 

in peak flow months is the primary cause for poor model performance in the Platte Headwaters 607 

(Fig. 10).  For the Platte Headwaters, the final parameter set performed well for simulated Z-608 

scores for the regionalized low- and median-flow conditions (Fig. 10a, July through April), but 609 

was not able to replicate measured mean monthly flows for May and June.  In this case, the 610 

dominant processes controlling hydrologic behavior change with season and the parameters 611 

controlling the dominant response may have to change accordingly (Gupta et al., 2008; Reusser 612 

et al., 2011).    613 

5.3 Model accuracy 614 

The pattern of MWBM accuracies shown in Fig. 9 and 14 are similar to those shown by Newman 615 

et al. (2015; Fig. 5a) in which a daily time-step hydrologic model was calibrated for 671 basins 616 

across the CONUS. Our study and the Newman et al. (2015) study both indicate the same 617 

‘problem areas’ with the poorest performing basins generally being located in the high plains and 618 

desert southwest. Newman et al. (2015) attributed variation in model performance by region to 619 

spatial variations in aridity and precipitation intermittency, contribution of snowmelt, and runoff 620 

seasonality.  621 

The inferior MWBM results in the ‘problem areas’ can be attributed to multiple factors which 622 

likely include inadequate hydrologic process representation and errors in forcing data (e.g. 623 

climate data), and/or measured streamflow. Archfield et al. (2015) state that the performance of 624 

continental-domain hydrologic models is considerably constrained by inadequate model 625 

representation of dominant hydrologic processes.  For example, the simplicity of the MWBM 626 

presents limitations on the representation of deeper groundwater reservoirs, gaining and losing 627 
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stream reaches, simplistic AET, and the effects of surface processes (infiltration and overland 628 

flow) that need to be represented at finer time steps than monthly. 629 

The dominant hydrologic processes in the ‘problem areas’ appear to be poorly represented at the 630 

daily (Newman et al., 2015) and monthly time steps.  This may be due to inadequate forcing 631 

datas, the quality of which ‘is paramount in hydrologic modeling efforts’ (Archfield et al., 2015) 632 

and/or the lack of ‘good’ reference streamflow data for calibration and evaluation. Both surely 633 

play a role and emphasize the need for incorporation of additional datasets so that calibration and 634 

evaluation of intermediate states in the hydrologic cycle are examined.  635 

6 Conclusions 636 

A parameter regionalization procedure was developed for the CONUS that transferred parameter 637 

values and model uncertainty information from gaged to ungaged areas for a MWBM. The 638 

FAST global-sensitivity algorithm was implemented on a MWBM to generate parameter 639 

sensitivities on a set of 109,951 HRUs across the CONUS.  The parameter sensitivities were 640 

used to group the HRUs into 110 calibration regions. Streamgages within each calibration region 641 

were used to calibrate the MWBM parameters to produce a regionalized set of parameters for 642 

each calibration region.  The regionalized MWBM parameter sets were used to simulate monthly 643 

runoff for the entire CONUS.  Results from this study indicate that regionalized parameters can 644 

be used to produce satisfactory MWBM simulations in most parts of the CONUS.   645 

The best MWBM results were achieved simulating low- and median-flows across the CONUS. 646 

The high-flow months generally showed lower skill levels than the low- and median-flow 647 

months, especially for regions with dominant seasonal cycles. The lowest MWBM skill levels 648 

were found in the high plains and desert southwest and can be attributed to multiple factors 649 

which likely include inadequate hydrologic process representation and errors in forcing data 650 

and/or measured streamflow. Calibration and evaluation of intermediary fluxes and states in the 651 

MWBM through additional measured datasets may help to improve MWBM representations of 652 

these model states by helping to constrain parameterization to measured values.   653 
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Parameter Definition Range Default 

1. Drofac 
Controls fraction of precipitation that 

becomes runoff 
0, 0.10 0.05 

2.  Rfactor 
Controls fraction of surplus that becomes 

runoff 
0.10, 1.0 0.5 

3.  Tsnow 
Threshold above which all  precipitation is 

rain (
o
C) 

-10.0, -2.0 -4.0 

4.  Train 
Threshold below which all precipitation is 

snow (
o
C) 

0.0, 10.0 7.0 

5.  Meltcoef 
Proportion of snowpack  that becomes 

runoff 
0.0, 1.0 0.47 

6.  Ppt_adj 
Seasonal adjustment factor for precipitation 

(%) 
0.5, 2.0 1 

7.   Tav_adj Seasonal adjustment for temperature (
o
C) -3.0, 3.0 0 

 874 

Table 1. Monthly Water Balance Model parameters and ranges. 875 

 876 

 877 

 878 

 879 

 880 
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 881 

Figure 1.  Conceptual diagram of the Monthly Water Balance Model (McCabe and Markstrom 882 

2007).  Processes influenced by mModel parameters used in Fourier Amplitude Sensitivity Test 883 

(FAST) are identified by green arrow and numbered (Table 1). 884 
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 892 
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suggstion :  “-caption of Fig. 1: “model 
parameters used in..." Maybe better: “processes 
influenced by the model parameters used in...” 
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 894 

Figure 2.  Hydrologic Response Units of the Geospatial Fabric, differentiated by color, overlain 895 

by NHDPlus region boundaries (R01-R18). 896 

 897 

 898 
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 900 

 901 

 902 
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 903 

Figure 3.  A portion (0 to 500 parameter sets) of the parameter sampling scheme for the Monthly 904 

Water Balance Model in the Fourier Amplitude Sensitivity Test (FAST).  A total of 1000 905 

parameter sets were generated for implementation in FAST. 906 
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 917 

Figure 3.Schematic flowchart of the parameter sensivitiy analysis and regionalization method 918 

described in this paper (Section 3). 919 
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 921 

 922 
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 928 

Figure 4.  Relative sensitivity of the (a) Rainfall Ratio (RR) and (b) Runoff Variability (RV) 929 

indices to Monthly Water Balance Model parameters. 930 

 931 

 932 
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Comment [Bock45]: Old picture with FOPV 
as y-axis labels 
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934 

Figure 5.  First-order partial variance (FOPV)Parameter sensitivities of Runoff Variability (RV; 935 

a and b) and Runoff Ratio (RR; c and d) indices for Monthly Water Balance Model parameters in 936 

the Lower Mississippi (R08) and Upper Colorado (R14). 937 
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 939 

Figure 6.  Final 110 Monthly Water Balance Model calibration regions differentiated by colors.  940 

A subset of streamgages within each calibration region were calibrated in a group-wise fashion 941 

to produce a single optimized parameter set for the entire region (Fig. 3).  942 
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 951 

 952 

Figure 7.  Streamgages tested in the study.  GF notes geospatial fabric for national hydrologic 953 

modeling (Viger and Bock, 2014). 954 
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 961 
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 962 

Figure 8.  Measured versus simulated mean monthly Z-scores for the Tennessee River calibration 963 

region  (see Fig. 10b for location). Orange is calibration, red is evaluation, and black is all years. 964 
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 976 

Figure 9.  Individual streamgage calibration results: (a) Nash-Sutcliffe Efficiency (NSE) 977 

coefficient and (b) log of the NSE (logNSE). 978 

 979 

 980 
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 981 

Figure 10.  (a) Measured versus simulated mean monthly Z-scores for runoff at all streamgages 982 

and (b) location of highlighted streamgages for four calibration regions: New England (67 983 

streamgages, red); Tennessee River (21 streamgages, orange); Platte Headwaters (15 984 

streamgages, blue); and Pacific Northwest (33 streamgages, green). 985 
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 989 

Figure 11.  Z-score cumulative frequency for (a) highest-, (b) median-, and (c) lowest-flow  990 

months. 991 

 992 
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 993 

Figure 12.  Z-score error (simulated - measured) for (a) highest-, (b) median-, and (c) lowest-994 

flow months. 995 

 996 

 997 

 998 

 999 

 1000 
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 1001 

Figure 13.  Nash Sutcliffe Efficiency from individual (gageNSE) and grouped (groupNSE) 1002 

calibration.  Calibration regions in New England (67 streamgages, red); Tennessee River (21 1003 

streamgages, orange); Platte Headwaters (15 streamgages, blue); and Pacific Northwest (33 1004 

streamgages, green) are highlighted (see Fig. 10b for location). 1005 

 1006 

 1007 

 1008 

 1009 

 1010 



50 

 

 1011 

Figure 14. Median Nash Sutcliffe Efficiency (NSE) by calibration region of streamgages used 1012 

forby calibration region. 1013 
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 1015 
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