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Abstract 25 

A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas 26 

for a monthly water balance model (MWBM) was developed and tested for the conterminous 27 

United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, 28 

was implemented on a MWBM to generate parameter sensitivities on a set of 109,951 hydrologic 29 

response units (HRUs) across the CONUS.  The HRUs were grouped into 110 calibration 30 

regions based on similar parameter sensitivities.  Subsequently, measured runoff from 1,575 31 

streamgages within the calibration regions were used to calibrate the MWBM parameters to 32 

produce parameter sets for each calibration region.  Measured and simulated runoff at the 1,575 33 

streamgages showed good correspondence for the majority of the CONUS, with a median 34 

computed Nash-Sutcliffe Efficiency coefficient of 0.76 over all streamgages.  These methods 35 

maximize the use of available runoff information, resulting in a calibrated CONUS-wide 36 

application of the MWBM suitable for providing estimates of water availability at the HRU 37 

resolution for both gaged and ungaged areas of the CONUS. 38 

 39 
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1 Introduction 48 

The WaterSMART program (http://water.usgs.gov/watercensus/WaterSMART.html) was started 49 

by the United States (U.S.) Department of the Interior in February 2010. Under WaterSMART, 50 

the National Water Census (NWC) was proposed as one of the U.S. Geological Survey’s (USGS) 51 

key research directions with a focus on developing new hydrologic tools and assessments. One 52 

of the major components of the NWC is to provide estimates of water availability at a sub-53 

watershed resolution nationally (http://water.usgs.gov/watercensus/streamflow.html) with the 54 

goal of determining if (1)  the Nation has enough freshwater to meet both human and ecological 55 

needs and (2) this water will be available to meet future needs.  Streamflow measurements do not 56 

provide direct observations of water availability at every location of interest; approximately 72 57 

percent (%) of land within the conterminous U.S. is gaged, with approximately 13% of these 58 

gaged areas being unaffected by anthropogenic effects (Kiang et al., 2013).  This creates the 59 

challenge of determining the best method to transfer information from gaged catchments to data-60 

poor areas where results cannot be calibrated or evaluated with measured streamflow (Vogel, 61 

2006).  This transfer of model parameter information from gaged to ungaged catchments is 62 

known as hydrologic regionalization (Bloschl and Sivapalan, 1995).   63 

Many hydrologic regionalization methods have focused on developing measures of similarity 64 

between gaged and ungaged catchments using spatial proximity and physical characteristics.   65 

These methods are highly dependent on the complexity of the terrain and scale at which the 66 

relations are derived.  Spatial proximity is considered the primary explanatory variable for 67 

hydrologic similarity (Sawicz et al., 2011) because of the first-order effects of climatic and 68 

topographic controls on hydrologic response. Close proximity, however, does not always result 69 

in hydrologic similarity (Vandewiele and Elias, 1995; Smakhtin, 2001; Ali et al., 2012).   70 

Physical characteristics have been used as exploratory variables to develop a better 71 

understanding of the relation between model parameters that represent model function, and 72 

physical properties of the catchment (Merz and Bloschl, 2004).  The relation between model 73 

parameters and the relevant physical characteristics, expressed for example as a form of 74 

multivariate regression, can be transferred to ungaged catchments (Merz and Bloschl, 2004).  75 

Model parameter definitions are by nature ambiguous and often difficult to correlate to a small 76 
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number of meaningful variables such as physical and climatic characteristics (Zhang et al., 77 

2008); some studies have found no significant correlation between catchment attributes and 78 

model parameters (Seibert, 1999; Peel et al., 2000), whereas others found that high correlation 79 

does not guarantee parameters that result in reliable model simulations of measured data (Sefton 80 

and Howarth, 1998; Kokkonen et al., 2003; Oudin et al., 2010).  Physical characteristics also are 81 

used to classify catchments into discrete regions or clusters based on similarity in multi-82 

dimensional attribute space (Oudin et al, 2008, 2010; Samuel et al., 2011). While these methods 83 

have indicated some success in simulating behavior of specific hydrologic components, such as 84 

base flow (Santhi et al., 2008), other efforts utilizing discrete clusters  performed poorly in 85 

explaining variability of measured streamflow (McManamay et al., 2011). 86 

Two important components of the transfer of parameters to ungaged catchments are the 87 

identification of (1) influential (and non-influential) parameters, and (2) geographic extents and 88 

scales at which parameters exert control on model function.  Reducing the number of parameters 89 

is important for calibration efficiency by reducing the structural bias of the model and the 90 

uncertainty of results where they cannot be verified or confirmed (Van Griensven et al., 2006). A 91 

high number of calibrated, poorly constrained parameters can often mask data or structural 92 

errors, which can go undetected and reduce the skill of the model in replicating results outside of 93 

calibration conditions (Kirchner, 2006; Bloschl et al., 2013).  This increases the potential for 94 

equifinality of parameter sets and higher model uncertainty that can be propagated to model 95 

results (Troch et al., 2003). 96 

Sensitivity analysis (SA) has advanced the understanding of parameter influence on model 97 

behavior and structural uncertainty.  SA measures the response of model output to variability in 98 

model input and/or model parameter values.  SA partitions the total variability in the model 99 

response to each individual model parameter (Reusser et al., 2011) and results in a more-defined 100 

set of parameters and parameter ranges.  Identification of sensitive parameters and their ranges is 101 

important for hydrologic model applications as key model parameters can vary spatially across 102 

physiographic regions, and also temporally (Tang et al., 2007; Guse et al., 2013).  103 

Until recently, the high computational demands of SA have limited most implementations of 104 

hydrologic model SA to local sensitivity algorithms that evaluate a single parameter at a time 105 
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(Tang et al., 2007).  Global SA uses random or systematic sampling designs of the entire 106 

parameter space to quantify variation in model output (Van Griensven et al. 2006, Reusser et al. 107 

2011).  Some of these methods can account for parameter interaction and quantify sensitivity in 108 

non-linear systems.  Global SA methods are computationally intensive (Cuo et al., 2011), but 109 

ever increasing computational efficiency has allowed for the development and application of a 110 

large number of global SA algorithms. 111 

Previous work has suggested that isolating the key parameters that control model performance 112 

can be used to infer dominant physical processes in the catchment, as well as which components 113 

of the model dominate hydrologic response (Van Griensven et al. 2006, Tang et al., 2007, 114 

Reusser et al., 2011).  To date, there has been little analysis of the use of SA for deriving 115 

measures of hydrologic similarity across catchments that can be applied towards hydrologic 116 

regionalization of model parameters.  The spatially-distributed application of SA could be used 117 

to provide additional information for the delineation of homogeneous regions for parameter 118 

transfer based on similarity of model results from the SA.  This strategy allows for the use of the 119 

existing model information and configuration to develop a calibration and regionalization 120 

framework without significantly changing the model structure or implementation 121 

In this study, we present a hydrologic regionalization methodology for the CONUS that derived 122 

regions of hydrologic similarity based on the response of a Monthly Water Balance Model 123 

(MWBM) to parameter SA.  Groups of streamgages within each region are calibrated together to 124 

define a single parameter set for each region. By extending model calibration to a large number 125 

of sites grouped by similarity through a quantified measure of model behavior, a more specific 126 

and constrained parameter space that fits each region can be identified.  127 

2 Methods 128 

2.1 Monthly Water Balance Model  129 

The MWBM (Fig. 1) is a modular accounting system that provides monthly estimates of 130 

components of the hydrologic cycle by using concepts of water supply and demand (Wolock and 131 

McCabe 1999; McCabe and Markstrom, 2007).  Monthly temperature (T) is used to compute 132 

potential evapotranspiration (PET) and to partition monthly precipitation (P) into rain and snow 133 
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(Fig. 1). Precipitation that occurs as snow is accumulated in a snow pack (snow storage as snow 134 

water equivalent, or SWE); rainfall is used to compute direct runoff (Rdirect) or overland flow, 135 

actual evapotranspiration (AET), soil-moisture storage recharge, and surplus water, which 136 

eventually becomes runoff (R) (Fig. 1). When rainfall for a month is less than PET, AET is equal 137 

to the sum of rainfall, snowmelt, and the amount of moisture that can be removed from the soil. 138 

The fraction of soil-moisture storage that can be removed as AET decreases linearly with 139 

decreasing soil-moisture storage; that is, water becomes more difficult to remove from the soil as 140 

the soil becomes drier and less moisture is available for AET. When rainfall (and snowmelt) 141 

exceeds PET in a given month, AET is equal to PET; water in excess of PET replenishes soil-142 

moisture storage. When soil-moisture storage reaches capacity during a given month, the excess 143 

water becomes surplus and a fraction of the surplus (Rsurplus) becomes R, while the remainder of 144 

the surplus is temporarily held in storage. The MWBM has been previously used to examine 145 

variability in runoff over the CONUS (Wolock and McCabe, 1999; Hay and McCabe 2002; 146 

McCabe and Wolock, 2011a) and the global extent (McCabe and Wolock, 2011b).  Table 1 lists 147 

the MWBM parameters, with definitions and parameter ranges for calibration.  148 

The Ppt_adj and Tav_adj parameters specify seasonal adjustments for precipitation and 149 

temperature, respectively.  The seasonal adjustment parameters were included to account for 150 

errors in the precipitation and temperature data used in this analysis. Sources of systematic and 151 

non-systematic errors of climate forcing data are well documented from the precipitation gage-152 

derived sources (Groisman and Legates, 1994; Adam and Lettenmaier, 2003).  Interpolation of 153 

these systematic errors from point-scale to gridded domains may propagate these biases, 154 

especially in complex terrain (Clark and Slater, 2006; Oyler et al, 2015).  The use of adjustment 155 

factors allows uncertainty associated with forcing data and model parameter values to be treated 156 

separately (Vrught et al., 2008).  157 

Figure 1.  Conceptual diagram of the Monthly Water Balance Model (McCabe and Markstrom 158 

2007).  Processes influenced by model parameters used in Fourier Amplitude Sensitivity Test 159 

(FAST) those identified by green arrow and numbered 1-5 (Table 1). 160 

 Monthly Water Balance Model parameters and ranges. Table 1. 161 
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The MWBM was applied to the CONUS with 109,951 hydrologic response units (HRUs) from 162 

the Geospatial Fabric (Viger and Bock, 2014), a national database of hydrologic features for 163 

national hydrologic modeling applications (Fig. 2). This HRU derivation is based on an 164 

aggregation of the NHDPlus dataset (http://www.horizon-systems.com/nhdplus/), an integrated 165 

suite of geospatial data that incorporates features from the National Hydrography Dataset 166 

(http://nhd.usgs.gov/), the National Elevation Dataset (http://ned.usgs.gov/), and the Watershed 167 

Boundary Dataset (http://nhd.usgs.gov/wbd.html).  The sizes of the HRUs range from less than 1 168 

square kilometer (km
2
) up to 67,991 km

2
, with an average size of 74 km

2
.  169 

Inputs to the MWBM by HRU are: (1) monthly P (millimeters), monthly mean T (degrees 170 

Celsius), (2) latitude of the site (decimal degrees), (3) soil moisture storage capacity 171 

(millimeters), and (4) monthly coefficients for the computation of PET (dimensionless).  172 

Monthly P and mean T were derived from the daily time step, 1/8
o
 gridded meteorological data 173 

for the period of record from January 1949 through December 2011 (Maurer et al., 2002).  174 

Monthly P and T data were aggregated for each HRU using the USGS Geo Data Portal 175 

(http://cida.usgs.gov/climate/gdp/) (Blodgett et al., 2011).  Latitude was computed from the 176 

centroid of each HRU.  Soil moisture storage capacity was calculated using a 1 km
2
 grid derived 177 

from the Soils Data for the Conterminous United States (STATSGO) (Wolock, 1997).  The 178 

monthly PET coefficients were calculated by calibrating the Hamon PET values to Farnsworth et 179 

al. (1982) mean monthly free-water surface evapotranspiration. McCabe et al. (2015) describes 180 

these PET coefficient calculations in detail.     181 

Figure 2.  Hydrologic Response Units of the Geospatial Fabric, differentiated by color, overlain 182 

by NHDPlus region boundaries (R01-R18). 183 

2.2 Fourier Amplitude Sensitivity Test  184 

A parameter SA for the CONUS was conducted for the MWBM using the Fourier Amplitude 185 

Sensitivity Test (FAST) to identify areas of hydrologic similarity.  FAST is a variance-based 186 

global sensitivity algorithm that estimates the contribution to model output variance explained by 187 

each parameter (Cukier et al. 1973, 1975; Saltelli et al. 2000).  Advantages of using FAST over 188 

other SA methods are that FAST can calculate sensitivities in non-linear systems, and is 189 

http://cida.usgs.gov/climate/gdp/
http://cida.usgs.gov/climate/gdp/
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extremely computationally efficient.  The seasonal adjustment factors were not incorporated into 190 

the FAST analysis.  We viewed the seasonal adjustment factors as more related to the forcing 191 

data, and for this application only parameters associated with model structure were included 192 

(first five parameters in Table 1). 193 

FAST transforms a model’s multi-dimensional parameter space into a single dimension of 194 

mutually independent sine waves with varying frequencies for each parameter, while using the 195 

parameter ranges to define each wave’s amplitude (Cuker et al. 1973, 1975; Reusser et al. 2011).  196 

This methodology creates an ensemble of parameter sets numbering from 1 to N, each of which 197 

is unique and non-correlated with the other sets.  Parameter sets are derived using the 198 

corresponding y-values along each parameter’s sine wave given a value on the x-axis.  The 199 

model is executed for all parameter sets using identical climatic and geographic inputs for each 200 

simulation.  The resulting series of model outputs are Fourier-transformed to a power spectrum 201 

of frequencies for each parameter.  Parameter sensitivity is calculated as the sum of the powers 202 

of the output variance for each parameter, divided by the sum of the powers of all parameters 203 

(Total Variance).  The parameter sensitivities are scaled so that the sensitivities for all 204 

parameters sum to 1. Thus, parameters that explain a large amount of variability in the model 205 

output have higher (i.e. closer to 1) parameter sensitivity values.   206 

FAST was implemented with the MWBM using the ‘fast’ library in the statistical software R 207 

(Reusser, 2012; R Core Team, 2013).  Parameter ranges used by FAST for generating wave 208 

amplitudes of parameter ensembles across the CONUS were based on table 1.  The ‘fast’ R 209 

package pre-determines the minimal number of runs necessary to estimate the sensitivities for 210 

the given number of parameters (Cukier et al., 1973).  For our application we generated an 211 

ensemble of 1000 parameter sets (as compared to the minimally suggested number of 71 212 

estimated by ‘fast’).  The use of the minimal number of parameter sets should be a consideration 213 

for more complex models, but the relative computational efficiency and parallelization of the 214 

MWBM allowed the model to be simulated with this larger number of parameter sets quickly to 215 

help ensure a robust parameter sensitivity analysis. 216 

Many applications of SA in hydrologic modeling have evaluated parameter sensitivity for 217 

measured streamflow using performance-based measures such as bias, root mean squared error 218 
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(RMSE), and the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970; Moriasi et al., 219 

2007).  In this study, parameter sensitivity is examined using two hydroclimatic indices that 220 

account for the magnitude and variability of both climatic input and model output: the (1) Runoff 221 

Ratio (RR), a ratio of simulated runoff to precipitation, and (2) Runoff Variability (RV) index, 222 

the standard deviation of simulated runoff to the standard deviation of precipitation 223 

(Sankarasubramanian and Vogel, 2003).   224 

3 Parameter regionalization procedure 225 

The following sections describe the workflow for the MWBM calibration and regionalization 226 

(illustrated in Figure 3).  The MWBM parameter sensitivities from the FAST analysis were 227 

evaluated across the CONUS.  The spatial patterns and magnitudes of parameter sensitivities 228 

were used to organize the 109,951 HRUs into hydrologically similar regions referred to in the 229 

paper as calibration regions. During the initial streamgage selection, potential streamgages were 230 

identified for use in the grouped MWBM calibration.  These selected streamgages then were 231 

individually calibrated.  Using a number of selection criteria, a final set of calibration gages were 232 

derived within each calibration region. The grouped MWBM calibration produced an ‘optimal’ 233 

set of MWBM parameters for each calibration region by evaluating simulated MWBM variables 234 

converted to Z-scores.  235 

Figure 3.  Schematic flowchart of the parameter regionalization procedure described in Section 236 

3:  Parameter sensitivities (3.1), Calibration Regions (3.2), Initial Streamgage Selection 237 

(3.3), and Grouped streamgage calibration (3.4). 238 

3.1 Parameter sensitivities 239 

The relative sensitivities derived from the FAST analysis using the RR and RV indices at each of 240 

the 109,951 HRUs across the CONUS were scaled so that the five MWBM parameter 241 

sensitivities derived for each HRU summed to 100 (Fig. 4).  RR (Fig. 4a) is most sensitive to the 242 

parameter Drofac in regions where MWBM runoff is not dominated by snowmelt and orographic 243 

precipitation, such as arid and sub-tropical areas of the CONUS.  MWBM parameters that 244 

control snowpack accumulation and melt (Meltcoef, Tsnow, and Train) are more important to the 245 

RR in the extensive mountain ranges in the Western CONUS, and northerly latitudes around the 246 
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Great Lakes and in the Eastern CONUS.  The RR indicates the highest sensitivity to the Rfactor 247 

parameter in mountainous areas of the CONUS and areas of the West Coast, and moderate to 248 

high sensitivity in areas where the sensitivity of RR to Drofac is low.  Tsnow, Train, and 249 

Meltcoef all share similar patterns across the CONUS.  The spatial variability of the sensitivity of 250 

RR to Meltcoef indicates different physical mechanisms controlling Metlcoef parameter influence 251 

on RR in different areas of the CONUS.  In the Western CONUS, the sensitivity of RR to 252 

Meltcoef is greatest in mountainous areas that accumulate and hold snowpack through the late 253 

spring, such as the Rocky Mountains, Cascade, and Sierra Nevada mountain ranges.  In the 254 

Eastern and Midwestern CONUS, the sensitivity of RR to Meltcoef is greatest for HRUs with 255 

more northerly latitudes.   256 

Figure 4.  Relative sensitivity of the (a) Rainfall Ratio (RR) and (b) Runoff Variability (RV) 257 

indices to Monthly Water Balance Model parameters. 258 

The spatial patterns of sensitivities of RV to the five MWBM parameters (Fig. 4b) show both 259 

similarities and deviations from the patterns shown in the RR maps.  For the central part of the 260 

CONUS, the relative sensitivity for the parameter Drofac is high for both indices, and low for the 261 

parameter Rfactor for both indices.  Meltcoef, Tsnow, and Train share the same relations between 262 

higher sensitivity and higher elevation (primarily in the western part of the CONUS), and higher 263 

sensitivity and more northerly latitude (primarily in the eastern half of the CONUS) for both 264 

indices.  However, Drofac and Rfactor show distinctly different patterns of relative sensitivities 265 

for the eastern part of the CONUS for RV as compared to RR.  The other three parameters 266 

follow the same general spatial patterns for RV as compared to RR, but with greater fine-scale 267 

spatial variation and patchiness. The differences between the spatial distributions of the 268 

sensitivities between the two indices highlight that applying SA to different model outputs can 269 

generate different levels of sensitivities for each parameter.  In addition, the choice of objective 270 

function or model output for which to measure parameter sensitivity is important, as parameter 271 

sensitivities will differ depending on whether a user evaluating measures of magnitude, the 272 

variability of distribution, or timing (Krause et al., 2005; Kapangaziwiri et al, 2012).   273 

Figure 5 illustrates the variability of parameter sensitivities between NHDPlus regions 08 (Lower 274 

Mississippi) and 14 (Upper Colorado) (see Fig. 2) for the RR and RV indices, and between the 275 
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RR and RV within a single region. The Lower Mississippi and Upper Colorado NHDPlus 276 

regions have a similar number of HRUs (4,449 and 3,879, respectively) and cover a similar area 277 

(26,285 and 29,357 km
2
, respectively).  The Lower Mississippi region has homogenous 278 

topography, with humid, subtropical climate, while the Upper Colorado region has highly 279 

variable topography, and thus highly variable climatic controls on hydrologic processes.  For the 280 

Lower Mississippi region only one parameter dominates modeled RV variance (Rfactor, Fig. 5a) 281 

and modeled RR variance (Drofac, Fig. 5c).  In contrast, for the Upper Colorado River region 282 

several parameters influence RV variability (Drofac, Rfactor and Meltcoef, Fig. 5b) and RR 283 

variability (Drofac and Meltcoef, Fig. 5d).   In the Lower Mississippi Region the amount of 284 

snowfall is negligible, so the three parameters that control snowfall and snowpack accumulation 285 

in the MWBM have a negligible effect on the volume and variability of simulated total runoff.  286 

The Rfactor parameter controls almost all of the variance for the RV in the Lower Mississippi 287 

region.  In humid, sub-tropical hydroclimatic regimes of the CONUS, peak runoff is coincident 288 

with peak precipitation, which is significant because these periods are when the surplus runoff is 289 

greatest.  In the Upper Colorado, peak runoff is not coincident with peak precipitation, and the 290 

MWBM snow parameters have more control in modulating the variability and timing of runoff in 291 

the higher elevation HRUs.  The comparison of the parameter sensitivities for these two regions 292 

illustrates how variable parameter sensitivities differ by region (i.e. different climatic and 293 

physiographic regions) and components of model response (i.e. volume and variability). 294 

Figure 5.  Parameter sensitivities of Runoff Variability (RV; a-b) and Runoff Ratio (RR; c-d) 295 

indices for Monthly Water Balance Model parameters in the Lower Mississippi (R08) and 296 

Upper Colorado (R14). 297 

3.2. Calibration regions 298 

The spatial patterns and magnitudes of parameter sensitivities across the CONUS were used as a 299 

basis for organizing HRUs into hydrologically similar regions for parameter regionalization 300 

through MWBM calibration.  This idea is rooted in the hypothesis that geographically proximate 301 

HRUs share similar forcings and conditions, and thus will behave similarly.  This application 302 

uses similarity in SA results as a basis for organization, rather than similarity in physiographic 303 
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characteristics.  The derived regions are subsequently used to simplify model calibration across 304 

the CONUS and provide a basis for the transfer and application of parameters to ungaged areas.  305 

The parameter sensitivities derived from the RR were used to organize the HRUs into two 306 

independently-derived calibration regions; the first derived by identifying HRUs with unique 307 

combinations of the order of parameter sensitivities to the RR (highest parameter sensitivities to 308 

lowest, i.e. 1-Drofac (78%), 2-Rfactor (16%), 3-Meltcoef (5%), 4-Tsnow (1%), 5-Train (1%)), 309 

and the second classification based upon identifying HRUs with unique sets of parameters whose 310 

sensitivities exceeded a specified threshold of parameter sensitivity (i.e. only Drofac, Rfactor, 311 

Meltcoef using a 5% threshold in the first classification example).  The purpose of the first 312 

classification was to delineate regions of similar model response or behavior based on the order 313 

of importance of the MWBM parameters to the RR for each HRU.  This classification identified 314 

16 distinct regions of HRUS across the CONUS based on the order of the parameter sensitivities 315 

of the five parameters (derived using the RR index).  Sizes of these regions ranged from 94 km
2
 316 

to almost 2 million km
2
.  The second classification delineated regions with an identical set of the 317 

most important parameters to the RR based on parameters whose sensitivities exceeded a 5% 318 

threshold. This step identified 12 regions of HRUs with unique combinations of parameter 319 

sensitivities exceeding 5%.  There has been progress in providing quantitative thresholds for the 320 

identification of sensitive and non-sensitive parameters for hydrologic modelers (Tang et al., 321 

2007), but no definitive consensus yet exists. Therefore a 5% threshold was used based on visual 322 

delineation of major physiographic features such as mountain ranges across the CONUS.  The 323 

sizes of this second group of regions ranged from 94 km
2
 to more than 15 million km

2
. Maps of 324 

the two groupings of HRUS were intersected to create a total of 49 regions across the CONUS.  325 

NHDPlus region and sub-region boundaries, proximity, and significant topographic divides were 326 

used to further divide the groups into 159 geographically unique calibration regions across the 327 

CONUS.  The lack of streamgages available in some regions, especially areas with arid and 328 

semi-arid climates, necessitated merging regions together.  Calibration regions that contained 329 

less than 3 streamgages from the 8,410 gages present in the Geospatial Fabric (see section 3.3) 330 

were combined with the proximate and most similar group which shared the most similar 331 

parameter sensitivities  (both order and magnitude), resulting in 110 calibration regions across 332 

the CONUS (Fig. 6).  Within each region the FAST results for both the RR and RV indices were 333 
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used to determine which parameters to calibrate.  Within each region, parameters with a median 334 

parameter sensitivity of 5% for the RR and RV among the region’s HRUs were selected for 335 

group calibration.  Parameters not shown as sensitive were kept at the default value for the 336 

group. 337 

Figure 6.  Final 110 Monthly Water Balance Model calibration regions differentiated by colors.  338 

A subset of streamgages within each calibration region were calibrated in a group-wise 339 

fashion to produce a single optimized parameter set for the entire region (Fig. 3).  340 

3.3 Initial streamgage selection 341 

The initial set of streamgages used for testing in the MWBM calibration procedures was selected 342 

from 8,410 streamgages identified in the Geospatial Fabric (Fig. 7).  The Geospatial Fabric 343 

includes reference and non-reference streamgages from the Geospatial Attributes of Gages for 344 

Evaluating Streamflow dataset (GAGES-II, Falcone et al., 2010). Of the 8,410 streamgages in 345 

the Geospatial Fabric, 1,864 were identified as having reference-quality data with at least 20 346 

years of record. These reference quality streamgages were judged to be largely free of human 347 

alterations to flow (Falcone et al., 2010). In the current study, reference quality was not 348 

considered in the initial streamgage selection because the 20 years of record was considered too 349 

restrictive. Therefore a subset of the 8,410 streamgages was selected for initial testing in the 350 

MWBM calibration procedures based on the following criteria:  351 

(1) Remove streamgages with less than 10 years of total measured streamflow (120 months) 352 

within the time period 1950 – 2010. 353 

(2) Remove streamgages with a drainage area defined by the Geospatial Fabric that are not 354 

within 5% of the USGS National Water Information System (NWIS) reported drainage 355 

area (U.S. Geological Survey, 2014). This eliminated many of the streamgages with 356 

smaller drainage areas due to the resolution of the Geospatial Fabric.   357 

(3)  Remove streamgages that did not have at least 75% of its drainage area contained within 358 

a single calibration region.  359 
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These criteria resulted in 5,457 potential streamgages for testing in the MWBM calibration 360 

procedures (Fig. 7).  Streamflow at these streamgages was aggregated and converted from daily 361 

(cubic feet/second) to a monthly runoff depth (mm) (streamflow per unit area).  362 

Figure 7.  Streamgages tested in the study.  GF notes geospatial fabric for national hydrologic 363 

modeling (Viger and Bock, 2014).  364 

3.4   Monthly Water Balance Model calibration   365 

Two automated calibration procedures were implemented to produce an ‘optimal’ set of MWBM 366 

parameters for each calibration region. The first procedure, Individual Streamgage Calibration, 367 

calibrated each of the 5,457 streamgages individually. Results from the individual calibrations 368 

were used to further filter the streamgages within the second procedure, Grouped Streamgage 369 

Calibration, which calibrated selected streamgages together by calibration region.  370 

3.4.1 Individual streamgage calibration 371 

The first calibration procedure was an automated process that individually calibrated each of the 372 

5,457 streamgages from the initial streamgage selection with measured streamflow (U.S. 373 

Geological Survey, 2014). Results from these individual streamgage calibrations quantified the 374 

‘best’ performance of the MWBM at each gage, providing a ‘baseline’ measure for evaluation.  375 

The Shuffled Complex Evolution (SCE) global-search optimization algorithm (Duan et al., 1993) 376 

has been frequently used as an optimization algorithm in hydrologic studies (Hay et al., 2006; 377 

Blasone et al. 2007; Arnold et al., 2012), including previous studies with the MWBM (Hay and 378 

McCabe, 2010).  Further details can be found in Duan et al. (1993). SCE was used to maximize a 379 

combined objective function based on: (1) Nash-Sutcliffe Efficiency (NSE) coefficient using 380 

measured and simulated monthly runoff and (2) NSE using natural log-transformed measured 381 

and simulated runoff (logNSE), using the entire period of record for each streamgage.  The NSE 382 

measures the predictive power of the MWBM in matching the magnitude and variability of the 383 

measured and simulated runoff (Nash and Sutcliffe, 1970).  The NSE coefficient ranges from −∞ 384 

to 1, with 1 indicating a perfect fit, and values less than 0 indicating that measured mean runoff 385 

is a better predictor than model simulations.  The NSE has been shown to give more weight to 386 

the larger values in a time series (peak flows) at the expense of lower values (low flows) 387 
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(Legates and McCabe, 1999), so the logNSE was incorporated into the objective function to give 388 

weight to lowflow periods (Tekleab et al., 2011). 389 

3.4.2 Grouped streamgage calibration 390 

The second calibration procedure was an automated process that calibrated groups of 391 

streamgages together for each calibration region to derive a single set of MWBM parameters 392 

(Table 1) for each calibration region (Fig. 6).  The NSE and logNSE values from the individual 393 

streamgage calibrations (described in the previous section) were used to identify streamgages 394 

that should not be used for grouped streamgage calibration. If the individual streamgage 395 

calibration was not ‘satisfactory’, then it was felt that it would not provide useful information for 396 

the grouped streamgage calibration procedure.  397 

Satisfactory individual streamgage calibrations were identified with the following procedure:  398 

 (1) Eliminate all streamgages with NSE values < 0.3. 399 

(2) If the number of remaining streamgages for a given calibration region is > 10, then 400 

eliminate all streamgages with NSE < 0.5.  401 

(3) If the number of streamgages for a given calibration region is > 25, then eliminate all 402 

streamgages with NSElog < 0.   403 

(4) If the number of remaining streamgages for a calibration region is < 5, check to see if any 404 

of the eliminated streamgages were reference streamgages (as defined in Falcone et al, 2010), 405 

then add the reference streamgages back in if the NSE value > 0.0.  Reference streamgages are 406 

USGS streamgages deemed to be largely free of anthropogenic impacts and flow modifications 407 

(Falcone et al., 2010; Kiang et al., 2013).  408 

These criteria, while somewhat arbitrary, were chosen so that no calibration region had less than 409 

5 streamgages for the grouped streamgage calibration. Using the above criterion, of the 5,457 410 

streamgages individually calibrated, 3,125 remained as candidates for the grouped streamgage 411 

calibration procedure.  412 
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The grouped streamgage calibration procedure used the SCE global-search optimization 413 

algorithm with a multi-term objective function (Eq. 1). Measured and simulated values for 414 

selected streamgages contained within a calibration region were scaled to Z-scores to remove 415 

differences in magnitudes between streamgages (Eq. 2). The multi-term objective function 416 

minimized the sum of the absolute differences between Z-scores from four measured and 417 

simulated time series:  mean monthly runoff (MMO, MMS), monthly runoff (MO, MS), annual 418 

runoff (AO, AS) (U.S. Geological Survey, 2014), and monthly snow water equivalent (SO, SS)) 419 

for all selected streamgages within a given calibration region: 420 

 𝑚𝑖𝑛 ∑ [3|MMOi − MMSi| + |MOi − MSi| + |AOi − ASi| + 0.5|SOi − SSi|
𝑛
𝑖=1 ] (Eq.1) 421 

   422 

where {

0 if 0.75 < SOi − SSi < 1.25

|SOi − SSi| 𝑖𝑓 SSi <  SOi
0.75

|SOi − SS𝑖| SSi >  SOi
1.25 

 

The measured and simulated Z-scores were calculated as: 423 

Z = (x-u)/σ                  (Eq. 2) 424 

where x is the time-series value, u is the mean, and σ the standard deviation of the measured and 425 

simulated variable.  426 

‘Measured’ SWE was determined for each HRU from the Snow Data Assimilation System 427 

(SNODAS; National Operational Hydrologic Remote Sensing Center, 2004) and included a +/-428 

25% error bound. The unconstrained automated calibration (without a restriction on SWE) led to 429 

unrealistic sources of snowmelt in the summer that enhanced the low-flow simulations. The 25% 430 

error bound is arbitrary; calibrating to the actual SNODAS SWE values was found to be too 431 

restrictive, but adding this error bound to the SWE values resulted in better overall runoff 432 

simulations.  The absolute difference of the simulated SWE Z-scores that were within +/- 25% of 433 

the measured SWE Z-score were designated as 0.  Otherwise, the absolute difference was 434 

computed between the simulated SWE Z-score and either the upper or lower bounds (Eq. 1).  435 

The grouped calibration procedure was run for all 110 calibration regions. For each calibration 436 

region the seasonal adjustment parameters and the sensitive parameters (identified by the FAST 437 
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analysis -- section 3.1) were calibrated; parameters deemed not sensitive (parameter sensitivity < 438 

5% of total variance) were set to their default values (see Table 1). The entire period of the 439 

streamflow record for each streamgage was split by alternating years. After calibration, mean 440 

monthly measured and simulated Z-scores for runoff at all selected streamgages within a 441 

calibration region were compared.  442 

Figure 8 shows an example of the graphic used to evaluate the measured and simulated mean 443 

monthly Z-scores for 21 streamgages selected for the region located in the Tennessee River 444 

calibration region (part of NHDPlus Region R06 in Fig. 2); the orange, red, and black dots 445 

indicate calibration, evaluation, and the entire period of record, respectively. A tight grouping 446 

around the one-to-one line indicates good correspondence between measured and simulated Z-447 

scores.  Points closer to the upper right corner of each plot represent high-flow periods. Points 448 

closer to the lower left corner of the plot represent low-flow periods.  Streamgages within a 449 

calibration region were assigned the same parameter values; therefore streamgages that plotted 450 

outside (two standard deviations) of the one-to-one line were considered to not be representative 451 

of the calibration region, and the calibration procedure for that calibration region was repeated 452 

without those streamgages.  453 

Figure 8.  Measured versus simulated mean monthly Z-scores for the Tennessee River 454 

calibration region  (see Fig. 10b for location). Orange is calibration, red is evaluation, and 455 

black is all years. 456 

The goal of the second calibration procedure was to find a single parameter set for each 457 

calibration region. Past applications of the MWBM (Wolock and McCabe, 1999, McCabe and 458 

Wolock, 2011a) used a single set of fixed MWBM parameters for the entire CONUS. Many of 459 

the streamgages included in the second calibration procedure could be affected by significant 460 

anthropogenic effects; the seasonal adjustment factors, calibrated at each individual streamgage, 461 

could account for these effects and result in satisfactory NSE values. Streamgages that were 462 

removed due to poor performance in the second calibration were assumed to have anthropogenic 463 

effects not consistent with the streamgages that plotted along the one-to-one line. Poor 464 

performance may result because the MWBM fails to reliably simulate runoff for a watershed 465 

because of model limitations (i.e. not including all important hydrologic processes), but the 466 
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calibration regions are assumed to be homogeneous based on the FAST analysis. Therefore it is 467 

assumed that if some of the streamgages within a region have satisfactory results, then the 468 

MWBM is able to simulate runoff in that region. 469 

4 MWBM calibration region results 470 

4.1 Individual streamgage calibration results 471 

The individual streamgage calibrations provided information regarding: (1) the potential 472 

suitability of a given streamgage for inclusion in a grouped calibration, and (2) a ‘baseline’ 473 

measure for evaluation of the grouped calibration results. Reference and non-reference 474 

streamgages were considered in this application; if the runoff at a streamgage could not be 475 

calibrated individually to a ‘satisfactory’ level (based on criterion outlined in section 3.4.2), then 476 

it was felt that it would not provide useful information for the grouped streamgage calibration 477 

procedure.  Figure 9 shows the NSE (Fig. 9a) and logNSE (Fig. 9b) coefficients from the 478 

individual streamgage calibrations for the CONUS. Scattered throughout the CONUS are NSE 479 

and logNSE values less than 0.0 (triangles in Fig. 9). These poor results are likely streamgages 480 

with poor streamflow records, either due to measurement error or anthropogenic effects (dams, 481 

water use, etc.).    482 

Figure 9.  Individual streamgage calibration results: (a) Nash-Sutcliffe Efficiency (NSE) 483 

coefficient  and (b) log of the NSE (logNSE). 484 

4.2 Grouped streamgage calibration results 485 

4.2.1 Mean monthly z-scores 486 

Figure 10a shows a scatterplot of measured versus simulated mean monthly Z-scores for runoff, 487 

similar to Figure 8, but based on all available years (the black dots in Fig. 8) for all the final 488 

calibration streamgages (1,575 streamgages). Four regions are highlighted to illustrate the 489 

monthly variability in MWBM results across the CONUS (see Fig. 10b for locations). The four 490 

regions are: New England (67 streamgages, red); Tennessee River basin (21 streamgages, 491 

orange); Platte Headwaters (15 streamgages, blue); and Pacific Northwest (33 streamgages, 492 

green) (Fig. 10b).   493 
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Figure 10.  (a) Measured versus simulated mean monthly Z-scores for runoff at all streamgages 494 

and (b) location of highlighted streamgages for four calibration regions: New England (67 495 

streamgages, red); Tennessee River (21 streamgages, orange); Platte Headwaters (15 496 

streamgages, blue); and Pacific Northwest (33 streamgages, green).  497 

In Fig. 10a, three of the regions (New England, Tennessee River, and Pacific Northwest), show 498 

simulated Z-scores that correspond favorably to measured Z-scores for each of the twelve 499 

months, including periods of low and high runoff.  These regions represent marine or humid 500 

climates with homogenous physio-climatic conditions and  an even spatial distribution of 501 

streamgages, where models should be expected to perform well (see Fig. 9) There is a higher 502 

variability in model results for the high-flow months (May - June) for streamgages within the 503 

Platte Headwaters (Fig. 10a; blue dots) than for low-flow months.  This variability may be 504 

related to factors controlling the magnitude and timing of snow melt runoff (Fig. 9).  505 

For each calibration streamgage, a set of four months were identified that represent different 506 

parts of the measured mean monthly hydrograph (highest- and lowest- flow month and the two 507 

median-flow months). The measured and simulated mean monthly streamflow Z scores 508 

corresponding to the four months are plotted as cumulative frequencies (Fig. 11) to compare how 509 

well the simulated Z scores matched measured Z scores for different parts of the hydrograph 510 

over the entire set of calibration gages.  For the highest-flow, there is an under-estimation of 511 

runoff, with the greatest divergence between the two distributions in the middle to lower half of 512 

the distribution (Fig. 11a).  For the median-flow, the measured and simulated Z scores are well 513 

matched. For the 10 lowest-flow, simulated Z scores are greater than measured Z scores, with the 514 

greatest divergence between the two distributions in the middle to upper half of the distribution 515 

(Fig. 11c). 516 

Figure 11.  Z-score cumulative frequency for (a) highest-, (b) median-, and (c) lowest-flow 517 

months. 518 

The median Z-score errors (simulated - measured) by region for the (a) highest-, (b) median-, 519 

and (c) lowest-flows are shown in Figure 12. The largest errors are for the highest-flows (Fig. 520 

12a).  The MWBM simulations under-estimate the highest flows for much of the CONUS.  The 521 
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errors for median-flows are fairly uniform and consistent across the CONUS (Fig. 12b), with a 522 

median error close to 0.  For the lowest-flow months the MWBM over-estimates low flows for a 523 

large portion of the Midwest (Fig. 12c).   524 

Figure 12.  Z-score error (simulated - measured) for (a) highest-, (b) median-, and (c) lowest-525 

flow months. 526 

4.2.2 Nash-Sutcliffe efficiency 527 

Figure 13 compares the NSE from the individual streamgage calibrations (gageNSE) with the 528 

grouped calibrations (groupNSE) for all final streamgages used in the second calibration 529 

procedure. NSE values > 0.75 (dashed line) and > 0.5 (solid line) indicate very good and 530 

satisfactory results (Moriasi et al., 2007).  Overall, most NSE values fall above the 0.5 NSE 531 

threshold of satisfactory performance (median of gageNSE and groupNSE = 0.76). The gageNSE 532 

values are used here as a ‘baseline’ for evaluation of the groupNSE results. The groupNSE 533 

values were not expected to be greater than the gageNSE values since (1) NSE was not used as 534 

an objective function in the grouped calibration, and (2) grouped calibrations found the ‘best’ 535 

parameter set for a set of streamgages versus an individual streamgage. Figure 13 shows an equal 536 

distribution of NSE values around the one-to-one line, indicating that the grouped calibration 537 

provided additional information over the individual streamgage calibrations (cases where 538 

groupNSE are greater than gageNSE in Fig. 13). The difference between the gageNSE and 539 

groupNSE becomes larger as the NSE values decrease, reflecting the increasing uncertainty in 540 

the grouped calibrations in areas with lower gageNSE values.  541 

Figure 13.  Nash Sutcliffe Efficiency from individual (gageNSE) and grouped (groupNSE) 542 

calibration.  Calibration regions in New England (67 streamgages, red); Tennessee River 543 

(21 streamgages, orange); Platte Headwaters (15 streamgages, blue); and Pacific Northwest 544 

(33 streamgages, green) are highlighted (see Fig. 10b for location). 545 

Four regions are highlighted in Fig. 13 to illustrate the variability of NSE across the CONUS 546 

(see Fig. 10b for locations). The highlighted regions in New England (red), Tennessee River 547 

(orange), and Pacific Northwest (green), show good groupNSE and gageNSE results.  Four of 548 
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the 15 streamgages in the Platte Headwaters (blue) have groupNSE values < 0.5.  This is 549 

probably related to simulation error during the snowmelt period (May - June, Fig. 10a).   550 

Figure 14 shows the median groupNSE by calibration region for the CONUS. The pattern is very 551 

similar to that shown for the individual streamgage calibration results in Fig. 9a and highlights 552 

the problem areas shown in Fig. 12.  553 

Figure 14.  Median Nash Sutcliffe Efficiency (NSE) of streamgages used for calibration by 554 

calibration region. 555 

 556 

5 Discussion 557 

This study presented a parameter regionalization procedure for calibration of the MWBM, 558 

resulting in an application that can be used for simulation of hydrologic variables for both gaged 559 

and ungaged areas in the CONUS. The regionalization procedure grouped HRUs on the basis of 560 

similar sensitivity to five model parameters.  Parameter values and model uncertainty 561 

information within a group was then passed from gaged to ungaged areas within that group. 562 

5.1 Regionalized parameters 563 

Results from this study indicate that regionalized parameters can be used to produce satisfactory 564 

MWBM simulations in most parts of the CONUS (Fig. 13).  Despite the differences between the 565 

individual streamgage calibration and grouped calibration, Figure 13 illustrates that the grouped 566 

calibration strategy, which focused only on sensitive parameters, can provide just as much 567 

information as the individual streamgage calibration with no constraints on the parameter 568 

optimization other than the default ranges.  The MWBM is a simple hydrologic model as it has 569 

minimal parameters, which are conceptual in nature (not physically based). It may be that this 570 

type of model is best for regionalization when parameter sensitivity can be identified and HRU 571 

behavior can be classified by a small number of clearly defined spatial groups.  More 572 

complicated models with many more interactive parameters may not respond as well to this 573 

simple type of regionalization; more parameters may lead to more parameter interaction and 574 

situations of equifinality which might confuse the analysis. 575 
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The adjustments of precipitation and temperature parameters for the individual streamgage 576 

calibrations accounted for local errors such as rain gage under catch of precipitation. In addition 577 

these climate adjustments also account for local anthropogenic effects on streamflow (e.g. dams, 578 

diversions) since streamgages were not screened for these effects prior to individual streamgage 579 

calibration. In the grouped streamgage calibrations, the same precipitation and temperature 580 

adjustments are applied at every streamgage within the calibration region, making these climate 581 

adjustments more of a regional adjustment and producing more of a ‘reference’ condition for 582 

each calibration region. 583 

5.2 Parameter sensitivities and dominant process 584 

The MWBM parameter sensitivities varied by hydroclimatic index (RR and RV) and across the 585 

CONUS (Fig. 3).  The parameter sensitivity patterns give an indication of dominant hydrologic 586 

processes based on MWBM. The dominant process can be seasonal and MWBM performance 587 

may be enhanced by extending the use of SA along the temporal domain to identify and 588 

temporally vary the parameters that are seasonally important to the MWBM. For example, error 589 

in peak flow months is the primary cause for poor model performance in the Platte Headwaters 590 

(Fig. 9).  For the Platte Headwaters, the final parameter set performed well for simulated Z-591 

scores for the regionalized low- and median-flow conditions (Fig. 9a, July through April), but 592 

was not able to replicate measured mean monthly flows for May and June.  In this case, the 593 

dominant processes controlling hydrologic behavior change with season and the parameters 594 

controlling the dominant response may have to change accordingly (Gupta et al., 2008; Reusser 595 

et al., 2011).    596 

5.3 Model accuracy 597 

The pattern of MWBM accuracies shown in Fig. 8 and 14 are similar to those shown by Newman 598 

et al. (2015; Fig. 5a) in which a daily time-step hydrologic model was calibrated for 671 basins 599 

across the CONUS. Our study and the Newman et al. (2015) study both indicate the same 600 

‘problem areas’ with the poorest performing basins generally being located in the high plains and 601 

desert southwest. Newman et al. (2015) attributed variation in model performance by region to 602 
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spatial variations in aridity and precipitation intermittency, contribution of snowmelt, and runoff 603 

seasonality.  604 

The inferior MWBM results in the ‘problem areas’ can be attributed to multiple factors which 605 

likely include inadequate hydrologic process representation and errors in forcing data (e.g. 606 

climate data), and/or measured streamflow. Archfield et al. (2015) state that the performance of 607 

continental-domain hydrologic models is considerably constrained by inadequate model 608 

representation of dominant hydrologic processes.  For example, the simplicity of the MWBM 609 

presents limitations on the representation of deeper groundwater reservoirs, gaining and losing 610 

stream reaches, simplistic AET, and the effects of surface processes (infiltration and overland 611 

flow) that need to be represented at finer time steps than monthly. 612 

The dominant hydrologic processes in the ‘problem areas’ appear to be poorly represented at the 613 

daily (Newman et al., 2015) and monthly time steps.  This may be due to inadequate forcing 614 

data, the quality of which ‘is paramount in hydrologic modeling efforts’ (Archfield et al., 2015) 615 

and/or the lack of ‘good’ reference streamflow data for calibration and evaluation. Both surely 616 

play a role and emphasize the need for incorporation of additional datasets so that calibration and 617 

evaluation of intermediate states in the hydrologic cycle are examined.  618 

6 Conclusions 619 

A parameter regionalization procedure was developed for the CONUS that transferred parameter 620 

values from gaged to ungaged areas for a MWBM. The FAST global-sensitivity algorithm was 621 

implemented on a MWBM to generate parameter sensitivities on a set of 109,951 HRUs across 622 

the CONUS.  The parameter sensitivities were used to group the HRUs into 110 calibration 623 

regions. Streamgages within each calibration region were used to calibrate the MWBM 624 

parameters to produce a regionalized set of parameters for each calibration region.  The 625 

regionalized MWBM parameter sets were used to simulate monthly runoff for the entire 626 

CONUS.  Results from this study indicate that regionalized parameters can be used to produce 627 

satisfactory MWBM simulations in most parts of the CONUS.   628 

The best MWBM results were achieved simulating low- and median-flows across the CONUS. 629 

The high-flow months generally showed lower skill levels than the low- and median-flow 630 
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months, especially for regions with dominant seasonal cycles. The lowest MWBM skill levels 631 

were found in the high plains and desert southwest and can be attributed to multiple factors 632 

which likely include inadequate hydrologic process representation and errors in forcing data 633 

and/or measured streamflow. Calibration and evaluation of intermediary fluxes and states in the 634 

MWBM through additional measured datasets may help to improve MWBM representations of 635 

these model states by helping to constrain parameterization to measured values.   636 
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Parameter Definition Range Default 

1. Drofac 
Controls fraction of precipitation that 

becomes runoff 
0, 0.10 0.05 

2.  Rfactor 
Controls fraction of surplus that becomes 

runoff 
0.10, 1.0 0.5 

3.  Tsnow 
Threshold above which all  precipitation is 

rain (
o
C) 

-10.0, -2.0 -4.0 

4.  Train 
Threshold below which all precipitation is 

snow (
o
C) 

0.0, 10.0 7.0 

5.  Meltcoef 
Proportion of snowpack  that becomes 

runoff 
0.0, 1.0 0.47 

6.  Ppt_adj 
Seasonal adjustment factor for precipitation 

(%) 
0.5, 2.0 1 

7.   Tav_adj Seasonal adjustment for temperature (
o
C) -3.0,3.0 0 

 855 

Table 1. Monthly Water Balance Model parameters and ranges. 856 
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 862 

Figure 1.  Conceptual diagram of the Monthly Water Balance Model (McCabe and Markstrom 863 

2007).  Processes influenced by model parameters used in Fourier Amplitude Sensitivity Test 864 

(FAST) those identified by green arrow and numbered 1-5  (Table 1). 865 
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 875 

Figure 2.  Hydrologic Response Units of the Geospatial Fabric, differentiated by color, overlain 876 

by NHDPlus region boundaries (R01-R18). 877 
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 886 

Figure 3.  Schematic flowchart of the parameter regionalization procedure described in Section 887 

3:  Parameter sensitivities (3.1), Calibration Regions (3.2), Initial Streamgage Selection 888 

(3.3), and Grouped streamgage calibration (3.4). 889 
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 890 

Figure 4.  Relative sensitivity of the (a) Rainfall Ratio (RR) and (b) Runoff Variability (RV) 891 

indices to Monthly Water Balance Model parameters. 892 
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896 
Figure 5.  Parameter sensitivities of Runoff Variability (RV; a and b) and Runoff Ratio (RR; c 897 

and d) indices for Monthly Water Balance Model parameters in the Lower Mississippi (R08) and 898 

Upper Colorado (R14). 899 

 900 
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 901 

Figure 6.  Final 110 Monthly Water Balance Model calibration regions differentiated by colors.  902 

A subset of streamgages within each calibration region were calibrated in a group-wise fashion 903 

to produce a single optimized parameter set for the entire region (Fig. 3).  904 
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 914 

Figure 7.  Streamgages tested in the study.  GF notes geospatial fabric for national hydrologic 915 

modeling (Viger and Bock, 2014). 916 
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 924 

Figure 8.  Measured versus simulated mean monthly Z-scores for the Tennessee River calibration 925 

region (see Fig. 9b for location). Orange is calibration, red is evaluation, and black is all years. 926 
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 938 

Figure 9.  Individual streamgage calibration results: (a) Nash-Sutcliffe Efficiency (NSE) 939 

coefficient and (b) log of the NSE (logNSE). 940 

 941 

 942 



44 

 

 943 

Figure 10.  (a) Measured versus simulated mean monthly Z-scores for runoff at all streamgages 944 

and (b) location of highlighted streamgages for four calibration regions: New England (67 945 

streamgages, red); Tennessee River (21 streamgages, orange); Platte Headwaters (15 946 

streamgages, blue); and Pacific Northwest (33 streamgages, green). 947 
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 951 

Figure 11.  Z-score cumulative frequency for (a) highest-, (b) median-, and (c) lowest-flow  952 

months. 953 
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 955 

Figure 12.  Z-score error (simulated - measured) for (a) highest-, (b) median-, and (c) lowest-956 

flow months. 957 
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 963 

Figure 13.  Nash Sutcliffe Efficiency from individual (gageNSE) and grouped (groupNSE) 964 

calibration.  Calibration regions in New England (67 streamgages, red); Tennessee River (21 965 

streamgages, orange); Platte Headwaters (15 streamgages, blue); and Pacific Northwest (33 966 

streamgages, green) are highlighted (see Fig. 9b for location). 967 
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 973 

Figure 14. Median Nash Sutcliffe Efficiency (NSE) of streamgages used for calibration by 974 

calibration region. 975 

 976 

 977 


