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Abstract   23 

Analytical solutions for the variance, covariance, and spectrum of groundwater level, 24 

h(x, t), in an unconfined aquifer described by a linearized Boussinesq equation with 25 

random source/sink and initial and boundary conditions were derived. It was found 26 

that in a typical aquifer the error in h(x, t) in early time is mainly caused by the 27 

random initial condition and the error reduces as time progresses to reach a constant 28 

error in later time. The duration during which the effect of the random initial 29 

condition is significant may last a few hundred days in most aquifers. The constant 30 

error in h(x, t) in later time is due to the combined effects of the uncertainties in the 31 

source/sink and flux boundary: the closer to the flux boundary, the larger the error. 32 

The error caused by the uncertain head boundary is limited in a narrow zone near the 33 

boundary and remains more or less constant over time. The aquifer system behaves 34 

as a low-pass filter which filters out high-frequency noises and keeps low-frequency 35 

variations. Temporal scaling of groundwater level fluctuations exists in most part of 36 

a low permeable aquifer whose horizontal length is much larger than its thickness 37 

caused by the temporal fluctuations of areal source/sink.  38 

Key words: Uncertainty of groundwater levels; Temporal scaling; Random source/sink; 39 

Random initial and boundary conditions.40 
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1. Introduction 41 

Groundwater level or hydraulic head (h) is the main driving force for water flow 42 

and advective contaminant transport in aquifers and thus the most important variable 43 

studied in groundwater hydrology and its applications. Knowledge about h is critical 44 

in dealing with groundwater-related environmental problems, such as over-pumping, 45 

subsidence, sea water intrusion, and contamination. One often found that the data 46 

about groundwater level is limited or unavailable in a hydrogeological investigation. 47 

In such cases the groundwater level distribution and its temporal variation are 48 

usually obtained with an analytical or numerical solution to a groundwater flow 49 

model.   50 

It is obvious that errors always exit in the groundwater levels calculated or 51 

simulated with analytical or numerical solutions. The main sources of errors include 52 

the simplification or approximation in a conceptual model and the uncertainties in 53 

the model parameters. Problems in conceptualization or model structure were dealt 54 

with by many researchers (Neuman, 2003;Rojas et al., 2010;Ye et al., 2008;Rojas et 55 

al., 2008;Refsgaard et al., 2007;Zeng et al., 2013). The uncertainties in the model 56 

parameters (e.g., hydraulic conductivity, recharge rate, evapotranspiration, and river 57 

conductance) were investigated based on generalized likelihood uncertainty 58 

estimation and Bayesian methods (Nowak et al., 2010;Neuman et al., 2012;Rojas et 59 

al., 2008;Rojas et al., 2010). The uncertainty in groundwater level has been one of 60 

the main research topics in stochastic subsurface hydrology for more than three 61 

decades. Most of these studies were focused on the spatial variability of groundwater 62 
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level due to aquifers’ heterogeneity (Dagan, 1989;Gelhar, 1993;Zhang, 2002). Little 63 

attention has been given to the uncertainties in groundwater level due to temporal 64 

variations of hydrological processes, e.g., recharge, evapotranspiration, discharge to 65 

a river, and river stage (Bloomfield and Little, 2010;Zhang and Schilling, 66 

2004;Schilling and Zhang, 2012;Liang and Zhang, 2013a;Zhu et al., 2012). 67 

Uncertainties of groundwater level fluctuations have been studied by Zhang and 68 

Li (2005, 2006) and most recently by Liang and Zhang (2013a). Based on a linear 69 

reservoir model with a white noise or temporally-correlated recharge process, Zhang 70 

and Li (2005, 2006) derived the variance and covariance of h(t) by considering only 71 

a random source or sink process assuming deterministic initial and boundary 72 

conditions. Liang and Zhang (2013a) extended the studies of Zhang and Li (2005, 73 

2006) and carried out non-stationary spectral analysis and Monte Carlo simulations 74 

using a linearized Boussinesq equation, and investigated the temporospatial 75 

variations of groundwater level. However, the only random process considered by 76 

Liang and Zhang (2013a) is the source/sink. Temporal scaling of groundwater levels 77 

discovered first by Zhang and Schilling Zhang and Schilling (2004) was verified in 78 

several studies (Zhang and Li, 2005, 2006; Bloomfield and Little, 2010; Zhang and 79 

Yang, 2010; Zhu et al., 2012; Schilling and Zhang, 2012). However, we do not know 80 

the effect of random boundary conditions on temporal scaling of groundwater levels.  81 

In this study we extended above-mentioned work by considering the 82 

groundwater flow in a bounded aquifer described by a linearized Boussinesq 83 

equation with a random source/sink as well as random initial and boundary 84 
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conditions since the latter processes are known with uncertainties. The objectives of 85 

this study are 1) to derive analytical solutions for the covariance, variance and 86 

spectrum of groundwater level, and 2) to investigate the individual and combined 87 

effects of these random processes on uncertainties and scaling of h(x, t). In the 88 

following we will first present the formulation and analytical solutions, then discuss 89 

the results, and finally draw some conclusions.   90 

  91 

2. Formulation and Solutions 92 

Under the Dupuit assumption, the one-dimensional transient groundwater flow in 93 

an unconfined aquifer near a river (Fig. 1) can be approximated with the linearized 94 

Boussinesq equation (Bear, 1972) with the initial and boundary conditions, i.e., 95 
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where T [L/T] is the transmissivity, h [L] is the hydraulic head or groundwater level 98 

above the bottom of the aquifer which is assumed to be horizontal, W(t) [L/T] is the 99 

time-dependent source/sink term representing areal recharge or evapotranspiration, SY  100 

is the specific yield,  xH0  [L] is the initial condition, Q(t) [L2/T] is the 101 

time-dependent flux at the left boundary, H(t) [L] is the time-dependent water level at 102 

the right boundary, L [L] is distance from the left to the right boundary, x [L] is the 103 

coordinate, and t [T] is time. In this study the initial head H0(x) is taken to be a 104 

spatially random variable, and the source/sink, W(t), the flux to the left boundary, Q(t), 105 

and the head at the right boundary, H(t), are all taken to be temporally random 106 
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processes and spatially deterministic. The parameters T and SY are taken to be 107 

constant.  108 

 The groundwater level, h(x, t), the three random processes, W(t), Q(t), and H(t), 109 

and the random variable, H0(x), are expressed in terms of their respective ensemble 110 

means plus small perturbations, 111 

      txhtxhtxh ,',,   (2a) 112 
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where < > stands for ensemble average and ’ for perturbation. The initial condition 115 

)(xH0  in (1) can be any function. For the conceptualization of the groundwater flow 116 

presented in Fig. 1, the steady-state condition can be reached in this aquifer after a 117 

rainfall or during a wet season. Thus the steady-state solution to this model were often 118 

adopted as initial condition in previous research (Liang and Zhang, 2012, 2013a, b). 119 

Thus, in this study, we set initial condition )(xH0  to be the steady-state solution to 120 

the one-dimensional groundwater flow equation, i.e.,   TxLWhxH /5.0)( 22

00 0
 , 121 

where h0 [L] is the constant groundwater level at the right boundary and W0 [L/T] is 122 

the spatially constant recharge rate (Liang and Zhang, 2012). Since h0 is taken to be 123 

constant, the source of the uncertainty in the initial head  xH0  is due to random W0 124 

only. Thus, the mean and perturbation of  xH0  can be written as, 125 

    TxLWhxH /5.0 22

000   and     TxLWxH /5.0' 22'

00  , respectively. 126 

By substituting Eq. (2),  xH 0 , and  xH '0  into Eq. (1) and taking expectation, one 127 

obtains the mean flow equation with the mean initial and boundary conditions as 128 
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Subtracting Eq. (3) from (1) leads to the following perturbation equation with the 131 

initial and boundary conditions 132 
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The analytical solution to Eq. (4) can be derived with integral-transform methods 135 

(Ozisik, 1968) given by 136 
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where YSTβ / ,    Lnbn 2/12  . Using Eq. (5), the temporal covariance of the 138 

groundwater level fluctuations can be derived as  139 
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in which 2

0Wσ is the variance of W0, and  ρξCWW , ,   ,QQC and   ,HHC are the 141 

temporal auto-covariance of W(t), of Q(t), and H(t), respectively. We assume that 142 

W(t), Q(t), and H(t) are uncorrelated in order to simplify our analyses. It is shown in 143 

Eq. (6) that the head covariance depends on the variance of W0 and the covariances 144 

of W(t), Q(t), and H(t) and this equation can be evaluated for any random W(t), Q(t), 145 

and H(t). We assume that these processes are white noises as employed in previous 146 
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studies (Gelhar, 1993;Hantush and Marino, 1994;Liang and Zhang, 2013a). More 147 

realistic randomness of these processes will be considered in future studies.  148 

 Following Gelhar (1993, p.34), we express the spectra of W(t), Q(t), and H(t) as  149 

 /2

WWWWS  ,  /2

QQQQS  , and  /2

HHHHS  , respectively, where 
2

W , 150 

2
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2

H  are the variances and 
W ,

 Q , and H  are the correlation time 151 

intervals of these three processes, respectively.  The corresponding covariance of 152 

W(t), Q(t) and H(t) are      WWWWC 22, ,      QQQQC 22, , 153 

and      HHHHC 22, . Substituting these covariance into (6) and taking 154 

integration, one obtain analytical solution of head covariance 155 
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where 12 ''' ttτ   and   2/''' 12 ttt  . The analytical solution for the head variance can 157 

be obtain by setting 0'τ  158 
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in which ))/(( 2 KMLSt Yc  [1/T] is a characteristic timescale (Gelhar, 1993) where 162 

the transmissivity (T) is replaced by the product of the hydraulic conductivity (K) and 163 

the average saturated thickness (M) of the aquifer. The characteristic timescale (tc) is 164 
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an important parameter and its value for most shallow aquifers is usually larger than 165 

100 day since the horizontal extent of a shallow aquifer is usually much larger than its 166 

thickness. For instance, the value of tc is 250 days for a sandy aquifer with L=100m, 167 

M =10m, K=1m/day, and SY=0.25. 168 

    The spectral density of h(x, t) can't be derived by ordinary Fourier transform 169 

since the head covariance and variance depend on time t’ and thus h(x, t) are 170 

temporally non-stationary as shown in Eqs. (7) and (8).  Priestley (1981) defined the 171 

spectral density of non-stationary processes (Wigner spectrum) as the Fourier 172 

transform of time-dependent auto-covariance with fixed reference time t and derived 173 

time-dependent spectral density. In order to obtain the spectrum of h(x, t), we applied 174 

Priestley's method and obtained the time-dependent spectral density (Priestley, 1981; 175 

Zhang and Li, 2005;Liang and Zhang, 2013a), i.e.,  176 
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where  is angular frequency and  = 2f, f is frequency, and 1i . It is seen in 178 

Eq. (9) that the spectrum hhS  is dependent on not only frequency and locations but 179 

also time t. The time-dependent term (i.e., first term) in Eq. (9) is caused by the 180 

random initial condition and is proportional to 
 tbbβ nme

22 
 which decays quickly with 181 

t. We evaluated the first term in the Eq. (9) by setting t=0 and found that it is much 182 

smaller than the second term in Eq. (9). We thus ignored the first term and evaluated 183 

the spectrum using the approximation, 184 
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 186 

3. Results and Discussion  187 

3.1 Variance of groundwater levels 188 

The general expression of the head variance in Eq. (8) depends on the variances 189 

of the four random processes,
2

0W , 
2

W , 
2

Q , and 
2

H . In the following we will study 190 

their individual and combined effects on the head variation and focus our attention 191 

only on the variance of h(x, t). The dimensionless standard deviation of h(x, t), h' , 192 

or the square root of the dimensionless variance (
2'h ) as a function of the 193 

dimensionless time (t’) were evaluated and presented in the left column of Fig. 2 at 194 

fixed dimensionless locations (x’). The h'  as a function of x’ was evaluated
 and 

195 

presented in the right column of Fig. 2 at fixed t’.
 196 

We first evaluate the effect of the random initial condition due to the random 197 

term, W0, by setting 0222  HQW  . In this case the dimensionless variance in Eq. 198 

(8) reduces to 199 
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where )4/(' 24222

0Whh LT   . The changes of the h'  with x’ and t’ were 201 

presented in Fig 2a and 2b, respectively. It is shown in Fig. 2a that for a fixed 202 

location the h' is at its maximum at t’=0 and decreases with time gradually to a 203 

negligible number at t’=1.0. This means that the error in h(x, t) predicted by an 204 

analytical or numerical solution due to the uncertain initial condition is significant at 205 
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early time, especially near a flux boundary. The time duration during which the 206 

effect of the uncertain initial condition is significant depends on the value of the 207 

characteristic timescale (tc) since t’=t/tc. In the most aquifers this duration may last 208 

many days.  In the typical aquifer studied the effect of the uncertainty in initial 209 

condition on h(x, t) is significant during first 250 days (t’=1.0). This duration should 210 

be relatively short, however, in a more permeable aquifer whose horizontal extent (L) 211 

is relatively smaller than its thickness (M). It is seen in Fig. 2b that for a fixed time，212 

the h' is the largest at the left flux boundary (x’=0.0) and becomes zero at the right 213 

constant head boundary (x’=1.0) since the right boundary is deterministic. This 214 

means that the error in h(x, t) predicted by an analytical or numerical solution due to 215 

the uncertain initial condition is significant almost everywhere in the aquifer: the 216 

further away from a constant head boundary, the larger the error.  217 

We then consider the uncertainty in the areal source/sink term (W) by setting 218 

0222

0
 HQW  . In this case the dimensionless variance in Eq. (8) reduces to 219 
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where )4/(' 2222

WWYhh LTS   . The changes of the h'  with x’ and t’ were 221 

presented in Fig 2c and 2d, respectively. It is noticed in Fig. 2c that at a fixed location, 222 

the h
' is zero initially, gradually increases as time goes, and approaches a constant 223 

limit at later time. This means that the error in h(x, t) due to an source/sink is at its 224 

minimum at early time and increases with time to approach a constant limit at later 225 

time: the closer to the left flux boundary, the larger the limit.  For a fixed time the 226 

h
' decreases smoothly from the left to the right boundary (Fig. 2d). The error in h(x, 227 
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t) due to the uncertainty in the source/sink is significant almost everywhere in the 228 

aquifer: the further away from the constant head boundary, the larger the error, similar 229 

to the previous case with the random initial condition (Fig. 2b).  230 

Thirdly, we investigate the effect of the left random flux boundary by setting 231 

0222

0
 HWW   in Eq. (8). In this case the dimensionless head variance is given 232 

by  233 

                















0 0
22

''2
2

''

1
''cos''cos2',''

2

m n nm

tb

nmh
bb

e
xbxbtx

m

       (13) 234 

where )4/(' 222

QQYhh TS   . The changes of the h'  with x’ and t’ were 235 

presented in Fig 2e and 2f, respectively. At any location the 
h' in Fig. 2e or the 236 

error in h(x, t) due to an uncertain flux boundary is at its minimum at early time and 237 

increases quickly with time to approach a constant limit: the closer to the left flux 238 

boundary, the larger the limit. At any time the 
h' in Fig. 2f or the error in the head 239 

due to the uncertain flux boundary is at its maximum at the left boundary but 240 

decreases quickly away from the boundary to become insignificant for x’>0.8.     241 

Fourthly, we investigated the effect of the random head boundary by setting 242 

0222

0
 QWW   in Eq. (8). The dimensionless head variance in this case is given 243 

by  244 

         
   

 22

''2

0 0

2

''

1''1
''cos''cos2',''

2

nm

tb

nm

nm

m n

nmh
bb

ebb
xbxbtx

m














  (14)  245 

where )4/(' 2222

HHYhh TSL   . The changes of this h'  with x’ and t’ were 246 

presented in Fig 2g and 2h, respectively.  It seen in Fig. 2g that at any location the 247 

h'  or the error in h(x, t) due to the random head boundary increases with time 248 
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quickly to approach a constant limit: the closer to the uncertain head boundary, the 249 

larger the error. The spatial variation of 
h'  can be clearly observed in Fig. 2h for 250 

fixed t’. At any time 
h'  is at its maximum at the right boundary (x’=1) where the 251 

head is uncertain, decreases quickly away from the boundary. The error in h(x, t) due 252 

to the uncertain head boundary is limited in a narrow zone near the boundary (x’>0.8) 253 

(Fig. 2h).  254 

Finally, we consider the combined effects of the uncertainties from all four 255 

sources, i.e., the initial condition, sources, and flux and head boundaries. The head 256 

variance in Eq. (8) is written in the dimensionless form as 257 

 

         
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(15) 258 

where  259 

WW

Yh
h

L

TS






22

2
2

4
'  ; 

WW

WY

W
T

SL






2

22

2 0

0
'  ; 

WW

QQ

Q
L 




22

2

2'  ; 
WW

HH
H

L

T






24

22
2'   260 

The dimensionless variances, 
2

0
'W , 

2'Q  and
2'H , need to be specified in order to 261 

evaluate the dimensionless  ',''2 txh  in Eq. (15). For the typical aquifer mentioned 262 

above with L=100m, T=10 m2/day (or K=1m/day and M=10m) and SY=0.25, we 263 

set
122 10)/(

0

WWW  , 
322 10)/( WWQQ  , 422 10)/( WWHH   and obtain 264 

25'2
0
W , 1.0'2 Q  and 01.0'2 H . 265 

The changes of this h'  with x’ and t’ were presented in Fig 2i and 2j, 266 

respectively. It is observed in Fig. 2i that at any location the 
h'
 
is at its maximum 267 
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due to the uncertainty in the initial condition, gradually decreases as time goes, and 268 

approaches a constant limit at later time (t’>0.6) which is due to the combined 269 

effects of the uncertain source/sink and flux and head boundaries. This means that 270 

the error in the head in early time is significant if the initial condition is uncertain 271 

and reduces as time goes to reach a constant limit. The error in head in later time is 272 

determined by the uncertainties in the source/sink, flux and head boundaries. It can 273 

be observed in Fig. 2j that 
h'
 
is relatively larger near both boundaries. The values 274 

of 
h'  at the two boundaries are equivalent (1.3) at early time, say t’=0.01 (the top 275 

curve in Fig. 2j) and it reduces slowly away from the flux boundary but quickly 276 

away from the head boundary. As time progresses, the 
h' near the head boundary 277 

stays more or less the same but reduces significantly in most part of the aquifer. This 278 

means that in early time the error in h(x, t) in most part of the aquifer is mainly 279 

caused by the initial condition and at later time it is due to the combined effects of 280 

the uncertain areal source/sink and flux boundary. The effect of the uncertain head 281 

boundary on h(x, t) doesn’t change with time significantly but is limited in a narrow 282 

zone near the boundary.  283 

3.2 Spectrum of groundwater levels  284 

We first evaluated Shh in Eq. (10) due to the effect of the white noise flux 285 

boundary only by setting 0QQS , 0WWS , and 0HHS . The dimensionless 286 

spectrum 
QQhh SS /  as a function of the frequency (f) was evaluated and presented in 287 

the log-log plot (Fig. 3a-3c) for three values of tc (40, 400, and 4,000 days) since the 288 

value of tc is 250 days for a sandy aquifer as we mentioned above and at the six 289 
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locations (x’ = 0.0, 0.2, 0.4, 0.6, 0.8, and 0.9). The spectrum
QQhh SS /

 
in Fig. 3a is 290 

more or less horizontal (i.e., white noise) at low frequencies and decrease gradually 291 

as f increases, indicating that an aquifer acts as a low-bass filter that filter signals at 292 

high frequencies and keep signals at low frequencies. The aquifer has significantly 293 

dampened the fluctuations of the groundwater level. The spectrum varies with the 294 

location x’: the smaller the value of x’ or the closer to the left flux boundary (x’=0), 295 

the larger the spectrum (Fig. 3a-3c). All spectra in Fig. 3a are not a straight line in 296 

the log-log plot, meaning that the temporal scaling of h(x, t) doesn’t exist in the 297 

range of f =10-3100 when tc=40 days.  As tc increases to 400 and 4000 days, 298 

however, the spectrum at x’=0 become a straight line (the top curve in Fig. 3b and 3c) 299 

or has a power-law relation with f, i.e., 
QQhh SS / 1/f , since its slope is approximately 300 

one. The fluctuations of h(0, t) is a pink noise due to the white noise fluctuations flux 301 

boundary when the characteristic timescale (tc) is large which means that the aquifer 302 

is relatively less permeable and/or has a much larger horizontal length than its 303 

thickness. 304 

Secondly, the spectrum HHhh SS / due to the sole effect of the random head 305 

boundary was evaluated by setting 0HHS , 0WWS , and 0QQS  in Eq. (10) for 306 

the same three values of tc and six locations and presented in Fig. 3d-3f as a function 307 

of f.  It is shown that similar to Fig. 3a-3c, the spectrum decreases as f increases but 308 

different from Fig. 3a-3c, the spectrum is larger at x’=0.9 near the right boundary 309 

(the top curves in Fig. 3d-3f) than that x’=0.0 (the bottom curves). Furthermore, 310 

none of the spectra are a straight line in the log-log plot, indicating that the temporal 311 
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scaling of groundwater level fluctuations doesn’t exist in the case of the white noise 312 

head boundary. 313 

 Thirdly, the spectrum WWhh SS / due the effect of the white noise recharge only 314 

was evaluated by setting 0WWS , 0QQS , and 0HHS  in Eq. (10) for the same 315 

values of tc and x’ and presented in Fig. 3g-3i as a function of f.  It is shown that 316 

when tc=40 day the spectrum in Fig. 3g is horizontal at low frequencies and become 317 

a straight line at high frequencies: the closer to the right head boundary, the later it 318 

approaches a straight line (Fig. 3h). As tc increases to 400 and 4000 days, the slope 319 

of the spectrum at all locations except at x’=0.9 approaches to a straight line with a 320 

slope of 2 (Fig. 3h and 3i), indicating a temporal scaling of h(x, t). The fluctuations 321 

of groundwater level is a Brownian motion, i.e., 2/1 fS  , when tc4000 day or in 322 

a relatively less permeable and/or has a much larger horizontal length than its 323 

thickness. 324 

Finally, the head spectrum due to the combined effect of all three random 325 

sources (the white noise recharge, and flux and head boundaries) was evaluated, i.e., 326 

0WWS , 0QQS , and 0HHS  in Eq. (10). The spectrum of WWhh SS /  as a 327 

function of f was presented in Fig. 3j-3l for the same values of tc and x’ where 328 

1000/ WWQQ SS  and 10000/ WWHH SS  which are same with the values using in 329 

previous section. It is noticed that the general patterns of  WWhh SS /  in the 330 

combined case is similar to the case under the random source/sink only (Fig. 3g-3i) 331 

except at x’=0.0 and 0.9 (the dashed and dotted curves in Fig. 3j, respectively) due 332 

to the strong effects of the boundary conditions at these two locations. At tc=4000 333 
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day, the spectra at all locations except x’=0.0 (Fig. 3l) are similar to those in Fig. 3i, 334 

indicating the dominating effect of the random areal source/sink.  The spectrum at 335 

x’=0 in this case is also a straight line (the dashed curve in Fig. 3l) but with a 336 

different slope due to the effect of the random flux boundary which is similar to the 337 

top straight line in Fig. 3c.  Above results provide a theoretical explanation as why 338 

temporal scaling exists in the observed groundwater level fluctuations (Zhang and 339 

Schilling, 2004;Bloomfield and Little, 2010;Zhu et al., 2012). We thus conclude that 340 

temporal scaling of h(x, t) may indeed exist in real aquifers due to the strong effect 341 

of the areal source/sink.   342 

4. Conclusions 343 

In this study the effects of random source/sink, and initial and boundary 344 

conditions on the uncertainty and temporal scaling of the groundwater level, h(x, t) 345 

were investigated. The analytical solutions for the variance, covariance and spectrum 346 

of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation 347 

with white noise source/sink, and initial and boundary conditions were derived. The 348 

standard deviations of h(x, t) for various cases were evaluated. Based on the results, 349 

the following conclusions can be drawn. 350 

1. The error in h(x, t) due to a random initial condition is significant at early 351 

time, especially near a flux boundary. The duration during which the effect is 352 

significant may last a few hundred days in most aquifers; 353 

2. The error in h(x, t) due to a random areal source/sink is significant in most 354 

part of an aquifer: the closer to a flux boundary, the larger the error; 355 
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3. The errors in h(x, t) due to random flux and head boundaries are significant 356 

near the boundaries: the closer to the boundaries, the larger the errors. The random 357 

flux boundary may affect the head over a larger region near the boundary than the 358 

random head boundary; 359 

4. In the typical sandy aquifer studied (with the length of aquifer at the 360 

direction of water flow L=100m, the average saturated thickness M =10m, hydraulic 361 

conductivity K=1m/day, and specific yield SY=0.25) the error in h(x, t) in early time 362 

is mainly caused by an uncertain initial condition and the error reduces as time goes 363 

to reach a constant error in later time. The constant error in h(x, t) is mainly due to 364 

the combined effects of uncertain source/sink and boundaries; 365 

5. The aquifer system behaves as a low-pass filter which filter the short-term 366 

(high frequencies) fluctuations and keep the long-term (low frequencies) 367 

fluctuations; 368 

6. Temporal scaling of groundwater level fluctuations may indeed exist in 369 

most part of a low permeable aquifer whose horizontal length is much larger than its 370 

thickness caused by the temporal fluctuations of areal source/sink. 371 

  Finally, it is pointed out that the analyses carried out in this study is under the 372 

assumptions that the processes, W(t), Q(t), and H(t) are uncorrelated white noises. In 373 

reality, they may be correlated and spatially varied. We plan to relax those constrains 374 

and study more realistic cases in the near future. It is also noted that the analytical 375 

solutions for head variances derived in this study provide a way to identify and 376 

quantify the uncertainty. The spectrum relationship obtained among the head, 377 
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recharge and boundary conditions can help one to improve spectrum analysis for a 378 

groundwater level time series and removed the effects of the boundary conditions. 379 
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Figure captions 452 

Figure 1 A schematic of the unconfined aquifer studied where W(t) is the random 453 

time-dependent source/sink, H0(x) is the random initial condition, Q(t) is the 454 

random time-dependent flux at the left boundary, H(t) is the random 455 

time-dependent water level at the right boundary, L is distance from the left to the 456 

right boundary, and h(x, t) is the random groundwater level in the aquifer.  457 

 458 

Figure 2 The graphs on the left column are the standard deviation (
h' ) of 459 

groundwater level (h(x, t)) versus the dimensionless time ( 't ) at the dimensionless 460 

locations x’=0.0, 0.2, 0.4, 0.6, and 0.8. The graphs on the right column are 
h'  461 

versus 'x for the different t’: b) and d) are for t’= 0.0, 0.2, 0.4, 0.6 and 0.8, f) and h) 462 

are for t’=0.01, 0.1, and 1.0, and j) is for t’=0.01, 0.2, 0.4, 0.6 and 0.8. Also, a) and b) 463 

are based on Eq.(11) where 0222  HQW  ; c) and d) are based on Eq. (12) where 464 

0222

0
 HQW  ; e) and f) are based on Eq. (13) where 0222

0
 HWW  ; g) and h) 465 

are based on Eq. (14) where 0222

0
 QWW  ; i) and j) are based on Eq.(15) where 466 

02222

0
 HQWW σσσσ . 467 

 468 

Figure 3 The dimensionless power spectrum versus frequency (f) at the dimensionless 469 

locations x’=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9. The graphs on the left column are for tc = 470 

40 day, the graphs on the middle column are for tc = 400 day, and the graphs on the 471 

right column are for tc = 4000 day. The graphs on the first row are the dimensionless 472 

spectrum QQhh SS /  when 0WWS , 0HHS , and 0QQS  in Eq. (10), the graphs on the 473 

second row is HHhh SS /  when 0WWS , 0QQS , and 0HHS , the graphs on the third 474 

row are WWhh SS /  when 0QQS , 0HHS , and 0WWS , and the graphs on the bottom 475 

row is WWhh SS /  when 0QQS , 0HHS , and 0WWS . 476 

 477 

478 
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Figure 3  489 
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