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Abstract

Analytical solutions for the variance, covariance, and spectrum of groundwater level,
h(x, t), in an unconfined aquifer described by a linearized Boussinesq equation with
random source/sink and initial and boundary conditions were derived. It was found
that in a typical aquifer the error in h(x, t) in early time is mainly caused by the
random initial condition and the error reduces as time progresses to reach a constant
error in later time. The duration during which the effect of the random initial
condition is significant may last a few hundred days in most aquifers. The constant
error in h(x, t) in later time is due to the combined effects of the uncertainties in the
source/sink and flux boundary: the closer to the flux boundary, the larger the error.
The error caused by the uncertain head boundary is limited in a narrow zone near the
boundary and remains more or less constant over time. The aquifer system behaves
as a low-pass filter which filters out high-frequency noises and keeps low-frequency
variations. Temporal scaling of groundwater level fluctuations exists in most part of
a low permeable aquifer whose horizontal length is much larger than its thickness
caused by the temporal fluctuations of areal source/sink.

Key words: Uncertainty of groundwater levels; Temporal scaling; Random source/sink;

Random initial and boundary conditions.
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1. Introduction

Groundwater level or hydraulic head (h) is the main driving force for water flow
and advective contaminant transport in aquifers and thus the most important variable
studied in groundwater hydrology and its applications. Knowledge about h is critical
in dealing with groundwater-related environmental problems, such as over-pumping,
subsidence, sea water intrusion, and contamination. One often found that the data
about groundwater level is limited or unavailable in a hydrogeological investigation.
In such cases the groundwater level distribution and its temporal variation are
usually obtained with an analytical or numerical solution to a groundwater flow
model.

It is obvious that errors always exit in the groundwater levels calculated or
simulated with analytical or numerical solutions. The main sources of errors include
the simplification or approximation in a conceptual model and the uncertainties in
the model parameters. Problems in conceptualization or model structure were dealt
with by many researchers (Neuman, 2003;Rojas et al., 2010;Ye et al., 2008;Rojas et
al., 2008;Refsgaard et al., 2007;Zeng et al., 2013). The uncertainties in the model
parameters (e.g., hydraulic conductivity, recharge rate, evapotranspiration, and river
conductance) were investigated based on generalized likelihood uncertainty
estimation and Bayesian methods (Nowak et al., 2010;Neuman et al., 2012;Rojas et
al., 2008;Rojas et al., 2010). The uncertainty in groundwater level has been one of
the main research topics in stochastic subsurface hydrology for more than three

decades. Most of these studies were focused on the spatial variability of groundwater



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

level due to aquifers’ heterogeneity (Dagan, 1989;Gelhar, 1993;Zhang, 2002). Little
attention has been given to the uncertainties in groundwater level due to temporal
variations of hydrological processes, e.g., recharge, evapotranspiration, discharge to
a river, and river stage (Bloomfield and Little, 2010;Zhang and Schilling,
2004;Schilling and Zhang, 2012;Liang and Zhang, 2013a;Zhu et al., 2012).
Uncertainties of groundwater level fluctuations have been studied by Zhang and
Li (2005, 2006) and most recently by Liang and Zhang (2013a). Based on a linear
reservoir model with a white noise or temporally-correlated recharge process, Zhang
and Li (2005, 2006) derived the variance and covariance of h(t) by considering only
a random source or sink process assuming deterministic initial and boundary
conditions. Liang and Zhang (2013a) extended the studies of Zhang and Li (2005,
2006) and carried out non-stationary spectral analysis and Monte Carlo simulations
using a linearized Boussinesq equation, and investigated the temporospatial
variations of groundwater level. However, the only random process considered by
Liang and Zhang (2013a) is the source/sink. Temporal scaling of groundwater levels
discovered first by Zhang and Schilling Zhang and Schilling (2004) was verified in
several studies (Zhang and Li, 2005, 2006; Bloomfield and Little, 2010; Zhang and
Yang, 2010; Zhu et al., 2012; Schilling and Zhang, 2012). However, we do not know
the effect of random boundary conditions on temporal scaling of groundwater levels.
In this study we extended above-mentioned work by considering the
groundwater flow in a bounded aquifer described by a linearized Boussinesq

equation with a random source/sink as well as random initial and boundary



85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

conditions since the latter processes are known with uncertainties. The objectives of
this study are 1) to derive analytical solutions for the covariance, variance and
spectrum of groundwater level, and 2) to investigate the individual and combined
effects of these random processes on uncertainties and scaling of h(x, t). In the
following we will first present the formulation and analytical solutions, then discuss

the results, and finally draw some conclusions.

2. Formulation and Solutions

Under the Dupuit assumption, the one-dimensional transient groundwater flow in
an unconfined aquifer near a river (Fig. 1) can be approximated with the linearized

Boussinesq equation (Bear, 1972) with the initial and boundary conditions, i.e.,

o°h oh
oh
hxto=Ho()i TS| =QO:  hixt),, =H( (1b)
x=0

where T [L/T] is the transmissivity, h [L] is the hydraulic head or groundwater level
above the bottom of the aquifer which is assumed to be horizontal, W(t) [L/T] is the
time-dependent source/sink term representing areal recharge or evapotranspiration, Sy
is the specific yield, H,(x) [L] is the initial condition, Q(t) [L¥T] is the
time-dependent flux at the left boundary, H(t) [L] is the time-dependent water level at
the right boundary, L [L] is distance from the left to the right boundary, x [L] is the
coordinate, and t [T] is time. In this study the initial head Ho(X) is taken to be a
spatially random variable, and the source/sink, W(t), the flux to the left boundary, Q(t),

and the head at the right boundary, H(t), are all taken to be temporally random
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processes and spatially deterministic. The parameters T and Sy are taken to be
constant.

The groundwater level, h(x, t), the three random processes, W(t), Q(t), and H(t),
and the random variable, Ho(x), are expressed in terms of their respective ensemble

means plus small perturbations,

h(x,t)=(h(x,t))+ h'(x,t) (2a)
W (t)= (W (1)) + W' (t): Q) =(Q(1)) +Q (t) (2b)
HO=(HO)+H 'O  Ho(x)=(H,(x))+H,'(x) (2¢)

where < > stands for ensemble average and * for perturbation. The initial condition
H,(x) in (1) can be any function. For the conceptualization of the groundwater flow

presented in Fig. 1, the steady-state condition can be reached in this aquifer after a
rainfall or during a wet season. Thus the steady-state solution to this model were often
adopted as initial condition in previous research (Liang and Zhang, 2012, 2013a, b).

Thus, in this study, we set initial condition H,(x) to be the steady-state solution to

the one-dimensional groundwater flow equation, i.e., Hy(x)=h, +0.5N (LZ—XZ)/T,

where ho [L] is the constant groundwater level at the right boundary and Wo [L/T] is
the spatially constant recharge rate (Liang and Zhang, 2012). Since hgis taken to be

constant, the source of the uncertainty in the initial head H,(x) is due to random W
only. Thus, the mean and perturbation of H,(x) can be written as,
(Ho(x)) = hy +0.5(W, (L2 —=x? /T and H,'(x)=0.5W, (L> —x?)/T , respectively.
By substituting Eq. (2), (H,(x)), andH,'(x) into Eq. (1) and taking expectation, one

obtains the mean flow equation with the mean initial and boundary conditions as

+(W) =S5, % (3a)
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<h(x,0)>=h0+<\2f|?>(L2—x2); T@|XZO=<Q>; (h(L,t)) = (H(t)) (3b)

OX

Subtracting Eqg. (3) from (1) leads to the following perturbation equation with the

initial and boundary conditions

1O s, O (42)
ox? ot
(0)= o (12 ) Tg—*;'|x_o=q-; h(Lt)=H'(t) (4b)

The analytical solution to Eq. (4) can be derived with integral-transform methods

(Ozisik, 1968) given by
it (-Y"
Ze cos(b ){ 0T

where f=T/S,, b, =(2n+1)z/(2L). Using Eq. (5), the temporal covariance of the

e 1)”vv-(«:)—Q'(fMH-(ch—l)“bn}dg} -

groundwater level fluctuations can be derived as

C,n(%,t:x,t,) = E[h'(x,t, )h'(x,t,)]

4 & & . 1 m+n
:_ZZZ plietits) cos(bx)cos(b, x )[( zb)3b3 ow, (6)

m=0 n=0

Y 2 e C ' m-+n
+p JIG'B baé i {_(I_ ]t-)) b, wa(éip)"'#"'cm (f,p)(—l) bmbn}dfdp}

in which oy, is the variance of Wo, and G, (¢, p),Coq (&, p)and Cyy, (&, p)are the
temporal auto-covariance of W(t), of Q(t), and H(t), respectively. We assume that
W(t), Q(t), and H(t) are uncorrelated in order to simplify our analyses. It is shown in
Eqg. (6) that the head covariance depends on the variance of Wo and the covariances
of W(t), Q(t), and H(t) and this equation can be evaluated for any random W(t), Q(t),

and H(t). We assume that these processes are white noises as employed in previous
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studies (Gelhar, 1993;Hantush and Marino, 1994;Liang and Zhang, 2013a). More
realistic randomness of these processes will be considered in future studies.
Following Gelhar (1993, p.34), we express the spectra of W(t), Q(t), and H(t) as
Sww =Owhy T, Soq =042/ m,and S, =c’4, |z, respectively, where oy,
05, andoy, arethe variances and 4, 4q,and Ay are the correlation time
intervals of these three processes, respectively. The corresponding covariance of
W(t), Q(t) and H(t) are Cyy, (£, 0) =203 2, 8(5 = p), Coql&,p)=203248(5 —p),
and C,, (&, p)=202,5(& - p). Substituting these covariance into (6) and taking

integration, one obtain analytical solution of head covariance

¢ (X r, T 'S b x cosb x'ke {(b%+b'ﬁ)['+(b'ﬁ_b'zm)ﬂw
hh ﬂb'?n b'i

m=0n=0

()

+

2 (e‘b'gnf' o ) ( ) v 2 + AQ + (_1)m+n blm b'nTZO"ale :|}

(b2 +b‘2) b, b, L2 Lt
where 7'=t',-t) and t':(t'2+t'l)/2. The analytical solution for the head variance can

be obtain by setting 7'=0

s '2'2_1m+n2
%ZZ‘; s(b', x')cos(b’ x){e o707 %(b.)s—b.(;vv““
m=0n- ner (8)
,gbt ( )m+n 2 /‘{Q+(_1)m+nb.mb|nT20_a/1H
(b'2 2)| b, b, 2 L
where
2
o xo B @+l

t T
in which t_(=S,L*/(KM))[1/T] is a characteristic timescale (Gelhar, 1993) where

the transmissivity (T) is replaced by the product of the hydraulic conductivity (K) and

the average saturated thickness (M) of the aquifer. The characteristic timescale (tc) is



165  an important parameter and its value for most shallow aquifers is usually larger than
166 100 day since the horizontal extent of a shallow aquifer is usually much larger than its
167  thickness. For instance, the value of tc is 250 days for a sandy aquifer with L=100m,
168 M =10m, K=1m/day, and Sy=0.25.

169 The spectral density of h(x, t) can't be derived by ordinary Fourier transform
170  since the head covariance and variance depend on time t’ and thus h(x, t) are
171 temporally non-stationary as shown in Egs. (7) and (8). Priestley (1981) defined the
172 spectral density of non-stationary processes (Wigner spectrum) as the Fourier
173 transform of time-dependent auto-covariance with fixed reference time t and derived
174  time-dependent spectral density. In order to obtain the spectrum of h(x, t), we applied
175  Priestley's method and obtained the time-dependent spectral density (Priestley, 1981;

176  Zhang and Li, 2005;Liang and Zhang, 2013a), i.e.,

S, (xt,w)= % [ cuixt e de

2t (bz b2 k b2+b2 _l)m+n0_\§l0

177 ~ 33 cos (b, x)cos(b, x) 9)
Z:;anzo S ( 2 _p2 ) /4 + ? ﬂsz;bs
o, & 8 b2 1 ~1)™'S,., S
mzzogcos (bux)cos(o,x) t. (b2 +b2) g2} + ( T)mebnWW ’ TQZQ +HE1) 0D, Sy

178 where o is angular frequency and @ = 27, f is frequency, and i=~/—1. It is seen in
179  Eq. (9) that the spectrum S, is dependent on not only frequency and locations but

180  also time t. The time-dependent term (i.e., first term) in Eqg. (9) is caused by the

. ey - . . —Blb2 +b2
181  random initial condition and is proportional to e ploi otk

which decays quickly with
182  t. We evaluated the first term in the Eq. (9) by setting t=0 and found that it is much
183  smaller than the second term in Eq. (9). We thus ignored the first term and evaluated

184  the spectrum using the approximation,



185 8sb's, cos(b', x')cos(b, X)R )mnswwl-2 Sea , (CU"D', by Sp 10
S(x' )= ;}Zg (b2 b Xﬁb IP+a?) To,b, T E (10)

186

187 3. Results and Discussion

188 3.1 Variance of groundwater levels

189 The general expression of the head variance in Eq. (8) depends on the variances
190  of the four random processes, avzvo , O, oé, and o . In the following we will study
191  their individual and combined effects on the head variation and focus our attention
192  only on the variance of h(x, t). The dimensionless standard deviation of h(x, t), o', ,
193 or the square root of the dimensionless variance (o7 ) as a function of the

194  dimensionless time (¢") were evaluated and presented in the left column of Fig. 2 at

195  fixed dimensionless locations (x’). The o', asa function of x” was evaluated and

196 presented in the right column of Fig. 2 at fixed t".

197 We first evaluate the effect of the random initial condition due to the random
198 term, Wo, by setting oy, =05 =0}, =0. In this case the dimensionless variance in Eg.

199  (8) reduces to

0 )m+n

2 > b cos(b’, x')cos(b’, x' e brRk (11)

200

2001 where o'l=0/T?l(4l%c] ,) - The changes of the o', with x* and 7 were
202  presented in Fig 2a and 2b, respectively. It is shown in Fig. 2a that for a fixed
203  location the o is at its maximum at t'=0 and decreases with time gradually to a
204  negligible number at +’=1.0. This means that the error in h(x, t) predicted by an

205  analytical or numerical solution due to the uncertain initial condition is significant at
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early time, especially near a flux boundary. The time duration during which the
effect of the uncertain initial condition is significant depends on the value of the
characteristic timescale (tc) since ¢’=t/t.. In the most aquifers this duration may last
many days. In the typical aquifer studied the effect of the uncertainty in initial
condition on h(x, t) is significant during first 250 days (¢’=1.0). This duration should
be relatively short, however, in a more permeable aquifer whose horizontal extent (L)
is relatively smaller than its thickness (M). It is seen in Fig. 2b that for a fixed time,
the o', is the largest at the left flux boundary (x'=0.0) and becomes zero at the right
constant head boundary (x’=1.0) since the right boundary is deterministic. This
means that the error in h(x, t) predicted by an analytical or numerical solution due to
the uncertain initial condition is significant almost everywhere in the aquifer: the
further away from a constant head boundary, the larger the error.

We then consider the uncertainty in the areal source/sink term (W) by setting

oy, =04 =0y =0. In this case the dimensionless variance in Eq. (8) reduces to

) *Zb'?ntl m-+n
12 1 tl — 2 b' 1 b, ,\ (l - e )(_ 1)

where &2 =0/TS, I(4L°c A, ) . The changes of the o', with x”and ¢" were
presented in Fig 2c and 2d, respectively. It is noticed in Fig. 2c that at a fixed location,

the o', is zero initially, gradually increases as time goes, and approaches a constant

limit at later time. This means that the error in h(x, t) due to an source/sink is at its
minimum at early time and increases with time to approach a constant limit at later
time: the closer to the left flux boundary, the larger the limit. For a fixed time the

o', decreases smoothly from the left to the right boundary (Fig. 2d). The error in h(x,

10
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t) due to the uncertainty in the source/sink is significant almost everywhere in the
aquifer: the further away from the constant head boundary, the larger the error, similar

to the previous case with the random initial condition (Fig. 2b).

Thirdly, we investigate the effect of the left random flux boundary by setting

oy, =0y =0y =0 in Eq. (8). In this case the dimensionless head variance is given

by

o o on2e
o't (x,1)=2>"> cos(b', x')cos(b’, X,)1—2e—2 (13)
m=0 n=0 b'm +b'n

Where o't = o¢TS, /(4o5A,) . The changes of the o', with x” and " were
presented in Fig 2e and 2f, respectively. At any location the o', in Fig. 2e or the
error in h(x, t) due to an uncertain flux boundary is at its minimum at early time and
increases quickly with time to approach a constant limit: the closer to the left flux
boundary, the larger the limit. At any time the o', in Fig. 2f or the error in the head
due to the uncertain flux boundary is at its maximum at the left boundary but
decreases quickly away from the boundary to become insignificant for x >0.8.
Fourthly, we investigated the effect of the random head boundary by setting

ow, =0y =04 =0 in Eq. (8). The dimensionless head variance in this case is given

by

Ziicosb x')cos(b', x')*—

(b2 +b2) a4

where o2 =0[L’S, I(4Tc%A,). The changes of this o', with x’ and ¢’ were

presented in Fig 2g and 2h, respectively. It seen in Fig. 2g that at any location the

o', or the error in h(x, t) due to the random head boundary increases with time

11
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quickly to approach a constant limit: the closer to the uncertain head boundary, the
larger the error. The spatial variation of &', can be clearly observed in Fig. 2h for
fixed ¢”. Atany time o', is at its maximum at the right boundary (x'=1) where the
head is uncertain, decreases quickly away from the boundary. The error in h(x, t) due
to the uncertain head boundary is limited in a narrow zone near the boundary (x >0.8)
(Fig. 2h).

Finally, we consider the combined effects of the uncertainties from all four
sources, i.e., the initial condition, sources, and flux and head boundaries. The head

variance in Eq. (8) is written in the dimensionless form as

© o 2\, _1 m-+n 12
=" cos(b',, x')cos(b', x){e otk ()J+

m=0 n=0 bl?n blﬁ
(15)
1— efzb mt (_ l)m+n )
2 +0%+(-1)""p' b' o
B2b7)| b, YT
where
2 oS, ., LUSoy aQﬂQ . T022,

The dimensionless variances, aW , aQ and o', need to be specified in order to
evaluate the dimensionless o (x t) in Eqg. (15). For the typical aquifer mentioned
above with L=100m, T=10 m?%day (or K=1m/day and M=10m) and Sy=0.25, we
set oy, l(owA,)=10", o4, NowA,)=10° , o}A, oy Ay)=10° and obtain
w, =25, 05=0.1 and o =0.01.
The changes of this o', with x’ and ¢’ were presented in Fig 2i and 2j,

respectively. It is observed in Fig. 2i that at any location the o', is at its maximum

12
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due to the uncertainty in the initial condition, gradually decreases as time goes, and
approaches a constant limit at later time (#’>0.6) which is due to the combined
effects of the uncertain source/sink and flux and head boundaries. This means that
the error in the head in early time is significant if the initial condition is uncertain
and reduces as time goes to reach a constant limit. The error in head in later time is

determined by the uncertainties in the source/sink, flux and head boundaries. It can

be observed in Fig. 2j that o', is relatively larger near both boundaries. The values
of o', atthe two boundaries are equivalent (~1.3) at early time, say #'=0.01 (the top
curve in Fig. 2j) and it reduces slowly away from the flux boundary but quickly
away from the head boundary. As time progresses, the o', near the head boundary
stays more or less the same but reduces significantly in most part of the aquifer. This
means that in early time the error in h(x, t) in most part of the aquifer is mainly
caused by the initial condition and at later time it is due to the combined effects of
the uncertain areal source/sink and flux boundary. The effect of the uncertain head
boundary on h(x, t) doesn’t change with time significantly but is limited in a narrow
zone near the boundary.

3.2 Spectrum of groundwater levels

We first evaluated Sph in Eqg. (10) due to the effect of the white noise flux

boundary only by setting S, #0,S,, =0, and S,, =0. The dimensionless

spectrum S, /S, as a function of the frequency (f) was evaluated and presented in

the log-log plot (Fig. 3a-3c) for three values of tc (40, 400, and 4,000 days) since the

value of tc is 250 days for a sandy aquifer as we mentioned above and at the six

13
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locations (x* = 0.0, 0.2, 0.4, 0.6, 0.8, and 0.9). The spectrums, /S, in Fig. 3a is
more or less horizontal (i.e., white noise) at low frequencies and decrease gradually
as f increases, indicating that an aquifer acts as a low-bass filter that filter signals at
high frequencies and keep signals at low frequencies. The aquifer has significantly
dampened the fluctuations of the groundwater level. The spectrum varies with the
location x: the smaller the value of x” or the closer to the left flux boundary (x’=0),
the larger the spectrum (Fig. 3a-3c). All spectra in Fig. 3a are not a straight line in
the log-log plot, meaning that the temporal scaling of h(x, t) doesn’t exist in the
range of f =103~10° when t.=40 days. As t. increases to 400 and 4000 days,
however, the spectrum at x =0 become a straight line (the top curve in Fig. 3b and 3c)
or has a power-law relation with f, i.e., S, /S, cl/f, since its slope is approximately
one. The fluctuations of h(0, t) is a pink noise due to the white noise fluctuations flux
boundary when the characteristic timescale (tc) is large which means that the aquifer
is relatively less permeable and/or has a much larger horizontal length than its
thickness.

Secondly, the spectrum S,,/S,,, due to the sole effect of the random head
boundary was evaluated by setting S,,, #0, S,,, =0, andSy, =0 in Eq. (10) for
the same three values of tc and six locations and presented in Fig. 3d-3f as a function
of f. It is shown that similar to Fig. 3a-3c, the spectrum decreases as f increases but
different from Fig. 3a-3c, the spectrum is larger at x’=0.9 near the right boundary
(the top curves in Fig. 3d-3f) than that x’=0.0 (the bottom curves). Furthermore,

none of the spectra are a straight line in the log-log plot, indicating that the temporal

14
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scaling of groundwater level fluctuations doesn’t exist in the case of the white noise
head boundary.

Thirdly, the spectrum S, /S,,, due the effect of the white noise recharge only
was evaluated by setting S, #0, Sy, =0,and S, =0 in Eq. (10) for the same
values of tc and x’ and presented in Fig. 3g-3i as a function of f. It is shown that
when tc=40 day the spectrum in Fig. 3g is horizontal at low frequencies and become
a straight line at high frequencies: the closer to the right head boundary, the later it
approaches a straight line (Fig. 3h). As tc increases to 400 and 4000 days, the slope
of the spectrum at all locations except at x’=0.9 approaches to a straight line with a
slope of 2 (Fig. 3h and 3i), indicating a temporal scaling of h(x, t). The fluctuations
of groundwater level is a Brownian motion, i.e., S oc1/f?, when t:>4000 day or in
a relatively less permeable and/or has a much larger horizontal length than its
thickness.

Finally, the head spectrum due to the combined effect of all three random
sources (the white noise recharge, and flux and head boundaries) was evaluated, i.e.,
Sww 20, Soo #0, and S, #0 in Eq. (10). The spectrum of S, /S,, as a

function of f was presented in Fig. 3j-3l for the same values of tc and x’ where

Soo / Sww =1000 and S, /S,,, =10000 which are same with the values using in
previous section. It is noticed that the general patterns of S,,/S,, in the
combined case is similar to the case under the random source/sink only (Fig. 3g-3i)

except at x’=0.0 and 0.9 (the dashed and dotted curves in Fig. 3j, respectively) due

to the strong effects of the boundary conditions at these two locations. At t:=4000
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day, the spectra at all locations except x '=0.0 (Fig. 3l) are similar to those in Fig. 3i,
indicating the dominating effect of the random areal source/sink. The spectrum at
x’=0 in this case is also a straight line (the dashed curve in Fig. 3l) but with a
different slope due to the effect of the random flux boundary which is similar to the
top straight line in Fig. 3c. Above results provide a theoretical explanation as why
temporal scaling exists in the observed groundwater level fluctuations (Zhang and
Schilling, 2004;Bloomfield and Little, 2010;Zhu et al., 2012). We thus conclude that
temporal scaling of h(x, t) may indeed exist in real aquifers due to the strong effect
of the areal source/sink.

4. Conclusions

In this study the effects of random source/sink, and initial and boundary
conditions on the uncertainty and temporal scaling of the groundwater level, h(x, t)
were investigated. The analytical solutions for the variance, covariance and spectrum
of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation
with white noise source/sink, and initial and boundary conditions were derived. The
standard deviations of h(x, t) for various cases were evaluated. Based on the results,
the following conclusions can be drawn.

1. The error in h(x, t) due to a random initial condition is significant at early
time, especially near a flux boundary. The duration during which the effect is
significant may last a few hundred days in most aquifers;

2. The error in h(x, t) due to a random areal source/sink is significant in most

part of an aquifer: the closer to a flux boundary, the larger the error;
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3. The errors in h(x, t) due to random flux and head boundaries are significant
near the boundaries: the closer to the boundaries, the larger the errors. The random
flux boundary may affect the head over a larger region near the boundary than the
random head boundary;

4. In the typical sandy aquifer studied (with the length of aquifer at the
direction of water flow L=100m, the average saturated thickness M =10m, hydraulic
conductivity K=1m/day, and specific yield Sy=0.25) the error in h(x, t) in early time
is mainly caused by an uncertain initial condition and the error reduces as time goes
to reach a constant error in later time. The constant error in h(x, t) is mainly due to
the combined effects of uncertain source/sink and boundaries;

5. The aquifer system behaves as a low-pass filter which filter the short-term
(high frequencies) fluctuations and keep the long-term (low frequencies)
fluctuations;

6. Temporal scaling of groundwater level fluctuations may indeed exist in
most part of a low permeable aquifer whose horizontal length is much larger than its
thickness caused by the temporal fluctuations of areal source/sink.

Finally, it is pointed out that the analyses carried out in this study is under the
assumptions that the processes, W(t), Q(t), and H(t) are uncorrelated white noises. In
reality, they may be correlated and spatially varied. We plan to relax those constrains
and study more realistic cases in the near future. It is also noted that the analytical
solutions for head variances derived in this study provide a way to identify and

quantify the uncertainty. The spectrum relationship obtained among the head,
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recharge and boundary conditions can help one to improve spectrum analysis for a

groundwater level time series and removed the effects of the boundary conditions.
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Figure captions

Figure 1 A schematic of the unconfined aquifer studied where W(t) is the random
time-dependent source/sink, Ho(x) is the random initial condition, Q(t) is the
random time-dependent flux at the left boundary, H(t) is the random
time-dependent water level at the right boundary, L is distance from the left to the
right boundary, and h(x, t) is the random groundwater level in the aquifer.

Figure 2 The graphs on the left column are the standard deviation (o, ) of

groundwater level (h(x, t)) versus the dimensionless time (t') at the dimensionless
locations x’=0.0, 0.2, 0.4, 0.6, and 0.8. The graphs on the right column are o',

versus x’ for the different t”: b) and d) are for t'= 0.0, 0.2, 0.4, 0.6 and 0.8, f) and h)
are for t’=0.01, 0.1, and 1.0, and j) is for t’=0.01, 0.2, 0.4, 0.6 and 0.8. Also, a) and b)

are based on Eq.(11) whereay, = 06 =6}, =0; c) and d) are based on Eq. (12) where
oy, =06 =0y =0; ) and f) are based on Eq. (13) where oy, =oy, =0y, =0; g) and h)
are based on Eq. (14) where oy, =0y, =0y =0; i) and j) are based on Eq.(15) where

a\f,oia\fviaéiaa #0.

Figure 3 The dimensionless power spectrum versus frequency (f) at the dimensionless
locations x'=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9. The graphs on the left column are for t. =
40 day, the graphs on the middle column are for t. = 400 day, and the graphs on the
right column are for t. = 4000 day. The graphs on the first row are the dimensionless
spectrum Si,/Sqe When Sy, =0, S, =0,and Sg #0 in Eq. (10), the graphs on the
second row is S,,/S,, when Sy, =0, S =0 ,and S,, =0, the graphs on the third
row are S,/ Sy When S =0, S,,=0,and S.. %0, and the graphs on the bottom

rowis S,,/Syw when Seo %20, S, #0,and Sy #0.
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