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ABSTRACT 14 

Accurate information on the distribution of the surface energy balance components in 15 

arid riparian areas is needed for sustainable management of water resources as well as for 16 

developing a better understanding of water and heat exchange processes between the land 17 

surface and atmosphere. Since the spatial and temporal distributions of these fluxes over large 18 

areas are difficult to determine from ground measurements, their prediction from remote sensing 19 

data is very attractive due to its large areal coverage and a high repetition rate. In this study the 20 

Surface Energy Balance Algorithm for Land (SEBAL) was used as a remote-sensing platform to 21 

estimate energy balance components in the arid riparian areas of the Middle Rio Grande Basin 22 

(New Mexico) and San Pedro Basin (Arizona), and areas of phreatophytic shrubs and grasses in 23 

the Owens Valley (California). We compared instantaneous and daily fluxes from SEBAL 24 

derived from Landsat TM images to surface-based measurements from eddy covariance flux 25 

towers. This study presents evidence that inversion-calibrated surface energy balance models 26 
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such as SEBAL and similar models such as METRIC can yield reliable estimates for actual 38 

evapotranspiration rates in riparian areas of the southwestern United States. The great strengths 39 

of the inversion-calibrated methods are their internal calibration strategies that eliminate much of 40 

the effects of systematic biases in net radiation, soil heat flux, land surface temperature and 41 

albedo on latent heat flux, at the expense of increased bias in sensible heat flux. 42 

 43 

1. INTRODUCTION 44 

The regional distribution of the energy balance components, net surface radiation (Rn), 45 

soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) in arid riparian areas is critical 46 

knowledge for agricultural, hydrological and climatological investigations. However, Rn, G, H 47 

and LE are complex functions of atmospheric conditions, land use, vegetation, soils, and 48 

topography which cause these fluxes to vary in space and time. It is difficult or impractical to 49 

estimate surface fluxes at the regional scale using ground-based instruments (Parlange et al., 50 

1995). Measurement approaches for LE from the land surface such as eddy covariance (Kizer 51 

and Elliott, 1991), Bowen ratio (Scott et al., 2004) and weighing lysimeters (Wright, 1982) are 52 

too expensive and time consuming for continuous application at sufficient spatial density at 53 

regional scales. These techniques produce LE measurements over small footprints (m2 to ha) 54 

which are difficult to extrapolate to the regional scale, especially over heterogeneous land 55 

surfaces (Moran and Jackson, 1991). For example, in the heterogeneous landscape of the central 56 

plateau of Spain as many as 13 ground measurements of evapotranspiration in a relatively small 57 

area of 5000 km2 were not sufficient to predict accurately the area-averaged evapotranspiration 58 

rate (Pelgrum and Bastiaanssen, 1996). 59 
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A number of studies have concluded that reliable regional estimates of spatial patterns of 80 

LE can be obtained by satellite image-based remote sensing algorithms (e.g. Choudhury, 81 

1989;Granger, 2000;Moran and Jackson, 1991;Kustas and Norman, 1996;Du et al., 2013). A 82 

variety of LE remote sensing algorithms exists with different spatial (30 m to 1/8th degree or 13 83 

km in New Mexico) and temporal (daily to monthly) scales. Examples include: the Two-Source 84 

Energy Balance model (TSEB) (Norman et al., 1995), the Hybrid dual source Trapezoid 85 

framework Evapotranspiration Model (HTEM) (Yang and Shang, 2013), the Atmosphere-Land 86 

Exchange Inverse (ALEXI) (Anderson et al., 1997), the disaggregated ALEXI model (DisALEXI) 87 

(Norman et al., 2003), the Surface Energy Balance System (SEBS) (Su, 2002), the MOD16 ET 88 

algorithms (Mu et al., 2011), the Simplified Surface Energy Balance (SSEB) (Senay et al., 2013), 89 

the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen, 1995), Mapping 90 

EvapoTranspiration at high spatial Resolution with Internalized Calibration (METRIC) (Allen et 91 

al., 2007), as well as algorithms without distinct acronyms (Schüttemeyer et al., 2007;Ma et al., 92 

2004;Jiang and Islam, 2001).  93 

SEBAL was developed by Bastiaanssen and his colleagues in The Netherlands during 94 

the 1990s (Bastiaanssen, 1995). METRIC was developed by Allen and his research team in Idaho 95 

using SEBAL as its foundation (Allen et al., 2005), but with greater reliance on weather-based 96 

reference ET calculations for calibration. SEBAL and METRIC do not require spatial fields of 97 

air temperature and atmospheric temperature soundings interpolated across the region of interest 98 

like ALEXI and DisALEXI. SEBAL and METRIC do not require land cover maps for estimating 99 

surface roughness but instead can use expressions that relate the NDVI to the momentum 100 

roughness length (Bastiaanssen et al., 1998a;Allen et al., 2007). However, SEBAL and METRIC 101 
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are restricted to clear days over areas of stable weather and generally require some supervised 137 

calibration for each image. These requirements limit their application to local and regional scale, 138 

rather than at continental scale that is possible with ALEXI, SSEB, or MOD16. Interpolation of 139 

ET between images is done using ground-based or gridded reference ET and interpolated 140 

fractions of reference ET. 141 

The accuracy of SEBAL and METRIC for evaporation mapping worldwide is typically 142 

about ±15% for daily and ±1-5% for seasonal evaporation estimates (Bastiaanssen et al., 143 

2005;Allen et al., 2011;Karimi and Bastiaanssen, 2015). Accuracy of the models depends on a 144 

calibration method that selects a “cold” and “hot” pixel representing extreme thermal and 145 

vegetation conditions within an image. After calculation of the energy balance at the two 146 

calibration pixels, the near-surface air temperature gradient associated with sensible heat flux H 147 

for each pixel is indexed to its satellite measured surface temperature.  148 

The economic efficiency of SEBAL and METRIC is particularly attractive. For example, 149 

in the early 1980’s co-author Hendrickx with a team of field assistants and graduate students 150 

spent two years in the Office du Niger (Mali) to measure the seasonal actual evapotranspiration 151 

of rice in four irrigation units encompassing an area of about 70 hectares using non-weighing 152 

lysimeters and discharge measurements in irrigation and drainage ditches (Hendrickx et al., 153 

1986). For comparison, in 2008, the seasonal actual evapotranspiration was obtained by two 154 

scientists, (Zwart and Leclert, 2010), for 86,000 hectares from the Office du Niger using SEBAL 155 

with Landsat imagery of 2006 in approximately two months. The economy of the method 156 

justifies further investigations to validate the SEBAL model for a variety of field environments.  157 
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Previous validation studies of SEBAL have been conducted in relatively homogeneous 178 

agricultural areas and have focused on a comparison of daily ET rates estimated from SEBAL (or 179 

METRIC) with ground measurements using lysimeters (Tasumi, 2003;Trezza, 2002), Bowen 180 

ratio and eddy covariance methods (Gibson et al., 2013;Du et al., 2013;Bastiaanssen et al., 2002) 181 

and scintillometry (Hemakumara et al., 2003;Kite and Droogers, 2000;Kleissl et al., 2009). The 182 

overall goal of this study was to conduct a thorough evaluation of the performance of SEBAL in 183 

arid riparian areas in New Mexico, Arizona and California where spatially extensive estimates of 184 

the ground and surface water balance components are needed to improve land and water 185 

management. The study areas include vast deserts transected by relatively narrow river corridors 186 

and a mosaic of irrigated agricultural fields and riparian vegetation (cottonwood, saltcedar, 187 

willow, mesquite, Russian olive) and native phreatophytic shrubs and grasses which creates a 188 

very heterogeneous landscape with a short patch length scale. A good SEBAL performance 189 

under these challenging conditions would be a strong indication that satisfactory performance 190 

should be expected from other types of moderate to high ET systems that are surrounded by 191 

relatively dry land uses (e.g. Compaoré et al., 2008). 192 

 This study involves SEBAL applications in areas without high quality hourly 193 

meteorological observations which represents a common condition for many regions worldwide 194 

(Droogers and Allen, 2002). We examined each component of the energy balance during the 195 

instant of satellite overpass and on a daily basis using a quality controlled data set consisting of 196 

ground-based Rn, H and LE measurements.  197 

 198 
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2. SURFACE ENERGY BALANCE ALGORITHM FOR LAND (SEBAL) 220 

SEBAL is a remote sensing algorithm that evaluates the fluxes of the energy balance and 221 

determines LE as the residual 222 

HGRHGRRRRLE ninlooutlinls −−=−−−−−+−= ___ )1()1( εα     223 

  [1] 224 

where Rs is the incoming shortwave radiation [Wm-2], α is the surface albedo [-], Rl_in is the 225 

incoming longwave radiation [Wm-2], Rl_out is the emitted longwave radiation [Wm-2], εo is the 226 

surface thermal emissivity [-]Rn [Wm-2], G is the soil heat flux density [Wm-2], H is the sensible 227 

heat flux density [Wm-2], LE (= λET) is the latent heat flux density [Wm-2], and Rn is the net 228 

radiation flux density [Wm-2]. LE can be converted to the ET rate [mmday-1] using the latent heat 229 

of vaporization of water λ [Jkg-1] and the density of water ρw [kgm-3]. 230 

To implement SEBAL, images must include information on reflectance in the visible, 231 

near-infrared, mid-infrared bands, and emission in the thermal infrared band. The necessary data 232 

are available from a number of satellites including Land Satellite (Landsat), Moderate Resolution 233 

Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), 234 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), ENVISAT-235 

Advanced Along Track Scanning Radiometer (AATSR) and China-Brazil Earth Resources 236 

Satellite (CBERS). In this study, we use Landsat images for their high spatial resolution and 237 

consistent, accurate calibration. A digital elevation model (DEM) is used to account for terrain 238 

slope and aspect of each pixel. Extensive descriptions of SEBAL and METRIC have been 239 

presented in the literature (Allen et al., 2011;Allen et al., 2007;Hong, 2008;Bastiaanssen et al., 240 

1998a). Critical elements of the SEBAL algorithm are discussed below.  241 
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Rn and G are determined using standard approaches similar to other energy balance 260 

remote sensing algorithms, but SEBAL and METRIC have a different unique method for the 261 

estimation of the sensible heat flux density (H). The traditional aerodynamic equation for H is 262 

between surface and air temperature measurement height (Brutsaert et al., 1993)  263 

( )
ah

aaeropa

r
TTc

H
−⋅⋅

=
ρ

     [2] 264 

where ρa is the density of air [kgm-3], cp is the specific heat capacity of air [Jkg-1K-1], Taero is 265 

the aerodynamic surface temperature, Ta is the air temperature measured at a standard screen 266 

height, and rah is the aerodynamic resistance to heat transfer [sm-1] between the surface and 267 

air temperature measurement height. SEBAL and METRIC overcome the challenge of 268 

inferring the aerodynamic surface temperature from the radiometric surface temperature and 269 

the need for near-surface air temperature measurements by directly estimating the 270 

temperature difference ΔT between T1 and T2 taken at two levels z1 (0.10 m) and z2 (2 m) 271 

above the canopy or soil surface without calculation of the absolute temperature at any given 272 

height. 273 
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where rah12 is the aerodynamic resistance between levels z1 and z2. The ΔT gradient essentially 275 

‘floats’ over the surface. The temperature difference for a dry surface without evaporation (the 276 

hot pixel) is obtained from the energy balance equation (Eq. [1]) with LE assumed to be zero so 277 

that H = Rn – G followed by the inversion of Eq. [3] to ΔT = H rah12/(ρa cp). LE is set to a 278 

positive value during calibration if a daily soil water process model using precipitation inputs 279 

Deleted: LE 

Deleted:  defined as 

Deleted: (Brutsaert et al., 1993) 

Deleted: 
( )

ah

aaeropa

r
TTc

H
−⋅⋅

=
ρ

 

Field Code Changed

Deleted: ]. 

Deleted: a 

Deleted: 
12ah

pa

r
Tc

H
∆⋅⋅ρ

= 

Field Code Changed

Deleted: where rah12 is the aerodynamic resistance between levels  
z1 and z2. The ΔT gradient essentially ‘floats’ over the surface. The  
temperature difference for a dry surface without evaporation (the  
“hot” pixel) is obtained from the energy balance equation (Eq. [1])  
with LE set to zero so that H = Rn – G followed by the inversion of  
Eq. [3] to ΔT = H rah12/(ρa cp). On the other hand, for a wet surface  
(the “cold” pixel) all available energy Rn – G is assumed in  
traditional applications of SEBAL to be used for evapotranspiration  
so that H = 0 and ∆T = 0 (Bastiaanssen et al., 1998a;Bastiaanssen,  
2000). The implicit assumption in extreme-condition-inverted- 
calibration processes such as SEBAL and METRIC is that land  
surfaces with a high ∆T are associated with high radiometric  
temperatures and those with a low ∆T with low radiometric  
temperatures. Field measurements in Egypt and Niger (Bastiaanssen  
et al., 1998b), China (Wang et al., 1998), and USA (Franks and  
Beven, 1997) have shown that the relationship between Ts and ∆T is  
approximately positively linear for different field conditions  
including irrigated fields, deserts and mountains.¶ 

21 cTcT s +⋅=∆ 

7 

 



reveals residual evaporation from prior precipitation events. For a wet surface (the cold pixel) all 306 

available energy Rn – G is assumed to be used for evapotranspiration so that H = 0 and ∆T = 0 307 

(Bastiaanssen et al., 1998a;Bastiaanssen, 2000). In METRIC, H at the cold pixel is estimated as 308 

H = Rn – G – ETcold where ETcold is assigned a value based on scaled weather-based reference ET. 309 

The implicit assumption in extreme-condition-inverted-calibration processes such as SEBAL and 310 

METRIC is that land surfaces with a high ∆T are associated with high radiometric temperatures 311 

and those with a low ∆T are associated with low radiometric temperatures. Field measurements 312 

in Egypt and Niger (Bastiaanssen et al., 1998b), China (Wang et al., 1998), and USA (Franks and 313 

Beven, 1997) have shown that the relationship between Ts and ∆T is positive and approximately 314 

linear for a variety of field conditions including irrigated fields, deserts and mountains. 315 

21 cTcT s +⋅=∆       [4] 316 

where c1 and c2 are the linear regression coefficients valid for a landscape at the time and date 317 

the image is taken. By using the values of ∆T calculated for the cold and hot pixel, the regression 318 

coefficients c1 and c2 can be determined so that the extremes of H are constrained and outliers of 319 

H-fluxes are prevented. Equation [4] is dependent upon spatial differences of the radiometric 320 

surface temperature rather than absolute surface temperatures to derive maps of the sensible heat 321 

flux which minimizes the need for atmospheric corrections as well as uncertainties in surface 322 

emissivity, surface roughness and differences in Taero and Ts on H estimates (Allen et al., 2007). 323 

Besides ∆T the other unknown in Eq. [3] is the aerodynamic resistance to heat transfer 324 

(rah12), which is affected by wind speed, atmospheric stability, and surface roughness. Because 325 

rah12 and H are interdependent, an iterative process is used to calculate H (Allen et al., 326 

2007;Hong, 2008). After inserting Rn, G and calculated H into Eq. [1] the latent heat flux LE is 327 
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obtained for each pixel. Finally, dividing LE by the latent heat of vaporization of water yields the 334 

instantaneous ET (mmhour-1) at the time of the Landsat overpass. 335 

SEBAL and METRIC produce an estimate of the instantaneous LE at the time of the 336 

satellite overpass at approximately 10:30 am. However, for most hydrological applications the 337 

daily LE is needed, and the instantaneous LE must be extrapolated to estimate the daily LE using 338 

the instantaneous evaporative fraction (EFinst). Where daily soil moisture does not significantly 339 

change and advection does not occur, the evaporative fraction has been shown to be 340 

approximately constant during the day (Crago, 1996;Farah et al., 2004). However, analysis of 341 

field measurements by other investigators (Teixeira et al., 2008;Anderson et al., 1997;Sugita and 342 

Brutsaert, 1991) indicates that the instantaneous evaporative fraction on clear days at satellite 343 

overpass time tends to be approximately 10 – 18 % smaller than the daytime average. Therefore, 344 

a correction coefficient cEF is introduced to take into account differences between instantaneous 345 

and daily evaporative fractions. Some investigators use cEF of 1.00 (Bastiaanssen et al., 2005) 346 

while others suggest cEF of 1.10 (Anderson et al., 1997) or cEF of 1.18 (Teixeira et al., 2008). The 347 

value for cEF should depend on the relative amount of advection of heat, which in turn is a 348 

function of regional evaporation, wind speed and relative humidity.   349 
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 [5] 350 

Assuming daily soil heat flux G24 [MJm-2day-1] close to zero, multiplication of the 351 

instantaneous EFinst determined from SEBAL with the total daily available energy yields the 352 

daily ET rate in mm per day (Bastiaanssen et al., 1998a)  353 

 
w

nEF

w

ninstEF REFcGREFcET
ρλρλ ⋅
⋅

≈
⋅

−⋅
= 24242424

24
)(     [6] 354 

Deleted:  around 10:30 am 

Deleted: produces 

Deleted: . 

Deleted: ; so 

Deleted: needs to 

Deleted: which is done  

Deleted: (Crago, 1996;Farah et al., 2004). 

Deleted: (around 10:30 am)  

Deleted: (Bastiaanssen et al., 2005) while otherssuggest 

Deleted: (Anderson et al., 1997) 

Deleted: (Teixeira et al., 2008). 

Deleted: 
HLE

LEc
GR

HGRcEF
inst

ins
EF

n

n
EFinst +

=⋅
−
−−

=⋅ 

 

Field Code Changed

Formatted: Lowered by  15 pt

Deleted:  cEF of 1.0 and 

Formatted: Font: Italic

Deleted: (Bastiaanssen et al., 1998a) as 

Deleted: 
w

n

w

ninst REFGREFET
ρλρλ ⋅
⋅

≈
⋅

−⋅
= 24242424

24
)(

 

Field Code Changed

9 

 



where ET24 is daily ET [mm day-1], ρw is the density of water [k gm-3] and Rn24 is daily net 371 

radiation [MJm-2day-1] obtained by an semi-empirical expression (De Bruin, 1987) as described 372 

by (Hong, 2008). Finally, the daily H24 is not derived from the instantaneous H but is calculated 373 

as the difference between Rn24 and LE24.  374 

 375 

3. METHOD AND MATERIALS 376 

3.1. Study Areas 377 

The components of the energy balance (Rn, G, H and LE) were determined using a 378 

SEBAL version having Rn and G components similar to those of METRIC (Allen et al., 2005). 379 

The SEBAL model was applied to sixteen Landsat 7 images from 2000 to 2003 for three typical 380 

desert phreatophyte and riparian areas in the southwestern United States located in the Middle 381 

Rio Grande Valley (NM), the Owens Valley (CA) and the San Pedro Basin (AZ). (Figure 1, 382 

Table 1) 383 

The Middle Rio Grande Valley extends through central New Mexico and is defined as 384 

the reach of the Rio Grande between Cochiti Dam and Elephant Butte Reservoir. The Middle Rio 385 

Grande riparian vegetation consists of cottonwood and salt grasses as well as various non-native 386 

species including saltcedar and Russian olive. In the Middle Rio Grande Valley, the average 387 

annual air temperature is 15 °C. Daily summer temperatures range from 20 to 40 °C, and daily 388 

winter temperatures range from -12 to 10 °C. Mean annual precipitation is about 25 cm and 389 

mean annual potential evapotranspiration is approximately 170 cm. 390 

The Owens Valley is a long, narrow valley on the eastern slope of the Sierra Nevada in 391 

Inyo County, California. It is a closed basin drained by the Owens River which terminates at 392 
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saline Owens Lake playa. The Owens Valley has a mild high-desert climate: in summer (June, 403 

July and August) the lowest average daily minimum temperature is 7 °C and the highest average 404 

daily maximum temperature temperatures is 37 °C, in winter (November to February) 405 

temperature varies between -7 to 21 °C. Since, the Owens Valley is located in the rain shadow of 406 

the Sierra Nevada, the average annual precipitation in the Owens Valley is only about 12 cm and 407 

mean annual potential evapotranspiration is about 150 cm. Snowmelt runoff from the Sierra 408 

Nevada creates a shallow water table underneath the valley floor which supports approximately 409 

28,000 hectares of native phreatophytic shrubs and grasses and riparian areas. 410 

The San Pedro Basin begins in Sonora, Mexico and extends to the Gila River in southern 411 

Arizona. The San Pedro River is surrounded by vegetation consisting of cottonwood, willow, 412 

mesquite and sacaton grass. The mean air temperature is around 18 °C. Daily summer 413 

temperatures range from 22 to 44 °C, while daily winter temperatures range from 9 to 24 °C. 414 

Mean annual precipitation is about 35 cm and mean annual potential evapotranspiration is 415 

approximately 170 cm. 416 

Although the regional climate of all three areas is classified as arid/semiarid, the study 417 

areas have different precipitation patterns. In the Owens Valley, precipitation occurs primarily in 418 

winter and spring, while in the San Pedro and the Middle Rio Grande Valleys, the annual 419 

precipitation distribution is bimodal with more than half of the rainfall being monsoonal in 420 

summer, although the proportion varies considerably from year to year (Cleverly et al., 421 

2002;Elmore et al., 2002;Scott et al., 2000;Stromberg, 1998;Costigan et al., 2000). Table 2 422 

presents main characteristics of the study sites.  423 

 424 

Deleted: and  

Deleted: from 

Deleted: “ 

Deleted: ” 

Deleted: in 

Deleted: where the river flows into  

Deleted: r 

Deleted: Cottonwood, Willow, Mesquite 

Deleted: Sacaton 

Deleted: of the Upper San Pedro valley  

Deleted: , 

Deleted: there exists a difference in 

Deleted: pattern 

Deleted: , 

Deleted: : vegetation type, elevation above sea level, height of  
vegetation canopy and the height of flux sensors above ground level.  
The average elevations are 1440, 1230 and 1220 m above sea level  
for, respectively, the Middle Rio Grande Basin, Owens Valley and  
San Pedro Valley. 

11 

 



3.2. Eddy Covariance Measurements and Closure Forcing 444 

At each site, the turbulent heat fluxes were measured using the eddy covariance (EC) 445 

method that theoretically provides direct and reliable measurements of H and LE (Arya, 2001). 446 

At all sites, a three-dimensional sonic anemometer-thermometer that measured the three-447 

dimensional wind vector and virtual temperature was collocated with a Krypton hygrometer or 448 

open path infrared gas analyzer that measured water vapor density [gm-3] with a sampling rate of 449 

10 Hz (Cleverly et al., 2002;Steinwand et al., 2006;Scott et al., 2004). Covariance between the 450 

vertical wind speed and water vapor density and virtual air temperature were used to compute 30 451 

minutes averages of LE and H. The eddy covariance systems were oriented toward the 452 

predominant wind direction to reduce interference from winds blocked by the tower and 453 

instrumentation. All eddy covariance data were quality controlled and corrected for tilt by 454 

coordinate rotations, frequency response, oxygen absorption of the Krypton hygrometer, and flux 455 

effects on air density. The coordinate rotation, however, cannot correct for changing wind 456 

direction during 30-minute average periods which can cause mean vertical wind speeds to 457 

deviate from 0, thereby inducing error in the H and LE measurements. This problem is common 458 

to EC measurements in tall vegetation such as trees when the sensors are placed too close to tree 459 

branches or canopy. Soil heat fluxes in the San Pedro Valley and Owens Valley were obtained 460 

from soil heat flux plates that were corrected for soil heat storage above the plate using 461 

collocated soil temperature and soil moisture measurements.  462 

At the Middle Rio Grande sites, soil heat storage could not be calculated due to the 463 

absence of soil moisture measurements. Therefore, the soil heat flux measurements for those 464 

sites were not compared with SEBAL estimates. Net radiation was obtained from REBS Q7 or 465 
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Kipp and Zonen CNR1 net radiometers. To compare the 30-minute average ground 490 

measurements with the instantaneous energy fluxes estimated using SEBAL, an instantaneous 491 

ground measurement was determined by linear interpolation between the 30 minutes periods 492 

before and after the satellite overpass. Daily values of LE, H, G and Rn were derived by summing 493 

the 30 minutes fluxes through the day (00 – 24 hours). 494 

 We used the relative closure of the energy balance (Twine et al., 2000) as a criterion to 495 

filter the datasets to select only high-quality Rn, G, H, and LE ground measurements for 496 

comparison with SEBAL estimates. Figure 2 presents the relative closures calculated for satellite 497 

overpass days for all sites as provided by the investigators operating the EC towers in the Owens 498 

and San Pedro River Valleys. Since no soil heat flux measurements were available in the Middle 499 

Rio Grande Valley, we calculated the instantaneous relative closure [%] using the instantaneous 500 

soil heat flux derived by SEBAL instead of the ground measured soil heat flux. This approach 501 

was justified on the basis of the reasonable agreement found between SEBAL derived 502 

instantaneous soil heat fluxes and those measured on the ground in the Owens and San Pedro 503 

River Valleys (discussed below). If the sum of H and LE, before correction, was less than 65 % 504 

or greater than 110 % of the available energy (Rn – G), the data were not used in our analysis. 505 

(Wilson et al., 2002) found the average energy balance closure at FLUXNET sites to be between 506 

53 to 99%. Since their numbers represent average closures and since data points at the lower end 507 

of the range raise greater concerns for data quality, we chose to shift the range up. Our criterion 508 

excluded 45 % of instantaneous fluxes and 39 % of the daily fluxes of the data from the Middle 509 

Rio Grande Valley, 79 % (instantaneous) and 43 % (daily) from the Owens Valley and 17 % 510 

(instantaneous) and zero % (daily) from the San Pedro River Valley. The remaining turbulent 511 
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heat flux estimates were improved through forcing the closure of the energy balance by 528 

increasing LE and H by the Bowen ratio (Twine et al., 2000). The improved adjusted H and LE 529 

are identified as Hadj and LEadj.  530 

After elimination of EC measurements on the basis of unacceptable closures, we 531 

eliminated also the EC measurements taken on May 16, 2003 in the San Pedro River Valley at 532 

the Mesquite (CM) site because the wind direction differed considerably from the prevailing 533 

wind direction and was from a direction with very limited upwind fetch (<100 m). The problem 534 

was exacerbated by the relatively high placement (7 m) of the sensors above the canopy (Table 2) 535 

since the heat fluxes can vary significantly with height under such conditions (De Bruin et al., 536 

1991). 537 

 538 

3.3. Scale Differences of SEBAL Flux Predictions and Ground Measurements 539 

Comparison of remotely sensed (RS)-derived estimates of Rn, G, H and LE with ground 540 

measurements is not straightforward because the spatial and temporal scales of the RS 541 

predictions and ground measurements are quite different. In this section we will discuss the 542 

effects of these scale differences on each flux in the energy balance. 543 

3.3.1. Net radiation 544 

Rn is measured with a net radiometer at a height of about 2 – 3 m above the canopy 545 

(Table 2) that covers typically an observation area on the order of 10 m2. The RS-based Rn 546 

estimate is derived from reflectance in the visible, near-infrared and mid-infrared bands from a 547 

900 m2 pixel as well as the emittance in the thermal band from a 3600 m2 pixel. Details of the 548 

algorithms used are given in Allen et al. (2007) and are common to many applications of SEBAL 549 
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and METRIC. The Rn ground observation is based on a measurement area at least two orders of 573 

magnitude smaller than the RS-based prediction. For homogeneous areas the scale difference 574 

affects the comparison of ground and satellite measurements little, but for heterogeneous areas it 575 

may cause serious bias. Satellite based Rn samples a larger area and is therefore more 576 

representative of the landscape within the footprint of the eddy covariance instrument. In riparian 577 

areas, sparse vegetation with open canopies and vegetation gradients perpendicular to the river 578 

channel create a heterogeneous landscape. Radiometers are typically placed over the canopy of 579 

interest which may under-represent surrounding bare soil or ground cover within the angle of 580 

view. As a result, ground measured Rn may be biased towards the Rn of the specific vegetation. 581 

 582 

3.3.2. Soil heat flux 583 

G was measured by soil heat flux plates combined with changes in heat storage above 584 

the plate using soil temperature and soil water content measurements. If G is not corrected for 585 

heat storage above the plate, large errors will result (Sauer, 2002a). The measurement area of a 586 

soil heat flux plate is about 0.001 m2 which is almost six orders of magnitude less than a 900 m2 587 

Landsat pixel. The instantaneous G can vary widely depending on soil condition (20 – 300 Wm-588 

2), so that numerous flux measurements would be needed to estimate the average pixel G with 589 

the desired accuracy (Kustas et al., 2000;Humes et al., 1994). Therefore, we expect the 590 

instantaneous G ground measurements to be a rather crude estimation of the true instantaneous G 591 

at the scale of the pixel (Sauer et al., 2003). The impact of the scale difference on the comparison 592 

of ground and satellite measurements is somewhat mitigated by the fact that instantaneous G is 593 

positive during the day and negative during the night. Consequently, daily G is small compared 594 
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to the other components of the energy balance (Seguin and Itier, 1983).  628 

 629 

3.3.3. Sensible and latent heat fluxes 630 

At all three sites H and LE were measured using a three-dimensional sonic anemometer-631 

thermometer and a krypton hygrometer, or open patch infrared gas analyzer. For these 632 

components of the energy balance the area of ground measurements is often several times larger 633 

than a Landsat pixel. A typical footprint for H and LE under clear sky micrometeorological 634 

conditions covers about 5 pixels or about 4500 m2. The location of the footprint is upwind of the 635 

EC tower, and its size depends on atmospheric stability. In the comparison of RS-based H and 636 

LE estimates with ground measurements, the footprint area must be estimated and the weighted 637 

average RS-estimated H and LE is computed for pixels within the footprint area. This approach 638 

is expected to work reasonably well for comparison of RS-based instantaneous H and LE 639 

estimates with ground measurements at the time of the satellite overpass. 640 

Comparison of daily H and LE fluxes is problematic. Therefore, rather than trying to 641 

determine the true location of the “representative” daily foot print, the daily H and LE ground 642 

measurements are compared with the average RS-estimated H and LE fluxes originating from 643 

twenty-four homogeneous pixels surrounding the EC tower. The homogeneity of the pixels 644 

surrounding the tower was evaluated by inspecting NDVI, albedo, and surface temperature 645 

values as well as the H and LE values themselves. 646 

 647 

3.3.4. Quantitative measures to compare SEBAL estimates and ground measurements 648 

The numerical comparison of the energy balance components (Rn, G, H, and LE) 649 
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estimated from RS with those measured on the ground was conducted by means of quantitative 693 

measures proposed by Willmott and others for the validation of atmospheric models (Willmott, 694 

1981;Fox, 1981;Willmott, 1982). We examined the coefficient of determination (r2), mean 695 

absolute difference (MAD), root mean square difference (RMSD), and the mean relative 696 

difference (MRD) (Hong, 2008). A high or statistically significant r2 can be misleading because  697 

its values are often unrelated to the magnitude of the differences between model estimates and 698 

measurements (Willmott and Wicks, 1980). In addition, the distributions of the estimates and 699 

measurements often do not fulfill the assumptions of inferential statistics (Willmott, 1982). 700 

However, since r2 is a commonly used correlation measure that reflects the proportion of the 701 

variance explained by the model, we report this measure. The MAD and RMSD are robust 702 

measures as they summarize the mean differences between SEBAL estimates and ground 703 

measurements; the MAD is less sensitive to outliers than RMSD. The MRD is often used as an 704 

indication how well RS-based estimates agree with ground measurements (Bastiaanssen et al., 705 

2005). 706 

 707 

3.4. Footprint Model 708 

The location and extent of the footprint depends on surface roughness, atmospheric 709 

stability, wind speed, wind direction and may cover many pixels upwind of the eddy covariance 710 

tower (Schmid and Oke, 1990;Hsieh et al., 2000). The footprint flux, F(x, Zs) [-], along the upwind 711 

direction, x [m], measured at the height zs [m], suggested by (Hsieh et al., 2000) was used in this 712 

study.  713 

A typical footprint size and footprint intensity for one 30 minute period on August 19, 714 
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2002, at a Rio Grande saltcedar EC tower is presented in Figure 3. To verify the quality of the 745 

footprint model used in this study, we also calculated the location of maximum contribution to 746 

the measured flux (xmax) for this period with the model by Schuepp et al. (1990) . The models by 747 

Hsieh et al (2000) and Schuepp et al. (2000) calculate xmax as 10 m (Figure 3) and 11 m, 748 

respectively, which implies that the footprint from Hsieh et al (2000) is indeed close to the tower. 749 

At most EC sites, the maximum contribution to the footprint was within 50 m from the tower 750 

(wind speeds were generally less than 4 ms-1) and most of the footprint intensity (>90 %) is 751 

located within 300 m from the tower. Approximately 80 % of all footprint fluxes cover an area of 752 

5 to 9 pixels, twenty percent cover larger areas. Because calculation of a representative daily 753 

footprint for H and LE is nearly impossible, the average RS daily H and LE values of the 24 754 

pixels surrounding the EC tower pixel are used for comparison with daily ground measurements.  755 

 756 

3.5. Calibration and Evaluation of RS-based Flux Predictions  757 

The temperatures of the cold and hot pixel for the derivation of calibration coefficients c1 758 

and c2 in Eq. [4] are critical in SEBAL and METRIC because they constrain LE between its 759 

maximum value at the cold wet pixel and near zero at the hot dry pixel. The coefficients also 760 

incorporate and compensate for bias in H associated with uncertainties in aerodynamic 761 

characteristics including Ts (Bastiaanssen et al., 2005;Allen et al., 2006). In SEBAL and 762 

METRIC this calibration is entirely based on information available within the image and is 763 

variously referred to as self-calibration (Bastiaanssen et al., 2005) or internalized calibration and 764 

autocalibration. 765 

At the cold pixel it is assumed in SEBAL that ∆T = 0, which implies that H = 0 and LE = 766 
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Rn – G. An alternative manner in METRIC is to use hourly meteorological observations for the 818 

calculation of the reference ET (Allen et al., 1998) for the estimation of H in well-irrigated 819 

alfalfa or clipped grass fields (Allen et al., 2007;Allen et al., 2011). However, this study deals 820 

with a SEBAL application to riparian areas without high quality hourly meteorological 821 

observations as is the default condition for many regions worldwide (Droogers and Allen, 2002). 822 

The selection of the hot pixel is challenging because the heterogeneous landscapes of the 823 

southwestern U.S. include hot and dry areas with a wide range of temperatures. In this study, the 824 

hot pixel was selected from a dry bare agricultural field where ET can reasonably be assumed to 825 

be near zero. Any pixel cooler than the selected hot pixel has ET > 0 (if the Rn and G are the 826 

same), and for any pixel warmer than the hot pixel, for example parking lots, ET = 0. In addition, 827 

the equation to estimate G was derived for agricultural conditions and therefore produces more 828 

dependable estimates for calibration when applied to a bare, agricultural soil having a tillage 829 

history. 830 

As a consequence of the internalized calibration, bias in Rn or G at the hot pixel in the 831 

image are transferred into H. However, the bias is present in both Rn – G and H (Eq. [1]), and 832 

thus cancels out in the calculation of LE (Allen et al., 2006). The internalized calibration results 833 

in the least biased LE if the cold and hot pixel are properly selected and is the most distinctive 834 

feature of SEBAL and METRIC compared to other remote sensing LE algorithms. 835 

The selection of cold and hot pixel is assisted by a thorough understanding of field 836 

micrometeorology and is somewhat subjective. (Kleissl et al., 2009) proposed using 837 

micrometeorological ground measurements of energy balance components for the calibration and 838 

validation of remote sensing algorithms. However, due to the relatively large uncertainties of 839 
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ground measured sensible and latent heat fluxes (Loescher et al., 2005;Kleissl et al., 2008) the 870 

value of using ground measurements for calibration of SEBAL is not well established. We tested 871 

two different calibration approaches for the selection of the temperatures for the cold and hot 872 

pixel: the Empirical (EM) approach and the Eddy Covariance (EC) approach. The former selects 873 

the cold and hot pixel by inspection of the hydrogeological features of the landscape and 874 

qualitative micrometeorological considerations and is typical for most SEBAL applications. The 875 

Eddy Covariance (EC) approach is based on inspection of the hydrogeological features of the 876 

landscape followed by fine-tuning the parameters c1 (slope) and c2 (intercept) in Eq. [4] using 877 

ground measurements of instantaneous latent heat fluxes at the EC towers after adjustment for 878 

energy balance closure. This approach is viable because of the large number of ground based 879 

measurements in this study. The temperature of the cold pixel was fixed by selecting a pixel in 880 

fully vegetated fields, but the selection and temperature of the hot pixel was varied to best match 881 

the instantaneous ground measurements of LE (Hong, 2008).  882 

Five different calibration scenarios (S1 – S5) were compared (Table 3). In the EC 883 

approach, calibration of SEBAL to ground measurements was implemented either using the 884 

average footprint weighted instantaneous SEBAL LE heat fluxes (S1, EC_FP) or using the 885 

instantaneous SEBAL LE heat flux of the pixel where the EC tower was located (S2, EC_TP). 886 

The former method is difficult to implement for most practitioners while the latter is practical 887 

and fast but requires homogeneous conditions around the tower within the maximum extent of 888 

the footprint. The EM approach (S3) was implemented without using the LE’s measured by the 889 

EC towers or any other meteorological measurements. In Section [3.3.1] we hypothesized that 890 

the ground measured Rn may be biased towards vegetation while the SEBAL Rn may be more 891 
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representative for the true Rn of a pixel covered with vegetation and bare soil patches. Initial 910 

results suggested that the (SRn) is more representative than ground Rn. Therefore, we also 911 

evaluated the impact of using the more accurate SRn for energy balance closure in the EC 912 

approach on the tower pixel (S4, EC_TP/SRn) and in the EM approach (S5, SRn).  913 

 914 

4. RESULTS AND DISCUSSION 915 

4.1. Spatio-temporal Distribution of Daily Latent Heat Fluxes 916 

Figure 4 presents an example of daily ET rates in the Middle Rio Grande Valley and 917 

surrounding desert on four different days during the spring, summer and fall. The maps show 918 

how the ET rates increase from April 7 (just after the start of the irrigation season) to June 16 at 919 

the height of the irrigation season; a decrease of ET is observed during September and October 920 

when fields were harvested and lower temperatures impede crop growth. On all four days higher 921 

ET rates were observed over irrigated fields and in the riparian areas while low to zero rates 922 

occurred in the surrounding desert. 923 

 924 

4.2. Comparison of RS-Based Net Radiation with Ground Measurements 925 

Figures 5 and 6 and Table 4 present the comparisons of the instantaneous and daily Rn 926 

measured on the ground and estimated by SEBAL. MADs for the EC approaches (S1/S2) and 927 

Empirical Approach (S3) were 88/87 and 97 W/m2, respectively; MRDs were 13.0/12.8 and 928 

14.6%. These differences are about two to three times larger than those typically reported for 929 

SEBAL (Jacob et al., 2002;Allen et al., 2006). The much larger MRD was attributed to the 930 

heterogeneity of the riparian sites and the different footprints of net radiometer and Landsat pixel 931 
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(Section [3.3.1]). Higher net radiation measured on the ground compared with the RS-based Rn 972 

supports this argument. The MRDs of 9.2 and 17.2 % from (Su, 2002) on heterogeneous pixels 973 

of shrub and grassland vegetation are similar to the ones reported in this study (Table 4). 974 

 Contrary to the instantaneous values, the daily net radiation measured on the ground and 975 

determined in SEBAL match very well (MRDs of -2.3 to -2.9%). This immediately begs the 976 

question “why?” since the instantaneous Rn differ by more than 12%. On clear days over sparsely 977 

vegetated surfaces the maximum temperature difference between bare soil and vegetation 978 

typically occurs around noon. For example, temperature differences measured in the Walnut 979 

Gulch Experimental Watershed near Tombstone, Arizona, varied between 10 and 25 ºC during 980 

that time of the day (Humes et al., 1994). Since the conditions in the arid riparian areas of this 981 

study are similar, we expect similar temperature differences to occur when the satellite passes 982 

over around 10:30 am. The incoming short and longwave radiation are equal for the bare soil and 983 

the vegetation; therefore, the net radiation will depend on the outgoing short and long wave 984 

radiation. The albedo and surface temperature of dry bare soils during the day are higher than of 985 

vegetation resulting in more reflection of short wave radiation and more emission of long wave 986 

radiation which results in a lower Rn through the day for bare soil. During the night the surface 987 

temperatures of vegetation and bare soil are similar. However, due to the higher emissivity of 988 

vegetation (0.99) as compared to bare soil (0.94) (Humes et al., 1994), the Rn of vegetation is 989 

lower. (Hong, 2008) calculated that the daily Rn difference between vegetation and soil will be 990 

considerably smaller than the instantaneous Rn difference around 10:30 am.  991 

Differences between vegetation and soil have been quantified by comparing the RS-992 

estimated instantaneous and daily net radiation for fully vegetated agricultural fields, saltcedar, 993 
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and bare soils (Table 5). Whereas the measured instantaneous net radiation fluxes of fully 1007 

cropped agricultural fields and saltcedar stands exceeded those of bare soils by 54 to 77 %, the 1008 

daily net radiation fluxes were only 20 to 36 % larger. A typical leaf area index (LAI) for 1009 

saltcedar in the Middle Rio Grande Valley is about 2.5 (Cleverly et al., 2002) which indicates 1010 

that bare soil is present but vegetation cover is dominant. Assume a typical mixed pixel with a 1011 

soil cover of 75% saltcedar and 25% bare soil. The data from Table 5 for the first saltcedar plot 1012 

show that the ratios between 100% saltcedar and 100% bare soil for instantaneous and daily Rn 1013 

are 1.77 and 1.34. We want to estimate ratios between 100% saltcedar and a hypothetical mixed 1014 

pixel. Using the values in Table 5 for the instantaneous and daily Rn for saltcedar and bare soil, 1015 

and ignoring the effect of thermal radiation from soil that is intercepted by adjacent vegetation, 1016 

the instantaneous and daily Rn for the mixed pixel are 0.75 × 670 + 0.25 × 379 = 598 Wm-2 and 1017 

0.75 × 19.8 + 0.25 × 14.8 = 14.9 + 3.7 = 18.6 MJm-2day-1. The net instantaneous and daily Rn of 1018 

a fully vegetated saltcedar pixel are 670/598 = 1.12 and 19.8/18.6 = 1.06 times those of the 1019 

hypothetical mixed pixel. The 12% difference is similar to the MRD’s of 13 – 15% for the 1020 

difference in instantaneous Rn between ground measurements and RS-based estimates (Table 4). 1021 

The 6% difference for daily Rn falls within error ranges of radiation measurements (Halldin and 1022 

Lundroth, 1992;Field et al., 1992). Thus, the much smaller MRD for daily Rn (-2.3 to -2.9 %) 1023 

compared to the MRD of instantaneous Rn (about 13 %) can be explained by environmental 1024 

radiation physics and is not an artefact of bias in the RS method or in the ground-based radiation 1025 

sensors. This corroborates our interpretation that the RS-estimated net radiation for the 900 m2 of 1026 

the EC tower pixel is more representative for each site than the ground measurements with the 1027 

net radiation meter preferentially positioned over a 10 m2 patch of vegetation. 1028 
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4.3. Comparison of RS-estimated Soil Heat Flux with Ground Measurements 1060 

The magnitude of soil heat flux, G, depends on surface cover, soil water content, and 1061 

solar irradiance. For a moist soil beneath a plant canopy or residue layer, the instantaneous G 1062 

will often be less than ±20 Wm-2 (Sauer, 2002b) while a bare, dry, exposed soil in midsummer 1063 

could have a day-peak in excess of 300 Wm-2 (Fuchs and Hadas, 1973). In the Middle Rio 1064 

Grande Basin during summer typical midday (10 am through 2 pm) values of G averaged 104 1065 

and 132 Wm-2 for upland grassland and shrubs, respectively (Kurc and Small, 2004). 1066 

Instantaneous G in riparian areas is an important component of the energy balance that needs to 1067 

be taken into account.  1068 

For this study six soil heat flux measurements were available from the Owens Valley 1069 

and the San Pedro Valley data set. The RS-determined G approximates the ground measured G 1070 

reasonably well (Figure 7) but the MRD is relatively high with values of 30.9 to 32.2 % (Table 1071 

6).  However, the overall impact of the relatively high MRD in instantaneous G is relatively 1072 

small since the MAD (35 W/m2, Table 6) is only 6 % of the RS-predicted instantaneous net 1073 

radiation and 5% of the ground measured instantaneous Rn. The daily G is near zero since heat 1074 

enters the soil during the day but leaves the soil during the night (Table 6).  1075 

Given the high spatial and temporal variability of G (Sauer, 2002b) at the scale of a 1076 

Landsat pixel, the reasonable agreement between RS-predicted instantaneous G and ground 1077 

measurements, the relatively minor impact of an error in G on the estimates of ET, and the 1078 

impracticality of measuring a truly representative G for a 900 m2 heterogeneous pixel, it appears 1079 

that assuming G is negligible within SEBAL and METRIC is acceptable.  1080 
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4.4. Comparison of RS-based Sensible and Latent Heat Fluxes with Ground Measurements 1123 

Our data set covers a wide range of conditions varying from dry to moist which allows 1124 

evaluation of SEBAL over a wide range of environmental conditions in riparian areas. Plots of 1125 

instantaneous and daily SEBAL heat flux estimates versus ground measurements are presented in 1126 

Figure 8. The ground measured instantaneous and daily H have two and six negative data points 1127 

indicating regional advection. Advection is relatively minor for the instantaneous fluxes during 1128 

satellite overpass time of around 10:30 am but increases considerably during late morning and 1129 

early afternoon. The SEBAL estimated instantaneous and daily H that correspond with negative 1130 

values of the ground measurements are near zero since the surface temperatures of the pixels are 1131 

similar to the cold pixel temperature. When high quality hourly meteorological data are available 1132 

regional advection can be accounted for in SEBAL by defining an advection enhancement 1133 

parameter that is a function of soil moisture and weather conditions (Bastiaanssen et al., 1134 

2006;Allen et al., 2011) or one could implement METRIC (Allen et al., 2007), which has an 1135 

implicit handling of advection due to its use of Penman-Monteith-based reference ET. However, 1136 

in this study our aim is to evaluate the performance of the original SEBAL in heterogeneous arid 1137 

environments where no weather data are used. The data in Figure 8 show that ignoring regional 1138 

advection results in a maximum underestimation of the instantaneous and daily LE by, 1139 

respectively, about 10 and 20% under moist conditions and when CEF = 1.0; it becomes 1140 

considerably less when the soil dries out. In this study we have removed all data related to 1141 

negative instantaneous and daily H so that advection effects will not interfere with our evaluation 1142 

of the original SEBAL approach (Allen et al., 2011;Bastiaanssen et al., 1998a). 1143 
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4.4.1. Comparison of instantaneous heat fluxes 1175 

Figures 9 and 10 present plots of the adjusted H and LE measured at the EC tower versus 1176 

the SEBAL estimates for scenarios S1 through S5. There was a substantial mismatch between 1177 

the SEBAL estimated instantaneous H and the ground measurements (S1–S3), but if the SEBAL 1178 

Rn is used in the ground measured energy balance, the correspondence was much improved (e.g. 1179 

scenarios S4 and S5 in Figure 9). This is due to the bias-correction strategy of SEBAL and 1180 

METRIC where biases in Rn and G are incorporated into estimates for H. SEBAL estimated 1181 

instantaneous LE and ground measurements show good agreement for all five scenarios (S1 – S5) 1182 

including the ones with a poor sensible heat flux match (Figure 10, S1-S3). The prediction of LE 1183 

is good for scenarios S1–S5 with a mean MRD of -5.1% (Table 7) which is less than the average 1184 

14% deviation reported for SEBAL applications worldwide (Bastiaanssen et al., 2005).  1185 

The ground measured instantaneous H and LE presented in Table 7 are identical in S1– 1186 

S3 but differ slightly from each other in S4 and S5 due to a slight difference in the temperature 1187 

of the cold pixels that were chosen to estimate air temperature for calculation of the incoming 1188 

long wave radiation. As a result the instantaneous net radiation used in scenarios S4 and S5 were 1189 

also slightly different. However, a large difference existed between the ground measured H and 1190 

LE in S1–S3 versus those in S4–S5 caused by the bias in instantaneous Rn of the ground 1191 

measurements versus Rn determined with SEBAL (Table 4). In Table 7 the H and LE from 1192 

SEBAL for the EM approaches (S3 and S5) are identical because EC measured instantaneous LE 1193 

was not used for calibration; one set of cold and hot pixels are used for both scenarios. However, 1194 

for S1, S2 and S4 a different set of cold and hot pixels were chosen for each scenario by forcing 1195 
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the constants c1 and c2 in Eq. [4] to fit the instantaneous LE measurements at the EC towers. This 1232 

produced quite different H and LE SEBAL estimates for S1, S2 and S4. 1233 

In scenarios S1 and S2 of Table 7 there is no significant difference between the SEBAL 1234 

estimated H (156 versus 138 W/m2) and LE (314 versus 333 W/m2). SEBAL calibrations based 1235 

on the instantaneous LE of the tower pixels (S2) or on the LE of the instantaneous foot prints 1236 

during the satellite’s overpass (S1) yielded similar results except that the MAD and RMSD of S1 1237 

were lower (MAD/RMSD values for S1 and S2 were 39/57 and 56/74, respectively). This 1238 

finding is relevant for practitioners who need to calibrate SEBAL on a routine basis and/or in 1239 

nearly real-time. Using only the tower pixel is much faster and easier to implement automatically 1240 

than determination of a weighted average within the tower footprint. However, for posterior 1241 

SEBAL analyses and research applications use of the footprint is still recommended because (1) 1242 

it has a better correspondence with ground measurements (Table 7) and (2) footprint analyses are 1243 

effective for the detection of unusual environmental conditions. 1244 

The MAD and RMSD of H for S1, S2 and S3 are quite similar but rather high with 1245 

MAD/RMSD values of 108/131, 126/147 and 111/135, respectively. The values of S4 and S5 1246 

(36/46 and 61/77) are considerably lower reflecting the ground energy balance correction by 1247 

relying on the RS-based Rn. The MAD/RMSD values of the LE range from values of 39/57 for 1248 

S1, 56/74 for S2, and 66/81 for S3. Values for S4 and S5 (39/48 and 61/77) were similar to S1, 1249 

S2, and S3. Using the RS-based Rn had a much smaller effect on LE estimates than the H 1250 

estimates which is a consequence of the internal calibration of SEBAL and METRIC.  1251 

MRD values exhibited the same trends observed in the MAD and RMSD values (Table 1252 

7). A striking feature in S1–S3 is the very poor prediction of H: with MRD’s were between 35 1253 
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and 47 %. This result was not expected, especially, for S1 and S2 that were calibrated against 1292 

ground measured instantaneous LE. The discrepancy was the result of the apparent bias in the 1293 

ground measurements of Rn discussed previously (see Section [4.2]). Substituting the RS-based 1294 

Rn for the ground measured Rn improved the RS-based estimates of H dramatically: MRD’s of 1295 

S4 and S5 were 0.8 and 16.6 %, respectively. Despite the poor MRD’s of H (35 to 47 %), in S1 – 1296 

S3, the SEBAL LE estimates exhibited good MRD’s (2.7 to -11.5 %). Although RS-based 1297 

estimates of H had high error, the internal calibration procedure protects against inaccurate 1298 

estimates of LE.  1299 

Calibrating SEBAL with reliable ground measurements at the pixel scale improved 1300 

estimates of both H and LE. However, ground measurements of H should be used cautiously and 1301 

carefully for the calibration and evaluation of SEBAL because the RS-based H estimate 1302 

compensates for error in Rn, G, and aerodynamics, and can deviate from the ground-based 1303 

measurements. Lumping error into H is a necessary characteristic of SEBAL and METRIC 1304 

designed to arrive at unbiased estimates for LE. 1305 

The internal calibration of H and LE using cold and hot pixels in SEBAL and METRIC 1306 

reduces or cancels bias introduced by the calculation of albedo, net radiation, and surface 1307 

temperature as well as errors in narrow band emissivity, atmospheric correction, satellite sensor, 1308 

aerodynamic resistance, and soil heat flux. This procedure can result in a reduction of total bias 1309 

in ET of as much as 30 % compared to other models that are not routinely internally calibrated 1310 

(Allen et al., 2006). Allen et al. (2007) describe how METRIC, through the use of weather based 1311 

reference ET, is able to eliminate most internal energy balance component biases at both the cold 1312 

and hot extreme conditions. SEBAL, on the other hand, eliminates bias at the hot extreme, but 1313 
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necessarily retains a bias at the cold extreme where it is assumed that LE = Rn – G. The cost for 1325 

the improved estimates for LE is a deterioration of the SEBAL and METRIC H estimates since H, 1326 

as an intermediate parameter, absorbs most of the aforementioned bias as a result of the internal 1327 

calibration process (Choi et al., 2009). 1328 

 1329 

4.4.2. Comparison of daily sensible and latent heat fluxes 1330 

The ground measured daily evaporative fraction (EF24) is larger than the instantaneous 1331 

evaporative fraction (EFinst) (Figure 11). A simple linear regression yielded a small not 1332 

significant intercept of 0.04 (p>0.05) and a slope of 1.19 (95 % confidence interval 0.99 to 1.36). 1333 

The traditional SEBAL application assumes cEF = 1.0 (Bastiaanssen et al., 1998a), but several 1334 

field studies suggest the value is closer to 1.1 (Brutsaert and Sugita, 1992;Anderson et al., 1997). 1335 

While recognizing that 1.19 is closer to 1.1 than to 1.0, we examined the effects of both 1336 

estimates for cEF on the conversion from instantaneous LE to daily LE (see Eq. [5]).  1337 

Figures 12 and 13 present the plots of the adjusted (using ground measured Rn energy 1338 

balance closure) H and LE daily heat fluxes measured at the EC towers versus the SEBAL 1339 

estimates resulting from scenarios S1–S3 with cEF set to 1.1. Scenarios S4 and S5 are not shown 1340 

because the daily Rn measured on the ground and determined by SEBAL were similar (Table 4). 1341 

For the values in Table 8, when the cEF = 1.0, the agreement was excellent for the daily LE 1342 

(mean MRD of 3.9% = [2.9+0.0+8.9]/3) but was rather poor for the H (mean MRD of -20.4% = 1343 

[-19.4-14.9-27.0]/3). Next, using a cEF value of 1.1, SEBAL estimated LE increased, therefore 1344 

MRDs (MRD = ( ) GSG − ) of LE decreased to be negative so that MRDs of H improved (less 1345 

negative). As a result, the assumption cEF = 1.1 leads to a better agreement for H (Table 8). 1346 
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Although our results do not suggest with certainty which of the cEF values yields more accurate 1437 

estimates of H and LE we recommend the use of 1.1 based on our study (Figure 11), results 1438 

reported in the literature (Brutsaert and Sugita, 1992;Anderson et al., 1997), and the improved 1439 

daily H fluxes from SEBAL (Table 8).  1440 

A comparison between ground measurements and SEBAL estimates of daily 1441 

evapotranspiration is shown in Figure 14. Linear relationships between unadjusted EC 1442 

measurements of ET and SEBAL estimates of ET based on cEF = 1.1 are evident. For scenarios 1443 

S1, S2, and S3 the slopes of the relationship varied between 1.32 and 1.08 (mean of 1.23) 1444 

suggesting that SEBAL ET estimates were about 21% higher than the unadjusted ET 1445 

measurements at the EC towers. This discrepancy is consistent with other studies that reported 1446 

systematic underestimation of heat fluxes by the eddy covariance method can be as high as 10 to 1447 

30 % (Twine et al., 2000;Paw et al., 2004). Given the inherent uncertainties of the SEBAL 1448 

approach and the eddy covariance method the linear relationships between the two methods are 1449 

surprisingly good. The SEBAL/METRIC approach is a powerful tool for high resolution 1450 

mapping of evapotranspiration even where no meteorological measurements are available on the 1451 

ground. This study also demonstrates that the use of SEBAL or METRIC in heterogeneous 1452 

landscapes such as arid riparian areas results in ET estimates that are as good as those that could 1453 

be obtained using the EC method.  1454 

 1455 

5. CONCLUSIONS 1456 

We have evaluated the SEBAL extreme-condition-inverse calibration remote sensing 1457 

model in arid riparian areas by comparing instantaneous and daily energy balance components 1458 
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with those measured on the ground with the eddy covariance method.  1491 

An analysis of differences in instantaneous Rn during late morning between vegetation 1492 

and exposed soil emphasizes the importance of selecting representative soil and vegetative 1493 

mixture viewed by the ground Rn sensor. We argue that tower-based Rn is generally biased 1494 

toward vegetation, resulting in exaggerated Rn values within the eddy covariance footprint. 1495 

Instantaneous Rn from RS, representing a larger area than the net radiometer, systematically gave 1496 

lower instantaneous Rn values. When these were used to close the eddy covariance energy 1497 

balance, LE and H from SEBAL and ground based eddy covariance were more similar. Daily Rn 1498 

values of SEBAL agreed well with the ground measurements.  This result can be ascribed to 1499 

physical differences between the radiation balance of pixels of mixed riparian vegetation and 1500 

bare soil compared to the small footprint of ground Rn sensors placed over vegetation 1501 

Instantaneous G values of SEBAL were about 30% higher than the ground measured 1502 

values in the San Pedro and Owens Valley. However, this large relative difference had a 1503 

relatively minor impact on the overall energy balance because the actual deviation in G was 1504 

approximately 5-6 % of the SEBAL and ground measured instantaneous Rn. Also, daily G is near 1505 
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application of SEBAL and METRIC for estimating daily ET, it is reasonable to assume G is 1507 
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Instantaneous LE values derived from SEBAL were within -13.2 to 2.7% of the ground 1509 
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whether the difference between methods was a result of bias in SEBAL or the eddy covariance 1550 

method.  1551 

Instantaneous H values of SEBAL differed from the ground measurements by 35.0 to 1552 

47.2%. These H fluxes are necessarily biased because errors in Rn and G are lumped into H as a 1553 

result of the extreme-condition-inverse internal calibration procedure. Substitution of the ground 1554 

measured Rn for the SEBAL Rn in the ground based energy balance improved the comparison 1555 

with the RS-based H with relative differences of only 0.8% and 16.6%. Using a combination of 1556 

ground measured G and H with RS-based Rn yielded the least biased energy balances over 1557 

heterogeneous arid riparian areas. 1558 
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instantaneous and daily LE fluxes were strong evidence that the great strength of the SEBAL and 1568 

METRIC method is their internal calibration procedure that eliminates most of the error in LE 1569 

flux at the expense of increased error in instantaneous H flux. We conclude that the SEBAL 1570 

method is an effective tool for mapping actual evapotranspiration at high spatial resolution in 1571 
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heterogeneous riparian areas where hourly weather data are unavailable. 1617 
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Table 1. List of Landsat 7 ETM+ images used in this study (overpass around 10:30 am). 1828 
 1829 

Area Date Path/Row 

Rio Grande 04/07/2000 33/36 

Rio Grande 07/28/2000 33/36 

Rio Grande 09/14/2000 33/36 

Rio Grande 09/30/2000 33/36 

Rio Grande 05/09/2000 33/36 

Rio Grande 06/04/2001 34/36 

Rio Grande 05/06/2002 34/36 

Rio Grande 05/31/2002 33/36 

Rio Grande 05/31/2002 33/37 

Rio Grande 06/16/2002 33/36 

Rio Grande 08/19/2002 33/36 

Owens Valley 07/10/2002 41/34 

Owens Valley 08/11/2002 41/34 

Owens Valley 09/12/2002 41/34 

San Pedro 05/16/2003 35/38 

San Pedro 08/12/2003 35/38 

 1830 
 1831 

 1832 

 1833 

 1834 

  1835 

1836 
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Table 2. Site characteristics and sensor heights on the eddy covariance towers. 1837 
 1838 

Site 
 

Longitude/ 
Latitude 

Vegetation type Elevation 
(m) 

Vegetation 
height (m) 

Sensor 
height (m) 

Rio Grande – BDAS 106.88W/ 
33.78 N saltcedar 1370 6.2 8.2 

Rio Grande – BLN 106.75W/ 
34.59N cottonwood 1460 25.1 27.2 

Rio Grande – SEV 106.87W/ 
34.27N saltcedar 1430 4.9 6.5 

Rio Grande – SHK 106.68W/ 
34.96N cottonwood 1500 23.7 26.3 

Owens – FSL138 118.43W/ 
37.41N alkali meadow 1280 0.2 2.5 

Owens – PLC018 118.35W/ 
37.37N rabbitbrush scrub 1250 0.5 2.5 

Owens – PLC074 118.36W/ 
37.32N saltbush meadow 1240 1.0 2.5 

Owens – PLC185 118.33W/ 
37.27N desert sink scrub 1220 0.5 2.5 

Owens – BLK100 118.24W/ 
36.90N alkali meadow 1170 0.2 2.5 

San Pedro – CM 110.18W/ 
31.66N mesquite 1190 7.0 14 

San Pedro – LSS 110.14W/ 
31.56N sacaton 1230 1.0 3.5 

San Pedro – LSM 110.13W/ 
31.57N mesquite 1240 3.5 6.5 

 1839 

 1840 

 1841 

 1842 

 1843 

 1844 

  1845 
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Table 3. Scenarios of comparison between RS-based estimates and ground measurements of net 1846 

radiation Rn, soil heat flux G, and sensible and latent heat fluxes H and LE. 1847 

 1848 
 1849 

 1850 
1Hot pixel selected by matching the ground measured instantaneous LE (adjusted for closure error using the ground 1851 
measured Rn) at satellite overpass with the footprint weighted averaged SEBAL LE. SEBAL LE compared against 1852 
ground measured instantaneous LE (adjusted for closure error using the ground measured Rn) at satellite overpass. 1853 
2Hot pixel selected by matching the ground measured instantaneous LE (adjusted for closure error using the ground 1854 
measured Rn) at satellite overpass with the SEBAL LE at the tower pixel. SEBAL LE compared against ground 1855 
measured instantaneous LE (adjusted for closure error using the ground measured Rn) at satellite overpass. 1856 
3Hot pixel selected by the empirical approach without use of ground measurements. SEBAL LE is compared against 1857 
ground measured instantaneous LE (adjusted for closure error using the ground measured Rn) at satellite overpass.  1858 
4Hot pixel selected by matching the ground measured instantaneous LE (adjusted for closure error using the ground 1859 
measured Rn) at satellite overpass with the SEBAL LE at the tower pixel. SEBAL LE compared against ground 1860 
measured instantaneous LE (adjusted for closure error using the SEBAL estimated Rn) at satellite overpass. 1861 
5Hot pixel selected by the empirical approach without use of ground measurements. SEBAL LE is compared against 1862 
ground measured instantaneous LE (adjusted for closure error using the SEBAL estimated Rn) at satellite overpass.   1863 

ID Scenario Rn Used for Energy Balance Closure 

S1 EC Approach (EC_FP)1 Ground Measured Rn 

S2 EC Approach (EC_TP)2 Ground Measured Rn 

S3 EM Approach3 Ground Measured Rn 

S4 EC Approach (EC_TP/SRn)4 RS Estimated Rn 

S5 EM Approach (SRn)5 RS Estimated Rn 
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Table 4. Quantitative measures for comparison of RS-based instantaneous and daily net radiation 1867 

estimates ( S ) versus ground measurements ( G ) using the EC and Empirical Approaches for 1868 

selection of hot and cold pixels. 1869 

 1870 

Selection Cold and Hot Pixel n G  S 4 SDG SDS r2 MAD RMSD MRD 

Instantaneous Rn (-) (W/m2) (W/m2) (W/m2) (W/m2) (-) (W/m2) (W/m2) % 

S1 - EC Approach (FP1) 25 654 569 86 90 0.56 88 105 13.0 

S2 - EC Approach (TP2) 25 654 571 86 89 0.56 87 103 12.8 

S3 - Empirical Approach 25 654 559 86 88 0.56 97 113 14.6 

Daily Rn (-) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (-) (MJ/m2/d) (MJ/m2/d) % 

S1/S2 - EC Approach3 24 15.6 16.0 3.1 3.1 0.75 1.3 1.6 -2.9 

S3 - Empirical Approach 24 15.6 15.9 3.1 3.0 0.69 1.3 1.8 -2.3 
 1871 
1Cold and hot pixels were selected by matching the instantaneous LE measured at the EC tower with the footprint 1872 
weighted averaged SEBAL instantaneous LE. 2Cold and hot pixels were selected by matching the instantaneous LE 1873 
measured at the EC tower with the SEBAL instantaneous LE of the EC tower pixel. 3The daily Rn does not depend 1874 
on the selection of the cold and hot pixels; both EC Approaches yield the same values. 4The SEBAL instantaneous 1875 
Rn estimate ( S ) was obtained by calculating the footprint weighted average for the instantaneous Rn; the daily Rn 1876 

( S ) was obtained as the average SEBAL daily Rn of the 25 pixels around the EC tower. 1877 

1878 
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Table 5. Selected instantaneous and daily net radiation fluxes and relevant parameters for 1886 

adjacent clusters of vegetated and bare soil pixels on June 16, 2002. 1887 

 1888 

Vegetation Albedo 
(-) 

NDVI1 

(-) 
T-surface 

(degree K) 

Instantaneous 
Net Radiation 

(W/m2) 

Daily 
Net Radiation 
(MJ/(m2 d)) 

N2 

 Veg Bare Veg Bare Veg Bare Veg Bare Ratio Veg Bare Ratio  

Alfalfa 0.22 0.32 0.84 0.14 299 325 634 384 1.65 17.9 14.8 1.21 50 

Alfalfa 0.21 0.31 0.80 0.24 301 322 627 408 1.54 18.1 15.1 1.20 20 

saltcedar 0.16 0.32 0.65 0.14 302 326 670 379 1.77 19.8 14.8 1.34 50 

saltcedar 0.14 0.31 0.49 0.24 308 322 657 408 1.61 20.6 15.1 1.36 20 

 1889 
1NDVI = Normalized Difference Vegetation Index, 2N = number of pixels in each 1890 
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Table 6. Quantitative measures for comparison of instantaneous and daily RS-based soil heat flux estimates ( S ) versus ground 1891 

measurements ( G ) using the EC and Empirical Approaches for selection of hot and cold pixels. 1892 

 1893 

Selection Cold and Hot Pixel N4 G  S 5 SDG SDS r2 MAD RMSD MRD 

Instantaneous G (-) (W/m2) (W/m2) (W/m2) (W/m2) (-) (W/m2) (W/m2) % 

EC Approach (FP1) 6 76 101 26 13 0.02 35 35 -32.2 

EC Approach (TP2) 6 76 101 26 13 0.02 35 35 -31.9 

Empirical Approach 6 76 100 26 13 0.02 34 34 -30.9 

Daily G (-) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (MJ/m2/d) (-) (MJ/m2/d) (MJ/m2/d) % 

EC Approach3 24 0.5 0.0 0.4 0.0 - 0.5 0.6 >100 

Empirical Approach 24 0.5 0.0 0.4 0.0 - 0.5 0.6 >100 
 1894 
1 Cold and hot pixels were selected by matching the instantaneous LE measured at the EC tower with the footprint weighted averaged SEBAL 1895 
instantaneous LE. 2 Cold and hot pixels were selected by matching the instantaneous LE measured at the EC tower with the SEBAL instantaneous LE of 1896 
the EC tower pixel. 3 The daily soil heat flux does not depend on the selection of the cold and hot pixels; both EC Approaches yield the same values.   1897 
4 No instantaneous soil heat flux measurements were available in the Middle Rio Grande Basin.5 The RS-based instantaneous soil heat flux estimate ( S ) 1898 

was obtained by calculating the footprint average for the instantaneous soil heat flux; the daily soil heat flux ( S ) was obtained as the average SEBAL 1899 

daily soil heat flux of the 25 pixels around the EC tow.1900 
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Table 7. Quantitative measures for comparison of SEBAL derived instantaneous sensible (H) and latent (LE) heat fluxes 1909 

estimates ( S ) versus ground measurements ( G ). 1910 

Scenario Selection Anchor 
Pixel Comments  

n G 6 S 7 SDG SDS r2 MAD RMSD MRD 

(-) (W/m2) (W/m2) (W/m2) (W/m2) (-) (W/m2) (W/m2) % 

S1 EC Approach (FP) 1 - 
H 25 262 156 151 105 0.76 108 131 40.4 

LE 25 299 314 174 170 0.90 39 57 -5.0 

S2 EC Approach (TP) 2 - 
H 25 262 138 151 91 0.81 126 147 47.2 

LE 25 299 333 174 162 0.85 56 74 -11.5 

S3 EM Approach - 
H 25 262 171 151 77 0.64 111 135 35.0 

LE 25 299 291 174 143 0.78 66 81 2.7 

             

S4 EC Approach (TP)3 SEBAL Rn replaces ground Rn4 
H 25 209 207 112 114 0.83 36 46 0.8 

LE 25 262 258 171 170 0.92 39 48 1.7 

S5 EM Approach SEBAL Rn replaces ground Rn5 
H 25 205 171 110 77 0.59 61 77 16.6 

LE 25 257 291 167 143 0.82 61 77 -13.2 
 1911 
1 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the footprint weighted averaged 1912 
SEBAL flux. 2 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the SEBAL flux of 1913 
the tower pixel. 3 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the SEBAL flux 1914 
of the tower pixel. In S4, the SEBAL estimated Rn replaces the Rn measured on the ground for adjustment of the latent heat flux. 4 Instead of using the Rn 1915 
measurements made on the ground, the SEBAL derived Rn in Scenario 2 is used for the determination of the ground measured energy balance and in 1916 
adjusting the H and LE from the EC for closure error (using Bowen ratio). 5 Instead of using the Rn measurements made on the ground, the SEBAL 1917 
derived Rn in Scenario 3 is used for the determination of the ground measured energy balance and in adjusting the H and LE from the EC for closure 1918 
error (using Bowen ratio). 6 The heat fluxes have been calculated from the EC measurements. Since no soil heat flux measurements were available for 1919 
the Middle Rio Grande Basin, the SEBAL soil heat flux was used to establish the ground measured energy balance. 7 The SEBAL estimates of the 1920 
instantaneous H and LE were obtained by calculating the footprint weighted averaged SEBAL heat fluxes. 1921  1922 
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Table 8. Quantitative measures for comparison of SEBAL derived daily sensible (H) and latent (LE) heat fluxes estimates ( S ) 1927 

versus ground measurements ( G ). 1928 

 1929 

EF24 = 1.0×EFinst 1930 
 1931 

Scenario Selection Anchor 
Pixel  

n G 6 S 7 SDG SDS r2 MAD RMSD MRD 

(-) MJ/(m2d) MJ/(m2d) MJ/(m2d) MJ/(m2d) (-) MJ/(m2d) MJ/(m2d) % 

S1 EC Approach (FP) 1 
H 24 6.0 7.2 3.7 3.2 0.41 2.3 3.1 -19.4 

LE 24 9.1 8.9 4.4 4.9 0.78 1.7 2.2 2.9 

S2 EC Approach (TP) 2 
H 24 6.0 6.9 3.7 3.3 0.32 2.6 3.3 -14.9 

LE 24 9.1 9.1 4.4 5.0 0.72 2.2 2.6 0.0 

S3 EM Approach 
H 24 6.0 7.6 3.7 2.7 0.37 2.6 3.3 -27.0 

LE 24 9.1 8.3 4.4 4.2 0.69 1.9 2.6 8.9 

 1932 

EF24 = 1.1×EFinst 1933 
 1934 

Scenario Selection Anchor 
Pixel  

n G 6 S 7 SDG SDS r2 MAD RMSD MRD 

(-) MJ/(m2d) MJ/(m2d) MJ/(m2d) MJ/(m2d) (-) MJ/(m2d) MJ/(m2d) % 

S1 EC Approach (FP) 1 
H 24 6.0 6.3 3.7 3.5 0.41 2.1 3.0 -5.6 

LE 24 9.1 9.7 4.4 5.3 0.78 1.9 2.5 -6.3 

S2 EC Approach (TP) 2 
H 24 6.0 6.0 3.7 3.6 0.32 2.7 3.3 -0.8 

LE 24 9.1 10.0 4.4 5.4 0.71 2.4 3.0 -9.3 

S3 EM Approach 
H 24 6.0 6.9 3.7 3.0 0.42 2.3 2.9 -14.8 

LE 24 9.1 9.2 4.4 4.6 0.69 2.0 2.5 -0.3 
 1935 
1 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the footprint weighted averaged 1936 
SEBAL flux. 2 Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the SEBAL flux of 1937 
the tower pixel. 5 Instead of using the Rn measurements made on the ground, the SEBAL derived Rn in Scenario 3 is used for the determination of the 1938 
ground measured energy balance. 6 The heat fluxes have been calculated from the EC measurements. Since no soil heat flux measurements were 1939 
available for the Middle Rio Grande Basin, the SEBAL soil heat flux was used to establish the ground measured energy balance.7 The SEBAL estimates 1940 
of the instantaneous H and LE were obtained by calculating the footprint weighted averaged SEBAL heat fluxes. 1941 
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Figure 1 Landsat7 scenes of the study areas in New Mexico, Arizona and California. 1973 

(PET: potential evapotranspiration; AAP: average annual precipitation) 1974 
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 1976 

(PET: 170cm; AAP: 25cm) 

(PET: 150cm; AAP: 12cm) (PET: 170cm; AAP: 35cm) 
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  1982 
 1983 
 1984 

 1985 
 1986 
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 1988 

 1989 

 1990 

 1991 

 1992 

Figure 2. Distribution of energy balance relative closure (H+LE)/(Rn–G) of instantaneous 1993 

(top panel) and total daily (bottom panel) fluxes from eddy covariance towers. Each ‘bar’ 1994 

represents a satellite overpass day. The dotted lines show criteria of acceptable closure 1995 

[65 and 110 %] and percentage of the data having acceptable closure is shown in bracket. 1996 
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 2015 
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 2018 

 2019 

Figure 3. Footprint size and footprint intensity from the eddy covariance tower located at 2020 

SEV (saltcedar) in Rio Grande on August 19, 2002 (10:40 am) (wind speed: 3.4 m/s, 2021 

vegetation height: 4.9 m and sonic anemometer height from ground: 6.5 m). 2022 
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Figure 4. SEBAL daily evapotranspiration (mm/d) maps along the Rio Grande in spring, 2038 

summer and fall. 2039 
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 2051 

 2052 

Figure 5. Comparison of instantaneous net radiation (Rn) between net radiometer 2053 

measurements and SEBAL estimates. (EC_FP (S1) method selected anchor pixels to 2054 

match fluxes of the ground measured instantaneous LE (adjusted for closure error) at the 2055 

satellite overpass and the footprint weight averaged SEBAL LE. EC_TP (S2) method 2056 

selected anchor pixels to match fluxes of the ground measured instantaneous LE and the 2057 

flux of the tower pixel. EM (S3) method selected the anchor pixels with the 2058 

hydrogeological features of the landscape and micrometeorological considerations. 2059 
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Figure 6. Comparison of daily net radiation (Rn) between net radiometer measurements 2085 

and SEBAL estimates. 2086 
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 2113 

Figure 7. Comparison of instantaneous ground heat flux (G) between soil heat flux plate 2114 

measurements and SEBAL estimates in Owens Valley and San Pedro Valley. EC_FP (S1) 2115 

EC_TP (S2), and EM (S3) methods produced very similar SEBAL estimates. 2116 
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 2137 

Figure 8. Comparison of sensible (H) and latent heat (LE) fluxes between adjusted eddy 2138 

covariance tower measurements (with negative H data points) and SEBAL estimates from 2139 

scenario S2 (EC_TP). 2140 
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Figure 9. Comparison of instantaneous sensible heat flux (H) between adjusted eddy 2148 

covariance tower measurements and SEBAL estimates for scenarios S1–S5. 2149 
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Figure 10. Comparison of instantaneous latent heat flux (LE) between adjusted eddy 2157 

covariance tower measurements and SEBAL estimates for scenarios S1–S5.  2158 
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Figure 11. Comparison of satellite overpass instantaneous evaporative fraction (EF) with 2183 

daytime average measured on the ground. 2184 
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Figure 12. Comparison of daily sensible heat flux (H) between adjusted eddy covariance 2202 

tower measurements and SEBAL estimates. (EF24 = 1.1* EFinst) 2203 

  2204 

 57 



 2205 
 2206 
 2207 

 2208 
 2209 
 2210 

    2211 
 2212 
 2213 
    2214 

 2215 

 2216 

 2217 

 2218 

 2219 

 2220 

 2221 

Figure 13. Comparison of daily latent heat flux (LE) between adjusted eddy covariance 2222 

tower measurements and SEBAL estimates. (EF24 = 1.1* EFinst) 2223 
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 2239 

Figure 14. Comparison of ET rates determined from SEBAL with cEF of 1.1 to eddy 2240 

covariance ground measurements in riparian areas of the Rio Grande Valley (NM), San 2241 

Pedro Valley (AZ), and Owens Valley (CA). 2242 
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