1 2 3	EVALUATION OF AN EXTREME-CONDITION-INVERSE CALIBRATION REMOTE SENSING MODEL FOR MAPPING ENERGY BALANCE FLUXES IN ARID RIPARIAN AREAS	
4 5 6 7	Sung-ho Hong ¹ , Jan M.H. Hendrickx ^{2*} , Jan Kleissl ³ , Rick G. Allen ⁴ , Wim G.M. Bastiaanssen ⁵ , Russell L. Scott ⁶ , Aaron L. Steinwand ⁷	
8 9 10 11	¹ Murray State University, Murray, KY; previously, New Mexico Tech, Socorro, NM; ² New Mexico Tech, Socorro, NM; ³ University of California, San Diego, CA; ⁴ University of Idaho, Kimberly, ID; ⁵ Delft University of Technology and UNESCO-IHE, Delft, The Netherlands; ⁶ Southwest Watershed Research Center, USDA-ARS, Tucson, AZ; ⁷ Inyo County, Water	
12	Department, <u>Independence</u> , CA.	Deleted: Bishop
13 14	ABSTRACT	Deleted: ¶
14	ADSTRACT Accurate information on the distribution of the surface energy balance components in	Formatted: Font: Not Bold Formatted: Left, Line spacing: single, Widow/Orphan control
16	arid riparian areas is needed for sustainable management of water resources as well as for	
17	developing a better understanding of water and heat exchange processes between the land	
18	surface and atmosphere. Since the spatial and temporal distributions of these fluxes over large	Deleted: the
19	areas are difficult to determine from ground measurements, their prediction from remote sensing	Deleted: alone
20	data is very attractive due to its large areal coverage and a high repetition rate. In this study the	Deleted: as it enables
21	Surface Energy Balance Algorithm for Land (SEBAL) was used as a remote-sensing platform to	Deleted: area
22	estimate energy balance components in the arid riparian areas of the Middle Rio Grande Basin	Deleted: all the
23	(New Mexico) and San Pedro Basin (Arizona), and areas of phreatophytic shrubs and grasses in	Deleted:),
24	the Owens Valley (California). We <u>compared</u> instantaneous and daily fluxes from SEBAL	Deleted: compare
25	derived from Landsat TM images to surface-based measurements from eddy covariance flux	Deleted: SEBAL
20	derived from Landsar TW images to surface-based measurements <u>from</u> eddy covariance flux	Deleted: with
26	towers. This study presents evidence that inversion-calibrated surface energy balance models	

* Corresponding author: janhendrickxnmt@gmail.com

1

Formatted: Indent: Left: 0"

38	such as SEBAL and similar models such as METRIC can yield reliable estimates for actual		Deleted: yields
39	evapotranspiration rates in riparian areas of the southwestern United States. The great strengths		Deleted: strength
40	of the inversion-calibrated methods are their internal calibration strategies that eliminate much of		Deleted: SEBAL method is its
41	the effects of systematic biases in net radiation, soil heat flux, land surface temperature and	\square	Deleted: eliminates most
42	albedo on latent heat flux, at the expense of increased bias in sensible heat flux.		Deleted: bias
43			

44 **1. INTRODUCTION**

The regional distribution of the energy balance components, net surface radiation (R_n) , 45 46 soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) in arid riparian areas is critical knowledge for agricultural, hydrological and climatological investigations. However, R_n , G, H47 and LE are complex functions of atmospheric conditions, land use, vegetation, soils, and 48 49 topography which cause these fluxes to vary in space and time. It is difficult or impractical to 50 estimate surface fluxes at the regional scale using ground-based instruments (Parlange et al., 51 1995). Measurement approaches for LE from the land surface such as eddy covariance (Kizer and Elliott, 1991), Bowen ratio (Scott et al., 2004) and weighing lysimeters (Wright, 1982) are 52 53 too expensive and time consuming for continuous application at sufficient spatial density at regional scales. These techniques produce LE measurements over small footprints (m² to ha) 54 which are difficult to extrapolate to the regional scale, especially over heterogeneous land 55 56 surfaces (Moran and Jackson, 1991). For example, in the heterogeneous landscape of the central plateau of Spain as many as 13 ground measurements of evapotranspiration in a relatively small 57 area of 5000 km² were not sufficient to predict accurately the area-averaged evapotranspiration 58

59 rate (Pelgrum and Bastiaanssen, 1996).

I

Deleted: Therefore, it is difficult to estimate them at the regional scale (Parlange et al., 1995). Measurement approaches for *LE* from the land surface including eddy covariance (Kizer and Elliott, 1991), Bowen ratio (Scott et al., 2004) and weighing lysimeters (Wright, 1982) are too expensive and time consuming for continuous application at sufficient spatial density at the regional scale. These techniques produce *LE* measurements over small footprints (m² to ha) which are difficult to extrapolate to the regional scale, especially over heterogeneous land surfaces (Moran and Jackson, 1991). For example, in the heterogeneous landscape of the central plateau of Spain as many as 13 ground measurements of evapotranspiration in a relatively small area of 5000 km² vere not sufficient to predict accurately the area-averaged evapotranspiration rate (Pelgrum and Bastiaanssen, 1996).

80	<u>A number of studies have concluded that reliable</u> regional estimates of spatial patterns of		Deleted: Reliable
81	LE can be obtained by satellite image-based remote sensing algorithms (e.g. Choudhury,		Deleted: only
			Deleted: as has been shown by a number of investigators
82	1989;Granger, 2000;Moran and Jackson, 1991;Kustas and Norman, 1996;Du et al., 2013), A		Deleted: . Today a variety of LE remote sensing algorithms exists
83	variety of <i>LE</i> remote sensing algorithms exists with different spatial (30 m to 1/8th degree or 13		with different spatial (30 m to 1/8th degree or 13 km in New Mexico) and temporal (daily to monthly) scales: the North American Land Data Assimilation Systems (NLDAS) (Cosgrove et al., 2003), the Land Information Systems (LIS) (Peters Lidard et al., 2004), the
84	km in New Mexico) and temporal (daily to monthly) scales. Examples include: the Two-Source		Two-Source Energy Balance model (TSEB) (Norman et al., 1995), the Hybrid dual source Trapezoid framework Evapotranspiration Model (HTEM) (Yang and Shang, 2013), the Atmosphere-Land
85	Energy Balance model (TSEB) (Norman et al., 1995), the Hybrid dual source Trapezoid		Exchange Inverse (ALEXI) (Anderson et al., 1997), the disaggregated ALEXI model (DisALEXI) (Norman et al., 2003), the Surface Energy Balance System (SEBS) (Su, 2002), the MOD16 ET
86	framework Evapotranspiration Model (HTEM) (Yang and Shang, 2013), the Atmosphere-Land		algorithms (Mu et al., 2011), the Simplified Surface Energy Balance (SSEB) (Senay et al., 2013), the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen, 1995), Mapping
87	Exchange Inverse (ALEXI) (Anderson et al., 1997), the disaggregated ALEXI model (DisALEXI)		EvapoTranspiration at high spatial Resolution with Internalized Calibration (METRIC) (Allen et al., 2007), as well as algorithms without distinct acronyms (Schüttemeyer et al., 2007;Ma et al.,
88	(Norman et al., 2003), the Surface Energy Balance System (SEBS) (Su, 2002), the MOD16 ET		2004; Jiang and Islam, 2001). ¶ SEBAL has been developed and pioneered by Bastiaanssen and his colleagues in The Netherlands during the 1990s (Bastiaanssen, 1995).
89	algorithms (Mu et al., 2011), the Simplified Surface Energy Balance (SSEB) (Senay et al., 2013),		METRIC has been developed by Allen and his research team in Idaho using SEBAL as its foundation (Allen et al., 2005). Unlike ALEXI and DisALEXI, SEBAL and METRIC do not require spatial
90	the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen, 1995), Mapping		fields of air temperature and atmospheric temperature soundings interpolated across the region of interest; unlike NLDAS and LIS, SEBAL and METRIC do not require land cover maps. However,
91	EvapoTranspiration at high spatial Resolution with Internalized Calibration (METRIC) (Allen et		applications of SEBAL and METRIC are restricted to clear days over areas of unvarying weather, and require some supervised calibration for each image, preventing application at the continental
92	al., 2007), as well as algorithms without distinct acronyms (Schüttemeyer et al., 2007; Ma et al.,	\mathbb{N}	scale such as done by ALEXI, SSEB, MOD16, NLDAS and LIS.¶ Deleted:
93	2004;Jiang and Islam, 2001)		Deleted: (Allen et al., 2007b)
94	SEBAL was developed by Bastiaanssen and his colleagues in The Netherlands during		
95	the 1990s (Bastiaanssen, 1995). METRIC was developed by Allen and his research team in Idaho		
96	using SEBAL as its foundation (Allen et al., 2005), but with greater reliance on weather-based		
97	reference ET calculations for calibration. SEBAL and METRIC do not require spatial fields of		
98	air temperature and atmospheric temperature soundings interpolated across the region of interest		
99	like ALEXI and DisALEXI. SEBAL and METRIC do not require land cover maps for estimating		
100	surface roughness but instead can use expressions that relate the NDVI to the momentum		

roughness length (Bastiaanssen et al., 1998a; Allen et al., 2007). However, SEBAL and METRIC

101

137	are restricted to clear days over areas of stable weather and generally require some supervised		
138	calibration for each image. These requirements limit their application to local and regional scale,		
139	rather than at continental scale that is possible with ALEXI, SSEB, or MOD16. Interpolation of		
140	ET between images is done using ground-based or gridded reference ET and interpolated		
141	fractions of reference ET.		
142	The accuracy of SEBAL and METRIC for evaporation mapping worldwide is typically		
143	about $\pm 15\%$ for daily and $\pm 1.5\%$ for seasonal evaporation estimates (Bastiaanssen et al.,		Deleted: and ±5%
		\sim	Deleted: , respectively,
144	2005;Allen et al., 2011;Karimi and Bastiaanssen, 2015). Accuracy of the models depends on a		Deleted: (Bastiaanssen et al., 2005;Allen et al., 2011). Such accuracy is obtained by
145	calibration method that selects a "cold" and "hot" pixel representing extreme thermal and		
146	vegetation conditions within an image. After calculation of the energy balance at the two		
147	calibration pixels, the near-surface air temperature gradient associated with sensible heat flux H		Deleted: the
148	for each pixel is indexed to its satellite measured surface temperature.		
149	The economic efficiency of SEBAL and METRIC is <u>particularly attractive</u> . For example,		Deleted: remarkable.
150	in the early 1980's co-author Hendrickx with a team of field assistants and graduate students		Deleted: was deployed at Niono
151	spent two years in the Office du Niger (Mali) to measure the seasonal actual evapotranspiration		Deleted: in
152	of rice in four irrigation units <u>encompassing an</u> area of about 70 hectares using non-weighing		Deleted: to determine water requirements for flood irrigated rice. It took him and a team of four field assistants and several graduate students more than two years
150			Deleted: covering a total
153	lysimeters and discharge <u>measurements</u> in irrigation and drainage ditches (Hendrickx et al.,		Deleted: measurement structures
154	1986). For comparison, in 2008, the seasonal actual evapotranspiration was obtained by two		Deleted: (Hendrickx et al., 1986). In
101			Deleted: for all
155	scientists, (Zwart and Leclert, 2010), for 86,000 hectares from the Office du Niger using SEBAL		Deleted: of
156	with Landsat imagery of 2006 in approximately two months, The economy of the method	\leq	Deleted: at an effort of about
1 5 7		$\overline{\ }$	Deleted: expert
157	justifies further investigations to validate the SEBAL model for a variety of field environments.		Deleted: without need for an overseas multi-year deployment (Zwart and Leclert, 2010).

178	Previous validation studies of SEBAL have been conducted in relatively homogeneous	Deleted: mainly
179	agricultural areas and have focused on <u>a comparison</u> of daily ET rates estimated from SEBAL (or	Deleted: and
180	METRIC) with ground measurements using lysimeters (Tasumi, 2003;Trezza, 2002), Bowen	Deleted: (Tasumi, 2003;Trezza, 2002),
181	ratio and eddy covariance methods (Gibson et al., 2013;Du et al., 2013;Bastiaanssen et al., 2002)	
182	and scintillometry (Hemakumara et al., 2003;Kite and Droogers, 2000;Kleissl et al., 2009). The	
183	overall goal of this study was to conduct a thorough evaluation of the performance of SEBAL in	Deleted: is
184	arid riparian areas in New Mexico, Arizona and California, where spatially extensive estimates of	Deleted: . Here,
185	the ground and surface water balance components are needed to improve land and water	
186	management. The study areas include vast deserts transected by relatively narrow river corridors	Deleted: are
187	and a mosaic of irrigated agricultural fields and riparian vegetation (cottonwood, saltcedar,	Deleted: valleys covered by
188	willow, mesquite, Russian olive) and native phreatophytic shrubs and grasses, which creates a	Deleted: salt
189	very heterogeneous landscape with a short patch length scale. A good SEBAL performance	Deleted:) Deleted: If
100		Deleted: IT Deleted: performs well
190	under these challenging conditions would be a strong indication that satisfactory performance	Deleted: , it is likely to perform well in most arid and semi-arid
191	should be expected from other types of moderate to high ET systems that are surrounded by	
192	relatively dry land uses (e.g. Compaoré et al., 2008).	
193	This study involves SEBAL applications in areas without high quality hourly	
194	meteorological observations which represents a common condition for many regions, worldwide	Formatted
195	(Droogers and Allen, 2002). We examined each component of the energy balance during the	Deleted: . Another difference with previous studies is our focus on all components
196	instant of satellite overpass and on a daily basis using a quality controlled data set consisting of	Deleted: as well as
		Deleted: . We can accomplish this since we have available
197 198	ground-based R_n , H and LE measurements,	Deleted: in the riparian areas of the Middle Rio Grande Basin (New Mexico) and <i>R_n</i> , <i>G</i> , <i>H</i> and <i>LE</i> measurements in the riparian areas of the San Pedro Basin (Arizona) and the Owens River Valley
190		(California).
199		

220 2. SURFACE ENERGY BALANCE ALGORITHM FOR LAND (SEBAL)

221 SEBAL is a remote sensing algorithm that evaluates the fluxes of the energy balance and

determines *LE* as the residual

223	$LE = (1 - \alpha)R_s + R_{l_{-in}} - R_{l_{-out}} - (1 - \varepsilon_o)R_{l_{-in}} - G - H = R_n - G - H$ Deleted: $LE = R_n - G - H$
004	Field Code Changed
224	
225	where R_s is the incoming shortwave radiation [Wm ⁻²], α is the surface albedo [-], R_l in is the Deleted : R_s is the net radiation flux density [Wm ²]
226	incoming longwave radiation $[Wm^{-2}]$, $R_{l out}$ is the emitted longwave radiation $[Wm^{-2}]$, ε_0 is the
227	surface thermal emissivity $[-]R_n$ [Wm ⁻²], G is the soil heat flux density [Wm ⁻²], H is the sensible
228	heat flux density $[Wm^{-2}]$, $LE (= \lambda ET)$ is the latent heat flux density $[Wm^{-2}]$, and R_n is the net Deleted: and
229	radiation flux density [Wm ⁻²]. <i>LE</i> can be converted to the ET rate [mmday ⁻¹] using the latent heat
230	of vaporization of water λ [Jkg ⁻¹] and the density of water ρ_w [kgm ⁻³].
231	To implement SEBAL, images <u>must include</u> information on reflectance in the visible, Deleted : are needed with
232	near-infrared mid-infrared bands, and emission in the thermal infrared band. The necessary data
233	are <u>available from</u> a number of satellites <u>including</u> Land Satellite (Landsat), Moderate Resolution Deleted: Such images
234	Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), Deleted: such as
235	Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), ENVISAT-
236	Advanced Along Track Scanning Radiometer (AATSR) and China-Brazil Earth Resources
237	Satellite (CBERS). In this study, we use Landsat images for their high spatial resolution and Deleted: . In undulated landscapes
238	consistent, accurate calibration. A digital elevation model (DEM) is used to account for terrain
239	slope and aspect of each pixel. Extensive descriptions of SEBAL and METRIC have been Deleted: also needed Deleted: take into
240	presented in the literature (Allen et al., 2011; Allen et al., 2007; Hong, 2008; Bastiaanssen et al.,
241	1998a), Critical elements of the SEBAL algorithm are discussed below.

306	reveals residual evaporation from prior precipitation events. For a wet surface (the cold pixel) all			
307	available energy $R_n - G$ is assumed to be used for evapotranspiration so that $H = 0$ and $\Delta T = 0$			
308	(Bastiaanssen et al., 1998a;Bastiaanssen, 2000). In METRIC, H at the cold pixel is estimated as			
309	<u>$H = R_n - G - ET_{cold}$</u> where ET_{cold} is assigned a value based on scaled weather-based reference ET.			
310	The implicit assumption in extreme-condition-inverted-calibration processes such as SEBAL and			
311	<u>METRIC is that land surfaces with a high ΔT are associated with high radiometric temperatures</u>			
312	and those with a low ΔT are associated with low radiometric temperatures. Field measurements			
313	in Egypt and Niger (Bastiaanssen et al., 1998b), China (Wang et al., 1998), and USA (Franks and			
314	Beven, 1997) have shown that the relationship between T_s and ΔT is positive and approximately			
315	linear for a variety of field conditions including irrigated fields, deserts and mountains.			
316	$\Delta T = c_1 \cdot T_s + c_2 $ [4]	Fi	ield Code Changed	
317	where c_1 and c_2 are the linear regression coefficients valid for a landscape at the time and date			
318	the image is taken. By using the values of ΔT calculated for the cold and hot pixel, the regression			
319	coefficients c_1 and c_2 can be determined so that the extremes of H are constrained and outliers of			
320	H-fluxes are prevented. Equation [4] is dependent upon spatial differences of the radiometric	D	Deleted: The Eq.	
321	surface temperature rather than absolute surface temperatures to derive maps of the sensible heat			
322				
	flux which minimizes the need for atmospheric corrections as well as uncertainties in surface			
323	flux which minimizes the need for atmospheric corrections as well as uncertainties in surface emissivity, surface roughness and differences in T_{aero} and T_s on H estimates (Allen et al., 2007).	D	Peleted: (Allen et al., 2007).	
323 324	·	D	Deleted: (Allen et al., 2007).	
	emissivity, surface roughness and differences in T_{aero} and T_s on H estimates (Allen et al., 2007).		Deleted: (Allen et al., 2007).	
324	emissivity, surface roughness and differences in T_{aero} and T_s on H estimates (Allen et al., 2007). Besides ΔT the other unknown in Eq. [3] is the aerodynamic resistance to heat transfer	D	Deleted: Since	
324 325	emissivity, surface roughness and differences in T_{aero} and T_s on H estimates (Allen et al., 2007). Besides ΔT the other unknown in Eq. [3] is the aerodynamic resistance to heat transfer (r_{ah12}), which is affected by wind speed, atmospheric stability, and surface roughness. Because		Deleted: Since	

334	obtained for each pixel. Finally, dividing <i>LE</i> by the latent heat of vaporization of water yields the	
335	instantaneous ET (mmhour ⁻¹) at the time of the Landsat overpass	Deleted: around 10:30 am
336	SEBAL and METRIC produce an estimate of the instantaneous LE at the time of the	Deleted: produces
337	satellite overpass, at approximately 10:30 am. However, for most hydrological applications the	Deleted: .
338	daily LE is needed, and the instantaneous LE must be extrapolated to estimate the daily LE using	Deleted: ; so
339	the instantaneous evaporative fraction (EF_{inst}). Where <u>daily</u> soil moisture does not significantly	Deleted: needs to Deleted: which is done
340	change and advection does not occur, the evaporative fraction has been shown to be	
341	approximately constant during the day (Crago, 1996; Farah et al., 2004). However, analysis of	Deleted: (Crago, 1996;Farah et al., 2004).
342	field measurements by other investigators (Teixeira et al., 2008;Anderson et al., 1997;Sugita and	
343	Brutsaert, 1991) indicates that the instantaneous evaporative fraction on clear days at satellite	
344	overpass time tends to be approximately $10 - 18$ % smaller than the daytime average. Therefore,	Deleted: (around 10:30 am)
345	a correction coefficient c_{EF} is introduced to take into account differences between instantaneous	
346	and daily evaporative fractions. Some investigators use c_{EF} of 1.00 (Bastiaanssen et al., 2005)	Deleted: (Bastiaanssen et al., 2005) while otherssuggest
347	while others suggest c_{EF} of 1.10 (Anderson et al., 1997) or c_{EF} of 1.18 (Teixeira et al., 2008). The	Deleted: (Anderson et al., 1997)
348	value for c_{EF} should depend on the relative amount of advection of heat, which in turn is a	Deleted: (Teixeira et al., 2008).
349	function of regional evaporation, wind speed and relative humidity.	
350	$EF_{inst} \cdot c_{EF} = \frac{R_n - G - H}{R_n - G} \cdot c_{EF} = \frac{LE_{inst}}{LE_{inst} + H_{inst}} \cdot c_{EF} = EF_{24} = \frac{\lambda \cdot \rho_w \cdot ET_{24}}{R_{n24} - G_{24}} \cdot c_{EF} $ [5]	Deleted: $EF_{inst} \cdot c_{EF} = \frac{R_n - G - H}{R_n - G} \cdot c_{EF} = \frac{LE_{inst}}{LE_{inst}} + \frac{1}{2}$
000	$\frac{LF_{inst} + C_{EF}}{R_n - G} = \frac{C_{EF} - LE_{inst} + H_{inst}}{LE_{inst} + H_{inst}} = \frac{C_{EF} - LF_{24}}{R_{n24} - G_{24}} = \frac{C_{EF}}{R_{n24} - G_{2$	
351	Assuming daily soil heat flux G_{24} [MJm ⁻² day ⁻¹] close to zero, multiplication of the	Field Code Changed
352	instantaneous <i>EF</i> _{inst} determined from SEBAL with the total daily available energy yields the	Deleted: <i>c</i> _{EF} of 1.0 and
353	daily ET rate in mm per day (Bastiaanssen et al., 1998a)	Formatted: Font: Italic Deleted: (Bastiaanssen et al., 1998a) as
354	$ET_{24} = \frac{c_{EF}EF_{inst} \cdot (R_{n24} - G_{24})}{\lambda \cdot \rho_w} \approx \frac{c_{EF}EF_{24} \cdot R_{n24}}{\lambda \cdot \rho_w} $ [6]	Deleted: $ET_{24} = \frac{EF_{inst} \cdot (R_{n24} - G_{24})}{\lambda \cdot \rho_w} \approx \frac{EF_{24} \cdot R_{n24}}{\lambda \cdot \rho_w}$
	$\frac{-24}{\lambda \cdot \rho_{w}} \frac{\lambda \cdot \rho_{w}}{\lambda \cdot \rho_{w}}$	Field Code Changed
I		

371	where ET_{24} is daily ET [<u>mm day</u> ⁻¹], ρ_w is the density of water [<u>k gm</u> ⁻³] and R_{n24} is daily net	Deleted: mmday
		Deleted: kgm
372	radiation [MJm ⁻² day ⁻¹] obtained by an semi-empirical expression (De Bruin, 1987) as described	Deleted: (De Bruin, 1987)
373	by (Hong, 2008). Finally, the daily H_{24} is not derived from the instantaneous H but is calculated	Deleted: (Hong, 2008).
374	as the difference between R_{n24} and LE_{24} .	
375		
376	3. METHOD AND MATERIALS	
377	3.1. Study Areas	
378	The components of the energy balance (R_n , G , H and LE) were determined using a	Deleted: are
379	SEBAL version having R_n and G components similar to those of METRIC (Allen et al., 2005).	Deleted: by
579	SEBAL version naving K_n and G components similar to mose of METRIC (Allen et al., 2005).	Deleted: from
380	The SEBAL model was applied to sixteen Landsat 7 images from 2000 to 2003 for three typical	Deleted: of year
381	desert phreatophyte and riparian areas in the southwestern United States located in the Middle	
382	Rio Grande Valley (NM), the Owens Valley (CA) and the San Pedro Basin (AZ). (Figure 1,	Formatted: Font color: Red
383	Table 1)	
384	The Middle Rio Grande Valley extends through central New Mexico and is defined as	
385	the reach of the Rio Grande between Cochiti Dam and Elephant Butte Reservoir. The Middle Rio	
386	Grande riparian vegetation consists of cottonwood and salt grasses as well as various non-native	
387	species including saltcedar and <u>Russian</u> olive. In the Middle Rio Grande Valley, the average	Deleted: russian
388	annual air temperature is 15 °C. Daily summer temperatures range from 20 to 40 °C, and daily	Deleted: while
389	winter temperatures range from -12 to 10 °C. Mean annual precipitation is about 25 cm and	
390	mean annual potential evapotranspiration is approximately 170 cm.	
391	The Owens Valley is a long, narrow valley on the eastern slope of the Sierra Nevada in	
392	Inyo County, California. It is a closed basin drained by the Owens River which terminates at	

403	saline Owens Lake <u>playa</u> . The Owens Valley has a mild high-desert climate: in summer (June,		
404	July and August) the lowest average daily minimum temperature is 7 °C and the highest average		
405	daily maximum temperature temperatures is 37 °C, in winter (November to February)		Deleted: and
406	temperature varies between -7 to 21 °C. Since, the Owens Valley is located in the rain shadow of		Deleted: from
407	the Sierra Nevada, the average annual precipitation in the Owens Valley is only about 12 cm and		Deleted: "
408	mean annual potential evapotranspiration is about 150 cm. Snowmelt runoff from the Sierra		
409	Nevada creates a shallow water table underneath the valley floor which supports approximately		
410	28,000 hectares of native <u>phreatophytic</u> shrubs and grasses <u>and</u> riparian areas.		Deleted: in
411	The San Pedro Basin begins in Sonora, Mexico and extends to the Gila <u>River</u> in southern		Deleted: where the river flows into
412	Arizona. The San Pedro River is surrounded by vegetation consisting of cottonwood, willow,	<	Deleted: r
413	mesquite and sacaton grass. The mean air temperature is around 18 °C. Daily summer	_	Deleted: Cottonwood, Willow, Mesquite Deleted: Sacaton
414	temperatures range from 22 to 44 °C, while daily winter temperatures range from 9 to 24 °C.		Deleted: of the Upper San Pedro valley
415	Mean annual precipitation is about 35 cm and mean annual potential evapotranspiration is		
416	approximately 170 cm.		
417	Although the regional climate of all three areas is classified as arid/semiarid, the study	\langle	Deleted: ,
418	areas have different precipitation patterns. In the Owens Valley, precipitation occurs primarily in		Deleted: there exists a difference in Deleted: pattern
419	winter and spring, while in the San Pedro and the Middle Rio Grande Valleys, the annual		
420	precipitation distribution is bimodal, with more than half of the rainfall being monsoonal in		Deleted: ,
421	summer, although the proportion varies considerably from year to year (Cleverly et al.,		
422	2002;Elmore et al., 2002;Scott et al., 2000;Stromberg, 1998;Costigan et al., 2000). Table 2		
423	presents main characteristics of the study sites.		Deleted: : vegetation type, elevation above sea level, height of vegetation canopy and the height of flux sensors above ground level.
424			The average elevations are 1440, 1230 and 1220 m above sea level for, respectively, the Middle Rio Grande Basin, Owens Valley and San Pedro Valley.

444 **3.2. Eddy Covariance Measurements and Closure Forcing**

445	At each site, the turbulent heat fluxes were measured using the eddy covariance (EC)		Deleted: SEBAL estimates of <i>LE</i> , <i>H</i> , <i>G</i> , and <i>R</i> ⁿ are compared to ground-based eddy covariance and energy balance measurements.
446	method that theoretically provides direct and reliable measurements of H and LE (Arya, 2001).		Deleted: (Arya, 2001).
447	At all sites, a three-dimensional sonic anemometer-thermometer that <u>measured</u> the three-		Deleted: measures
448	dimensional wind vector and virtual temperature, was collocated with a Krypton hygrometer or		Deleted: ,
449	open path infrared gas analyzer that <u>measured</u> water vapor density [gm ⁻³] with a sampling rate of		Deleted: measures
450	10 Hz (Cleverly et al., 2002;Steinwand et al., 2006;Scott et al., 2004). Covariance between the		Deleted: The covariances
451	vertical wind speed and water vapor density and virtual air temperature were used to compute 30	<	Deleted: , respectively,
452	minutes averages of <i>LE</i> and <i>H</i> . The eddy covariance systems were oriented toward the	\searrow	Deleted: are Deleted: for the computation of, respectively,
453	predominant wind direction to reduce interference from winds blocked by the tower and	\square	Deleted: the latent heat flux
454	instrumentation. All eddy covariance data were quality controlled and corrected for tilt by	$\langle \rangle$	Deleted: the sensible heat flux Deleted: installed Deleted: are
455	coordinate rotations, frequency response, oxygen absorption of the Krypton hygrometer, and flux		Deleted: , thereby reducing data loss due to
456	effects on air density. The coordinate rotation, however, cannot correct for changing wind		Deleted: effects of
457	direction during 30-minute average periods which can cause mean vertical wind speeds to		Deleted: that
458	deviate from 0, thereby inducing error in the H and LE measurements. This problem is common		Deleted: 'vertical'
459	to EC measurements in tall vegetation such as trees when the sensors are placed too close to tree		Deleted: where
460	branches or canopy. Soil heat fluxes in the San Pedro Valley and Owens Valley were obtained		
461	from soil heat flux plates that were corrected for soil heat storage above the plate using		Deleted: measurements using
462	collocated soil temperature and soil moisture measurements.		
463	At the Middle Rio Grande sites, soil heat storage could not be calculated due to the		
464	absence of soil moisture measurements. Therefore, the soil heat flux measurements for those		Deleted: in the Middle Rio Grande Valley have
465	sites were not compared with SEBAL estimates. Net radiation was obtained from REBS Q7 or		Deleted: been
			Deleted: those estimated by Deleted: . The net

490	Kipp and Zonen CNR1 net radiometers. <u>To compare</u> the 30-minute <u>average</u> ground		Deleted: In some of the installations, the R_n sensors may have been mounted too close to the towers and may have been impacted by collection from the local structure. For the comparison of
491	measurements with the instantaneous energy fluxes estimated using SEBAL, an instantaneous		by reflection from the local structure. For the comparison of Deleted: averaged
492	ground measurement was determined by linear interpolation between the 30 minutes periods	\searrow	Deleted: 'instantaneous'
452	ground measurement was determined by mical interpolation between the polininutes periods		Deleted: two
493	before and after the satellite overpass. <u>paily</u> values of LE, H, G and R_n were derived by summing		Deleted: averaged, ground measurements
		(Deleted: To compute daily
494	the 30 minutes <u>fluxes through</u> the day $(00 - 24$ hours).	(Deleted: flux data were summed over
105	We used the relation alcours of the ansatz halones (Trains at al. 2000) as a suitarism to	ſ	Deleted
495	We <u>used</u> the relative closure of the energy balance (Twine et al., 2000) as a criterion to	\triangleleft	Deleted: use
496	<u>filter the datasets to select only</u> high-quality R_n , G, H, and LE ground measurements for	ι	Deleted: (Twine et al., 2000) as a criterion for the selection of
497	comparison with SEBAL estimates. Figure 2 presents the relative closures calculated for satellite	(Deleted: 1
498	overpass days for all sites as provided by the investigators operating the EC towers in the Owens		
499	and San Pedro River Valleys. Since no soil heat flux measurements were available in the Middle		
500	Rio Grande Valley, we calculated the instantaneous relative closure [%] using the instantaneous		
501	soil heat flux derived by SEBAL instead of the ground measured soil heat flux. This approach		
502	was justified on the basis of the reasonable agreement found between SEBAL derived	(Deleted: is
503	instantaneous soil heat fluxes and those measured on the ground in the Owens and San Pedro		
504	River Valleys (discussed below). If the sum of H and LE, before correction, was less than 65 %		Deleted: Table 5
505	or greater than 110 % of the available energy $(R_n - G)$, the data were not used in our analysis.		
506	(Wilson et al., 2002) found the average energy balance closure at FLUXNET sites to be between	کمہ	Deleted: This criterion leads to the exclusion of
500	witson et al., 2002) tound the average energy balance closure at PEOANET sites to be between		Deleted. This cherton leads to the exclusion of
507	53 to 99%. Since their numbers represent average closures and since data points at the lower end		
508	of the range raise greater concerns for data quality, we chose to shift the range up. Our criterion		
509	excluded 45 % of instantaneous fluxes and 39 % of the daily fluxes of the data from the Middle		
510	Rio Grande Valley, 79 % (instantaneous) and 43 % (daily) from the Owens Valley and 17 %	(Deleted: River
511	(instantaneous) and zero % (daily) from the San Pedro River Valley. The remaining turbulent		

528	heat flux estimates were improved through forcing the closure of the energy balance by	Deleted: are
		Deleted: thru
529	increasing <i>LE</i> and <i>H</i> by the Bowen ratio (Twine et al., 2000). The improved adjusted <i>H</i> and <i>LE</i>	Deleted: (Twine et al., 2000).
530	are identified as H_{adj} and LE_{adj} .	
531	After elimination of EC measurements on the basis of unacceptable closures, we	
532	eliminated also the EC measurements taken on May 16, 2003 in the San Pedro River Valley at	
533	the Mesquite (CM) site, because the wind direction differed considerably from the prevailing	Deleted: . On this day the wind direction was approximately 90 degrees different from the prevailing wind direction which resulted is first built in the previous of the built of the previous of the previs
534	wind direction and was from a direction with very limited upwind fetch (<100 m). The problem	in fetch distances considerably shorter than the recommended 100 times the sensor height above the canopy (Stannard, 1993;Sumner and Jacobs, 2005). The problem was exacerbated by the relatively high placement (7 m) of the sensors above the canopy (Table 2)
535	was exacerbated by the relatively high placement (7 m) of the sensors above the canopy (Table 2)	since the heat fluxes can vary significantly with height under such conditions (De Bruin et al., 1991).
536	since the heat fluxes can vary significantly with height under such conditions (De Bruin et al.,	
537	1991) <u>.</u>	
538		
539	3.3. Scale Differences of SEBAL Flux Predictions and Ground Measurements	Deleted: Comparison
539		Deleted: Comparison Deleted: to
539 540	3.3. <u>Scale Differences</u> of SEBAL Flux Predictions <u>and</u> Ground Measurements Comparison of <u>remotely sensed (RS)</u> -derived estimates of <i>R_n</i> , <i>G</i> , <i>H</i> and <i>LE</i> with ground	
		Deleted: to
540 541	Comparison of <u>remotely sensed (RS)</u> -derived estimates of R_n , G , H and LE with ground measurements is not straightforward because the spatial and temporal scales of the <u>RS</u>	Deleted: to Deleted: SEBAL
540	Comparison of <u>remotely sensed (RS)</u> -derived estimates of R_n , G , H and LE with ground	Deleted: to Deleted: SEBAL Deleted: a
540 541	Comparison of <u>remotely sensed (RS)</u> -derived estimates of R_n , G , H and LE with ground measurements is not straightforward because the spatial and temporal scales of the <u>RS</u>	Deleted: to Deleted: SEBAL Deleted: a Deleted: operation
540 541 542	Comparison of <u>remotely sensed (RS)</u> -derived estimates of R_n , G , H and LE with ground measurements is not straightforward because the spatial and temporal scales of the <u>RS</u> predictions and ground measurements are quite different. In this section we will discuss <u>the</u>	Deleted: to Deleted: SEBAL Deleted: a Deleted: operation Deleted: SEBAL
540 541 542 543	Comparison of <u>remotely sensed (RS)</u> -derived estimates of R_n , G , H and LE with ground measurements is not straightforward because the spatial and temporal scales of the <u>RS</u> predictions and ground measurements are quite different. In this section we will discuss <u>the</u> <u>effects of</u> these scale <u>differences on</u> each flux in the energy balance.	Deleted: to Deleted: SEBAL Deleted: a Deleted: operation Deleted: SEBAL
540 541 542 543 544	Comparison of <u>remotely sensed (RS)</u> -derived estimates of R_n , G , H and LE with ground measurements is not straightforward because the spatial and temporal scales of the <u>RS</u> predictions and ground measurements are quite different. In this section we will discuss <u>the</u> <u>effects of</u> these scale <u>differences on</u> each flux in the energy balance. <u>3.3.1. Net radiation</u>	Deleted: to Deleted: SEBAL Deleted: a Deleted: operation Deleted: SEBAL
540 541 542 543 544 545	Comparison of <u>remotely sensed (RS)-</u> derived estimates of R_n , G , H and LE with ground measurements is not <u>straightforward because the spatial and temporal scales of the RS</u> predictions and ground measurements are quite different. In this section we will discuss <u>the</u> <u>effects of these scale differences on each flux in the energy balance.</u> <u>3.3.1. Net radiation</u> R_n is measured with a net radiometer at a height of about 2 – 3 m above the canopy (Table 2) that covers typically an observation area on the order of 10 m ² . The <u>RS-based R_n</u>	Deleted: to Deleted: SEBAL Deleted: a Deleted: operation Deleted: SEBAL Deleted: gaps for
540 541 542 543 544 545 546	Comparison of <u>remotely sensed (RS)-</u> derived estimates of R_n , G , H and LE with ground measurements is not straightforward because the spatial and temporal scales of the <u>RS</u> predictions and ground measurements are quite different. In this section we will discuss <u>the</u> <u>effects of</u> these scale <u>differences on</u> each flux in the energy balance. <u>3.3.1. Net radiation</u> R_n is measured with a net radiometer at a height of about 2 – 3 m above the canopy (Table 2) that covers typically an observation area on the order of 10 m ² . The <u>RS-based</u> R_n <u>estimate</u> is derived from <u>reflectance</u> in the visible, near-infrared and mid-infrared bands from a	Deleted: to Deleted: SEBAL Deleted: a Deleted: operation Deleted: SEBAL Deleted: gaps for Deleted: measurements are taken every second and made available as 30 minutes averages for this study. The SEBAL
540 541 542 543 544 545 546	Comparison of <u>remotely sensed (RS)-</u> derived estimates of R_n , G , H and LE with ground measurements is not <u>straightforward because the spatial and temporal scales of the RS</u> predictions and ground measurements are quite different. In this section we will discuss <u>the</u> <u>effects of these scale differences on each flux in the energy balance.</u> <u>3.3.1. Net radiation</u> R_n is measured with a net radiometer at a height of about 2 – 3 m above the canopy (Table 2) that covers typically an observation area on the order of 10 m ² . The <u>RS-based R_n</u>	Deleted: to Deleted: SEBAL Deleted: a Deleted: operation Deleted: SEBAL Deleted: gaps for Deleted: measurements are taken every second and made available as 30 minutes averages for this study. The SEBAL Deleted: prediction

573	and METRIC. The R_n ground observation is based on a measurement area at least two orders of	

574	magnitude smaller than the <u>RS-based</u> prediction. For homogeneous areas the scale difference	(Deleted: SEBAL
		(Deleted: this
575	affects the comparison of ground and satellite measurements little, but for heterogeneous areas it	{	Deleted: will not matter much
570	may aques serious high Setellite head D complex a larger and in therefore more	1	Deleted 1 of 10
576	may cause serious bias, <u>Satellite</u> based R_n samples a larger area and is therefore more		Deleted: , since the satellite
577	representative of the <u>landscape within the</u> footprint of the eddy covariance instrument. In riparian		Deleted: EC
	······································		Deleted: .
578	areas, sparse vegetation with open canopies and vegetation gradients perpendicular to the river		Deleted: heterogeneity is the rule rather than exception.
579	channel create a heterogeneous landscape. Radiometers are typically placed over the canopy of		
580	interest which may under- <u>represent</u> surrounding bare soil or ground cover <u>within</u> the angle of	(Deleted: cause
		$ \subset $	Deleted: representation of
581	view. As a result, ground measured R_n may be biased towards the R_n of the specific vegetation,	Y	Deleted: in
500		\sum	Deleted: Therefore
582		$\backslash $	Deleted: is expected to
583	3.3.2. Soil heat flux	Y	Deleted: of interest
000			
584	G was measured by soil heat flux plates combined with changes in heat storage above		Deleted: <i>G</i> is measured by soil heat flux plates combined with the
585	the plate using soil temperature and soil water content measurements. If G is not corrected for		determination of changes in heat storage above the plate using soil temperature and soil water content measurements. If G is not corrected for heat storage above the plate, large errors will result (Sauer, 2002a). This is the case for the measurements at the Middle Rio Grande sites and, therefore, these G measurements have not
586	heat storage above the plate, large errors will result (Sauer, 2002a). The measurement area of a		been used for the comparison. The measurement area of a soil heat flux plate is about $0.001\ m^2$ which is almost six orders of magnitude
587	soil heat flux plate is about 0.001 m ² which is almost six orders of magnitude less than a 900 m ²		less than a 900 m ² Landsat pixel. <i>G</i> is spatially variable due to heterogeneity in soil moisture and vegetation cover, so that numerous flux measurements would be needed to estimate the average pixel <i>G</i> with the desired accuracy (Kustas et al.,
588	Landsat pixel. The instantaneous G can vary widely depending on soil condition $(20 - 300 \text{ Wm}^2)$		2000;Humes et al., 1994). Therefore, we expect the instantaneous G ground measurements to be a rather crude estimation of the true
589	2), so that numerous flux measurements would be needed to estimate the average pixel G with		instantaneous G of a pixel. The instantaneous G can vary widely depending on soil condition $(20 - 300 \text{ Wm}^{-2})$ (Sauer et al., 2003). Since G is positive during the day and negative during the night the
590	the desired accuracy (Kustas et al., 2000;Humes et al., 1994). Therefore, we expect the		daily G is rather small compared to the other components of the energy balance (Seguin and Itier, 1983). G is measured in the field every second; we used averages of 30 minutes for this study.¶
591	instantaneous G ground measurements to be a rather crude estimation of the true instantaneous G		
592	at the scale of the pixel (Sauer et al., 2003). The impact of the scale difference on the comparison		
593	of ground and satellite measurements is somewhat mitigated by the fact that instantaneous G is		
594	positive during the day and negative during the night. Consequently, daily G is small compared		

629			
630	3.3.3. Sensible and latent heat fluxes		
631	At all three sites H and LE were measured using a three-dimensional sonic anemometer-		Deleted: are
			Deleted: Krypton
632	thermometer and <u>a krypton</u> hygrometer, or open patch infrared gas analyzer, For these		Deleted: respectively (
			Deleted:).
633	components of the energy balance the area of ground measurements is often several times larger		Deleted: relationship between ground measurement area and pixel size is the opposite of the one discussed for R_n and G : the
634	than a Landsat pixel. <u>A</u> typical footprint for H and LE under <u>clear sky</u> micrometeorological		Deleted: As discussed in Section [3.4] a
			Deleted: the
635	conditions covers about 5 pixels or about 4500 m ² . The location of the footprint is upwind of the		Deleted: of this clear-sky study
<u></u>	EC terrer and its size dense de an etres abais stability. In the comparison of DC based II and	/	Deleted: and distance from the tower
636	EC tower, and its size depends on atmospheric stability. In the comparison of <u>RS-based</u> H and		Deleted: For
637	LE estimates with ground measurements, the footprint area must be estimated and the weighted	/	Deleted: SEBAL
001	El estimates with ground measurements, the footprint area must be <u>estimated</u> and the weighted	\leftarrow	Deleted: first
638	average <u>RS-</u> estimated H and LE is computed for pixels within the footprint area. This approach	\sim	Deleted: determined
		(A	Deleted: then,
639	is expected to work reasonably well for comparison of <u>RS-based</u> instantaneous H and LE	\mathcal{N}	Deleted: is taken of the SEBAL
		$^{\prime }$	Deleted: values of all
640	estimates with ground measurements at the time of the satellite overpass.	\backslash	Deleted: These weighted averages of H and LE are compared with the ground measured H and LE at the EC tower.
641	Comparison of daily <i>H</i> and <i>LE</i> fluxes is problematic. <u>Therefore</u> , rather than trying to		Deleted: SEBAL
642 643	determine the true location of the "representative" daily foot print, the daily H and LE ground		Deleted: Instantaneous <i>H</i> and <i>LE</i> measurements are available at the EC tower as 30-minutes averages but SEBAL estimates of the instantaneous <i>H</i> and <i>LE</i> are only available once per image day at the time of the satellite overpass. Therefore, it is impossible to compare every 30 minutes the footprint averaged SEBAL estimates with the
045	measurements are compared with the average <u>RS</u> -estimated <i>H</i> and <i>LE</i> fluxes originating from		ground measurements. It is also problematic to compare daily
644	twenty-four homogeneous pixels surrounding the EC tower. The homogeneity of the pixels		SEBAL estimates of <i>H</i> and <i>LE</i> at each pixel with daily <i>H</i> and <i>LE</i> measurements at the EC tower. Daily <i>H</i> and <i>LE</i> measurements at the EC tower are the daily sum of 30 minutes instantaneous <i>H</i> and <i>LE</i>
645	surrounding the tower was evaluated by inspecting NDVI, albedo, and surface temperature		measurements originating from different footprints covering a wide area especially on days with highly variable wind directions. Combining the assumption of constant evaporative fraction during
646	values as well as the <i>H</i> and <i>LE</i> values themselves.		the day with the daily footprint using daily-averaged parameters including air temperature, u*, wind speed and direction, it may be possible to compare daily <i>H</i> and <i>LE</i> measurements at the tower with
647			SEBAL estimates. However, uncertainties would remain and at best a rough comparison can be made since the average daily values are not necessarily a good measure for determination of a daily footprint. Therefore, in this study
648	3.3.4. Quantitative measures to compare SEBAL estimates and ground measurements		Deleted: will be
		/	Deleted: SEBAL
649	The numerical comparison of the energy balance components (R_n , G , H , and LE)		Deleted: five
			Deleted: ¶

to the other components of the energy balance (Seguin and Itier, 1983).

628

693	estimated from RS with those measured on the ground was conducted by means of quantitative	Deleted: by SEBAL
694	measures proposed by Willmott and others for the validation of atmospheric models (Willmott,	Deleted: is
695	1981;Fox, 1981;Willmott, 1982). We <u>examined</u> the coefficient of determination (r ²), mean	Deleted: use
696	absolute difference (MAD), root mean square difference (RMSD), and the mean relative	
697	difference (MRD) (Hong, 2008). <u>A high or statistically significant</u> r ² can be misleading because	Deleted: (Hong, 2008). The coefficients of determination may be misleading as "
698	its values are often unrelated to the magnitude of the differences between model estimates and	Deleted: "
	¥,	Deleted: of r
699	measurements (Willmott and Wicks, 1980). In addition, the distributions of the estimates and	Deleted: sizes
		Deleted: (Willmott and Wicks, 1980).
700	measurements often do not fulfill the assumptions of inferential statistics (Willmott, 1982).	Deleted: will
701	However, since r^2 is a commonly used correlation measure that reflects the proportion of the	Deleted: conform to
701	However, since r is a commonly used correlation measure that reflects the proportion of the	Deleted: that are prerequisite to the application
702	variance explained by the model, we report this measure. The MAD and RMSD are robust	Deleted: (Willmott, 1982).
		Deleted: "
703	measures as they summarize the mean differences between SEBAL estimates and ground	Deleted: "
704	measurements; the MAD is less sensitive to outliers than RMSD. The MRD is often used as an	
705	indication how well <u>RS-based</u> estimates agree with ground measurements Bastiaanssen et al.,	Deleted: SEBAL
706	2005) <u>.</u>	Deleted: (Bastiaanssen et al., 2005).
707	v	Deleted: ¶ 3.4. Footprint Model¶
708	3.4. Footprint Model	The location and extent of the footprint depends on surface roughness, atmospheric stability, wind speed, wind direction and may cover many pixels upwind of the eddy covariance tower
709	The location and extent of the footprint depends on surface roughness, atmospheric	(Schmid and Oke, 1990;Hsieh et al., 2000). There are several types of footprint models. Initially, simple two-dimensional analytical footprint models for neutral atmospheric conditions were developed
710	stability, wind speed, wind direction and may cover many pixels upwind of the eddy covariance	(Gash, 1986;Schuepp et al., 1990). Later, the analytical footprint model was improved to account for atmospheric stability conditions
		(Horst and Weil, 1992;Hsieh et al., 2000). The footprint flux, $F_{(x, Zs)}$ [-
711	tower (Schmid and Oke, 1990;Hsieh et al., 2000). The footprint flux, $F_{(x, Zs)}$ [-], along the upwind	(Horst and Weil, 1992;Hsieh et al., 2000). The footprint flux, $F_{(x, z_0)}$ [-], along the upwind direction, x [m], measured at the height z_x [m], suggested by (Hsieh et al., 2000) is used in this study.
711 712	tower (Schmid and Oke, 1990;Hsieh et al., 2000). The footprint flux, $F_{(x, Zs)}$ [-], along the upwind direction, x [m], measured at the height z_s [m], suggested by (Hsieh et al., 2000) was used in this], along the upwind direction, x [m], measured at the height z_s [m],
], along the upwind direction, x [m], measured at the height z_s [m],

7	45	2002, at a Rio Grande saltcedar EC tower is presented in Figure <u>3</u> . To verify the quality of the	(Deleted: 2
7	46	footprint model used in this study, we also calculated the location of maximum contribution to		
7	47	the measured flux (x_{max}) for this period with the model by Schuepp et al. (1990). The models by		Deleted: (peak footprint
7	'48	Hsieh et al (2000) and Schuepp et al. (2000) calculate x_{max} as 10 m (Figure 3) and 11 m,	4	Deleted: 2
	49	respectively, which implies that the footprint from Hsieh et al (2000) is indeed close to the tower.		Deleted: We compute the footprints from meteorological parameters including air temperature, sensible heat flux, wind speed, wind direction and friction velocity. The footprints for <i>H</i> and <i>LE</i> are obtained for the time of the satellite overpass using the 30 minute averaged meteorological parameters.
1	'50	At most EC sites, the maximum contribution to the footprint was within 50 m from the tower	Ì	Deleted: As explained in Section [3.3.3]
7	51	(wind speeds were generally less than 4 ms ⁻¹) and most of the footprint intensity (>90 %) is	1ì	Deleted: comparison of SEBAL
	01		$ _{\lambda}$	Deleted: estimates and ground measurements
7	52	located within 300 m from the tower. Approximately 80 % of all footprint fluxes cover an area of	lλ	Deleted: . Therefore, the use
			1/7	Deleted: 25
7	'53	5 to 9 pixels, twenty percent cover larger areas. Because calculation of a representative daily	/	Deleted: is considered to be the best option
			IX	Deleted: the
7	54	footprint for <i>H</i> and <i>LE</i> is nearly impossible, the average <u>RS daily</u> <i>H</i> and <i>LE</i> values of the <u>24</u>	λ	Deleted: of
	'55	pixels surrounding the EC tower pixel are used for comparison with daily ground measurements.	1	Deleted: and SEBAL estimates.
ŕ	00	pixels surrounding the EC tower pixel are used for comparison with daily ground measurements.	λ	Deleted: ¶
7	56		λ	Deleted: SEBAL
	57	3.5. Calibration and Evaluation of <u>RS-based</u> Flux Predictions		Deleted: This study cannot be a robust validation study due to missing soil heat flux measurements in the Middle Rio Grande Valley and biased net radiation measurements over heterogeneous riparian vegetation with patches of bare soil. Our aim is to evaluate
7	'58	The temperatures of the cold and hot pixel for the derivation of calibration coefficients c_{1}		the challenges of SEBAL flux predictions in arid riparian areas using a validation approach.¶
7	59	and c_2 in Eq. [4] are critical in SEBAL and METRIC because they constrain <i>LE</i> between its		Calibration is the process of adjusting hydrologic model parameters to obtain a fit to observed data. In SEBAL the relationship between model parameter ΔT and remotely observed radiometric surface temperature <i>T</i> , in Eq. [4] is calibrated using the remotely observed
7	60	maximum value at the cold wet pixel and near zero at the hot dry pixel. The coefficients also		energy balance components of R_n and G at two extreme conditions in a Landsat image: the cold wet pixel and hot dry pixel. ¶ After calibration, validation tests typically are applied to a second
7	61	incorporate and compensate for bias in H associated with uncertainties in aerodynamic		set of data to test the performance of a hydrologic model. In the context of this study the second data set consists of ground measurements of R_n , G , H and LE , at pixels other than the cold and
7	62	characteristics including T _s (Bastiaanssen et al., 2005;Allen et al., 2006). In SEBAL and		hot pixels. Validation or evaluation is accomplished by comparing the SEBAL predicted energy balance components with the ones measured on the ground at locations with eddy covariance towers.
7	63	METRIC this calibration is entirely based on information available within the image and is		¶ <u>3.5.1 Calibration approaches</u> ¶ The temperatures of the cold and hot pixel for the derivation of
7	64	variously referred to as self-calibration (Bastiaanssen et al., 2005) or internalized calibration and		calibration coefficients c_1 and c_2 in Eq. [4] are most critical in SEBAL as well as METRIC since they constrain <i>LE</i> between its maximum value at the cold wet pixel and zero at the hot dry pixel by
	765 766	<u>autocalibration.</u> <u>At</u> the cold pixel it is assumed <u>in SEBAL</u> that $\Delta T = 0$, which implies that $H = 0$ and $LE =$		reducing biases in <i>H</i> associated with uncertainties in aerodynamic characteristics including <i>T_s</i> (Bastiaanssen et al., 2005;Allen et al., 2006). In SEBAL this calibration is entirely based on information that is available inside the image and, therefore, it is called "self-calibration" (Bastiaanssen et al., 2005) or "internalized calibration" and "autocalibration". ¶

818	$R_n - G$. An alternative manner in METRIC is to use hourly meteorological observations for the	D	eleted: high quality
819	calculation of the reference ET (Allen et al., 1998) for the estimation of H in well-irrigated	D	eleted: (Allen et al., 1998)
820	alfalfa or clipped grass fields (Allen et al., 2007; Allen et al., 2011). However, this study deals	D	eleted: and
_			eleted: (Allen et al., 2007;Allen et al., 2011).
821	with a SEBAL application to riparian areas without high quality hourly meteorological	<u> </u>	eleted: in
822	observations as is the default condition for many regions worldwide (Droogers and Allen, 2002).	D	eleted: (Droogers and Allen, 2002).
823	The selection of the hot pixel is challenging because the heterogeneous landscapes of the	D	eleted: quite
824	southwestern U.S. include hot and dry areas with a wide range of temperatures. In this study, the	D	eleted: quite a few
825	hot pixel was selected from a dry bare agricultural field where ET can reasonably be assumed to	D	eleted: is
	· / · · /	D	eleted: is just close to
826	be near zero. Any pixel cooler than the selected hot pixel has $ET > 0$ (if the R_n and G are the	D	eleted: Therefore, for any
		D	eleted: ,
827	same), and for any pixel warmer than the hot pixel, for example parking lots, $ET = 0$. In addition,	D	eleted: a
828	the equation to estimate G was derived for agricultural conditions and therefore produces more	D	eleted: for
		D	eleted: estimation
829	dependable estimates for calibration when applied to a bare, agricultural soil having a tillage		
830	history.		
831	As a consequence of the internalized calibration, bias in R_n or G at the hot pixel in the	D	eleted: "
		D	eleted: " any biases
832	image are transferred into H. However, the bias is present in both $R_n - G$ and $H_{(Eq. [1])}$, and		eleted: this bias introduced into <i>H</i> is transferred back out of the ergy balance during the calculation of <i>LE</i> from Eq. [1], since
833	thus cancels <u>out in the calculation of LE (Allen et al., 2006). The internalized calibration</u> results	\sim	eleted: ,
000	indis cancers <u>par in the calculation of ED</u> (Anten et al., 2000). The internatized canonation results		prmatted: Font color: Red
834	in the least biased LE if the cold and hot pixel are properly selected and is the most distinctive		eleted: (Allen et al., 2006). The "internalized calibration"
835	feature of SEBAL and METRIC compared to other remote sensing LE algorithms.		
836	The selection of cold and hot pixel is assisted by a thorough understanding of field	D	eleted: requires
		_	
837	micrometeorology and is somewhat subjective. (Kleissl et al., 2009) proposed using		eleted: , i.e. different experts will select slightly different mperature values. The cold pixel is selected where areas with well-
838	micrometeorological ground measurements of energy balance components for the calibration and	wa (A	atered healthy crops with full soil cover or in shallow water bodies Allen et al., 2011;Bastiaanssen et al., 2005) and is relatively aightforward while the hot pixel selection is more challenging.
		Tł	nerefore, it has been
839	validation of remote sensing algorithms, However, due to the relatively large uncertainties of	\rightarrow	erefore, it has beeneleted: to use

870	ground measured sensible and latent heat fluxes (Loescher et al., 2005;Kleissl et al., 2008) the	(Deleted: (Loescher et al., 2005;Kleissl et al., 2008)
871	value of <u>using</u> ground measurements for calibration of SEBAL is not well established. <u>We tested</u>	(Deleted: For this reason we test
872	two different calibration approaches for the selection of the temperatures for the cold and hot		
873	pixel: the Empirical (EM) approach and the Eddy Covariance (EC) approach. The former selects	(Formatted: Font: Not Italic
874	the cold and hot pixel by inspection of the hydrogeological features of the landscape and	\triangleleft	Deleted: is based on Formatted: Font: Not Italic
875	qualitative micrometeorological considerations and is typical for most SEBAL applications. The		Deleted: since the high number of EC towers available in this study is a unique situation.
876	Eddy Covariance (EC) approach is based on inspection of the hydrogeological features of the	(Formatted: Font: Not Italic
877	landscape followed by fine-tuning the parameters c_1 (slope) and c_2 (intercept) in Eq. [4] using	-(Formatted: Font: Not Italic
878	ground measurements of instantaneous latent heat fluxes at the EC towers after adjustment for		
879	energy balance closure. This approach is viable because of the Jarge number of ground based	(Deleted: error. Since selection
880	measurements in this study. The temperature of the cold pixel was fixed by selecting a pixel in		Deleted: cold pixel is straightforward Deleted: fully vegetated fields, the
			Deleted. Juliy vegetated fields, the
881	fully vegetated fields, but the selection and temperature of the hot pixel was varied to best match	-(Deleted: but the
881 882	fully vegetated fields, but the selection and temperature of the hot pixel was varied to best match the instantaneous ground measurements of <i>LE</i> (Hong, 2008).		Deleted: (Hong, 2008). In order to independently evaluate the <i>EM</i>
882	the instantaneous ground measurements of <i>LE</i> (Hong, 2008).		Deleted: (Hong, 2008). In order to independently evaluate the <i>EM</i> versus the <i>EC approach</i> , senior author Hong implemented the <i>EC approach</i> , while co-author Hendrickx implemented the <i>EM</i>
882 883	the instantaneous ground measurements of <i>LE</i> (Hong, 2008). Five different calibration scenarios (S1 – S5) were compared (Table 3). In the EC		Deleted: (Hong, 2008). In order to independently evaluate the EM versus the EC approach, senior author Hong implemented the EC approach, while co-author Hendrickx implemented the EM approach. Formatted: Indent: First line: 0.5", No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers Deleted: implemented and
882 883 884	the instantaneous ground measurements of <i>LE</i> (Hong, 2008). Five different calibration scenarios (S1 – S5) were compared (Table 3). In the EC approach, calibration of SEBAL to ground measurements was implemented either using the		Deleted: (Hong, 2008). In order to independently evaluate the EM versus the EC approach, senior author Hong implemented the EC approach, while co-author Hendrickx implemented the EM approach. Formatted: Indent: First line: 0.5", No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
882 883 884 885	the instantaneous ground measurements of <i>LE</i> (Hong, 2008). Five different calibration scenarios (S1 – S5) were compared (Table 3). In the EC approach, calibration of SEBAL to ground measurements was implemented either using the average footprint weighted instantaneous SEBAL <i>LE</i> heat fluxes (S1, EC_FP) or using the		Deleted: (Hong, 2008). In order to independently evaluate the <i>EM</i> versus the <i>EC approach</i> , senior author Hong implemented the <i>EC approach</i> , while co-author Hendrickx implemented the <i>EM approach</i> . Formatted: Indent: First line: 0.5", No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers Deleted: implemented and Formatted: Font: Not Italic
882 883 884 885 886	the instantaneous ground measurements of <i>LE</i> (Hong, 2008). Five different calibration scenarios (S1 – S5) were compared (Table 3). In the EC approach, calibration of SEBAL to ground measurements was implemented either using the average footprint weighted instantaneous SEBAL <i>LE</i> heat fluxes (S1, EC_FP) or using the instantaneous SEBAL <i>LE</i> heat flux of the pixel where the EC tower was located (S2, EC_TP).		Deleted: (Hong, 2008). In order to independently evaluate the <i>EM</i> versus the <i>EC approach</i> , senior author Hong implemented the <i>EC approach</i> , while co-author Hendrickx implemented the <i>EM approach</i> . Formatted: Indent: First line: 0.5", No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers Deleted: implemented and Formatted: Font: Not Italic
882 883 884 885 886 886	the instantaneous ground measurements of <i>LE</i> (Hong, 2008). Five different calibration scenarios (S1 – S5) were compared (Table 3). In the EC approach, calibration of SEBAL to ground measurements was implemented either using the average footprint weighted instantaneous SEBAL <i>LE</i> heat fluxes (S1, EC_FP) or using the instantaneous SEBAL <i>LE</i> heat flux of the pixel where the EC tower was located (S2, EC_TP). The former method is difficult to implement for most practitioners while the latter is practical		Deleted: (Hong, 2008). In order to independently evaluate the EM versus the EC approach, senior author Hong implemented the EC approach, while co-author Hendrickx implemented the EM approach. Formatted: Indent: First line: 0.5", No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers Deleted: implemented and Formatted: Font: Not Italic Deleted: is
882 883 884 885 886 886 887	the instantaneous ground measurements of <i>LE</i> (Hong, 2008). Five different calibration scenarios (S1 – S5) were compared (Table 3). In the EC approach, calibration of SEBAL to ground measurements was implemented either using the average footprint weighted instantaneous SEBAL <i>LE</i> heat fluxes (S1, EC_FP) or using the instantaneous SEBAL <i>LE</i> heat flux of the pixel where the EC tower was located (S2, EC_TP). The former method is difficult to implement for most practitioners while the latter is practical and fast but requires homogeneous conditions around the tower within the maximum extent of		Deleted: (Hong, 2008). In order to independently evaluate the EM versus the EC approach, senior author Hong implemented the EC approach, while co-author Hendrickx implemented the EM approach. Formatted: Indent: First line: 0.5", No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers Deleted: implemented and Formatted: Font: Not Italic Deleted: is

910	representative for the true R_n of a pixel covered with vegetation and bare soil patches. <u>Initial</u>		Deleted: In Section [4] strong evidence is presented
911	<u>results suggested</u> that the (SR_n) is more <u>representative than ground R_n</u> . Therefore, we also		Deleted: SEBAL R _n
912	evaluated the impact of using the more accurate SR_n for energy balance closure in the EC		Deleted: accurate Formatted: Font: Not Italic
913	approach on the tower pixel (S4, EC_TP/SR _n) and in the EM approach (S5, SR _n).	_	Formatted: Font: Not Italic
515	approach on the tower pixer $(54, EC_17/5K_0)$ and in the <u>Extrapproach $(55, 5K_0)$.</u>		Tormatted. Font. Not Raile

915 4. RESULTS AND DISCUSSION

914

916 4.1. Spatio-temporal Distribution of Daily Latent Heat Fluxes

917 Figure <u>4</u> presents an example of daily ET rates in the Middle Rio Grande Valley and 918 surrounding desert on four different days during the spring, summer and fall. The maps show how the ET rates increase from April 7 (just after the start of the irrigation season) to June 16 at 919 920 the height of the irrigation season; a decrease of ET is observed during September and October 921 when fields were harvested and lower temperatures impede crop growth. On all four days higher 922 ET rates were observed over irrigated fields and in the riparian areas while low to zero rates 923 occurred in the surrounding desert. 924 925 4.2. Comparison of **RS-Based** Net Radiation with Ground Measurements 926 Figures 5 and 6 and Table 4 present the comparisons of the instantaneous and daily R_n 927 measured on the ground and estimated by SEBAL. MADs for the EC approaches (S1/S2) and 928 Empirical Approach (S3) were 88/87 and 97 W/m², respectively; MRDs were 13.0/12.8 and 14.6%. These differences are about two to three times larger than those typically reported for 929

930 <u>SEBAL</u> (Jacob et al., 2002; Allen et al., 2006). The much larger MRD was attributed to the

931 <u>heterogeneity of the riparian sites and the different footprints of net radiometer and Landsat pixel</u>

-{	Deleted: 3
	Deleted: the ET maps produced by SEBAL. Similar maps for the other components of the energy balance as well as other environmental parameters such as albedo, NDVI, surface temperature, etc. can be generated. In Figure 3,
Y	Deleted: are mapped
Y	Deleted: deserts
ł	Deleted: are
1	Deleted: are impeding
1	Deleted: are
1	Deleted: very low
1	Deleted: occur
-{	Deleted: deserts
λ	Deleted: SEBAL
h	Deleted: 4
X	Deleted: 5

Deleted: The MADs are 88/87 and 97 W/m² for the EC approaches (S1/S2) and Empirical Approach (S3), respectively, resulting in MRDs of 13.0/12.8 and 14.6%. These differences are about two to three times larger than those typically reported for SEBAL (Jacob et al., 2002;Allen et al., 2006). The much larger than usual MRD is attributed to the heterogeneity of the riparian sites, the different footprints of net radiometer and Landsat pixel, and the preferential positioning of the net radiometer over vegetation (Section [3.3.1]). The higher net radiation measured on the ground as compared with the SEBAL net radiation supports this argument. A bias occurs where the net radiometer is placed preferentially above vegetation that has a lower albedo, lower surface temperature and higher surface emissivity than the patches of bare soil next to the vegetation in the Landsat pixel. Increasing MRDs with increasing heterogeneity of the land surface have been observed in Arizona where the MRD's between ground measured R_n 's and the one's estimated with a remote sensing algorithm were 1.2, 9.2, and 17.2 % respectively, for a homogeneous cotton field, heterogeneous shrub terrain, and heterogeneous grassland (Su, 2002). The MRD of 9.2 and 17.2 % from the heterogeneous pixels are similar to the ones reported in Table 4

972	(Section [3.3.1]). Higher net radiation measured on the ground compared with the RS-based R_n	
973	supports this argument. The MRDs of 9.2 and 17.2 % from (Su, 2002) on heterogeneous pixels	
974	of shrub and grassland vegetation are similar to the ones reported in this study (Table 4).	
975	Contrary to the instantaneous values, the daily net radiation measured on the ground and	Deleted: radiations
976	determined in SEBAL match very well (MRDs of 2.3 to -2.9%). This immediately begs the	Deleted: with
977	question "why?" since the instantaneous $\underline{R}_{\underline{a}}$ differ by more than 12%. On clear days over sparsely	Deleted: only Deleted: %.
978	vegetated surfaces the maximum temperature difference between bare soil and vegetation	Deleted: R _n 's
979	typically occurs around noon. For example, temperature differences measured in the Walnut	
980	Gulch Experimental Watershed near Tombstone, Arizona, varied between 10 and 25 °C during	
981	that time of the day (Humes et al., 1994). Since the conditions in the arid riparian areas of this	Deleted: (Humes et al., 1994).
982	study are similar, we expect similar temperature differences to occur when the satellite passes	
983	over around 10:30 am. The incoming short and longwave radiation are equal for the bare soil and	
984	the vegetation; therefore, the net radiation will depend on the outgoing short and long wave	
985	radiation. The albedo and surface temperature of dry bare soils during the day are higher than of	
986	vegetation resulting in more reflection of short wave radiation and more emission of long wave	
987	radiation which results in a lower R_n through the day for bare soil. During the night the surface	Deleted: during
988	temperatures of vegetation and bare soil are similar, <u>However</u> , due to the higher emissivity of	Deleted: so that -
989	vegetation (0.99) as compared to bare soil (0.94) (Humes et al., 1994), the R_n of vegetation is	Deleted: (Humes et al., 1994) – the R_n of vegetation is lower. Using the equations presented by (Hong, 2008) one can roughly
990	<u>lower.</u> (Hong, 2008) <u>calculated</u> that the daily R_n difference between vegetation and soil will be	calculate
991	considerably smaller than the instantaneous R_n difference around 10:30 am.	
992	Differences between vegetation and soil have been quantified by comparing the <u>RS-</u>	Deleted: These differences
993	estimated instantaneous and daily net radiation for fully vegetated agricultural fields, saltcedar,	Deleted: SEBAL

1005		
1007	and bare soils (Table 5). Whereas the measured instantaneous net radiation fluxes of fully	
1008	cropped agricultural fields and saltcedar stands exceeded those of bare soils by 54 to 77 %, the	
1009	daily net radiation fluxes were only 20 to 36 % larger. A typical <u>leaf area index</u> (LAI) for	Deleted: Leaf Area Index
1010	saltcedar in the Middle Rio Grande Valley is about 2.5 (Cleverly et al., 2002) which indicates	Deleted: (Cleverly et al., 2002) which indicates that bare soil is present but vegetation cover is dominant. Now let us assume
1011	that bare soil is present but vegetation cover is dominant. Assume a typical mixed pixel with a	
1012	soil cover of 75% saltcedar and 25% bare soil. The data from Table 5 for the first saltcedar plot	
1013	show that the ratios between 100% saltcedar and 100% bare soil for instantaneous and daily R_n	Deleted: , respectively,
		Deleted: net radiation
1014	are 1.77 and 1.34. We want to estimate ratios between 100% saltcedar and a hypothetical mixed	Deleted: find similar
		Deleted: our
1015	pixel, Using the values in Table 5 for the instantaneous and daily R_n for saltcedar and bare soil.	Deleted: using
1010	and improve the effect of thermal radiation from soil that is interported by adjacent variation	Deleted: of
1016	and ignoring the effect of thermal radiation from soil that is intercepted by adjacent vegetation,	Deleted: net radiation
1017	the instantaneous and daily R_n for the mixed pixel are $0.75 \times 670 + 0.25 \times 379 = 598$ Wm ⁻² and	Deleted: . Ignoring
1011	the instantaneous and daily \underline{m} for the initial pixer are $0.15 \times 0.10 + 0.25 \times 0.17 = 0.00$ min and	Deleted: net radiations
1018	$0.75 \times 19.8 + 0.25 \times 14.8 = 14.9 + 3.7 = 18.6 \text{ MJm}^{-2} \text{day}^{-1}$. The net instantaneous and daily R_{π} of	Deleted: , respectively,
	Z	Deleted: So, the
1019	a fully vegetated saltcedar pixel are $670/598 = 1.12$ and $19.8/18.6 = 1.06$ times those of the	Deleted: radiations
		Deleted: our
1020	<u>hypothetical</u> mixed pixel. The $12\frac{9}{2}$ difference is similar to the MRD's of $13 - 15\%$ for the	Deleted: percent
1021	difference in instantaneous P between ground measurements and PS based estimates (Table 4)	Deleted: presented
1021	difference in instantaneous R_n between ground measurements and RS-based estimates (Table 4).	Deleted: net radiation
1022	The 6% difference for daily R_n falls within error ranges of radiation measurements (Halldin and	Deleted: SEBAL
10	The opt difference for daily minimum error ranges of radiation measurements,	Deleted: .
1023	Lundroth, 1992; Field et al., 1992). Thus, the much smaller MRD for daily R_n (-2.3 to -2.9 %)	Deleted: percent
		Deleted: net radiation
1024	compared to the MRD of instantaneous R_n (about 13 %) can be explained by environmental	Deleted: (Halldin and Lundroth, 1992;Field et al., 1992). Thus, the much smaller MRD for daily <i>R_n</i> (-2.3 to
1025	radiation physics and is not an artefact of bias in the RS method or in the ground-based radiation	Deleted: caused by
		Deleted: SEBAL
1026	sensors. This <u>corroborates our interpretation</u> that the <u>RS</u> -estimated net radiation for the 900 m ² of	Deleted: for determination of instantaneous R_n
		Deleted: leads to the conclusion
1027	the EC tower pixel is more representative for each site than the ground measurements with the	Deleted: SEBAL
1028	net radiation meter preferentially positioned over a 10 m ² patch of vegetation.	Deleted: 1
1020		Deleted. 1

1060	4.3. Comparison of <u>RS-estimated</u> Soil Heat Flux with Ground Measurements		Deleted: SEBAL
1000	Her Comparison of the sound of		
1061	The magnitude of soil heat flux, G_{1} depends on surface cover, soil water content, and		Deleted: (Sauer, 2002b)
		- /	Deleted: (Fuchs and Hadas, 1973).
1062	solar irradiance. For a moist soil beneath a plant canopy or residue layer, the instantaneous G		Deleted: are
		///	Deleted: , respectively,
1063	will often be less than ±20 Wm ⁻² (Sauer, 2002b) while a bare, dry, exposed soil in midsummer	$\left \right \right $	Deleted: (Kurc and Small, 2004). These values demonstrate that the instantaneous
1064	could have a day-peak in excess of 300 Wm ⁻² (Fuchs and Hadas, 1973). In the Middle Rio		Deleted: can be
			Deleted: instantaneous
1065	Grande Basin during summer typical midday (10 am through 2 pm) values of Gaveraged 104		Deleted: In most field soils the instantaneous <i>G</i> exhibits not only a temporal variability but also a large spatial variability which makes
1066	and 132 Wm ⁻² for upland grassland and shrubs. respectively (Kurc and Small, 2004).	[]]	it very difficult to measure an average <i>G</i> for areas with the size of a typical Landsat pixel (30 x 30 m) (Sauer, 2002b).
		\parallel	Deleted: SEBAL
1067	Instantaneous G in riparian areas is an important component of the energy balance that needs to	η_{1}	Deleted: approaches
			Deleted: 6
1068	be taken into account.		Deleted: minor
			Deleted: its
1069	For this study six soil heat flux measurements were available from the Owens Valley		Deleted: of
1070	and the San Pedro Valley data set. The <u>RS-</u> determined G approximates the ground measured G		Deleted: (
1070	and the sam reard valley data set. The <u>res-</u> determined of <u>approximates</u> the ground measured of		Deleted: hovers around
1071	reasonably well (Figure 7) but the MRD is relatively high with values of 30.9 to 32.2 % (Table		Deleted: percent
-		/	Deleted: SEBAL
1072	6). However, the overall impact of the relatively high MRD in instantaneous G is <u>relatively</u> G		Deleted: around
			Deleted: percent
1073	small since the MAD (35 W/m ² , Table 6) is only 6 % of the <u>RS-</u> predicted instantaneous net		Formatted: Font: Italic
			Deleted: net radiation.
1074	radiation and 5% of the ground measured instantaneous R_n . The daily G is near zero since heat	<u> </u>	Deleted: close to
1075	enters the soil during the day but leaves the soil during the night (Table 6).		Deleted: . The daily G measurements in the field confirm this
1075	enters the son during the day but leaves the son during the high (Table 0).	\leftarrow	Formatted: Font color: Auto
1076	Given the high spatial and temporal variability of G_{a} (Sauer, 2002b) at the scale of a		Deleted: Therefore, it is assumed in SEBAL that the daily heat flux can be neglected, i.e. <i>G</i> is zero.
1077	Landsat pixel, the reasonable agreement between \underline{RS} -predicted instantaneous G and ground		Deleted: (Sauer, 2002b) within one
1077	Landsat pixel, the reasonable agreement between <u>KS-predicted instantaneous G and ground</u>		Deleted: SEBAL
1078	measurements, the relatively minor impact of an error in G on the estimates of ET, and the		Deleted: (Figure 6 and Table 6),
		\leq	Formatted: Font: Italic
1079	<u>impracticality of measuring</u> a truly representative G for a 900 m ² heterogeneous pixel, it appears		Deleted: impossibility to measure
		5	Deleted: riparian
1080	that assuming G is negligible within SEBAL and METRIC is acceptable.		Deleted: using soil heat flux plates with a foot print of only 0.
1		1	Deleted: the SEBAL estimated
1081			Deleted: results in a quite
			Deleted: estimate on the pixel scale.
)

1123	4.4. Comparison of <u>RS-based</u> Sensible and Latent Heat Fluxes with Ground Measurements		Deleted: SEBAL
1104			
1124 1125	Our data set covers a wide range of conditions varying from dry to moist which allows evaluation of SEBAL over a wide range of environmental conditions in riparian areas. <u>Plots of</u>		Deleted: Since there is a strong interplay between sensible and latent heat fluxes we discuss both heat fluxes together in this section. First we inspect the plots of instantaneous and daily SEBAL heat flux estimates versus ground measurements (Figure 7) that demonstrate several interesting features.
1126	instantaneous and daily SEBAL heat flux estimates versus ground measurements are presented in		
1127	Figure 8. The ground measured instantaneous and daily \underline{H} have two and six negative data points		Deleted: 7
		\sim	Deleted: sensible heat fluxes
1128	indicating regional advection. Advection is relatively minor for the instantaneous fluxes during		Deleted: , respectively,
		\sim	Deleted: which is an indication of the occurrence of
1129	satellite overpass time of around 10:30 am but increases considerably during late morning and	\sim	Deleted: This advection
1130	early afternoon. The SEBAL estimated instantaneous and daily <u><i>H</i></u> that correspond with negative		Deleted: m
1150	early anemoon, The SEBAL estimated instantaneous and daily <u>11</u> that correspond, with negative	_	Deleted: as reflected in the daily fluxes.
1131	values of the ground measurements are <u>near</u> zero since the surface temperatures of <u>the</u> pixels are	$\langle \rangle$	Deleted: sensible heat fluxes
		Ľ,	Deleted: to
1132	similar to the cold pixel temperature. When high quality hourly meteorological data are available	$\langle \rangle$	Deleted: close to
		V,	Deleted: their
1133	regional advection can be accounted for in SEBAL by defining an advection enhancement	$\langle \rangle$	Deleted: close
11.04	the design of the state of the	Ì	Deleted: pixel's
1134	parameter that is a function of soil moisture and weather conditions (Bastiaanssen et al.,		Deleted: (Bastiaanssen et al., 2006;Allen et al., 2011)
1135	2006;Allen et al., 2011) or one could implement METRIC (Allen et al., 2007), which has an		Deleted: (Allen et al., 2007).
1136	implicit handling of advection due to its use of Penman-Monteith-based reference ET. However,		
1137	in this study our aim is to evaluate the performance of the original SEBAL in heterogeneous arid		Deleted: traditional
1138	environments where no weather data are <u>used</u> . The data in Figure <u>8</u> show that ignoring regional	_	Deleted: available
1100			Deleted: 7
1139	advection results in a maximum underestimation of the instantaneous and daily <u><i>LE</i></u> by,		Deleted: latent heat fluxes
1140	respectively, about 10 and 20% under moist conditions and when $C_{EF} = 1.0$; it becomes		Deleted: percent
1141	considerably less when the soil dries out. In this study we have removed all data related to		
1142	negative instantaneous and daily <u><i>H</i></u> so that advection effects will not interfere with our evaluation		Deleted: sensible heat fluxes
1143	of the <u>original</u> SEBAL approach (Allen et al., 2011;Bastiaanssen et al., 1998a).	<	Deleted: traditional
1144			Deleted: that does not take advection into account (Allen et al., 2011;Bastiaanssen et al., 1998a).

1175 <u>4.4.1. Comparison of instantaneous heat fluxes</u>

1176	Figures 9 and 10 present plots of the adjusted <u>H</u> and <u>LE</u> measured at the EC tower versus		Deleted: 8
		1	Deleted: 9
1177	the SEBAL estimates for scenarios S1 through S5. There was a substantial mismatch between	$\left(\right)$	Deleted: , respectively,
			Deleted: sensible
1178	the SEBAL estimated instantaneous <u><i>H</i></u> and the ground measurements (S1–S3), <u>but if</u> the SEBAL	()	Deleted: latent heat fluxes
1179	R_n is used in the ground measured energy balance, the correspondence was much improved (e.g.		Deleted: towers
1110	The meet in the ground measured energy our and the correspondence was made in proved (erg.	()) ()	Deleted: resulting from
1180	scenarios S4 and S5 in Figure 9). This is due to the bias-correction strategy of SEBAL and	1111.	Deleted: While there exists
			Deleted: severe
1181	<u>METRIC</u> where biases in R_n and G are incorporated into estimates for H. SEBAL estimated	11/1	Deleted: sensible heat fluxes
		1///	Deleted: once
1182	instantaneous <u><i>LE</i></u> and ground measurements show good agreement for all five scenarios (S1 – S5)	1///	Deleted: estimated net radiation
1100	including the energy with a many sensible bast flue match (Eigen 10, 61, 62). The analistical of LE		Deleted: "
1183	including the ones with a poor sensible heat flux match (Figure 10, S1-S3). The prediction of <u><i>LE</i></u>	([]]	Deleted: "
1184	is good for scenarios S1–S5 with a mean MRD of -5.1% (Table 7) which is less than the average	M	Deleted: good agreement is reached (
1104	is good for scenarios $51-55$ with a mean wike of -5.1% (<u>Fable 7)</u> which is less than the average	\mathbb{N}	Deleted:).
1185	14% deviation reported for SEBAL applications worldwide (Bastiaanssen et al., 2005).	11/1	Deleted: 8
			Deleted: latent heat fluxes
1186	The ground measured instantaneous H and LE presented in Table 7 are identical in S1–	, 11	Deleted: 9
1187	S3 but differ slightly from each other in S4 and S5 due to a slight difference in the temperature	$\langle \rangle \rangle$	Deleted: Table 7 presents the quantitative comparison measures for these instantaneous fluxes.
1101		Deleted: latent heat fluxes	
1188	of the cold <u>pixels that were chosen to estimate</u> air temperature for calculation of the incoming	- /)	Deleted: instantaneous
			Deleted: (Bastiaanssen et al., 2005).
1189	long wave radiation. As a result the instantaneous net radiation used in scenarios S4 and S5 were		Deleted: pixel that is also used for the estimation of the
1100		$\overline{\neg}$	Deleted: radiations of
1190	also slightly different. However, a large difference <u>existed</u> between the ground measured H and		Deleted: are
1191	LE in S1–S3 versus those in S4–S5 caused by the bias in instantaneous R_n of the ground		Deleted: exists
1101	LL in S1–S5 versus mose in S4–S5 caused by the bias in instantaneous \underline{m} of the ground		Deleted: . This is
1192	measurements versus $\underline{R_n}$ determined with SEBAL (Table 4). In Table 7 the H and LE from		Deleted: net radiation
			Deleted: the net radiation
1193	SEBAL for the EM approaches (S3 and S5) are identical <u>because</u> EC measured instantaneous LE		Deleted: estimates
		$\overline{}$	Formatted: Font: Not Italic
1194	was not used for calibration; one set of cold and hot pixels are used for both scenarios, However,		Deleted: since this approach does not use the
1195	for S1, S2 and S4 a different set of cold and hot pixels were chosen for each scenario by forcing		Deleted: in SEBAL
1130	101 51, 52 and 54 a different set of cold and not pixels were chosen for each scenario by forcing		Deleted: in
I			Deleted: are determined

1232	the constants c_1 and c_2 in Eq. [4] to fit the instantaneous LE measurements at the EC towers. This		
1202			
1233	produced quite different H and LE SEBAL estimates for S1, S2 and S4.	_	Deleted: leads to
1234	In scenarios S1 and S2 of Table 7 there is no significant difference between the SEBAL		Deleted: in
1235	estimated <u>H</u> (156 versus 138 W/m ²) and <u>LE</u> (314 versus 333 W/m ²). SEBAL calibrations based		Deleted: sensible
			Deleted: latent
1236	on the instantaneous <u>LE</u> of the tower pixels (S2) or on the <u>LE</u> of the instantaneous foot prints		Deleted:) heat fluxes. Thus,
		\sim	Deleted: latent heat flux
1237	during the satellite's overpass (S1) vielded similar results except that the MAD and RMSD of S1		Deleted: latent heat flux
1000	$(MAD/DMCD)$ and $(C_1, C_2, C_3, C_4, C_4, C_4, C_4, C_4, C_4, C_4, C_4$	\sim	Deleted: yield
1238	were lower (MAD/RMSD values for S1 and S2 were 39/57 and 56/74, respectively). This		Deleted: in this study
1239	finding is relevant for practitioners who need to calibrate SEBAL on a routine basis and/or in	\mathbb{N}^{-}	Deleted: are
1205		()	Deleted: :
1240	nearly real-time, Using only the tower pixel is much faster and easier to implement automatically	- / '	Deleted: are
	· · · · · · · · · · · · · · · · · · ·	\sim '	Deleted: .
1241	than determination of a weighted average within the tower footprint. However, for posterior	\sim	Deleted: : using
		N)	Deleted: pixels
1242	SEBAL analyses and research applications use of the footprint is still recommended because (1)	\mathcal{N}	Deleted: footprint
	N	$\langle \rangle \rangle$	Deleted: . It also justifies
1243	it has a better correspondence with ground measurements (Table 7) and (2) footprint analyses are	\backslash	Deleted: omission of foot print scenario S1 from further consideration in scenario S4
1244	effective for the detection of unusual environmental conditions.		Deleted: since (1) it results in somewhat smaller comparison measures
1245	The MAD and RMSD of $\frac{H}{H}$ for S1, S2 and S3 are quite similar but rather high with		Deleted: the sensible heat fluxes
		/	Deleted: , respectively,
1246	MAD/RMSD values of 108/131, 126/147 and 111/135, respectively. The values of S4 and S5		Deleted: .
		1	Deleted: and reflect
1247	(36/46 and 61/77) are considerably lower <u>reflecting</u> the ground energy balance correction by		Deleted: using
1040		//	Deleted: SEBAL net radiation
1248	<u>relying on</u> the <u>RS-based R_n</u> . The MAD/RMSD values of the <u>LE range</u> from <u>values</u> of 39/57 for	\leftarrow	Deleted: latent heat fluxes are increasing
1249	S1, 56/74 for S2, and 66/81 for S3, Values for S4 and S5 (39/48 and 61/77) were similar to S1.		Deleted: a low value
1243	51, 50/74 for $52,$ and $50/81$ for $55,$ values for 54 and $55, 57/48$ and $57, 77, 90/74$ and $57, 77, 79$		Deleted: to
1250	<u>S2</u> , and S3. Using the RS-based R_n had a much smaller effect on LE estimates than the H	11	Deleted: while the values
		()	Deleted: are, respectively,
1251	estimates which is a consequence of the internal calibration of SEBAL and METRIC.	W	Deleted: . Thus, using the net radiation correction has
		(1)	Deleted: for the latent heat fluxes
1252	MRD values exhibited the same trends observed in the MAD and RMSD values (Table	$\ $	Deleted: for
			Deleted: sensible heat fluxes
1253	7). A striking feature in S1–S3 is the very poor prediction of <i>H</i> : with MRD's were between 35	//	Deleted: result
I)	Deleted: . The comparison measures for S3

and 47 %. This result was not expected, especially, for S1 and S2 that were calibrated against		
ground measured instantaneous LE. The discrepancy was the result of the apparent bias in the		
ground measurements of R_n discussed previously (see Section [4.2]). Substituting the RS-based		
R_n for the ground measured R_n improved the RS-based estimates of H dramatically: MRD's of		
S4 and S5 were 0.8 and 16.6 %, respectively. Despite the poor MRD's of H (35 to 47 %), in S1 –		Deleted: (the empirical traditional
S3, the SEBAL LE estimates exhibited good MRD's (2.7 to -11.5 %). Although RS-based		
estimates of H had high error, the internal calibration procedure protects against inaccurate		
estimates of LE.		
Calibrating SEBAL with reliable ground measurements at the pixel scale improved +	—— F	ormatted: Tab stops: 2.22", Left
estimates of both H and LE. However, ground measurements of H should be used cautiously and	aı	eleted: approach) are also very similar for the latent heat flux but re reduced in half for the sensible heat flux after net radiation prection.
carefully for the calibration and evaluation of SEBAL because the RS-based H estimate		
compensates for error in R_n , G , and aerodynamics, and can deviate from the ground-based		
measurements. Lumping error into H is a necessary characteristic of SEBAL and METRIC		
designed to arrive at unbiased estimates for LE.		
The internal calibration of H and LE using cold and hot pixels in SEBAL and METRIC	D	eleted: Through the "anchoring"
reduces or cancels higs introduced by the calculation of albedo, net radiation, and surface		eleted: at the
	\sim \succ	eleted: biases
temperature as well as errors in narrow band emissivity, atmospheric correction, satellite sensor,		
aerodynamic resistance, and soil heat flux. This procedure can result in a reduction of total bias		eleted: function
in ET of as much as 30 % compared to other models that are not routinely internally calibrated		
(Allen et al., 2006). Allen et al. (2007) describe how METRIC, through the use of weather based		eleted: (Allen et al., 2006).
reference ET, is able to eliminate most internal energy balance component biases at both the cold		
and hot extreme conditions. SEBAL, on the other hand, eliminates bias at the hot extreme, but	D	eleted: biases
	ground measured instantaneous <i>LE</i> . The discrepancy was the result of the apparent bias in the ground measurements of R_n discussed previously (see Section [4.2]). Substituting the RS-based R_n for the ground measured R_n improved the RS-based estimates of <i>H</i> dramatically: MRD's of S4 and S5 were 0.8 and 16.6 %, respectively. Despite the poor MRD's of <i>H</i> (35 to 47 %), in S1– S3, the SEBAL <i>LE</i> estimates exhibited good MRD's (2.7 to -11.5 %). Although RS-based estimates of <i>H</i> had high error, the internal calibration procedure protects against inaccurate estimates of <i>LE</i> . Calibrating SEBAL with reliable ground measurements at the pixel scale improved estimates of both <i>H</i> and <i>LE</i> . However, ground measurements of <i>H</i> should be used cautiously and carefully for the calibration and evaluation of SEBAL because the RS-based <i>H</i> estimate. compensates for error in R_n . <i>G</i> , and aerodynamics, and can deviate from the ground-based measurements. Lumping error into <i>H</i> is a necessary characteristic of SEBAL and METRIC designed to arrive at unbiased estimates for <i>LE</i> . The internal calibration of <i>H</i> and <i>LE</i> using cold and hot pixels in SEBAL and METRIC reduces or cancels bias introduced by the calculation of albedo, net radiation, and surface temperature as well as errors in narrow band emissivity, atmospheric correction, satellite sensor, aerodynamic resistance, and soil heat flux, This procedure can result in a reduction of total bias in ET of as much as 30 % compared to other models that are not routinely internally calibrated (Allen et al., 2006), Allen et al. (2007) describe how METRIC, through the use of weather based reference ET, is able to eliminate most internal energy balance component biases at both the cold	ground measured instantaneous <i>LE</i> . The discrepancy was the result of the apparent bias in the ground measurements of <i>R_o</i> discussed previously (see Section [4.2]). Substituting the RS-based <i>R_o</i> for the ground measured <i>R_o</i> improved the RS-based estimates of <i>H</i> dramatically: MRD's of S4 and S5 were 0.8 and 16.6 %, respectively. Despite the poor MRD's of <i>H</i> (35 to 47 %), in S1–S3, the SEBAL <i>LE</i> estimates exhibited good MRD's (2.7 to -11.5 %). Although RS-based estimates of <i>H</i> had high error, the internal calibration procedure protects against inaccurate estimates of <i>H</i> had high error, the internal calibration procedure protects against inaccurate estimates of both <i>H</i> and <i>LE</i> . However, ground measurements at the pixel scale improved estimates of both <i>H</i> and <i>LE</i> . However, ground measurements of <i>H</i> should be used cautiously and carefully for the calibration and evaluation of SEBAL because the RS-based <i>H</i> estimate compensates for error in <i>R_m</i> , <i>G</i> , and aerodynamics, and can deviate from the ground-based measurements. Lumping error into <i>H</i> is a necessary characteristic of SEBAL and METRIC designed to arrive at unbiased estimates for <i>LE</i> . The internal calibration of <i>H</i> and <i>LE</i> using cold and hot pixels in SEBAL and METRIC reduces or cancels bias introduced by the calculation of albedo, net radiation, and surface temperature as well as errors in narrow band emissivity, atmospheric correction, satellite sensor, aerodynamic resistance, and soil heat flux, This procedure can result in a reduction of total bias in ET of as much as 30 % compared to other models that are not routinely internally calibrated (Allen et al., 2006), Allen et al. (2007) describe how METRIC, through the use of weather based reference ET, is able to eliminate most internal energy balance component biases at both the cold

1325	necessarily retains a bias at the cold extreme where it is assumed that $LE = R_n - G$. The cost for	1	Deleted: the sensible heat flux
1326	the improved estimates for LE is a deterioration of the SEBAL and METRIC H estimates since \underline{H} ,	$/\lambda$	Deleted: biases
1020	the improved estimates for LL is a deterioration of the SLDAL and WLTARE T estimates since \underline{T} ,	//	Deleted: (Choi et al., 2009).
1327	as an intermediate parameter, absorbs most of the aforementioned bias as a result of the internal	//	Deleted: The same trends observed in the MAD and RMSD values are found in the MRD values presented in Table 7. A striking feature in S1–S3 is the very poor prediction of the sensible heat flux with
1328	calibration process (Choi et al., 2009).	//	MRD's between 35 and 47 %. Especially, for S1 and S2 that have been calibrated against ground measured instantaneous latent heat
1329	/	/	fluxes, this result was not expected. The discrepancy is not caused by any error in the SEBAL procedure but by the apparent bias in the ground measurements of the net radiation that was reported earlier (see Section [4.2]). When the ground measured net radiation is
1330	4.4.2. Comparison of daily sensible and latent heat fluxes		replaced with the arguably more accurate SEBAL estimate of net
			Deleted: In Figure 10, the ground measured daily evaporative
1331	The ground measured daily evaporative fraction (EF_{24}) is larger than the instantaneous	/	Deleted: 0
		$/\langle$	Deleted: 11
1332	evaporative fraction (<i>EF_{inst}</i>) (Figure 11). A simple linear regression yielded a small not		Deleted: 12
			Deleted: , respectively,
1333	significant intercept of 0.04 (p>0.05) and a slope of 1.19 (95 % confidence interval 0.99 to 1.36).		Deleted: sensible
1334	The traditional SEP AL application assumes $a_{} = 1.0$ (Pastionneson et al. 100%), but several		Deleted: latent
1554	<u>The traditional SEBAL application assumes $c_{EF} = 1.0$ (Bastiaanssen et al., 1998a), but several</u>		Deleted: equals
1335	field studies suggest the value is closer to 1.1 (Brutsaert and Sugita, 1992; Anderson et al., 1997).		Deleted: Note there is no need for scenarios
1000	Teld studies suggest the value is croser to Tri (brushert and Sugha, 1772, macison et al., 1777).		Deleted: since
1336	While recognizing that 1.19 is closer to 1.1 than to 1.0, we examined the effects of both		Deleted: net radiations
			Deleted: are very close
1337	estimates for <i>c</i> _{<i>EF</i>} on the conversion from instantaneous <i>LE</i> to daily <i>LE</i> (see Eq. [5]).		Deleted: equals
			Deleted: is
1338	Figures <u>12 and 13 present</u> the plots of the adjusted (using ground measured R_n energy		Deleted: latent heat fluxes (<i>LE</i>) with a
1000	helence closure) H and LE daily heat fluxes measured at the EC toward versus the SEDAL		Deleted: (=
1339	balance closure) <u><i>H</i></u> and <u><i>LE</i></u> daily heat fluxes measured at the EC towers versus the SEBAL		Deleted: daily sensible heat fluxes (<i>H</i>) with a
1340	estimates resulting from scenarios S1–S3 with c_{EF} set to 1.1. Scenarios S4 and S5 are not shown		Deleted: (=
1010	= 5 min to 5 to 5 min for some some some some some some some some		Deleted: The latter result is another demonstration how the
1341	because the daily R_n measured on the ground and determined by SEBAL were similar (Table 4).		Deleted: LEs increase
1342	For the values in Table 8, when the $c_{EF} = 1.0$, the agreement was excellent for the daily <u>LE</u>		Deleted: $(\overline{G} - \overline{S})/\overline{G}$
		////	Field Code Changed
1343	(mean MRD of $3.9\% = [2.9+0.0+8.9]/3$) but was rather poor for the <u><i>H</i></u> (mean MRD of $-20.4\% = 1$		Formatted: Font: 12 pt
		'	Deleted: decrease
1344	$[-19.4-14.9-27.0]/3$). Next, using <u>a</u> c_{EF} value of 1.1, SEBAL estimated <u>LE increased</u> , therefore		Deleted: improve
			Deleted: a
1345	MRDs (MRD = $(\overline{G} - \overline{S})/\overline{G}$) of <i>LE</i> <u>decreased</u> to be negative so that MRDs of <i>H</i> <u>improved</u> (less		Deleted: value of
		IX	Deleted: , although inspection of only the comparison measures in
1346	negative). As a result, the assumption $c_{EF} = 1.1$ leads to a better agreement for $H_{\underline{I}}$ Table 8).		Formatted: Font color: Auto
		(Deleted: does

1437	<u>Although our results do</u> not <u>suggest with</u> certainty which of the c_{EF} values yields more accurate		Deleted: give us
1438	estimates of H and LE. we recommend the use of 1.1 based on our study (Figure 11), results		Deleted: . Nevertheless,
1439	reported in the literature (Brutsaert and Sugita, 1992;Anderson et al., 1997), and the improved		Deleted: is preferred in our study (non-advective conditions during months April to September) given the regression analysis presented in
1440	daily H fluxes from SEBAL (Table 8).	$\langle $	Formatted: Font color: Auto
1441	A comparison between ground measurements and SEBAL estimates of daily		Deleted: 10 Deleted: , data
			Deleted: (Brutsaert and Sugita, 1992;Anderson et al., 1997), and the improved daily sensible heat fluxes by SEBAL in Table 8.
1442	evapotranspiration is <u>shown</u> in Figure <u>14. Linear relationships between</u> unadjusted EC	<u> </u>	Deleted: made
1443	measurements of ET and SEBAL estimates of ET based on $c_{EF} = 1.1$ are evident. For scenarios		Deleted: 13
1440	measurements of ET and SEDAL estimates of ET pased on $c_{EF} = 1.1$ are evident. For scenarios		Deleted: where the
1444	S1, S2, and S3 the slopes of the relationship varied between 1.32 and 1.08 (mean of 1.23)		Formatted: Font: Italic
	~-, ~-,		Deleted: are compared with
1445	suggesting that SEBAL ET estimates were about 21% higher than the unadjusted ET		Formatted: Font: Italic
			Deleted: with
1446	measurements at the EC towers. This discrepancy is <u>consistent with other studies that reported</u>		Deleted: of
1447	systematic underestimation of heat fluxes by the eddy covariance method can be as high as 10 to		Deleted: unadjusted ET measured at the EC tower and the SEBAL estimates are, respectively, 1.30,
منيات			Deleted: ,
1448	30 % (Twine et al., 2000; Paw et al., 2004). Given the inherent uncertainties of the SEBAL		Deleted: which averages to
1449	approach and the eddy covariance method the linear relationships between the two methods are		Deleted: . Thus,
1443	approach and the eddy covariance method the <u>inical relationships</u> between the two methods <u>are</u>	1/ 1/	Formatted: Font: Italic
1450	surprisingly good. The SEBAL/METRIC approach is a powerful tool for high resolution	III	Deleted: are
		(M)	Formatted: Font: Italic
1451	mapping of evapotranspiration even where no meteorological measurements are available on the	$\left \right $	Deleted: expected since it has been reported in the literature that the
1452	ground. This study also demonstrates that the use of SEBAL or METRIC in heterogeneous		Deleted: (Twine et al., 2000;Paw et al., 2004).
	<u> </u>		Deleted: agreement
1453	landscapes such as arid riparian areas results in ET estimates that are as good as those that could)	Deleted: is
1454	be obtained using the EC method.		Deleted: Especially, considering that we compare sensible and latent heat fluxes measured in heterogeneous arid riparian areas. Therefore, this study confirms other studies (Allen et al., 2011;Bastiaanssen et al., 2005) that SEBAL
1455			Formatted: Font: Italic
1456	5. CONCLUSIONS		
1457	We have evaluated the SEBAL extreme-condition-inverse calibration remote sensing		Deleted: In this study we
1458	model in arid riparian areas by comparing instantaneous and daily energy balance components		Deleted: its predicted
1			

1491	with those measured on the ground with the eddy covariance method.
1492	An analysis of differences in instantaneous R_n during late morning between vegetation
1493	and exposed soil emphasizes the importance of selecting representative soil and vegetative
1494	mixture viewed by the ground R_n sensor. We argue that tower-based R_n is generally biased
1495	toward vegetation, resulting in exaggerated R_n values, within the eddy covariance footprint.
1496	Instantaneous R_n from <u>RS</u> , representing a larger area than the net radiometer, systematically gave
1497	lower instantaneous R_n values. When these were used to close the eddy covariance energy
1498	balance, <i>LE</i> and <i>H</i> from SEBAL and ground based eddy covariance were more similar. Daily R_n
1499	values of SEBAL agreed well with the ground measurements. This result can be ascribed to
1500	physical differences between the radiation balance of pixels of mixed riparian vegetation and
1501	bare soil compared to the small footprint of ground <i>R_n</i> sensors placed over vegetation
1502	Instantaneous G values of SEBAL were about 30% higher than the ground measured
1503	values in the San Pedro and Owens <u>Valley</u> . However, this large relative difference <u>had</u> a
1504	relatively minor impact on the overall energy balance because the actual deviation in G was
1505	approximately 5-6 % of the SEBAL and ground measured instantaneous R_n . Also, daily G is near
1506	zero because heat enters the soil during the day and exits the soil during the night. In the
1507	application of SEBAL and METRIC for estimating daily <i>ET</i> , it is reasonable to assume <i>G</i> is
1508	negligible.
1509	Instantaneous LE values derived from SEBAL were within -13.2 to 2.7% of the ground
1510	measurements for five different comparisons (scenarios S1-S5). The magnitude of these
1511	differences was similar to the variability common to eddy covariance flux measurements, i.e. it
1512	was not possible in this study of heterogeneous arid riparian areas to determine conclusively
I	

/	Deleted: (Landsat overpass time)
/	Deleted: large impact of soil in the R_n view, and the
Ν	Deleted: proper
Ζ,	Deleted: higher
	Deleted: .
// /	Deleted: SEBAL
///	Deleted: for heterogeneous vegetation
IX	Deleted: gives
/ /	Deleted: are
//	Deleted: <i>LE</i> and <i>H</i> from the
//	Deleted: EC are much
	Deleted: The daily net radiation
/ /	Deleted: agree
Λ	Deleted: (Table 4 and Figure 5) as expected after examination of the daily
λ	Formatted: Font color: Text 1
4	Deleted: pixels in section [4.2].¶ The instantaneous
\neg	Formatted: Font color: Text 1
Y	Formatted: Font color: Text 1
$\overline{}$	Formatted: Font color: Text 1
Y	Deleted: heat flux
\square	Deleted: Valleys (Table 6 and Figure 6).
(Deleted: has
-	Deleted: since its MAD of 35 W/m ² (Table 6) hovers around 6 % percent
-	Deleted: predicted instantaneous net radiation and around 5% percent of the
	Formatted: Font: Italic
Z	Deleted: net radiation. The
N	Deleted: close to
N	Deleted: since
, \Y	Deleted: but leaves
N	Deleted: (Table 6). Therefore
	Deleted: can be assumed in SEBAL that the daily heat flux
	Deleted: zero.
Z	Deleted: The instantaneous latent heat flux
1	Deleted: of
Z	Deleted: the
	Deleted: (Table 7 and Figure 9).
/	Deleted: is
Y	Deleted: it is nearly impossible to decide

l

1550	whether the difference between methods was a result of bias in SEBAL or the eddy covariance	Deleted: these differences are
1551	method.	Deleted: Therefore, we conclude that the SEBAL latent heat fluxes in this study over heterogeneous arid riparian areas are similar to the ones measured at the eddy covariance towers.
1552	Instantaneous H values of SEBAL differed from the ground measurements by 35.0 to	Deleted: The instantaneous sensible heat flux
1002	instantancous II values of SEDAL unrefed noin the ground measurements by 55.0 to	Deleted: differ
1553	47.2%. These H fluxes are necessarily biased because errors in R_n and G are lumped into H as a	Deleted: % in scenarios S1, S2 and S3 but after replacing the
1554	result of the extreme-condition-inverse internal calibration procedure. Substitution of the ground	Deleted: ground measurement of net radiation by the SEBAL net radiation the differences reduce to 0.8% and 16.6% for, respectively, scenarios S4 and S5. As has been explained in section [4.4.1] the SEBAL sensible heat fluxes are biased since
1555	measured R_n for the SEBAL R_n in the ground based energy balance improved the comparison	Deleted: of SEBAL the sensible heat flux absorbs all biases that may occur during the SEBAL implementation.
1556	with the RS-based H with relative differences of only 0.8% and 16.6%. Using a combination of	Deleted: ¶ In terms of daily sensible
1557	ground measured G and H with RS-based R_n yielded the least biased energy balances over	Deleted: latent heat
100,	ground measured of and in whith to based his prefield and reast blased energy buildiness over	Deleted: , better agreement exists between
1558	heterogeneous arid riparian areas,	Deleted: and SEBAL estimates with
		Deleted: MRD's for the three scenarios range from
1559	Daily H and LE fluxes estimated by SEBAL generally agreed with ground measurements	Deleted: %. That is because
		Deleted: net radiations measured on the
1560	(mean <u>MRD'S</u> 13.8 to -0.7%). Better agreement at the daily scale was largely due to the better	Deleted: and determined by SEBAL agree well (Table 8 and Figures 11 and 12). Note that the
1561	<u>correspondence in daily rather than instantaneous R_n estimates between SEBAL and ground</u>	Deleted: is preferred
		Deleted: that were covered during this study
1562	measurements. The use of a multiplier on the instantaneous evaporative fraction of 1.1 to convert	Deleted: An important conclusion of the comparisons between various calibration strategies for
1563	the instantaneous ET to daily ET was preferable for the non-advective conditions during the	Formatted: Indent: First line: 0.49", No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers
1564	months April to September	Deleted: is that ground measurements of sensible heat fluxes
15.65	The instantaneous SEDAL <i>U</i> is intentionally biased during calibration and supported to	should be used with caution for the calibration and validation of
1565	<u>The instantaneous SEBAL \underline{H} is intentionally biased during calibration and expected to \underline{A}</u>	Deleted: (to produce an unbiased <i>LE</i>) and will
1566	deviate from the ground measured \underline{H} in order to provide an unbiased estimate of LE For all five	Deleted: sensible heat flux
1000	deviate from the ground measured 12 morder to provide an anotable gottimate of 2021 of an inte	Deleted: arrive at
1567	calibration scenarios, the comparison measures (r ² , MAD, RMSD and MRD) of the	Deleted: estimates
	······································	Deleted: .¶
1568	instantaneous and daily <u>LE</u> fluxes were strong evidence that the great strength of the SEBAL and	Deleted: latent heat
		Deleted: are
1569	METRIC method is <u>their</u> internal calibration procedure that eliminates most of the <u>error</u> in <u>LE</u>	Deleted: its
1570		Deleted: bias
1570	flux at the expense of increased <u>error in jnstantaneous H</u> flux. We conclude that <u>the SEBAL</u>	Deleted: latent heat
1571	method is an effective tool for mapping actual evapotranspiration at high spatial resolution in	Deleted: bias
1011	incurou is an encenve tool for mapping actual evaportalispitation at high spatial <u>resolution</u> in	Deleted: sensible heat
I		Deleted: resolutions

1617	heterogeneous riparian areas where hourly weather data are <u>unavailable</u> .	Deleted: no high-quali	ty
		Deleted: available	_
1618			
1619	ACKNOWLEDGEMENT		
1620	The following sponsors have contributed to this study: NSF EPSCoR grant EPS-		
1621	0447691; U.S. Department of Agriculture, CSREES grant No.: 2003-35102-13654; New Mexico		
1622	Universities Collaborative Research (NUCOR) program for joint research with the Los Alamos		
1623	National Laboratory; and NASA New Investigator Program. The energy balance data from		
1624	towers in the Middle Rio Grande Valley were provided by Dr. James Cleverly of the University		
1625	of New Mexico. We did our own energy balance adjustment.		
1626			
1627	REFERENCES		
1628 1629	Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, FAO Irrigation and drainage paper 56, FAO. Rome, 1998.		
1630	Allen, R. G., Tasumi, M., and Trezza, R.: M E T R I C tm Mapping Evapotranspiration at High Resolution.		
1631	Applications Manual for Landsat Satellite Imagery. Version 2.0, University of Idaho, Kimberly, Idaho, 139, 2005.		
1632	Allen, R. G., Tasumi, M., and Trezza, R.: Benefits from tying satellite-based energy balance to reference		
1633	evapotranspiration, Earth Observation for Vegetation Monitoring and Water Management. AIP Conference		
1634 1635	Proceedings, 852, 127-137, 2006. Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-based Energy Balance for Mapping Evapotranspiration with		
1636	Internalized Calibration (METRIC) – Model, Journal of Irrigation and Drainage Engineering, 133, 380-394, 2007.		
1637	Allen, R. G., Irmak, A., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W. G. M., and Kjaersgaard, J.: Satellite-based		
1638	ET estimation in agriculture using SEBAL and METRIC, Hydrologic Processes, 25, 4011-4027, 2011.		
1639	Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski., J. R.: A two-source time-integrated		
1640	model for estimating surface fluxes using thermal infrared remote sensing, Remote Sensing of Environment, 60,		
1641	195-216, 1997.		
1642	Arya, P. S.: Introduction to micrometeorology, Academic press, 2001.		
1643 1644	Bastiaanssen, W. G. M.: Regionalization of surface flux desities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates, Landbouwuniversiteit te Wageningen, 1995.		
1645	Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy		
1646	balance algorithm for land (SEBAL). Part 1: Formulation, Journal of Hydrology, 212-213, 198-212, 1998a.		
1647	Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., Roebeling, R. A., and Wal, T. v.		
1648	d.: A remote sensing surface energy balance algorithm for land (SEBAL). Part 2: Validation, Journal of Hydrology,		
1649	212-213, 213-229, 1998b.		
1650	Bastiaanssen, W. G. M .: SEBAL-based sensible and latent heat fluxes in the Irrigated Gediz Basin, Turkey, Journal		
1651	of Hydrology, 229, 87-100, 2000.		
1652	Bastiaanssen, W. G. M., Ahmad, MD., and Chemin, Y.: Satellite surveillance of evaporative depletion across the		
1653	Indus Basin, Water Resources Research, 38, 1273, doi:1210.1029/2001WR000386, 2002.		

- 1656 Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., and Allen, R. G.: SEBAL 1657 model with remotely sensed data to improve water-resources management under actual field conditions, Journal of
- 1658 Irrigation and Drainage Engineering, 131, 85-93, 2005.
- 1659 Bastiaanssen, W. G. M., Klaasse, A., Zwart, S., Immerzeel, W., and Droogers, P.: The hydrological flow path and
- 1660 options for sustainable water resources management in the overexploited Rio Bravo Basin, A world bank project, 1661 Final report, 102p, 2006.
- 1662 Brutsaert, W., and Sugita, M.: Application of self-preservation in the diurnal evolution of the surface energy budget 1663 to determine daily evaporation, Journal of Geophysical Research, 97, 18,377-318,382, 1992.
- 1664 Brutsaert, W., Hsu, A. Y., and Schmugge, T. J.: Parameterization of surface heat fluxes above a forest with satellite 1665thermal sensing and boundary layer soundings, Journal of Applied Meteorology, 32, 909-917, 1993.
- 1666 Choi, M., Kustas, W. P., Anderson, M. C., Allen, R. G., Li, F., and Kjaersgaard, J. H.: An intercomparison of three
- 1667 remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, US) 1668 during SMACEX, Agricultural and Forest Meteorology, 149, 2082-2097, 2009.
- 1669 Choudhury, B. J.: Estimating evaporation and carbon assimilation using infrared temperature data: vistas in
- 1670 modeling, Theory and Application of Remote Sensing, edited by: Asrar, G., Wiley, New York, 628-690 pp., 1989.
- Cleverly, J. R., Dahm, C. N., Thibault, J. R., Gilroy, D. J., and Coonrod, J. E. A.: Seasonal estimates of actual evapo-1671
- 1672 transpiration from Tamarix ramosissima stands using three-dimensional eddy covariance, Journal of Arid
- 1673 Environments, 52, 181-197 doi:110.1006/jare.2002.0972, 2002.
- 1674Compaoré, H., Hendrickx, J. M. H., Hong, S.-h., Friesen, J., van de Giesen, N. C., Rodgers, C., Szarzynski, J., and
- 1675 Vlek, P. L. G.: Evaporation mapping at two scales using optical imagery in the White Volta Basin, Upper East Ghana Physics and Chemistry of the Earth, Parts A/B/C, 33, 127-140, doi:110.1016/j.pce.2007.1004.1021, 2008. 1676
- 1677 Costigan, K. R., Bossert, J. E., and Langley, D. L.: Atmospheric/hydrologic models for the Rio Grande Basin:
- 1678 simulations of precipitation variability, Global and Planetary Change, 25, 83-110, 2000.
- 1679 Crago, R. D.: Conservation and variability of the evaporative fraction during the daytime, Journal of Hydrology, 180,
- 1680 173-194, 1996.
- 1681 De Bruin, H. A. R.: In: J.C Hooghart (Ed.), From Penman to Makkink, Evaporation and weather. Proceedings and Information No. 39, TNO Committee on Hydrological Research, The Hague, pp. 5-31., 1987. 1682
- 1683 De Bruin, H. A. R., Bink, N. J., and Kroon, L. J. M.: Fluxes in the surface layer under advective conditions, Land 1684 surface evaporation, edited by: Schmugge, T. J., and Andre, J.-C., Springer-Verlag New York, Inc., 1991.
- 1685 Droogers, P., and Allen, R. G.: Estimating reference evapotranspiration under inaccurate data conditions, Irrigation
- 1686 and Drainage Systems, 16, 33-45, 2002.
- 1687 Du, J., Song, K., Wang, Z., Zhang, B., and Liu, D.: Evapotranspiration Estimation Based on MODIS Products and
- 1688 Surface Energy Balance Algorithms for Land (SEBAL) Model in Sanjiang Plain, Northeast China., Chinese
- 1689 Geographical Science, 23, 73-91, 2013.
- 1690 Elmore, A. J., Mustard, J. F., and Manning, S. J.: Regional patterns of plant community response to changes in water: 1691 Owens Valley, California., Ecological Applications, 13, 443-460, 2002.
- 1692 Farah, H. O., Bastiaanssen, W. G. M., and Feddes, R. A.: Evaluation of the temporal variability of the evaporative 1693 fraction in a tropical watershed, International Journal of Applied Earth Observation and Geoinformation 5, 129-140,
- 1694

2004.

- 1695 Field, R. T., Fritschen, L. J., Kanemasu, E. T., Smith, E. A., Stewart, J. B., Verma, S. B., and Kustas, W. B.:
- 1696 Calibration, comparison and correction of net radiation instruments used during FIFE, Journal of Geophysical 1697 Research, 97, 18681-18695, 1992.
- 1698 Fox, D. G.: Judging air quality model performance: A summary of the AMS Workshop on Dispersion Model
- 1699 Performance, Bulletin of the American Meteorological Society, 62, 599-609, 1981.
- 1700
- Franks, S. W., and Beven, K. J.: Estimation of evapotranspiration at the landscape scale: a fuzzy disaggregation
- 1701 approach, Water Resources Research, 33, 2929-2938, 1997.
- 1702Fuchs, M., and Hadas, A.: Analysis and performance of an improved soil heat flux transducer, Soil Science Society 1703 of America, Proceedings, 37, 173-175, 1973.
- 1704 Gibson, L. A., Jarmain, C., Su, Z., and Eckardt, F.: Review: Estimating evapotranspiration using remote sensing and
- 1705 the Surface Energy Balance System - A South African perspective, Water SA, 39, 477-483, 2013.
- 1706 Granger, R. J.: Satellite-derived estimates of evapotranspiration in the Gediz basin, Journal of Hydrology, 229, 70-1707 76, 2000.
- 1708 Halldin, S., and Lundroth, A.: Errors in net radiometry: comparison and evaluation of six radiometer designs, ournal

- 1709 of Atmospheric and Oceanic Technology, J6, 762-783, 1992.
- 1710 Hemakumara, H., Chandrapala, L., and Moene, A.: Evapotranspiration fluxes over mixed vegetation areas measured 1711from a large aperture scintillometer, Agricultural Water Management, 58, 109-122, 2003.
- Hendrickx, J. M. H., Vink, N. H., and Fayinke, T.: Water requirement for irrigated rice in a semi-arid region in West 1712 1713Africa, Agricultural Water Management, 11, 75-90, 1986.
- 1714
- Hong, S.-H.: Mapping regional distributions of energy balance components using optical remotely sensed imagery. 1715 Ph.D. Dissertation Thesis, New Mexico Institute of Mining and Technology, Socorro NM, 378 pp., 2008.
- 1716 Hsieh, C.-I., Katul, G. G., and Chi, T.-W.: An approximate analytical model for footprint estimation of scalar fluxes 1717 in thermally stratified atmospheric flows, Advances in Water Resources, 23, 765-772, 2000.
- 1718Humes, K. S., Kustas, W. P., Moran, M. S., Nichols, W. D., and Weltz, M. A.: Variability of emissivity and surface 1719 temperature over a sparsely vegetated surface, Water Resources Research, 30, 1299-1310, 1994.
- 1720 Jacob, F., Olioso, A., Gu, X. F., Su, Z., and Seguin, B.: Mapping surface fluxes using airborne visible, near infrared, 1721thermal infrared remote sensing data and a spatialized surface energy balance model, Agronomie, 22, 669-680 669 DOI: 610.1051/agro:2002053, 2002. 1722
- 1723Jiang, L., and Islam, S.: Estimation of surface evaporation map over southern Great Plains using remote sensing data, 1724 Water Resources Research, 37, 329-340, 2001.
- 1725 Karimi, P., and Bastiaanssen, W. G. M.: Spatial evapotranspiration, rainfall and land use data in water accounting -
- 1726Part 1: Review of the accuracy of the remote sensing data, Hydrol. Earth Syst. Sci., 19, 507-532, 2015.
- 1727Kite, G. W., and Droogers, P.: Comparing evapotranspiration estimates from satellites, hydological models and field 1728 data, Journal of Hydrology, 229, 3-18, 2000.
- 1729Kizer, M. A., and Elliott, R. L.: Eddy correlation systems for measuring evapotranspiration, Transactions of 1730 American Society of Agricultural Engineers, 34, 387-392, 1991.
- 1731 Kleissl, J., Gomez, J. D., Hong, S.-H., and Hendrickx, J. M. H.: Large aperture scintillometer intercomparison study, Boundary-Layer Meteorology, 128, 133-150, 2008. 1732
- 1733Kleissl, J., Hong, S.-H., and Hendrickx, J. M. H.: New Mexico scintillometer network. Supporting remote sensing 1734and hydrologic and meteorological models, Bulletin American Meteorological Society, 90, 207-218, 2009.
- 1735 Kurc, S. A., and Small, E. E.: Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems
- 1736 during the summer monsoon season, central New Mexico, Water Resources Research, 40, W09305,
- 1737doi:09310.01029/02004WR003068, 2004.
- Kustas, W. P., and Norman, J. M .: Use of remote sensing for evapotranspiration monitoring over land surfaces, 1738 1739Hydrological Sciences Journal, 41, 495-516, 1996.
- 1740 Kustas, W. P., Prueger, J. H., Hatfield, J. L., Ramalingam, K., and Hipps, L. E.: Variability in soil heat flux from a 1741 mesquite dune site, Agricultural and Forest Meteorology, 103, 249-264, 2000.
- 1742Loescher, H. W., Ocheltree, T., Tanner, B., Swiatek, E., Dano, B., Wong, J., Zimmerman, G., Campbell, J., Stock, C.,
- 1743Jacobsen, L., Shiga, Y., Kollas, J., Liburdy, J., and Law, B. E.: Comparison of temperature and wind statistics in
- 1744 contrasting environments among different sonic anemometer-thermometers, Agricultural Forest Meteorol., 133, 119-1745139, 2005.
- 1746Ma, Y., Menenti, M., Tsukamoto, O., Ishikawa, H., Wang, J., and Gao., Q.: Remote sensing parameterization of
- 1747regional land surface heat fluxes over arid area in northwestern China, Journal of Arid Environments, 57, 257-273, 1748 2004.
- 1749Moran, M. S., and Jackson, R. B.: Assessing the spatial distribution of evapotranspiration using remotely sensed 1750 inputs, Journal of Environmental Quality, 20, 725-735, 1991.
- 1751 Mu, O., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment, 115, 1781-1800, 2011. 1752
- 1753 Norman, J. M., Kustas, W. P., and Humes, K. S.: A two-source approach for estimating soil and vegetation energy
- 1754fluxes from observations of directional radiometric surface temperature, Agriculture and Forest Meteorology, 77, 1755 263-293 1995
- 1756Norman, J. M., Anderson, M. C., Kustas, W. P., French, A. N., Mecikalski, J., Torn, R., Diak, G. R., Schmugge, T. J.,
- 1757 and Tanner, B. C. W.: Remote sensing of surface energy fluxes at 10 1-m pixel resolutions, Water Resources
- Research, 39, 1221. doi:1210.1029/2002WR001775., 2003. 1758

- 1759Parlange, M. B., Eichinger, W. E., and Albertson, J. D.: Regional scale evaporation and the atmosphere boundary 1760 layer, Reviews of Geophysics, 33, 99-124, 1995.
- 1761 Paw, K. T., Wharton, S., Xu, L., Falk, M., Schroeder, M., and Gonzales, E.: Zen and the art of energy balance

- 1762 closure, Symposium "Progress in Radiation and Energy Balance Closure", 68th Annual Meeting Soil Science 1763 Society of America, Seattle, Washington, 2004.
- 1764Pelgrum, H., and Bastiaanssen, W. G. M.: An intercomparison of techniques to determine the area-averaged latent 1765 heat flux from individual in situ observations: a remote sensing approach using the European Field Experiment in a
- 1766 Desertification-Threatened Area data, Water Resources Research, 32, 2775-2786, 1996.
- 1767
- Sauer, T. J.: Soil Heat Flux. Encyclopedia of Soil Science, edited by: Lal, R., Marcel Dekker, INC., New York, NY, 1768 647-649 pp., 2002a.
- 1769 Sauer, T. J.: Heat flux density, in: Methods of soil analysis. Part 1, edited by: Dane, J., and Topp, C., Soil Science 1770Society of America Madison, Wisconsin, 1233-1248, 2002b.
- 1771Sauer, T. J., Meek, D. W., Ochsner, T. E., Harris, A. R., and Horton, R.: Errors in heat flux measurement by flux plates of contrasting design and thermal conductivity, Vadose Zone Journal, 2, 580-588, 2003. 1772
- 1773 Schmid, H. P., and Oke, T. R.: A model to estimation the source area contributing to turbulent exchange in the
- 1774surface layer over patchy terrain, Quarterly Journal of The Royal Meteorological Society, 116, 965-988, 1990.
- 1775 Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., and Desjardins, R. L.: Footprint prediction of scalar fluxes from
- 1776analytical solutions of the diffusion equation, Boundary-Layer Meteorology, 50, 355-373, 1990.
- Schüttemeyer, D., Schillings, C., Moene, A. F., and Bruin, H. A. R. D.: Satellite-based actual evapotranspiration over 1777 1778 drying semiarid terrain in West Africa, Journal of Applied Meteorology and Climatology, 46, 97-111 DOI:
- 1779 110.1175/JAM2444.1171, 2007.
- 1780 Scott, R. L., Shuttleworth, J. W., Goodrich, D. C., and Maddock III, T.: The water use of two dominant vegetation 1781communities in a semiarid riparian ecosystem, Agricultural and Forest Meteorology, 105, 241-256, 2000.
- Scott, R. L., Edwards, E. A., Shuttleworth, W. J., Huxman, T. E., Watts, C., and Goodrich, D. C.: Interannual and 1782
- 1783seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem, Agricultural and 1784Forest Meteorology, 122, 65-84, 2004.
- Seguin, B. D., and Itier, B.: Using midday surface temperature to estimate daily evapotranspiration from satellite 1785 1786thermal IR data, International Journal of Remote Sensing, 4, 371-383, 1983.
- 1787 Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., and Verdin, J. P.: Operational
- 1788 evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB 1789
- approach, JAWRA Journal of the American Water Resources Association, 49, 577-591, 2013.
- 1790 Steinwand, A. L., Harrington, R. F., and Or, D., 2006.: Water balance for Great Basin phreatophytes derived from 1791 eddy covariance, soil water, and water table measurements, Journal of Hydrology, 329, 595-605, 2006.
- 1792Stromberg, J. C.: Dynamics of Fremont cottonwood (Populus fremontii) and saltcedar (Tamarix chinensis)
- 1793 populations along the San Pedro River, Arizona, Journal of Arid Environments, 40, 133-155, 1998.
- 1794 Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrology and Earth 1795 System Sciences, 6, 85-99, 2002.
- 1796 Sugita, M., and Brutsaert, W.: Daily evaporation over a region from lower boundary layer profiles measured with 1797 radiosondes, Water Resources Research, 27, 747-752, 1991.
- 1798 Tasumi, M.: Progress in operational estimation of regional evapotranspiration using satellite imagery, Ph.D. Thesis, 1799 University of Idaho, Moscow, Idaho, 2003.
- 1800 Teixeira, A. H. d. C., Bastiaanssen, W. G. M., Moura, M. S. B., Soares, J. M., Ahmad, M. D., and Bos, M. G.:
- Energy and water balance measurements for water productivity analysis in irrigated mango trees, Northeast Brazil, 1801 1802 Agricultural and Forest Meteorology, 148, 1524-1537, 2008.
- 1803 Trezza, R.: Evapotranspiration using a satellite-based surface energy balance with standardized ground control. Ph.D. 1804 Thesis, Utah State University: Logan, Utah., 2002.
- Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and 1805
- 1806 Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agricultural and Forest
- 1807 Meteorology, 103, 279-300, 2000.
- Wang, J., Bastiaanssen, W. G. M., Ma, Y., and Pelgrum, H.: Aggregation of land surface parameters in the oasis-1808
- 1809 desert systems of Northwest China, Hydrological Sciences, 12, 2133-2147, 1998.
- 1810 Willmott, C. J., and Wicks, D. E.: An empirical method for the spatial interpolation of monthly precipitation within 1811 California, Physical Geography, 1, 59-73, 1980.
- Willmott, C. J.: On the validation of models, Physical Geography, 2, 184-194, 1981. 1812
- 1813 Willmott, C. J.: Some comments on the evaluation of model performance, Bulletin of the American Meteorological
- 1814 Society, 63, 1309-1313, 1982.

- 1815 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R.,
- 1816 Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R.,
- 1817 Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agric. For.
- Meteorol., 113, 223-243, 2002. 1818
- 1819 Wright, J. L.: New evapotranspiration crop coefficients, Journal of Irrigation and Drainage Engineering, 108, 57-74, 1820 1982.
- 1821
- Yang, Y. T., and Shang, S. H.: A hybrid dual source scheme and trapezoid framework based evapotranspiration model (HTEM) using satellite images: algorithm and model test, Journal of Geophysical Research, 118, 2284-2300, 1822
- 1823 2013.
- Zwart, S. J., and Leclert, L. M. C.: A remote sensing-based irrigation performance assessment: a case study of the Office du Niger in Mali, Irrigation science, 28, 371-385, 2010. 1824
- 1825
- 1826 1827

Ĩ

	Table 1. List of Landsat 7 ETM+ images used in this study (overpass around 10:30 am).
1829	

Area	Date	Path/Row
Rio Grande	04/07/2000	33/36
Rio Grande	07/28/2000	33/36
Rio Grande	09/14/2000	33/36
Rio Grande	09/30/2000	33/36
Rio Grande	05/09/2000	33/36
Rio Grande	06/04/2001	34/36
Rio Grande	05/06/2002	34/36
Rio Grande	05/31/2002	33/36
Rio Grande	05/31/2002	33/37
Rio Grande	06/16/2002	33/36
Rio Grande	08/19/2002	33/36
Owens Valley	07/10/2002	41/34
Owens Valley	08/11/2002	41/34
Owens Valley	09/12/2002	41/34
San Pedro	05/16/2003	35/38
San Pedro	08/12/2003	35/38

I

Site	Longitude/ Latitude	Vegetation type	Elevation (m)	Vegetation height (m)	Sensor height (m
Rio Grande – BDAS	106.88W/ 33.78 N	saltcedar	1370	6.2	8.2
Rio Grande – BLN	106.75W/ 34.59N	cottonwood	1460	25.1	27.2
Rio Grande – SEV	106.87W/ 34.27N	saltcedar	1430	4.9	6.5
Rio Grande – SHK	106.68W/ 34.96N	cottonwood	1500	23.7	26.3
Owens - FSL138	118.43W/ 37.41N	alkali meadow	1280	0.2	2.5
Owens - PLC018	118.35W/ 37.37N	rabbitbrush scrub	1250	0.5	2.5
Owens - PLC074	118.36W/ 37.32N	saltbush meadow	1240	1.0	2.5
Owens - PLC185	118.33W/ 37.27N	desert sink scrub	1220	0.5	2.5
Owens - BLK100	118.24W/ 36.90N	alkali meadow	1170	0.2	2.5
San Pedro – CM	110.18W/ 31.66N	N V/ mesquite 1190		7.0	14
San Pedro – LSS	110.14W/ 31.56N	sacaton	1230	1.0	3.5
San Pedro – LSM	110.13W/ 31.57N	mesquite	1240	3.5	6.5

1837	Table 2. Site characteristics and	sensor heights on	the eddy covariance towers.

18<mark>39</mark>

I

1846Table 3. Scenarios of comparison between RS-based estimates and ground measurements of net1847radiation R_n , soil heat flux G, and sensible and latent heat fluxes H and LE.

Deleted: SEBAL

847 ra 848	adiati	ion R_n , soil heat flux G , and sens	ible and latent heat fluxes H and LE.
	D	Scenario	R _n Used for Energy Balance Closure849
S	S 1	EC Approach (EC_FP) ¹	Ground Measured R_n
S	82	EC Approach (EC_TP) ²	Ground Measured R_n
S	\$3	EM Approach ³	Ground Measured R_n
S	S 4	EC Approach $(EC_TP/SR_n)^4$	$\frac{RS}{R}$ Estimated R_n
s	85	EM Approach $(SR_n)^5$	<u>RS</u> Estimated R_n

1850

I

1851¹Hot pixel selected by matching the ground measured instantaneous LE (adjusted for closure error using the ground
measured R_n) at satellite overpass with the <u>footprint weighted averaged SEBAL LE</u>. SEBAL LE compared against
ground measured instantaneous LE (adjusted for closure error using the ground measured R_n) at satellite overpass.1853²Hot pixel selected by matching the ground measured instantaneous LE (adjusted for closure error using the ground measured for closure

1855 measured R_n) at satellite overpass with the <u>SEBAL LE at the tower pixel</u>. SEBAL LE compared against ground 1856 measured instantaneous LE (adjusted for closure error using the ground measured R_n) at satellite overpass.

1856measured instantaneous LE (adjusted for closure error using the ground measured R_n) at satellite overpass.1857³Hot pixel selected by the empirical approach without use of ground measurements. SEBAL LE is compared against

respectively interpreter approach <u>interpreter productive for ground measurements</u>, *SEDER 22* is compared against 1858 ground measured instantaneous *LE* (adjusted for closure error using the ground measured R_n) at satellite overpass.

1859 ⁴Hot pixel selected by matching the ground measured instantaneous *LE* (adjusted for closure error using the ground

1860 measured R_n) at satellite overpass with the <u>SEBAL *LE* at the tower pixel</u>. SEBAL *LE* compared against ground

1861 measured instantaneous *LE* (adjusted for closure error using the SEBAL estimated R_n) at satellite overpass.

1862 ⁵Hot pixel selected by the empirical approach <u>without use of ground measurements</u>. SEBAL *LE* is compared against ground measured instantaneous *LE* (adjusted for closure error using the SEBAL estimated R_n) at satellite overpass.

867 Table 4. Quantitative	measure	s for comp	arison of	<u>RS-based</u> in	nstantaneo	us and	daily net i	radiation	Deleted: SEBAL
estimates (S) versus ground measurements (G) using the EC and Empirical Approaches for									Deleted: \overline{S}
869 selection of hot and c870	cold pixe	ls.						,	Deleted: \overline{G}
Selection Cold and Hot Pixel	n	\overline{G}	\overline{S} 4	SD_G	SD_S	r ²	MAD	RMSD	Formatted: Font: Not Italic
		<u> </u>	<u>3</u> -	SD_G	305	1	MAD	KNISD	Formatted: Font: Not Italic
Instantaneous R _n	(-)	(W/m ²)	(W/m ²)	(W/m ²)	(W/m ²)	(-)	(W/m ²)	(W/m ²)	Field Code Changed
S1 - EC Approach (FP1)	25	654	569	86	90	0.56	88	105	Deleted: \overline{G}
S2 - EC Approach (TP ²)	25	654	571	86	89	0.56	87	103	Field Code Changed
S3 - Empirical Approach	25	654	559	86	88	0.56	97	113	Deleted: S ⁴
Daily R _n	(-)	(MJ/m ² /d)	(MJ/m ² /d)	(MJ/m²/d)	(MJ/m²/d)	(-)	(MJ/m²/d)	(MJ/m²/d)	Field Code Changed
S1/S2 - EC Approach ³	24	15.6	16.0	3.1	3.1	0.75	1.3	1.6	-2.9
S3 - Empirical Approach	24	15.6	15.9	3.1	3.0	0.69	1.3	1.8	-2.3

1871 1872 1873 1874 1875 1876 1877 ¹Cold and hot pixels were selected by matching the instantaneous *LE* measured at the EC tower with the footprint weighted averaged SEBAL instantaneous *LE*. ²Cold and hot pixels were selected by matching the instantaneous *LE* measured at the EC tower with the SEBAL instantaneous *LE* of the EC tower pixel. ³The daily R_n does not depend on the selection of the cold and hot pixels; both EC Approaches yield the same values. ⁴The SEBAL instantaneous R_n estimate (\overline{S}) was obtained by calculating the footprint weighted average for the instantaneous R_n ; the daily R_n

 (\overline{S}) was obtained as the average SEBAL daily R_n of the 25 pixels around the EC tower.

1878

1

Field Code Changed Deleted: \overline{S}

Deleted: \overline{S}

Field Code Changed

Vegetation	Albedo (-)		NDVI ¹ (-)		T-surface (degree K)		Instantaneous Net Radiation (W/m ²)			Daily Net Radiation (MJ/(m ² d))			N
	Veg	Bare	Veg	Bare	Veg	Bare	Veg	Bare	Ratio	Veg	Bare	Ratio	
Alfalfa	0.22	0.32	0.84	0.14	299	325	634	384	1.65	17.9	14.8	1.21	5
Alfalfa	0.21	0.31	0.80	0.24	301	322	627	408	1.54	18.1	15.1	1.20	2
saltcedar	0.16	0.32	0.65	0.14	302	326	670	379	1.77	19.8	14.8	1.34	5
saltcedar	0.14	0.31	0.49	0.24	308	322	657	408	1.61	20.6	15.1	1.36	2

Table 5. Selected instantaneous and daily net radiation fluxes and relevant parameters for
 adjacent clusters of vegetated and bare soil pixels on June 16, 2002.

I

1890 1 NDVI = Normalized Difference Vegetation Index, 2 N = number of pixels in each

Selection Cold and Hot Pixel	N^4	$\overline{\overline{G}}$	<u><u>S</u> <u>5</u></u>	SD_G	SD_S	r^2	MAD	RMSD	MF
Instantaneous G	(-)	(W/m ²)	(W/m ²)	(W/m ²)	(W/m ²)	(-)	(W/m ²)	(W/m ²)	%
EC Approach (FP ¹)	6	76	101	26	13	0.02	35	35	-32
EC Approach (TP ²)	6	76	101	26	13	0.02	35	35	-31
Empirical Approach	6	76	100	26	13	0.02	34	34	-30
Daily G	(-)	(MJ/m ² /d)	(MJ/m ² /d)	(MJ/m ² /d)	(MJ/m ² /d)	(-)	(MJ/m ² /d)	(MJ/m ² /d)	%
EC Approach ³	24	0.5	0.0	0.4	0.0	-	0.5	0.6	>1
Empirical Approach	24	0.5	0.0	0.4	0.0	-	0.5	0.6	>10

Deleted: SEBAL
Deleted: \overline{S}
Field Code Changed
Deleted: \overline{G}
Formatted: Font: Not Italic
Formatted: Font: Not Italic
Deleted: $\overline{\overline{G}}$
Field Code Changed
Deleted: \overline{S} ⁵
Field Code Changed

¹⁸⁹⁵ ¹Cold and hot pixels were selected by matching the instantaneous *LE* measured at the EC tower with the footprint weighted averaged SEBAL

1896 instantaneous LE.² Cold and hot pixels were selected by matching the instantaneous LE measured at the EC tower with the SEBAL instantaneous LE of

1897 the EC tower pixel. ³The daily soil heat flux does not depend on the selection of the cold and hot pixels; both EC Approaches yield the same values.

¹⁸⁹⁸ ⁴No instantaneous soil heat flux measurements were available in the Middle Rio Grande Basin.⁵ The <u>RS-based</u> instantaneous soil heat flux estimate (\overline{s})

1899 was obtained by calculating the footprint average for the instantaneous soil heat flux; the daily soil heat flux (\overline{s}) was obtained as the average SEBAL

1900 daily soil heat flux of the 25 pixels around the EC tow.

-	Deleted: SEBAL
۲	Deleted: \overline{S}
Υ	Field Code Changed
	Deleted: \overline{S}
Υ	Field Code Changed

1910	estimates	estimates (\overline{S}) versus ground measurements (\overline{G}) .										
	Scenario Selection Anchor		Comments	n	<u> </u>	<u><u>S</u> 2</u>	SD_G	SD_S	r ²	MAD	RMSD	MRD
		Pixel		()	(\mathbf{W}/m^2)	(\mathbf{W}/m^2)	(\mathbf{W}/m^2)	(\mathbf{W}/m^2)	()	(\mathbf{W}/m^2)	(\mathbf{W}/m^2)	0/

Table 7. Quantitative measures for comparison of SEBAL derived instantaneous sensible (H) and latent (LE) heat fluxes

Scenario	Deneetion Finehol	Comments			<u> </u>	<u></u>	-					
	Pixel					(W/m ²)	(W/m ²)	(W/m ²)	(-)	(W/m ²)	(W/m ²)	%
61	EC Approach (FP) ¹		Н	25	262	156	151	105	0.76	108	131	40.4
S1		- I	LE	25	299	314	174	170	0.90	39	57	-5.0
62			Н	25	262	138	151	91	0.81	126	147	47.2
S2	EC Approach (TP) ²	-	LE	25	299	333	174	162	0.85	56	74	-11.5
62		-	Н	25	262	171	151	77	0.64	111	135	35.0
S 3	EM Approach		LE	25	299	291	174	143	0.78	66	81	2.7
S4	EC Approach (TP) ³	SEBAL R _n replaces ground R _n ⁴	Н	25	209	207	112	114	0.83	36	46	0.8
54	EC Approach (TP) ³	SEBAL Kn replaces ground Kn	LE	25	262	258	171	170	0.92	39	48	1.7
0.5			Н	25	205	171	110	77	0.59	61	77	16.6
S5	5 EM Approach SEBAL R_n replaces ground R_n^5	LE	25	257	291	167	143	0.82	61	77	-13.2	

Deleted: \overline{S} **Field Code Changed** Deleted: GDeleted: \overline{G}_{6} Field Code Changed Deleted: \overline{S} 7 **Field Code Changed**

1911

1909

1912 ¹Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the footprint weighted averaged

1913 SEBAL flux.² Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the SEBAL flux of 1914

the tower pixel. ³ Anchor pixels were selected by matching the instantaneous LE at the satellite overpass measured at the EC tower and the SEBAL flux

1915 of the tower pixel. In S4, the SEBAL estimated R_n replaces the R_n measured on the ground for adjustment of the latent heat flux. ⁴ Instead of using the R_n

1916 measurements made on the ground, the SEBAL derived R_n in Scenario 2 is used for the determination of the ground measured energy balance and in

1917 adjusting the H and LE from the EC for closure error (using Bowen ratio).⁵ Instead of using the R_n measurements made on the ground, the SEBAL

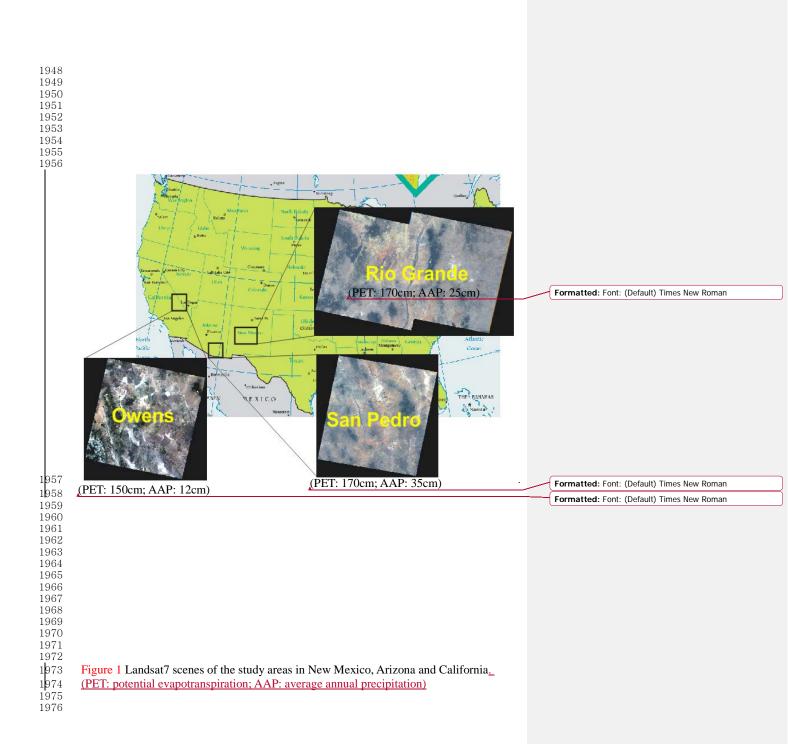
1918 derived R_n in Scenario 3 is used for the determination of the ground measured energy balance and in adjusting the H and LE from the EC for closure

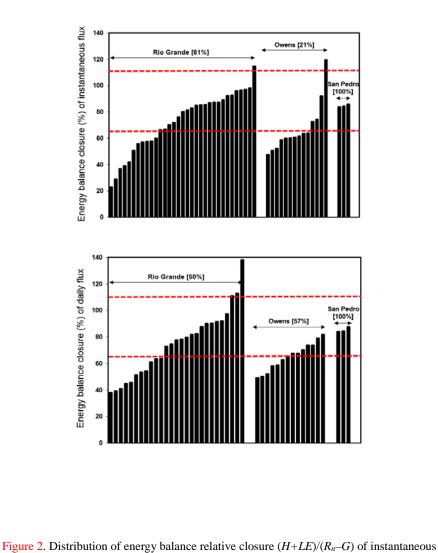
1919 error (using Bowen ratio). ⁶ The heat fluxes have been calculated from the EC measurements. Since no soil heat flux measurements were available for 1920 the Middle Rio Grande Basin, the SEBAL soil heat flux was used to establish the ground measured energy balance. ⁷ The SEBAL estimates of the

1921 instantaneous H and LE were obtained by calculating the footprint weighted averaged SEBAL heat fluxes.

rsils or	ound measurement			r			,		()		.,	tt fluxes estimates $(\underline{\overline{S}})$	Deleted: \overline{S}
isus gr	ound medsurement).										Field Code Changed
$F_{24} = 1$	0×EF _{inst}												Deleted: \overline{G}
1 24 - 1.	UNET inst											-	
Scenario	Selection Anchor Pixel		n	<u>G</u>	<u><u></u><u>S</u>²</u>	SD_G	SD_S	r ²	MAD	RMSD	MRD		Deleted: \overline{G}_{6}
			(-)	MJ/(m ² d)	MJ/(m ² d)	MJ/(m ² d)	MJ/(m ² d)	(-)	MJ/(m ² d)	MJ/(m ² d)	%	_	Field Code Changed
S 1	EC Approach (FP) ¹	Н	24	6.0	7.2	3.7	3.2	0.41	2.3	3.1	-19.4	-	Deleted: \overline{S}^{7}
		LE	24	9.1	8.9	4.4	4.9	0.78	1.7	2.2	2.9		Field Code Changed
S2	EC Approach (TP) ²	Н	24	6.0	6.9	3.7	3.3	0.32	2.6	3.3	-14.9		
		LE	24	9.1	9.1	4.4	5.0	0.72	2.2	2.6	0.0		
S 3	EM Approach	Н	24	6.0	7.6	3.7	2.7	0.37	2.6	3.3	-27.0		
		LE	24	9.1	8.3	4.4	4.2	0.69	1.9	2.6	8.9	_	
F 1	1												
$F_{24} = 1.$	1×EF _{inst}											_	
Scenario	Selection Anchor Pixel		n	<u> </u>	<u>_</u> <u>S</u> <u>7</u>	SD_G	SD s	\mathbf{r}^2	MAD	RMSD	MRD		Deleted: \overline{G} 6
			(-)	MJ/(m ² d)	MJ/(m ² d)	MJ/(m ² d)	MJ/(m ² d)	(-)	MJ/(m ² d)	MJ/(m ² d)	%		Field Code Changed
		Н	24	6.0	6.3	3.7	3.5	0.41	2.1	3.0	-5.6	-	Deleted: \overline{S} 7
				9.1	9.7	4.4	5.3	0.78	1.9	2.5	-6.3		Field Code Changed
S1	EC Approach (FP) ¹	LE	24	2.1					2.7	2.2			
		LE H	24 24	6.0	6.0	3.7	3.6	0.32	2.7	3.3	-0.8		
S1 S2	EC Approach (FP) ¹ EC Approach (TP) ²				6.0 10.0	3.7 4.4	3.6 5.4	0.32 0.71	2.7	3.3 3.0	-0.8 -9.3		
		Н	24	6.0									

1936 ¹Anchor pixels were selected by matching the instantaneous *LE* at the satellite overpass measured at the EC tower and the footprint weighted averaged

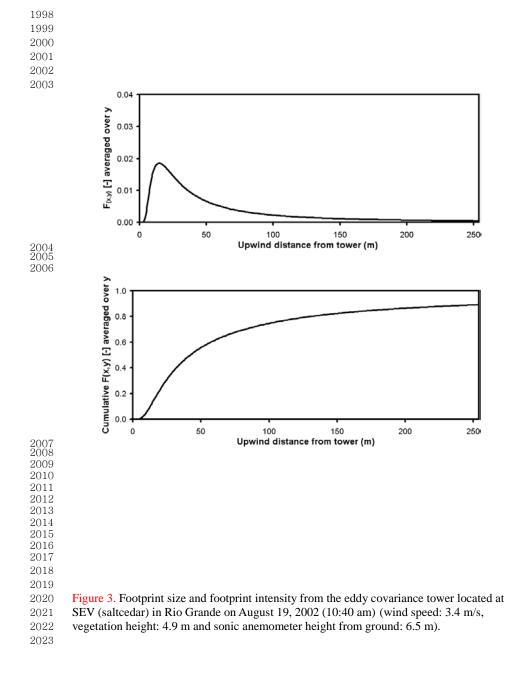

1937 SEBAL flux.² Anchor pixels were selected by matching the instantaneous *LE* at the satellite overpass measured at the EC tower and the SEBAL flux of

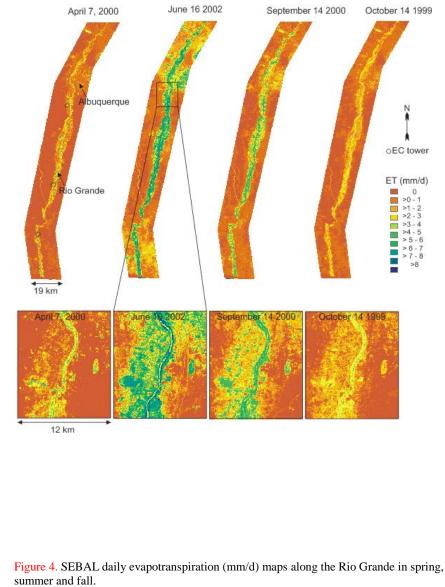

1938 the tower pixel. ⁵ Instead of using the R_n measurements made on the ground, the SEBAL derived R_n in Scenario 3 is used for the determination of the

1939 ground measured energy balance. ⁶ The heat fluxes have been calculated from the EC measurements. Since no soil heat flux measurements were

1940 available for the Middle Rio Grande Basin, the SEBAL soil heat flux was used to establish the ground measured energy balance.⁷ The SEBAL estimates

1941 of the instantaneous *H* and *LE* were obtained by calculating the footprint weighted averaged SEBAL heat fluxes.





(top panel) and total daily (bottom panel) fluxes from eddy covariance towers. Each 'bar' represents a satellite overpass day. The dotted lines show criteria of acceptable closure

[65 and 110 %] and percentage of the data having acceptable closure is shown in bracket.

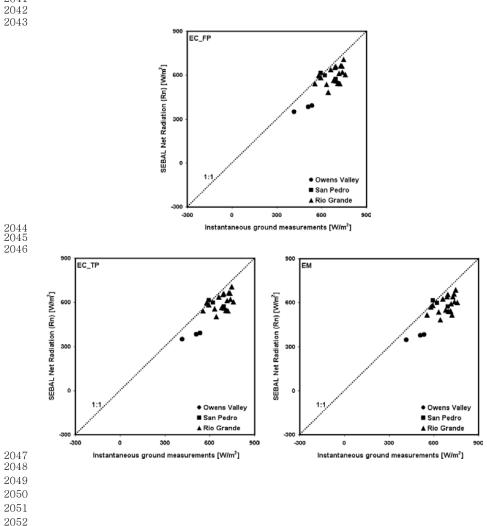
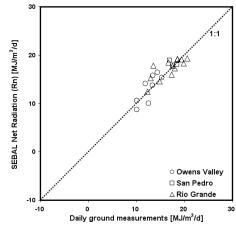
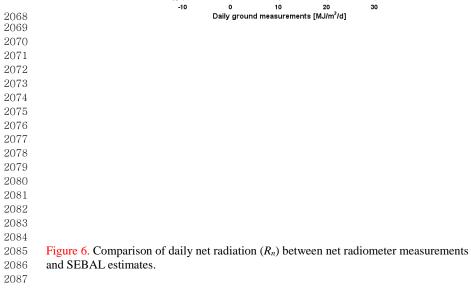
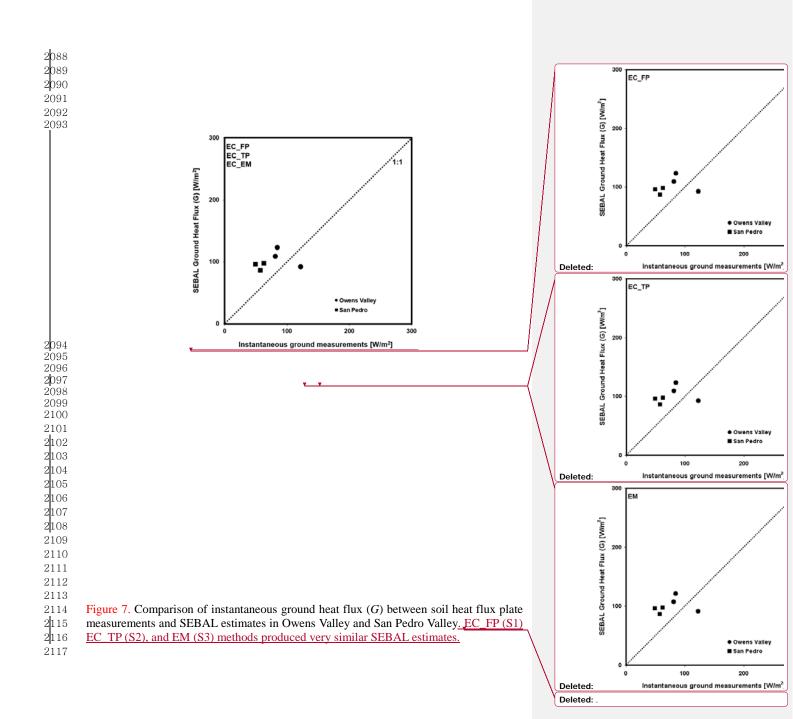





Figure 5. Comparison of instantaneous net radiation (R_n) between net radiometer 2053 2054 measurements and SEBAL estimates. (EC_FP (S1) method selected anchor pixels to 2055 match fluxes of the ground measured instantaneous LE (adjusted for closure error) at the 2056 satellite overpass and the footprint weight averaged SEBAL LE. EC_TP (S2) method 2057 selected anchor pixels to match fluxes of the ground measured instantaneous LE and the 2058 flux of the tower pixel. EM (S3) method selected the anchor pixels with the 2059 hydrogeological features of the landscape and micrometeorological considerations.

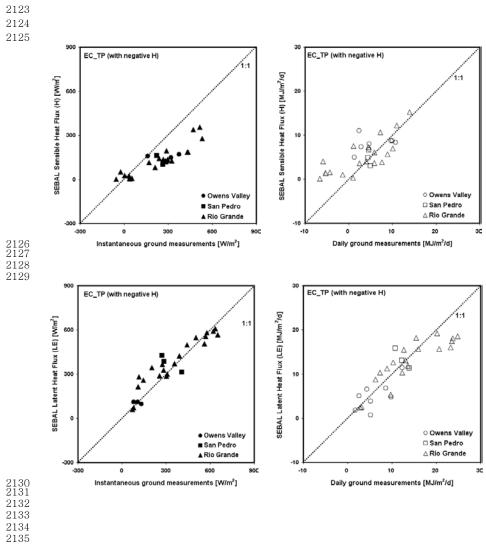


Figure 8. Comparison of sensible (H) and latent heat (LE) fluxes between adjusted eddy covariance tower measurements (with negative H data points) and SEBAL estimates from scenario S2 (EC_TP).

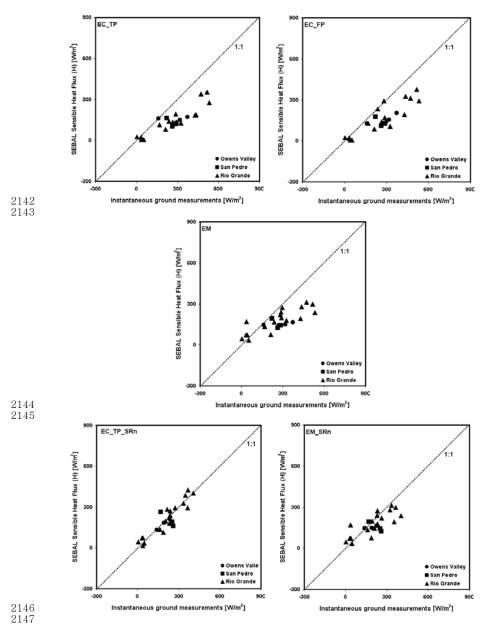


Figure 9. Comparison of instantaneous sensible heat flux (*H*) between adjusted eddy covariance tower measurements and SEBAL estimates for scenarios S1–S5.

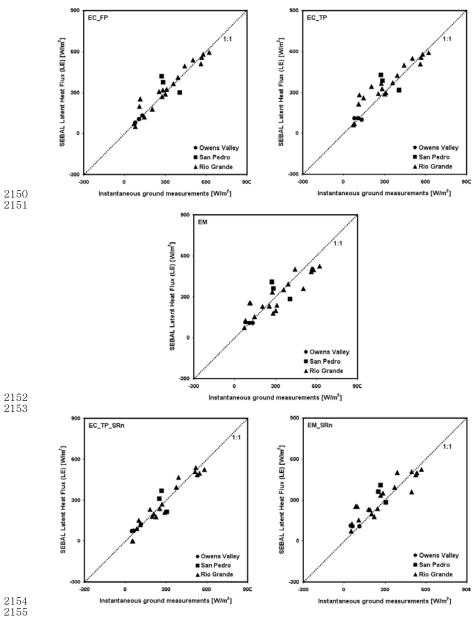
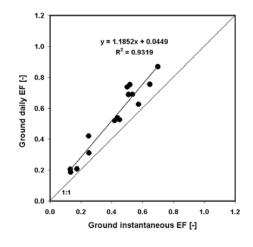
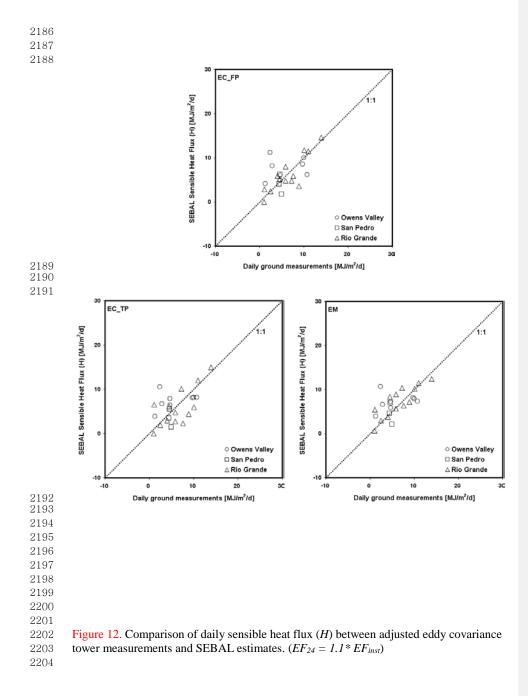
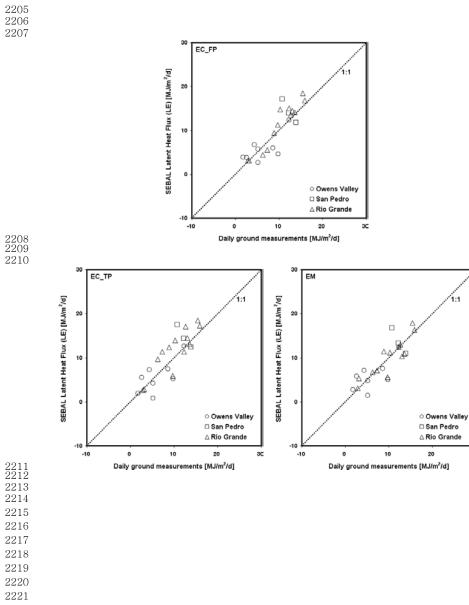
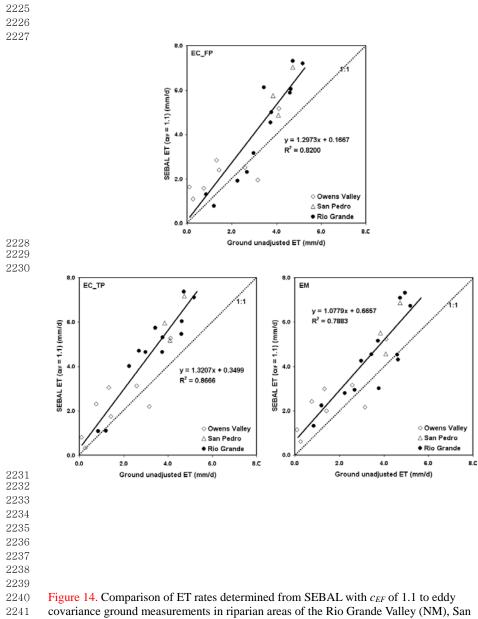
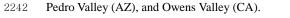


Figure 10. Comparison of instantaneous latent heat flux (LE) between adjusted eddy 2157 2158 covariance tower measurements and SEBAL estimates for scenarios S1-S5.




Figure 11. Comparison of satellite overpass instantaneous evaporative fraction (*EF*) with
 daytime average measured on the ground.

2222Figure 13. Comparison of daily latent heat flux (*LE*) between adjusted eddy covariance2223tower measurements and SEBAL estimates. ($EF_{24} = 1.1 * EF_{inst}$)

