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Comment: The work presented by Raleigh et al. investigates the impact of uncer-
tainty in individual meteorological forcing variables on simulation of snow processes at
selected sites using the Utah Energy Balance (UEB) model. The manuscript investi-
gates how different error distributions and magnitudes can impact quality of simulations
of key snow variables by using the Sobol’ sensitivity analysis methodology. The num-
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ber of model simulations needed for individual sites/experiments varies approximately
between 70,000 and 130,000. The authors found that model outputs were generally
more sensitive to systematic biases in forcing in comparison to random error. In addi-
tion, simulations indicated that model was more sensitive to the magnitude of forcing
rather than the distribution of errors.

I particularly like the manuscript and I think it should be accepted for publication after
minor revisions (see my comments below). This is a good example of model diag-
nostics employed in a relevant context (understanding impacts of forcing uncertainty).
We usually focus on uncertainty in parameters, but forcing can play a significant role
(especially with such models where both local in-situ and global gridded forcing data
are commonly available). The large number of model simulation does not concern me
because (1) evaluating the total number of simulations without actual simulation time
is somewhat meaningless (how long does it take to run a single year simulation in this
model?), and (2) the authors are clearly using such approach to diagnose model uncer-
tainty in detail and recognize that there are more simple approaches that can be used
but the emphasis here is on the benefits of using Sobol’. Finally, the manuscript is well
written, it explains the strategy very well and includes very good tables and figures.

Response: We thank you for your positive and constructive feedback.

General Comments:

Comment: [1] Section 2: If the goal was to understand impact of forcing uncertainty on
simulations, I do not understand why precipitation adjustments (due to wind conditions)
were employed prior to the simulation? It would have been interesting to see the overall
results related to precipitation. I suspect that would increase uncertainty even more.

Response: The underlying assumption made here is that the original precipitation data
had an unresolved bias prior to the simulations. We wished to begin the sensitivity
analysis with reasonably realistic simulations of the observed snowpack, and hence
made these precipitation adjustments. We argue that this is not problematic because
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we do not compare the sensitivity analysis SWE simulations to the observed SWE.

Comment: [2] Section 3.1: Very good explanation of why such metrics were used.
Other studies should follow this example when listing metrics used in their experiments.

Response: Thank you.

Comment: [3] Section 3.3.2: The Sobol’ method assumes factors are independent
from each other. Can you safely assume that for each forcing data analyzed (e.g., Tair
and RH)?

Response: Thank you for making this excellent point. You are correct that in reality a
bias in Tair will induce a bias (of the opposite sign) in RH. To avoid this issue, we could
have constructed the analysis such that we considered errors in Tair and the vapor
pressure, but did not do this for simplicity and for general applicability (given that many
datasets report RH and not vapor pressure).

Manuscript Revisions: We now state in section 3.3.2: “A key assumption to the Sobol’
approach is that the factors are independent; hence, our analysis does not consider the
case of when specific error types are correlated (e.g., a positive measurement bias in
Tair that propagates a negative bias to RH).”

Comment: [4] Section 4.2: Could the fact that Qli bias was found to be the most
important factor (given its low error magnitudes compared to Qsi) indicate some struc-
tural limitation in radiation partitioning parameterization in the model (longwave versus
shortwave radiation)?

Response: We think that the relative importance of Qsi errors is less than that of Qli
errors because the high albedo of snow minimizes how much energy Qsi transfers to
the snowpack.

Manuscript Revisions: We now note this in Section 4.2: “In one sense, this was
surprising, given that the bias magnitudes were lower for Qli than for Qsi (Table 3).
However, the albedo of snow minimizes the amount of energy transmitted to the snow-
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pack from Qsi, thereby rendering Qsi errors less important that Qli errors. Additionally,
the non-linear nature of the model may enhance the role of Qli through interactions
with other factors.”

Comment: [5] Section 5: I particularly like the discussion on limitation of the analyses
described by the authors.

Response: We appreciate that you liked this discussion.

Comment: [6] Table 2: What is the limitation of fixed ground heat flux? Isn’t it cal-
culated in the model? In addition, I imagine that setting it to zero all the time could
potentially be problematic.

Response: The snow model provides an option for turning off the ground heat flux.
Because ground heat flux typically has a small contribution to the energy balance, it is
assumed negligible in some snow modeling applications (e.g., Essery, 1997; Jepsen
et al., 2012; Letsinger and Olyphant, 2007), and we chose to mimic those approahces.
This indeed would be problematic for calculating the energy balance during snow-free
periods and in areas with intermittent snowpacks, however, the focus of the study was
on the snow-covered periods (minimum continuous duration of 15 days, as stated in
section 3.3.5).

Comment: [7] Figures 1 and 2: Excellent figures explaining/summarizing the method-
ology employed in the study.

Response: Thank you.

Comment: [8] Figure 5: Have the authors looked at relationships between certain site
characteristics and the magnitude of sensitivity from each factor. For instance, Figures
5 and 7 show an interesting relationship between site elevation/latitude with precipi-
tation forcing for snow disappearance (third column in both figures). Given the site
arrangements in the figure, both cases show an increase in sensitivity with elevation
(and consequently decrease with latitude). With respect to precipitation and elevation,
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this can show the difficulties of measuring precipitation according to elevation (espe-
cially given the fact that most continuous weather monitoring networks are placed in
low/mid-elevation locations). I wonder if there could be other relationships the authors
can investigate to see more of those relationships. I see this as a good additional
exercise to understand forcing uncertainty and model diagnostics.

Response: We had not considered this relationship before and thank you for making
this suggestion. While this is worthy of further attention, we are hesitant to generalize
relationships between site geo-characteristics and sensitivities indices because of the
relatively low number of sites represented (n=4 sites, 1 year each) and the confounding
number of differences between our sites (e.g., snow climate, latitude, elevation, wind
exposure/sheltering, etc.). We would require a much larger population of snow mea-
surement sites in order to more robustly test relationships between sensitivity indices
and site characteristics such as elevation and latitude. A successful example of relat-
ing climate characteristics to sensitivity can be found in van Werkhoven et al. (2008),
which had 12 sites and 39 years each, making it possible to explore inter-site and inter-
annual variations in climate and linkages to model sensitivity. We now emphasize in
Section 2 that we selected the four sites to check for climate dependencies, but are
unable to generalize the results due to the low sample size.

Manuscript Revisions: We now emphasize in Section 2 that we selected the four
sites to check for climate dependencies, but are unable to generalize the results due
to the low sample size. We note in the discussion however, that there are common
results that emerge across all sites, such as the dominance of precipitation bias on
SWE, ablation rates and snow disappearance (NB scenario) and longwave bias on all
four outputs (NBlab scenario). This suggests that there may be common features in
model sensitivity to forcing errors across distinct climates.
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