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Abstract6

Nuclear Magnetic Resonance (NMR) relaxometry measurements are commonly used to7

characterize the storage and transport properties of water-saturated rocks. These assessments8

are based on the proportionality of NMR initial signal amplitude and relaxation time to9

porosity (water content) and pore size, respectively. Herein, pore shapes are usually assumed10

to be spherical or cylindrical. However, the NMR response at partial water saturation for11

natural sediments and rocks may differ strongly from the responses calculated for spherical or12

cylindrical pores, because these pore shapes cannot account for water menisci remaining in13

the corners of de-saturated angular pores. Therefore, we consider a bundle of pores with14

triangular cross-sections. We introduce analytical solutions of the NMR equations at partial15

saturation of these pores, which account for water menisci of de-saturated pores. After16

developing equations that describe the water distribution inside the pores, we calculate the17

NMR response at partial saturation for imbibition and drainage based on the deduced water18

distributions.19

For this pore model, NMR amplitude and NMR relaxation time at partial water saturation20

strongly depend on pore shape even so the NMR relaxation time at full saturation only21

depends on the surface to volume ratio of the pore. The pore-shape-dependence at partial22

saturation arises from the pore shape and capillary pressure dependent water distribution in23

pores with triangular cross-sections. Moreover, we show the qualitative agreement of the24



saturation dependent relaxation time distributions of our model with those observed for rocks25

and soils.26



1 Introduction27

Understanding multi-phase flow processes in porous rocks and soils is vital for addressing28

a number of problems in geosciences such as oil and gas recovery or vadose zone processes,29

which influence groundwater recharge and evaporation. Effective permeability, which is30

defined as the permeability of a fluid in presence of another fluid, is the decisive parameter31

for fluid transport, and depends on fluid saturation, wetting condition, and pore structure. In32

addition, saturation history influences the fluid content and the effective permeability (for a33

specific pressure), which are different for imbibition and drainage.34

A method considered suitable for determining water content of rocks non-invasively is35

nuclear magnetic resonance (NMR), because the NMR initial signal amplitudes are directly36

proportional to the hydrogen content in the pore space, and the NMR relaxation times are37

linked to the size of the water-containing pores in the rock. In a two-phase system of water38

and air only the water contributes to the NMR signal response. Therefore, NMR is widely39

used for estimating transport and storage properties of rocks and sediments (Kenyon, 1997;40

Seevers 1966; Fleury et al., 2001; Arnold et al., 2006).41

In recent years, several researchers have studied the relationship between NMR and42

multiphase flow behavior on the pore scale to better understand and infer the storage and43

transport properties of partially saturated rocks or sediments (e.g., Chen et al., 1994; Liaw et44

al. 1996; Ioannidis et al., 2006; Jia et al., 2007; Al-Mahrooqi et al., 2006; Costabel and45

Yaramanci, 2011, 2013; Talabi et al., 2009). As an extension of this research, we study the46

relationship between the water distribution inside the pores of a partially saturated rock and47

the system’s NMR response by using bundles of pore with triangular cross-sections. While48

Al-Mahrooqi et al. (2006) used a similar modeling approach to infer the wettability properties49

in oil-water systems, this study investigates the evolution of the NMR relaxation-time spectra50

during drainage and imbibition. For this purpose, we consider a capillary pore ensemble that51



is partially saturated with water and air. Traditionally, the pores within this ensemble are52

assumed to have a cylindrical geometry. Depending on pressure, cylindrical capillaries are53

either water- or air-filled and thus they either contribute to an NMR response or they do not.54

Consequently, the NMR relaxation times of partially water-saturated capillary pore bundles55

always remain subsets of the fully saturated system’s relaxation-time distribution, i.e., they56

are a function inside the envelope of the distribution curve at full saturation (see Fig. 1).57

However, in porous rocks, which are formed by the aggregation of grains, the pore geometry58

is usually more complex (Lenormand et al., 1983; Ransohoff and Radke, 1987; Dong and59

Chatzis, 1995) and may exhibit angular and slit-shaped pore cross-sections rather than60

cylindrical capillaries or spheres (Fig. 2a). For example, in tight gas reservoir rocks Desbois61

et al. (2011) found three types of pore shapes that are controlled by the organization of clay62

sheet aggregates: i) elongated or slit-shaped, ii) triangular, and iii) multi-angular cross-63

sections. The relaxation-time distribution functions derived from NMR measurements for64

such partially saturated rocks are frequently found to be shifted towards shorter relaxation65

times outside the original envelope observed for a fully saturated sample, (Fig. 2b) (e.g.,66

Applied Reservoir Technology Ltd., 1996; Bird,et al., 2005; ; Jaeger et al., 2009; Jorand et67

al., 2010; Stingaciu, 2010a,b; Costabel, 2011).68

In angular pores, water will remain trapped inside the pore corners even if the gas entry69

pressure is exceeded. Standard NMR pore models that assume cylindrical or spherical pore-70

ensembles (e.g., Kenyon, 1997), however, do not account for such residual water (Blunt et71

al., 2002; Tuller et al., 1999; Or and Tuller, 2000; Tuller and Or, 2001; Thern, 2014). To72

overcome this limitation, we adopt a NMR modeling approach initially proposed and73

discussed by Costabel (2011) and present numerical simulations and analytical solutions of74

the NMR equations for partially saturated pores with triangular cross-sections to quantify75

NMR signal amplitudes and relaxation times. The NMR response of a triangular capillary76



during drainage and imbibition depends on the water distribution inside the capillary, which77

is subject to pore shape and capillary pressure. Thus, in the next chapter we present the78

relationship between capillary pressure and water distribution inside cylindrical and79

triangular pore geometries during drainage and imbibition. For this purpose, the reduced80

similar geometry concept introduced by Mason and Marrow (1991) is used. Subsequently,81

based on the spatial water distribution, an analytical solution of the NMR diffusion equation82

(Torrey, 1956; Brownstein and Tarr, 1979) for partially saturated triangular capillaries is83

derived and tested by numerical simulations (Mohnke and Klitzsch, 2010). The derived84

equations are used to study the influence of pore size distribution and pore shape of triangular85

capillaries on the NMR response, in particular considering the effects of trapped water.86

Finally, an approach for simulating NMR signals during imbibition and drainage of triangular87

pore capillaries is introduced and demonstrated using synthetic pore size distributions.88

89

2 Results and discussion90

2.1 Water distribution during drainage and imbibition in a partially saturated91

triangular tube92

In a partially saturated pore space, a curved liquid-vapor interface called the arc meniscus93

(AM) arises due to the pore’s capillary forces. In addition, adsorptive forces between water94

and matrix lead to the formation of a thin water film at the rock-air interface. Such water95

films with a thickness typically below 20 nm (e.g., Toledo et al., 1990; Tokunaga and Wan,96

1997) exhibit very short NMR relaxation times. Although water films to some extent may97

influence transport properties and water distribution of a partially saturated porous system98

(Tuller and Or, 2001), the contribution of the film volume to NMR amplitudes is very small99

with respect to the NMR signal amplitudes arising from the water trapped in the menisci, i.e.,100

ܸ୧୪୫ ≪ ୫ܸ ୬ୣ୧ୱୡ୳ୱ. Therefore, for sake of simplicity, we neglect water films in his study.101



In the following discussion, we consider a triangular capillary, initially filled with a102

perfectly wetting liquid, i.e., contact angle ߠ = 0°, which exhibits a constant interfacial103

tension ߪ ୟ୧୰ିߪ) ୵ ୟ୲ୣ ୰ = 73 × 10ିଷ Nm-1 at 20°C) and is under the assumption that gravity104

forces are weak and therefore can be neglected. The two-phase capillary entry pressure as105

derived by the MS-P method (Mayer and Stowe, 1965; Princen, 1969a, b, 1970) can be106

expressed by the Young-Laplace equation:107

ୡ =
ߠcosߪ

ݎ
=

ߪ

ݎ
, (1)

where ݎ �is the radius of the interface arc meniscus and ୡ is the minimum pressure108

difference necessary for a non-wetting phase, i.e., air, to invade a uniformly wetted (tri-)109

angular tube filled with a denser phase, i.e., water (see Fig. 3a). Upon consideration of a110

pressure difference < ,ୡ the non-wetting phase will begin to enter the pore and occupy the111

central portion of the triangle, whereas – separated by the three interface arc menisci of radius112

ݎ – the wetting fluid remains in the pore corners (Fig. 3a).113

From an original triangle ,�ܥܤܣ a new smaller triangle ′ܥ′ܤ′ܣ of similar geometry with an114

inscribed circle of radius =ᇱݎ ݎ < ܴ can be constructed by means of the reduced similar115

geometry concept as introduced by Mason and Morrow (1991) (Fig. 3b). To account for116

different transport mechanisms during imbibition and drainage of the denser wetting phase,117

Mason and Morrow (1991) introduced two different principal displacement curvatures with118

radii rI and rD, respectively.119

During imbibition of a (tri-)angular pore, the radius of curvature ݎ �increases until the120

separate arc menisci of the corners touch and the pore fills spontaneously (“snap off”). The121

critical radius of curvature ,�ݎ୍ which is equal to the radius of the pore’s inscribing circle, for122

the angular pore at “snap-off” pressure pI is then given by123

ݎ୍ =
ܣ2

ܲ
, (2)



124

According to Eq. 2, the snap-off pressure depends on the geometry of the triangle only,125

i.e., on its cross-sectional area A and perimeter P. In contrast, during drainage the threshold126

radius of curvature ୈݎ = ݎ �, at which the center of the fully saturated angular capillary127

spontaneously empties as a non-wetting fluid phase invades the pore, is given by128

ୈݎ = ܲቈ
1

ܩ2
+ ቀ

ߨ

ܩ
ቁ
ଵ/ଶ



ିଵ

, (3)

with ୈݎ� < ݎ୍ and drainage threshold pressure ୈ > ୍ . The dimensionless and size-129

independent factor ܩ =


మ
ቀ=

ᇲ

ᇲమ
ቁreflects the shape of the triangle depending on its cross-130

sectional area A and perimeter P ᇱand�ܲܣ) ′ refer to the reduced triangle), i.e., from near-slit-131

shape (limஓ→ܩ = 0) to equilateral shape ܩ) = 0.048). A detailed derivation of Eqs. 2 and 3132

as a consequence of hysteresis between drainage and imbibition can be found in Mason and133

Morrow (1991).134

Note, that the permeability of a porous system of such triangular capillaries is strongly135

influenced by the shape factor G. For single-phase laminar flow in a triangular tube the136

hydraulic conductance g is given by the Hagen-Poiseuille formula137

݃ = ݇
ܩଶܣ

ߤ

(4)

with the cross-sectional area A, the shape factor G, the fluid viscosity µ, and k being a138

constant accounting for the geometrical shape of the cross-section, e.g. ݇= 0.5 for circular139

tubes and ݇= 0.6 for a tube with a cross-section of an equilateral triangle (Patzek and Silin,140

2001). The hydraulic conductance of an irregular triangle is closely approximated by141

equation 1 using the same constant ݇ as for an equilateral triangle (Øren et al., 1998). Thus,142



for a constant cross-sectional area the hydraulic conductance ݃ of the pore is proportional to143

its shape factor G.144

Combining Eqs. 1–3 with the concept of reduced similar geometry discussed above, the145

degree of water saturation (Sw) inside a single triangular tube with cross-sectional area A0,146

perimeter P0, and radius R0 of its inscribing circle at a given capillary pressure pc during147

imbibition and drainage can be calculated according to148

149

୵ܵ
,ܣ,)୍ ܲ) =

⎩
⎨

⎧ 1 , ≥ୡ ୍ (ܴ ≤ (ݎ୍

∆ܣ (pୡ)

ܣ
, ୡ > ୍ (ܴ > (ݎ୍

(imbibition) (5)

150

୵ܵ
ୈ(ୡ,ܣ, ܲ) =

⎩
⎨

⎧ 1 , ୡ < ୈ (ܴ < (ୈݎ

∆ܣ (ୡ)

ܣ
, ≤ୡ ୈ (ܴ ≥ (ୈݎ

(drainage) (6)

151

The total area ∆ܣ of the triangular tube’s water retaining corners, ଵ,ଶ,ଷߛ (i.e., the gray152

areas in Figs. 4 and 5) is expressed by153

∆ܣ (pୡ) =  (ୡ)ఊܣ

ଷ

ୀଵ

, (7a)

where154

γܣ
(pୡ) = ቌ

1

tan
୧ߛ
2

−
−ߨ) (୧ߛ

2
ቍ ݎ

ଶ (ୡ) , 0 < >୧ߛ ߨ (7b)

is the area of the triangle’s ith water-filled corner (Tuller and Or, 1999). Consequently, the155

total effective area ∆ܣ still occupied by water is equal to the difference between the (reduced)156

triangular pore area ሚandܣ the area ݎߨ �
ଶ of its respective inscribing circle (see Fig. 3). Above157



equations can be simplified to ∆ܣ = ൫3√3 − ݎ��൯ߨ
ଶ (ୡ) when considering equilateral158

triangles, i.e., ଵ,ଶ,ଷߛ =
గ

ଷ
. The radius ݎ (ୡ) of the reduced triangle’s arc meniscus can be159

directly calculated from Eq. 1. Calculated pressure-dependent water and gas distributions160

during imbibition and drainage for an equilateral and arbitrary triangular capillary are shown161

in Figs. 4a and 5a. The corresponding water retention curves plotted in Figs. 4b and 5b162

illustrate the resulting hysteresis behavior of the partially saturated system and can be163

subdivided into three parts: at low capillary pressures, i.e., ୡ < ୍ , the pore always remains164

fully water-saturated. For the interval ୍ < ≥ୡ ୈ , two separate behaviors are observed:165

during imbibition, the water content gradually increases with increasing capillary pressure,166

while during drainage the pore still remains fully saturated. For pressure levels ≤ୡ ୈ , both167

drainage as well as imbibition exhibit the same gradual decrease of water saturation.168

In the following section, analytical solutions for respective NMR responses that arise169

from partially saturated arbitrary triangular tubes are derived and validated with numerical170

simulations of the NMR diffusion equations.171

172

2.2 NMR response for triangular capillaries173

NMR relaxometry is commonly employed for petrophysical investigations of saturated174

porous rocks in well-logging and laboratory studies. In this respect, the NMR method is a175

unique geophysical tool, which delivers direct information about the water content and allows176

to infer the pore-size distribution in rock samples or the subsurface. The measured NMR177

relaxation signal M(t) is constituted by superposition of all signal-contributing pores in a rock178

sample (e.g., Coates et al., 1999; Dunn et al., 2002):179

ܯ (ݐ)

ܯ
=

1

ܸ
 ൬ݒ୧× ቀ1 − e୲∙ ,భ

షభ
ቁ൰

ே



, (8)



where M0 and V0 are the equilibrium magnetization and total volume of the pore system,180

respectively. The saturated volume of the ith pore and its corresponding longitudinal181

relaxation constant are given by vi and Ti,1, respectively.182

Following derivations of Brownstein and Tarr (1979), the inverse of the longitudinal183

relaxation time T1 is linearly proportional to the surface-to-volume ratio of a pore according184

to185

ଵܶ
ିଵ = ଵܶ

ିଵ + ௦ߩ
ୟܵ

ܸ
, (9)

where T1B is the bulk relaxation time of the free fluid and ௦ߩ is the surface relaxivity, a186

measure of how quickly protons lose their magnetization due to magnetic interactions at the187

fluid-solid interface, which can be attributed to paramagnetic ions at mineral grain surfaces. V188

and Sa are the pore’s volume and active surface boundaries, respectively. In this context, an189

active boundary refers to an interfacial area, i.e., the pore wall, where <ߩ 0 and, thus,190

enhanced NMR relaxation will occur as the molecules diffuse at the pore walls. This model,191

however, is based on the general assumption of a relaxation regime that is dominated by192

surface relaxation processes (fast diffusion), i.e., the fluid molecules move sufficiently fast193

and thus explore all parts of the pore volume with respect to the time scale (~T1) of the194

experiment.195

Upon consideration of a long (triangular) capillary, its surface-to-volume-ratio equals its196

perimeter-to-cross-section-ratio, i.e., /ܸܵ = .ܣ/ܲ Consequently, Eq. 9 can be written as197

ଵܶ
ିଵ = ଵܶ

ିଵ + ߩ
ܲ

ܣ
, (10)

where P0 is the saturated tube’s (active) perimeter and A0 its cross-sectional area for a circular198

cross-section,
బ

బ
=

ଶ

బ
, with r0 being the capillary radius. Hence, the relaxation rate of a fully199

saturated arbitrary triangular pore ABC can be expressed in terms of its shape factor G and200

perimeter ܲ:201



ଵܶ
ିଵ = ଵܶ

ିଵ +
ߩ

ܩ ܲ
൬= ଵܶ

ିଵ + ߩ
ܮ + େܮ + େܮ
(ߛ)େsinܮܮ

൰ , (11)

where LAB, LBC, and LAC are the lengths of a triangle’s sides and A is the angle at corner A202

(see Fig. 3). As illustrated in Fig. 6, the relaxation times of a fully saturated pore decrease203

with decreasing pore shape factor G – and thus, decreasing hydraulic conductance – and204

increasing pore perimeter P. By reducing one angle from 60° to 0° while fixing another at205

60°, we increase ܣ/ܲ for a constant cross-sectional area .ܣ In the special case of an206

equilateral triangular capillary, i.e., ܲ/ܣ =
ଵଶ

√ଷ�బ
, Eq. 11 can be simplified to207

208

ଵܶ
ିଵ = ଵܶ

ିଵ + ߩ
12

√3 L
. (12)

Now we consider the previously discussed water-air system of a partially saturated209

equilateral triangular capillary. Here, the NMR signal will originate from the water retained210

at the corners. Replacing A0 in Eq. 10 with an effective area ஓܣ orܣ� as derived by Eqs. (7a)211

and b, respectively. ܣ reflects the actual pore fraction that contributes to the NMR signal,212

i.e., the portion of the pore area A0 that still remains occupied by water.213

Supposing the air-water interface to be a passive boundary with respect to NMR surface214

relaxivity, i.e., =ߩ 0, the effective active boundary is exclusively controlled by the pore wall215

segments <ߩ) 0) in contact with water (wetting phase) (Fig. 7). Thus, the active perimeter of216

such a partially saturated triangular capillary is equal to its pressure-dependent reduced217

triangle’s perimeter, ܲ
ᇱቀݎ ,୍ୈ(ୡ)ቁ, according to218

with219

∆ܲ =  γܲ

ேୀଷ

ୀଵ

, (13)



ஓܲ
= 2

ݎ (ୡ)

tan
୧ߛ
2

, 0 < >୧ߛ ߨ (14)

being the perimeter of the ith water-filled corner. Consequently, the NMR relaxation rates220

and NMR signal (amplitude) evolution during drainage and imbibition of a single equilateral221

triangular capillary can be expressed by222

223

ܶ,ଵ
ିଵ =

⎩
⎪
⎨

⎪
⎧ ଵܶ

ିଵ + ߩ
ܲ

ܣ
, ୵ܵ

,୍ୈ = 1

ଵܶ
ିଵ + ߩ ܲ

,୍ୈ(ୡ,ܣ, ܲ)

ܣ
,୍ୈ(ୡ,ܣ, ܲ)

, ୵ܵ
,୍ୈ < 1

(15)

and224

݉ (ݐ)

݉ 
= ୵ܵ

,୍ୈ(ୡ,ܣ, ܲ)ቆ1 − e
ି୲
 ,భቇ , (16)

respectively. Illustrated in Fig. 8 is the pressure-dependent water distribution inside a single225

equilateral triangular capillary (with a side length of (mߤ�1 during drainage (a) and226

corresponding evolution of longitudinal magnetization (b). As the water saturation is reduced227

with increasing pressure, both NMR amplitudes and relaxation times (c) decrease. Note that228

only a single characteristic relaxation time at each saturation degree is observed, since each229

corner has the same ஓܲ/ܣஓ, and consequently the same ଵܶ value.230

In contrast, each water-filled corner of a partially saturated non-equilateral triangle, i.e.,231

ଵߛ ≠ ଶߛ ≠ ,ଷߛ can have a different ஓܲ/ܣஓ ratio, and thus will show a different relaxation time232

and amplitude. As a result, depending on its individual shape, even a single partially saturated233

pore exhibits a multi-exponential NMR relaxation behavior based on Eq. (8) according to234

݉ (ݐ)

݉ 
=

1

ܣ
 ஓܣ

,୍ୈ ቆ1 − e
ି୲
ಋ,భቇ

ேୀଷ

ୀଵ

, (17)



with ஓܶ,భ
=

ଵ

்భా
+ ߩ

ಋ
ಋ

and
ಋ
,ీ

బ
being the characteristic relaxation time and amplitude235

contribution of the ith corner of the triangle, respectively. Figure 9 exemplifies such different236

multi-exponential relaxation behavior for a pore with a right triangle geometry with angles of237

ଵߛ) = 30°, ଶߛ = ଷߛ,60° = 90°) and the same cross-sectional area as the equilateral pores in238

Fig. 8 (i.e., ~ NMR porosity).239

To test the analytical (fast diffusion) models for partially saturated triangular capillaries240

derived above, the calculated longitudinal NMR relaxation times and amplitudes are241

compared to solutions obtained from 2D numerical simulations of the general NMR diffusion242

equation (Mohnke and Klitzsch, 2010):243

݉̇ = ൬D∇ଶ−
1

ܶ
൰݉ , (18)

with normalized initial values ݉ =ݐ,࢘) 0) =
ெబୀଵ


and boundary conditions244

݉∇ܦ ቚ


= ୱ݉ߩ ቚ


, (19)

where m is the magnetization density, D the diffusion coefficient of water, TB the bulk245

relaxation time, ୱߩ the interface’s surface relaxivity, n the outward normal, and A and P the246

pore’s cross-sectional area and perimeter, respectively. The above equations were solved247

numerically using finite elements (Mohnke and Klitzsch, 2010) to simulate the respective248

NMR relaxation data of the studied triangular geometries.249

As shown in Fig. 10, analytically (+) calculated NMR relaxation data for drainage and250

imbibition for an equilateral triangular pore are in a very good agreement (ܴଶ > 0.99) with251

data obtained from numerical simulations (o).252

The model was also validated for pores with arbitrary angles. Figure 11 illustrates 2D253

finite elements simulations using saturated pore corners with angles ୧rangingߛ from 5° to254

175° with equal active surface-to-volume ratios ஓܲ
ஓܣ/ = ݊ܿ .ݐݏ and thus ଵܶ,୧= ݊ܿ .ݐݏ The255



simulations were compiled and compared to their respective analytical solutions. The ratios256

of the numerical to the analytical model results for NMR amplitudes, i.e., NMR signal257

amplitudes, ,ஓܣ and relaxation times, ଵܶ,ஓ as function of corner aperture ߛ are shown and258

confirm a near perfect correlation of ܴଶ > 0.99, with deviations generally less than 0.05 %.259

In this regard, the slight increase in divergence of relaxation time ratios at acute and obtuse260

angles can be attributed to numerical errors resulting from a decrease of the finite element’s261

grid quality due to extremely high or low x-to-y ratios at these apertures. Note that the above262

model is applicable to any angular capillary geometry, such as square or octahedron.263

264

2.3 Simulated water retention curves and NMR relaxation data of partially saturated265

pore distributions266

The goal of this section is to evaluate how pore shape affects the forward-modeled NMR267

response of a partially saturated system of pores (a pore size distribution). As discussed268

earlier, the NMR relaxation time of a single water-filled capillary pore is inversely269

proportional to its surface-to-vulume-ratio. Thus at full water saturation, the relaxation-time270

distribution obtained from a multi-exponential NMR relaxation signal represents the pore-271

size distribution of the rock. At partial water saturation, it is often assumed that the NMR272

relaxation signal still represents the pore size distribution of the water saturated pores (e.g.,273

Stingaciu, 2010b), which we are going to show is true for the cylindrical but not for (tri-)274

angular pores.275

In contrast to cylindrical pores, capillaries with (tri-)angular cross-sections may be partially276

water-saturated during drainage or imbibition (cf. Fig. 8 and 9) because of the water277

remaining in the corners. Thus, they show a different water retention behavior and the278

“desaturated” pores, i.e. their arc menisci, contribute to the NMR signal. Consequently, with279

increasing pressure (i.e. decreasing water saturation) the NMR relaxation behavior of the280



partially water-saturated triangular capillary pore bundle successively shifts to signal281

contributions with shorter relaxation times reflecting the fast relaxation of residual water282

trapped in the pore corners (Figure 12). This behavior in angular pore geometries is283

demonstrated in Figure 13. Here, the NMR relaxation components for a fully (blue line) and284

partially saturated (red and green) distribution of triangular capillaries are plotted. The green285

and red peaks show the signals of the residual water in the pore corners. Following from the286

reduced geometry concept the remaining water in the corners has the same size and shape,287

i.e., the same NMR relaxation time, for all pores independent on their size but dependent on288

pressure. Therefore with decreasing saturation, i.e., increasing pressure, the NMR signal of289

the arc menisci increases and shifts towards smaller relaxation times. If the non-wetting phase290

(air) has entered all capillaries, only one single relaxation time remains for the pore bundle of291

equilateral triangles. For arbitrarily shaped triangular pores, three relaxation times would292

remain for the de-saturated pore system. Hence, the concept of a relaxation time distribution293

assumed in conventional NMR inversion and interpretation approaches would be no longer294

valid.295

296

All the same, we apply the concept of fitting multi-exponential relaxation time distributions297

to NMR transients calculated for pore bundles of circular and equilateral triangle cross-298

sections to study how pore shape affects the typically-shown relaxation time distributions.299

Water drainage and imbibition with water as wetting and air as non-wetting fluid were300

investigated by simulating water retention curves and corresponding NMR relaxation signals301

for a log-normal distributed pore size ensemble as shown in Figure 14.302

Herein, to clarify the subsequent discussion we focused on the equilateral triangalar303

capillary model. Note, that other angular pore shapes (e.g., right angular triangles or squares)304

will exhibit a similar behavior. Capillary pressure curves presented in Figure 15a were305



calculated from Eq. 1, 4, and 5 for pore bundles with circular and equilateral triangle cross-306

sections. In contrast to water retention curves calculated for the cylindrical capillary model307

significant hysteresis between drainage and imbibition can be observed for the triangular308

capillary model, i.e. in terms of initial amplitudes (=saturation) and respective mean309

relaxation times (Figure 15b). Corresponding NMR Tଵ relaxation (saturation recovery)310

signals shown in Figure 15c, d and e were calculated using a uniform surface relaxivity of311

௦ߩ = 10 μm/s and water bulk relaxation ଵܶ,௨ = 312.ݏ�3

The NMR Tଵ relaxation signals were simulated for 20 saturation levels of the drainage313

and imbibition curves ranging from S = 100% to S < 1 % water saturation. The corresponding314

relaxation time distributions (Figure 15f-h) of the NMR Tଵ transients were determined by315

means of a regularized multi-exponential fitting using a nonlinear least squares formulation316

solved by the Levenberg-Marquardt approach (e.g., Marquardt, 1963; Mohnke, 2010).317

Inverse modeling results of NMR data calculated for the drainage branches using the318

cylindrical capillary bundle (Fig. 15f) exhibit a shift of the distribution’s maximum towards319

shorter relaxation times with decreasing saturation (i.e., increasing pressure). As anticipated,320

the derived distribution functions remain inside the envelope of the relaxation-time321

distribution curve at full saturation (see also Fig. 1a).322

In contrast, inversion results for equilateral triangular capillary ensembles (Fig. 15f-h) –323

both for imbibition and drainage – show a similar shift to shorter relaxation times with324

decreasing saturation but also move outside the initial distribution at full saturation due to325

NMR signals originating from trapped water in the pore corners of the desaturated triangular326

capillaries. The effect of the pore corners on relaxation time at low saturations is also327

recognizable when comparing the (geometric) mean relaxation times, normalized to the328

values observed at full saturation (Fig. 15b): Both, the drainage and the imbibition hysteresis329



branch of the triangular pore bundle show smaller mean relaxation times than the cylindrical330

pore bundle.331

In conclusion, the calculated inverse models for the triangular capillary bundle332

qualitatively agree with the behavior of the inverted NMR relaxation-time distributions at333

partial saturation that are frequently observed in experimental data, e.g., of the Rotliegend334

sandstone shown in Fig. 2.335

3 Summary and conclusions336

Experimental NMR relaxometry data and corresponding relaxation-time distributions337

obtained at partial water/air saturation were explicated by a modification of conventional338

NMR pore models using triangular cross-sections. An analytical solution for calculating339

surface-dominated (fast diffusion) NMR relaxation signals in fully and partially saturated340

arbitrary angular capillaries was introduced and validated by numerical simulations.341

Shape and size of triangular pores strongly influence both NMR and flow properties. The342

NMR relaxation time depends on the surface-to-volume ratio, which again depends on shape343

when considering angular pore capillaries. However, at partial saturation, the pore shape even344

more influences the water distribution inside the pore system, and thus the NMR signal. In345

contrast to cylindrical capillaries, angular capillaries also contribute to the NMR signal after346

desaturation of the pore due to water remaining in the corners.347

In this regard, non-equilateral triangular capillaries at partial saturation exhibit a three-348

exponential relaxation behavior due to different perimeter-to-surface (= surface-to-volume)349

ratios of the water in the pore corners whereas the relaxation time of the trapped water in the350

corners depends on pressure (but not on pore size). Furthermore, the shape and size of the351

triangular pores strongly influence both NMR and hydraulic properties. The NMR relaxation352

time depends on the surface-to-volume ratio (not on pore shape), while the water distribution353

inside the pore system, at partial saturation, is strongly influenced by the shape of the pore.354



Thus, the NMR signal at partial saturation is affected by not only the surface-to-volume ratio,355

but by the pore shape as well.356

Moreover, we studied the NMR response of a triangular pore bundle model by jointly357

simulating water retention curves for drainage and imbibition and the corresponding NMR358

ଵܶ relaxometry data. With decreasing water saturation, the simulated NMR relaxation359

distributions shift towards shorter relaxation times below the initial distribution envelope at360

full saturation, which is principally in agreement with the relaxation behavior observed in361

experimental NMR data from rocks.362

Ongoing research will include implementation of the introduced approach in an inverse363

modeling algorithm for NMR data obtained on partially saturated rocks to predict absolute364

and relative permeability at laboratory and borehole scales. Without considering angular365

pores the NMR signal of trapped water cannot be explained, i.e., using the classical approach366

of circular capillaries one cannot find a pore size distribution which explains the relaxation367

time distributions at all saturations sufficiently (e.g., Mohnke, 2014). On the other hand,368

angular pore models can account for the trapped water and thus overcome the limitation of369

the classical approach. Moreover, following the approach of Mohnke (2014) but considering370

angular pores we strive for estimating surface relaxivity, pore size distribution, and pore371

shape by jointly inverting NMR data at different saturations. Based on the obtained pore size372

distribution and triangle shape we expect to improve the prediction of the absolute and373

relative permeabilities considerably.374
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FIGURES497

498



a) b)

Figure 1. a) NMR decay time distributions at different water saturation levels for a classical

cylindrical capillary pore distribution. b) Concept sketch of saturated (gray) and de-saturated

capillaries, e.g., during drainage.
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a) b)

Figure 2. a) Complex pore structure of a Rotliegend tight gas sandstone. Pore spaces are

filled with tangential and hairly illite and exhibit different pore types with elongated or slit-

shaped, triangular, and multi-angular cross-sections. b) ଵܶ decay time distributions calculated

from inverse Laplace transform performed on Rotliegend sandstone (porosity 13%,

permeability 0.1 mD) at different water saturations ( ௪ܵ = 21% − 100%).
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a) b)

Figure 3. Cross-sections of a partially saturated triangular tube. Arc meniscus of radius rAM

separates invading non-wetting phase (white) from adsorbed wetting phase (gray). a)

Original triangle ABC with side lengths LAB, LBC, LCA, and radius R0 of its inscribing circle.

b) Reduced triangle Ԣ�ofܥԢܤԢܣ similar geometry. The wetting phase resides in the three

corners (gray) with ᇱൌݎ ݎ being the radius of both the three interface arc menisci of ABC

and of the inscribing circle of ᇱܥᇱܤᇱܣ
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a) b)

Figure 4. a) Modeled distribution of water (gray) and gas (white) phases in an equilateral

triangular tube with a side length of ͳߤ�� during imbibition (top) and drainage (bottom). b)

Water saturation versus capillary pressure during imbibition (○) and drainage (▲). 
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a) b)

Figure 5. a) Modeled distribution of water (gray) and gas (white) phases in a right-angled

triangular capillary (G = 0.39) with side lengths ൌܮ ͳǡͲǤͅͳǡͲǤͷͅ �ߤ� ǡand perimeter ܲ ൌ

Ǥʹ͵ ͻߤ�� during imbibition (top) and drainage (bottom). b) Water saturation versus capillary

pressure during imbibition (○) and drainage (▲). 
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Figure 6. Longitudinal relaxation times T1 of fully saturated triangular pores with constant

cross-sectional area ܣ = 4.33 ∙ 10ିଵଷ m² versus shape factor ܩ =


మ
and perimeter P. NMR

parameters: ௦ߩ = 10
ஜ୫

ୱ
, ଵܶ = 3 .ݏ
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Figure 7. Saturated corner with active boundaries, i.e., ௦ߩ = ଵߩ > 0 at the corner’s perimeter

ஓܲ and a passive boundary at the air-water interface (meniscus), i.e., ௦ߩ = =ߩ 0.
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Figure 8. Water (black) and air (white) distributions within a triangular pore ܣ) = 4.33 ∙

10ିଵଷ mଶǡߩ�௦ = 10ିହ m/s) at different capillary pressures for imbibition (a) with

corresponding evolution of the (longitudinal) magnetization (b) and NMR ଵܶ relaxation

times (c).
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Figure 9. Water (black and grays) and air (white) distributions within a right-angled

triangular pore (A = 4.33 ∙ 10ିଵଷ mଶǡߩ�௦ = 10ିହ m sିଵ) at different capillary pressures for

imbibition (a) with corresponding evolution of the (longitudinal) magnetization (b) and NMR

Tଵ relaxation times (c).
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Figure 10. NMR response of an equilateral triangular capillary pore model (with a side

length of .(mߤ�1 a) Magnetization versus T1 decay time data of numerical (○) and analytical 

solutions (+) for all applied pressure levels. b) Cross-plot of numerically simulated and

analytically calculated longitudinal T1 decay times at partial (●) and full water saturation (■). 

A corresponding water saturation versus capillary pressure diagram is shown in Fig. 4.
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Figure 11. Comparison of analytical and calculated NMR relaxometry data originating from

saturated pore corners (e.g. see Fig. 7) of varying apertures (ͷι ൏ ൏ߛ ͳͷ°) and equal

active surface-to-volume ratio
ಋ
ಋ

ൌ ݊ܿ Ǥ(NMRݐݏ model parameters; ଵܶ = 3s,

ܦ = 2.5 10-9 m² s-1
௦ߩ, = 10 mߤ s-1).
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a) b)

Figure 12. a) NMR decay time distributions at different water saturation levels for a pore

distribution of equilateral triangles. b) Concept sketch of saturated (gray) and de-saturated

triangular capillaries for increasing pressure levels (1), (2) and (3), e.g., during drainage.
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Figure 13: Relaxation components of fully (blue line) and partially de-saturated triangular

pore size distribution. At a specific saturation level all pore corners with residual saturation

exhibit the same NMR magnetization and relaxation behavior, thus superposing to a single

fast relaxation component (e.g. red and green bars)
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Figure 14. Pore-size distribution model (log-normal distribution: ߪ = =ߤ,0.3 3 ߤ݉ ) in

analogy to that of the Rotliegend Sandstone shown in Fig. 2.
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b)

c) f)

d) g)

e) h)

Figure 15: a) Modeled drainage and imbibition curves for circular and equilateral triangular capillary ensemble (cf Figure 14) and b) Correspon-
ding normalized mean NMR ଵܶ relaxation times vs pressure curves. Modeled and fitted (red lines) NMR transient signals (longitudinal
magnetization evolution) corresponding inverted NMR ଵܶ relaxation time distributions for 20 fully and partially saturated pore-size distributions
ranging from < 1 % to 100 % saturation using circular (c, f) and equilateral triangular capillaries during imbibition (d, g) and drainage (e, h).
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