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Performance and Robustness of Probabilistic River Forecasts Computed 1 

with Quantile Regression based on Multiple Independent Variables in the 2 

North Central U.S.A.  3 

Abstract 4 

This study further develops the method ofapplies quantile regression (QR) to the prediction 5 

ofpredict flood stage exceedance probabilities of flood stages by post-processing forecastsbased 6 

on post-processing single-value flood stage forecasts. A computationally cheap technique to 7 

predict forecast errors is valuable, because many national flood forecasting services, such as the 8 

National Weather Service (NWS), only publish deterministic single-value forecasts. Using 9 

dataThe study uses data from the 82 river gages, for which the National Weather Service’sNWS’ 10 

North Central River Forecast Center issues forecasts daily. , this is the first QR application to 11 

U.S. American river gages. Archived forecasts for lead times up to six days from 2001-20013 12 

were analyzed. Earlier implementations of QR used the forecast itself as the only independent 13 

variable . Besides the forecast itself, tThis study adds uses the rise raterate of rise of the river 14 

stage in the last 24 and 48 hours and the forecast error 24 and 48 hours ago to as predictors in the 15 

QR modelconfigurations. Including thoseWhen compared to just using the forecast as 16 

independent variable, adding the latter four variables predictors significantly improved the 17 

forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the 18 

forecast-only original QR implementation configuration already delivered high reliability. 19 

Combining the forecast with the other four variables predictors results in much less favorable 20 

BSSs. Lastly, the forecast performance does not strongly depend on the size of the training 21 
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dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We 22 

find that each event threshold requires a separate model configuration or at least calibration.  23 

Keywords: River forecasts, quantile regression, probabilistic forecasts, robustness 24 

  25 
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1 Introduction 26 

River-stage forecasts are inherently uncertainare no crystal ball; the future remains uncertain. 27 

The past has shown that unfortunate decisions have been made in ignorance of the potential 28 

forecast errors (Pielke, 1999; Morss, 2010)(e.g., Pielke, 1999; Morss, 2010). For many users, 29 

such as emergency managers, forecasts are most important in extreme extreme situations, such as 30 

droughts and floods. Unfortunately, it is exactly in those situations that forecast errors are 31 

largest, dueDue to the ir infrequency of extreme events and the subsequent scarcity of data, 32 

forecasts have larger errors where accuracy has the most value. Additionally, users might only 33 

experience such an event once or twice in their lifetime, so that they have no experience to what 34 

extent they can rely on deterministic forecasts in such situations. Given the many sources and 35 

complexity of uncertainty and the lacking user experience, it is easy to see how forecast users 36 

find it difficult to estimate the forecast error. Including uncertainty in river forecast would 37 

therefore be valuable, just as has been weather forecasts has been strongly recommended for 38 

weather forecasts in general (e.g., National Research Council, 2006)(e.g., National Research 39 

Council, 2006).  40 

 There are two types of approaches to quantify estimate forecast uncertainty (e.g., Leahy, 41 

2007; Demargne et al., 2013; Regonda et al., 2013)(e.g., Leahy, 2007; Demargne et al., 2013; 42 

Regonda et al., 2013): Those addressing certain major sources of uncertainty individually in the 43 

output, e.g., input uncertainty and hydrological uncertainty, and those taking into account all 44 

sources of uncertainty in a lumped fashion. Both approaches have their advantages. Modelling 45 

each source separately can take into account that the different sources of uncertainty have 46 

different characteristics (e.g., some sources of uncertainty depend on lead time, while others do 47 

not). This approach is likely to result in better performing, more parsimonious 48 
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modelconfigurations. On the downside, it the approach is expensive to develop, maintain and 49 

run. As an alternative, the lumped quantification of uncertainty is a less resource-intensive 50 

approach (Regonda et al., 2013)(Regonda et al., 2013).  51 

The National Weather Service has chosen for ensemble forecasting to quantify the 52 

uncertainty from major sourcesto quantify the most significant sources of uncertainty using 53 

ensemble techniques (Demargne et al., 2013)(Demargne et al., 2013). As of todayCurrently, the 54 

National Weather Service does not routinely publish uncertainty information along with their 55 

short-term river-stage forecast ((Figure 1). Until the NWS has implemented probabilistic 56 

forecasting for short-term products (next few hours and days), the only way that users can get a 57 

sense of the uncertainty is by comparing the quantitative precipitation forecast (QPF) with the 58 

non-QPF forecast. The QPF-forecast includes the precipitation predicted for the next 12 hours 59 

and zero precipitation for the forecasts beyond 12 hours.
1
 The non-QPF forecast assumes no 60 

precipitation. Combined, these two forecasts give an idea of how much difference (a short period 61 

of) precipitation would make for the stage height in the river. The non-QPF serves as a 62 

reasonable lower bound; however, the QPF forecast is not an upper bound (i.e., precipitation 63 

could exceed the forecast values). 64 

As of today, only the “outlooks” produced by the Ensemble Streamflow Prediction part 65 

of the NWS River Forecasting System are probabilistic, i.e., quantify uncertainty: an exceedance 66 

curve for a period of three month and bar plots for each week of a three months period, see  and . 67 

These graphs can be used to determine with which probability each river stage will be exceeded 68 

in those weeks or three-months period. Although the short-term weather forecasts for the next 69 

                                                 
1
 This practice differs from RFC to RFC and also over time. For the ABRFC Welles et al.  

report: ~1993-1994: zero QPF; ~1995-2000 24hr QPF for first 24hrs, zero QPF beyond 24hrs; 

~2001-2003 12hr QPF for first 12hrs, zero QPF beyond 12hrs. 
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few days are much used to prepare for flood events, they have remained deterministic, as shown 92 

in .
2
 93 

Figure 11: Deterministic short-term weather forecast in six hour intervals as published by the NWS 94 

for Hardin, IL on 24 April 2014. 95 

Source:http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2. 96 

The Figure 12: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 14 97 

December 2012: Exceedance curve for three months period. (Not available for Hardin, IL). Source: 98 

http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 99 

Figure 3: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 14 100 

December 2012: Bar plot for each week of a three months period. (Not available for Hardin, IL). 101 

Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 102 

 NWS has developed the Hydrologic Ensemble Forecast Service (HEFS) in to be able to 103 

provide also short-term and medium-term probabilistic forecasts . Its implementation at all 13 104 

river forecasts center is planned to be completed in 2014 (Demargne et al., 2013)(Demargne et 105 

al., 2013).  HEFS includes two types of post-processors. The Hydrologic Model Output Statistics 106 

(HMOS) Streamflow Ensemble Processor – which is also a module in NWS’ main forecast tool, 107 

the Community Hydrologic Prediction System (CHPS) – corrects bias and evaluates the 108 

uncertainty of each ensemble, while Hydrologic Ensemble Post-Processing (EnsPost) corrects 109 

bias and lumps the set of ensembles into one uncertainty estimate (Demargne et al., 2013; Seo, 110 

2008). HMOS performs a similar task as the QR approach presented here, but with two major 111 

differences. First, it relies on linear regression based on streamflows at various times as 112 

predictor, instead of using QR with several types of independent variables. Second, it does not 113 

                                                 
2
 The deterministic forecasts are also available as text or tables. 

Field Code Changed



7 

 

compute distributions of water levels from which confidence intervals or exceedance 114 

probabilities of flood stages can be derived, but generates ensembles (Regonda et al., 2013). 115 

In contrast to the an ensemble approach chosen by the NWSsuch as HEFS, the statistical 116 

post-processing method that is further developed in this paper – quantile regression – does not 117 

distinguish between sources of uncertainty, but studies the overall uncertainty in a lumped 118 

fashion. This choice is motivated by the fact that the total predictive uncertainty, rather than its 119 

different sources, are relevant for decision-making . To further strengthen the main advantage of 120 

this method, i.e., requiring relatively little resources, To make this approach useful for actors 121 

with limited resources, we exclusively use publicly available data to build our modelsdefine our 122 

configurations.  123 

 Most previously developed post-processors to generate probabilistic forecasts share the 124 

overall set-up but differ in their implementation. Explanatory Independent variables such as the 125 

forecasted and observed river stage, river flow or precipitation, and previous forecast errors are 126 

used to predict the forecast error, conditional probability distribution of the forecast error or 127 

other metrics measures of uncertainty for various lead times (e.g., Kelly and Krzysztofowicz, 128 

1997; Montanari and Brath, 2004; Montanari and Grossi, 2008; Regonda et al., 2013; Seo et al., 129 

2006; Solomatine and Shrestha, 2009; Weerts et al., 2011)(e.g., Kelly and Krzysztofowicz, 1997; 130 

Montanari and Brath, 2004; Montanari and Grossi, 2008; Regonda et al., 2013; Seo et al., 2006; 131 

Solomatine and Shrestha, 2009; Weerts et al., 2011). Among others, Tthese methodtechniques 132 

differ in their mathematical methodsin a number of ways, including their sub-setting of data, and 133 

the output metri.c. Please see Regonda et al. (2013)(2013) and Solomatine & Shrestha 134 

(2009)(2009) for a summary of each methodtechnique. In a meta-analysis of four different post-135 

processing methodtechniques to generate confidence intervals, the quantile regression 136 
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methodtechnique was one of the two most reliable methodtechniques (Solomatine and Shrestha, 137 

2009)(Solomatine and Shrestha, 2009), while being the mathematically least complicated method 138 

and requiring few assumptions.  139 

This paper further develops one of the methodtechniques mentioned above: the Quantile 140 

Regression method approach to post-process river forecasts first introduced by Wood et al. 141 

(2009) and further elaborated by Weerts et al. (2011)(2011) and López López et al. (2014). . The 142 

Weertsat study achieved impressive results in estimating the 50% and 90% confidence interval 143 

of river-stage forecasts for three case studies in England and Wales using QR with calibration 144 

and validation datasets spanning two years each. This paper combines elements of the studies 145 

mentioned above.   In some aspects, our approach differs from the original approach by Weerts 146 

et al.  and López López et al. .those three studies. We predict the probabilities that flood stages 147 

are exceededexceedance probabilities of flood stages rather than uncertainty bounds., because 148 

the former are more relevant to decision-making. In an attempt to balance missed alarms and 149 

false alarms, decision-makers are likely to resort to the best estimate (i.e., the deterministic 150 

forecast) rather than basing actions on the 50% or 90% confidence interval. Additionally, 151 

predicting the probability of an event corresponds with other forecasts with which users have 152 

much experience, e.g., the probability of precipitation. Morss et al.  found in a survey of the 153 

general U.S. public that most people are able to base decisions on those forecasts. Additionally, 154 

we are fortunate to have a much larger dataset than the three earlier studies , consisting of 155 

archived forecasts for 82 river gages covering 11 years available. The study does not add to the 156 

mathematical technique of quantile regression itself. 157 
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In this paper, the QR methodtechnique is applied to the 82 river gages of the North 158 

Central River Forecast Center (NCRFC) encompassing (parts of) Illinois, Michigan, Wisconsin, 159 

Minnesota, Indiana, North Dakota, Iowa, and Missouri.
3
  160 

Identifying the best-performing set of independent variables is central to this paper.  To 161 

our knowledge, this paper is the first application of the QR method to the U.S. American context. 162 

All possible combinations of the following predictors have been studied: forecast, the  163 

The method is further developed by demonstrating the benefit – measured by an increase 164 

in Brier Skill Score (BSS) –  of including the rise raterate of rises of water levels in past hours, 165 

and the past forecast errors as independent variables into the quantile regression. The 166 

performance of these joint predictors has been measured and compared using the Brier Skill 167 

Score (BSS).. For extremely high water levels the variable combination has to be customized for 168 

each river gage. For those, sets of few independent variables work best. Variable combinations 169 

for other event thresholds should include as many dependent variables as possible. Using the 170 

same combination for all of them works satisfactorily. Furthermore, it is found that the forecast – 171 

the only independent variable in the original QR method – is difficult to combine with the other 172 

dependent variables. Last, the method is shown to be robust to the size of the training dataset. 173 

However, the forecast performance does vary significantly across locations, lead times, water 174 

levels, and forecast year. This exercise has been repeated for various water levels and lead times. 175 

Additionally, the robustness of the resulting QR configurations across different sizes of training 176 

datasets, locations, lead times, water levels, and forecast year has been assessed.  177 

The paper is structured as follows. The Method section summarizes the additions that this 178 

paper makes to the quantile regression method introduced by Weerts et al. . It reviews the 179 

                                                 
3
 As of spring 2014, the NCRFC does not publish any sort of probabilistic forecasts.  
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methodquantile regression,  explains the additions, introduces the performance metricmeasure, 180 

and discusses the computations performed analyses and data. The Results section first reviews 181 

the overall forecast error for the dataset. It then compares the proposed method to the original 182 

quantile regression as demonstrated for river gages in Wales and England . It then describes the 183 

results of identifying the best-performing set of independent variables. Finally, it discusses the 184 

robustness of the proposed methodstudied QR configurations. The fourth and last section 185 

presents the conclusions and proposes further research ideas. 186 

2 Method 187 

The use of quantile regression to quantify estimate the error distribution of river-stage forecasts 188 

has first been presented introduced by Woods et al. (2009) for the Lewis River in Washington 189 

State. Later, by Weerts et al. (2011)(2011) applied it to  for river catchments in the England and 190 

Wales.  In this paper, we further develop Weerts’ original method in three ways: a) by including 191 

additional variables instead of using only the forecast itself as an independent variable;elements 192 

of both studies are combined. However, our predictand is the probability of exceeding flood 193 

stages rather than confidence bounds. Additionally, this study tests b) by testing the robustness of 194 

the methodtechnique across locations, lead times, event thresholds, forecast years, and the size of 195 

training dataset is tested. ; c) by estimating the more decision-relevant probability of exceeding 196 

flood stages rather than confidence bounds. To develop the different QR configurations of 197 

quantile regression and to compare their performance, the Brier Skill Score (BSS) is used. 198 

 In the following, the quantile regression itself and , the proposed addition to the 199 

methodanalysis to identify the best-performing set of independent variables , and the undertaken 200 

computations are explained.  201 
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2.1  Quantile Regression 202 

In the context of river forecasts, linear quantile regression has been used to estimate the 203 

distribution of forecast errors as a function of the forecast itself. Weerts et al. (2011)(2011) 204 

summarize this stochastic approach as follows:  205 

 “[It] estimates effective uncertainty due to all uncertainty sources. The approach 206 

is implemented as a post-processor on a deterministic forecast. [It] estimates the 207 

probability distribution of the forecast error at different lead times, by 208 

conditioning the forecast error on the predicted value itself. Once this distribution 209 

is known, it can be efficiently imposed on forecast values.” 210 

 Quantile Regression was first introduced by Koenker (2005; 1978)(2005; 1978). It is 211 

different from ordinary least square regression in that it predicts percentiles rather than the mean 212 

of a dataset. Koenker and Machado (Koenker and Machado, 1999, p.1305)(Koenker and 213 

Machado, 1999, p.1305) and Alexander et al. (2011)(2011) demonstrate that studying the 214 

coefficients and their uncertainty for different percentiles generates new insights, especially for 215 

non-normally distributed data. For example, using quantile regression to analyze the drivers of 216 

international economic growths, Koenker and Machado (1999)(1999) find that benefits of 217 

improving the terms of trade show a monotonously increasing trend across percentiles, thus 218 

benefitting faster-growing countries proportionally more.  219 

In its original application to river forecasts by When applying QR to river forecasts, Weerts 220 

et al. (2011)(2011) transformed, the forecast values and the corresponding forecast errors are 221 

transformed into the Gaussian domain using Normal Quantile Transformation (NQT) to account 222 

for heteroscedasticity. Detailed instructions to perform NQT can be found in, as instructed by 223 

Bogner et al. (2012)(2012).  to account for heteroscedasticity. Building on this study, López 224 
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López et al. (2014)(2014) compare different configurations of QR with the forecast as the only 243 

independent variable, including configurations omitting NQT. They find that no configuration 244 

was consistently superior for a range of forecast quality metrics measures (López López et al., 245 

2014)(López López et al., 2014). To be able to combine predictors variables of different nature, 246 

we build a model based our QR configuration on untransformed variablespredictors. The reason 247 

to do so will be discussed and illustrated later (see Figure 11 and Figure 12).  248 

Using the transformed data, Aa quantile regression is run for each lead time and desired 249 

percentile with the forecast error as the dependent variable and the forecast and other variables as 250 

the independent variables.
4
 To prevent the quantile regression lines from crossing each other, a 251 

fixed effects model is implemented below a certain forecast value. Weerts et al. (2011)(2011) 252 

give a detailed mathematical description for applying QR to river forecasts. Mathematically, the 253 

approach is formulated as follows (with and without NQT): 254 

Equation 1: Original QR implementation configuration with NQT , with percentiles of the forecast 255 

error as the dependent variable and the only one independent variable being the forecast itself, bot 256 

transformed into the normal domain. 257 

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) + 𝑁𝑄𝑇−1[𝑎𝜏 ∗ 𝑉𝑁𝑄𝑇(𝑡) + 𝑏𝜏] 

Equation 2: QR implementation configuration without NQT, with percentiles of the forecast error 258 

as the dependent variable and multiple independent variables.  259 

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) +∑𝑎𝑖,𝜏 ∗ 𝑉𝑖(𝑡)

𝐼

𝑖

+ 𝑏𝜏 

with  Fτ(t)    – estimated forecast associated with percentile τ and time t 260 

                                                 
4
 As mentioned in Weerts et al. (2011), our quantile regression models have likewise a higher 

predictive capacity, if the forecast error rather than the forecast itself is used as the dependent 

variable.  

Field Code Changed
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 fcst(t)  – original forecast at time t  261 

Vi(t)  – the independent variable i (e.g., the original forecast) at time t 262 

Vi;NQT(t)           – the independent variable I transformed by NQT at time t 263 

ai,τ , bτ  – model configuration coefficients 264 

 265 

The second part of the equations stands for the error estimate based on the quantile regression 266 

model configuration for each percentile τ and lead time. In Equation 1, that was used in the 267 

original QR method proposed by Weerts et al. (2011)(2011), this estimation was executed in the 268 

Gaussian domain using only the forecast as independent variable. Our study mainly uses 269 

Equation 2, i.e., it does not transform the predictors and the predictand. All quantile regressions 270 

were done using the command rq() in the R-package “quantreg” (Koenker, 2013).
5
 271 

2.2 Brier Skill Score 272 

The original QR implementation configuration by Weerts et al. (2011)(2011) was evaluated by 273 

determining the fraction of observations that fell into the confidence intervals predicted by the 274 

QR modelconfiguration; i.e., ideally, 9080% of the observations should be larger than the 275 

predicted 10
th

 percentile for that day, and smaller than the predicted 90
th

 percentile. López López 276 

et al. (2014)(2014) used a number of metrics measures to assess model configuration 277 

performance, e.g., the Brier Skill Score (BSS), the mean continuous ranked probability (skill) 278 

score (RPSS), the relative operating characteristic (ROC), and reliability diagrams to compare 279 

QR configurations.  280 

We use the Brier Skill Score – first introduced by Brier (1950) – to compare assess the 281 

different versions of the QR modelconfigurations proposed in this paper. We chose to optimize 282 

                                                 
5
 All quantile regressions were done using the command rq() in the R-package “quantreg” 

(Koenker, 2013). 
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our QR models based on the BSS, first introduced by Brier  for two two reasons.  First, to be able 297 

to optimize model performance it is best to choose a single measure. First, for decision-making 298 

the probability with which a certain water level, e.g., a flood stage, is exceeded is more useful 299 

than confidence intervals. SecondSecond, out of the available measures the Brier Score is 300 

attractive, because it can be decomposed into two different measures of forecast quality (see 301 

Equation 3): Reliability and resolution. The third component is uncertainty, which is a 302 

hydrological characteristic inherent to the river gage. This uncertainty is different than the 303 

forecast uncertainty that the technique studied in this paper estimates. Besides the uncertainty 304 

that can be mathematically explained, it also includes natural variability. ThusIn sum, the BS’ 305 

uncertainty termit is not subject to the forecast quality. Equation 3 gives the definition of the (de-306 

composed) Brier Score (e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 307 

2009)(e.g., Jolliffe and Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009).6 308 

Equation 3: Brier Score; de-composed into three terms: reliability, resolution and uncertainty. 309 

𝐵𝑆 =
1

𝑁
∑𝑛𝑘(𝑓𝑘 − �̅�𝑘)

2 −
1

𝑁
∑𝑛𝑘(�̅�𝑘 − �̅�)2 + �̅�(1 − �̅�)

𝐾

𝑘=1

𝐾

𝑘=1

=
1

𝑁
∑(𝑓𝑡 − 𝑜𝑡)

2

𝑁

𝑡=1

 

with  BS  – Brier Score 310 

                                                 
6
 Bröcker (2012)(2012) showed that the conventional decomposition of the Brier Score is biased 

for finite sample sizes. It systematically overestimates reliability, under- or overestimates 

resolution, and underestimates uncertainty. Several authors proposed less biased decompositions 

(e.g., Bröcker, 2012; Ferro and Fricker, 2012)(e.g., Bröcker, 2012; Ferro and Fricker, 2012). 

Additionally, Stephenson et al. (2008)(2008) proved that the Brier Score has two additional 

components when it is computed based on bins, as is usually done. Nonetheless, we chose to 

stick to the conventional decomposition and using bins, as implemented in the R-package 

“verification” (NCAR-Research Applications Laboratory, 2014; Wilks, 1995)(NCAR-Research 

Applications Laboratory, 2014; Wilks, 1995) to ensure that our results can be readily compared 

to other studies like López López et al. (2014)(2014). After all, the Score is mainly used to 

compare model configurations, rather than establishing the absolute performance of each 

modelconfiguration.  

Field Code Changed
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 N – number of forecasts  311 

K  – the number of bins for forecast probability of binary event occurring on each 312 

day 313 

nk  – the number of forecasts falling into each bin 314 

ōk  – the frequency of binary event occurring on days in which forecast falls into bin 315 

k 316 

fk  – forecast probability 317 

ō  – frequency of binary event occurring 318 

ft – forecast probability at time t 319 

ot – observed event at time t (binary: 0 – event did not happen, 1 – event happened) 320 

The Brier Score pertains to binary events, e.g., the exceedance of a certain river stage or 321 

flood stage. Reliability compares the estimated probability of such an event with its actual 322 

frequency. For example, perfect reliability means that on 60% of all days for which it was 323 

predicted that the water level would exceed flood stage with a 60% probability, it actually does 324 

so. A forecast with The reliability curve for the forecast representing perfect reliability would 325 

follow the diagonal in Figure 2, , i.e., the area in Figure 2a representing reliability would equal 326 

zero (Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009)(e.g., Jolliffe and 327 

Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). The configuration by López López et al. 328 

(2014)(2014) performs well in terms of reliability. When estimating confidence intervals, Weerts 329 

et al. (2011)(2011) achieved good results especially for the more extreme percentiles (i.e., 10
th

 330 

and 90
th

).  331 

Figure 2: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 332 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 333 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e., performs better than the 334 

reference forecast, if it is inside the shaded area in the figure b. Ideally, the forecast would follow 335 

the diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, n.d.). 336 
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Figure 4: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 337 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 338 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e. performs better than 339 

random guessing, if it is inside the shaded area in the figure b. Ideally, the forecast would follow the 340 

diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, n.d.).  341 

Resolution pertains to how much better the forecast performs than taking the historical 342 

frequency (climatology) as a forecast.measures the difference between the predicted probability 343 

of an event on a given day and the observed average probability. When calculated for a time 344 

period longer than a day, the forecast performs better if the resolution term is higher.  For 345 

example, for a gage where flood stage is exceeded on 5% of the days in a year, simply using the 346 

historical frequency as the forecast would mean forecasting that the probability of the water level 347 

exceeding flood stage is 5% on any given day. The accumulated difference between the 348 

predicted frequency and the historical average across a time period of several days would then be 349 

zero (e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009)(e.g., Jolliffe 350 

and Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). In Figure 2, the curve for a a 351 

forecast with good resolution would be steeper than the dashed line that represents climatology, 352 

i.e., the area in aFigure 2a representing resolution would be maximized. In absolute terms, the 353 

resolution can never exceed the third term in Equation 3 representing the uncertainty inherent to 354 

the river gage. Through the resolution component, the Brier Score is related to the area under the 355 

relative operating characteristic (ROC) curve (for more detail, see Ikeda et al., 2002)(for more 356 

detail, see Ikeda et al., 2002). The latter likewise quantifies how much better a forecast is than 357 

random guessingthe reference forecast (i.e., climatology) a forecast is  in detecting a binary 358 

event; though unlike the Brier Score it focuses on the ratios of false and missed alarms (e.g., 359 
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Jolliffe and Stephenson, 2012; Wikipedia, 2014; WWRP/WGNE, 2009)(e.g., Jolliffe and 360 

Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). 361 

A forecast possesses skill, i.e., performs better than random guessing or climatologythe 362 

reference forecast  (in this case climatology ) , if it is inside the shaded area in bFigure 2b. The 363 

Brier Skill Score (BSS) equals the Brier Score normalized by climatology to make the score 364 

comparable across gages with different frequencies of a binary event. Equation 4 defines the 365 

BSS’ decomposition into the resolution and reliability components described above (Brown and 366 

Seo, 2013). 
7
 The BSS can range from minus infinity to one. A BSS below zero indicates no 367 

skill; the perfect score is one (e.g., Jolliffe and Stephenson, 2012; Wikipedia, 2014; 368 

WWRP/WGNE, 2009)(e.g., Jolliffe and Stephenson, 2012; Anon, 2014; WWRP/WGNE, 2009). 369 

All measures of forecast quality were computed using the R-package “verification” (NCAR, 370 

2014). 371 

Equation 4: Decomposition of Brier Skill Score 372 

𝐵𝑆𝑆 = 1 −
𝐵𝑆

�̅�(1−�̅�)
=

𝑅𝐸𝑆

�̅�(1−�̅�)
−

𝑅𝐸𝐿

�̅�(1−�̅�)
  373 

with  BSS  – Brier Skill Score 374 

BS  – Brier Score 375 

 RES  – Resolution 376 

 REL – Reliability 377 

ō  – Frequency of binary event occurring 378 

 o̅(1 − o̅) – Climatological variance  379 

 380 

                                                 
7
 All measures of forecast quality were computed using the R-package “verification” (NCAR, 

2014). 
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2.3 Proposed addition: More than one independent variableIdentifying the best-performing 381 

sets of independent variables 382 

Intuitively, more information should lead to better prediction of the distribution of the forecast 383 

error, because the regression models would be based on more dataThe challenge is to identify a 384 

well-performing set of predictors that is both parsimonious and comprehensive. Wood et al. 385 

(2009) found rate of rise and lead time to be informative independent variables. Weerts et al. 386 

(2011) achieved good results using only the forecast itself as predictor. Besides these variables, 387 

tThe most obvious variables predictors to include besides the forecast itself are the observed 388 

water level 24 and 48 hours ago, the observed rise in water level in the last 24 and 48 hours 389 

(called rise rate hereafter), the forecast error 24 and 48 hours ago (i.e., the difference between the 390 

current water level at issue time of the forecast and the forecast that was produced 24/48 hours 391 

ago), or the time of the year, e.g., using month or season as categorical predictors. Other 392 

Additional potential variables independent variables are the water levels observed up- and 393 

downstream at various times, the precipitation upstream of the catchment area, and the 394 

precipitation forecast. However, rRequesting the corresponding precipitation and precipitation 395 

forecast requires an extensive effort or direct access to the database.these latter variables are 396 

much more difficult to gather because of the way data is archiveddatabase at the National 397 

Climatic Data Center (NCDC).
8
 398 

                                                 
8
 For the NCRFC, the river forecast and the observed water levels are saved in the same text 

product available at [last accessed July 2014]: 

http://cdo.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX. (Station ID: 

KMSR, Bulletin ID: FGUS5). Requesting the corresponding precipitation and precipitation 

forecast requires an extensive effort or direct access to the database. 
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Table : Variable Combinations 399 

 In preliminary trials on two case studies (gages HARI2 and HYNI2), it was found that the 400 

rates of rise and the forecast errors are better predictors than the water levels observed in 401 

previous days. After all, the observed water levels are used to compute the rates of rise and 402 

forecast errors, so that these latter variables include the information of the former variable. It was 403 

also found that season and months are not significant in quantile regression configurations to 404 

predict the quantiles of the forecast error. Probably, the time of the year is already reflected in 405 

the observed water levels and forecast errors in the previous days. In preliminary trials on two 406 

case studies (gages HARI2 and HYNI2), it was found that season and months are not significant 407 

in quantile regression models to predict the quantiles of the forecast error. It was also found that 408 

the rise rates and the forecast errors are better predictors than the water levels observed in 409 

previous days. After all, the observed water levels are used to compute the rise rates and forecast 410 

errors, so that these latter variables include the information of the former variable.  411 

To determine which set of predictors performs best in generating probabilistic forecasts, 412 

all 31 possible combinations of the forecast (fcst), the rate of rise in the last 24 and 48 hours 413 

(rr24, rr48), and the forecast error 24 and 48 hours ago (err24, err48) – see Equation 5 – were 414 

tested for 82 gages that the NCRFC issues forecasts for every morning (Table 1). Based on the 415 

Bier Skill Score, it was determined which joint predictor on average and most often leads to the 416 

best out-of-sample results for various lead times and water levels.  417 
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Equation 5: QR configuration without NQT, with percentiles of the forecast error as the dependent 418 

variable and varying combinations of the five independent variables. This equation was used to 419 

predict the water level distribution for each day at 82 gages with different lead times.  420 

𝐹𝜏(𝑡) = 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑓𝑐𝑠𝑡,𝜏 ∗ 𝑓𝑐𝑠𝑡(𝑡) + 𝑎𝑟𝑟24,𝜏 ∗ 𝑟𝑟24(𝑡) + 𝑎𝑟𝑟48,𝜏 ∗ 𝑟𝑟48(𝑡)

+ 𝑎𝑒𝑟𝑟24,𝜏 ∗ 𝑒𝑟𝑟24(𝑡) + 𝑎𝑒𝑟𝑟48,𝜏 ∗ 𝑒𝑟𝑟48(𝑡) + 𝑏𝜏 

with  Fτ(t)     – estimated forecast associated with percentile τ and time t 421 

 fcst(t)   – original forecast at time t  422 

rr24(t), rr48(t)  – rates of rise in the last 24 and 48 hours at time t 423 

err24(t), err48(t) – forecast errors 24 and 48 hours ago (e.g., the original forecast) at 424 

time t 425 

axx,τ , bτ – configuration coefficients; forced to be zero if the predictor is 426 

excluded from the joint predictor that is being studied.  427 

 428 

To determine which set of variables preforms best in generating probabilistic forecasts, all 31 429 

possible combinations of the forecast (fcst), the rise rate in the last 24 and 48 hours (rr24, rr48), and 430 

the forecast error 24 and 48 hours ago (err24, err48) were tested for 82 gages that the NCRFC 431 

issues forecasts for every morning (). Based on the Bier Skill Score, a metric of forecast quality 432 

explained below, it was determined which variable combination on average and most often leads to 433 

the best out-of-sample results for various lead times and water levels. Table 1: Joint predictors.  434 

 435 

2.4 Computations 436 

The output of our QR application to river forecasts is the probability that a certain water level in 437 

the river or flood stage is exceeded on a given day, e.g., “On the day after tomorrow, the 438 

probability that the river exceeds 15 feet at location X is 60%.” This is done in two steps. First, a 439 

training dataset (first half of the data) is used to build define one quantile regression 440 

modelconfiguration for each each of the following percentiles: π = [0.05, 0.1, 0.15, … , 0.85, 441 
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0.90, 0.95] and each lead time..  The dependent variable is the water level. As described abovein 442 

Equation 5, the forecast itself, the rise ratesrates of rise and forecast errors serve as independent 443 

variables.  444 

In the second step, these QR modelconfigurations are used to predict the water levels 445 

corresponding with each model’s percentile on each day in the verification dataset (the second 446 

half of the dataset). Effectively, for each day in the verification dataset, a discrete probability 447 

distribution of water levels is predicted. Each predicted QR modelpercentile π contributes one 448 

point to that distribution. 449 

 In our opinion, this probability distribution of water levels is too much information to 450 

efficiently make decisions. The model performance should be assessed for a decision-relevant 451 

output. ThereforeThen,  we calculate the probability with which various water levels (called 452 

event thresholds hereafter) will be exceeded. The probability of exceeding each water level is 453 

computed by linearly interpolating between the points of the discrete probability distribution that 454 

was computed in the previous step.
 9
  455 

To be able to compare various model configurations, the Brier Skill Score is determined 456 

across all the days inbased on forecast exceedance probability for all days in the verification 457 

dataset. As explained above, the BSS is based on the difference between the predicted 458 

exceedance probability and the observed exceedance (binary) averaged across all days in the 459 

verification dataset. 460 

To study whether the various combinations of variables predictors perform equally well 461 

for high and low thresholds, these last computational steps (i.e., interpolating to determine the 462 

                                                 
9
 Using the command “approx(x, y, xout, yleft=1,yright=0,ties=mean)” in the R-package “stats” 

(R-Core Team, 2014). 
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exceedance probability for a certain water level and calculating the BSS) were done for the 10
th

, 463 

25
th

, 75
th

, and 90
th

 percentile of observed water levels and the decision-relevant four decision-464 

relevant flood stages (action stage, and minor, moderate, and major flood stage) of each gage. 465 

Flood stages indicated when material damage or substantial hinder is caused by high water 466 

levels. Therefore, the flood stages correspond with different percentiles at different river gages.   467 

To determine the optimalbest-performing set of independent variables, the entire procedure is 468 

repeated for each of the 31 variable combinationjoint predictors in Table 1, thus using a different 469 

set of independent variables each time. To test the robustness of this approach, the procedure was 470 

also repeated for each river gage and for several lead times. The result is 31 BSSs for 82 river 471 

gages for four different lead times (one to four days) and for different eight event thresholds (i.e., 472 

flood stages or percentiles of the observed water level).   473 

 474 

2.5 Data 475 

The National Weather Service (NWS) issues river-stage forecasts for ~4,000 river gages every 476 

day. Such’s daily published short-term river forecasts predict the stage height in six-hour 477 

intervals for up to five days ahead (20 6-hour intervals).
10

 When floods occur and increased 478 

information is needed, the local river forecast center (RFC) can decide to publish river-stage 479 

forecasts more frequently and for more locations. Welles et al.  (2007)(2007) provides a detailed 480 

description of the forecasting process. 481 

                                                 
10

 The river-stage forecasts are produced by one of NWS’ thirteen river forecasts centers (RFCs). 

Every morning the forecasts are forwarded to one of NWS’s 122 local weather forecast offices 

(WFOs), who then disseminate the information to the public through a variety of media channels 

or by issuing warnings. 
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For this paper, all forecasts published by the North Central River Forecast Center 482 

(NCRFC) between 1 May 2001 and 31 December 2013 were requested from the NCDC’s HDSS 483 

Access System (National Climatic Data Center, 2014; Station ID: KMSR, Bulletin ID: 484 

FGUS5).
11

 In total, the NCRFC produces forecasts for 525 gages. (). For 82 of those gages, 485 

forecasts have been published daily for a sufficient number of years, and are not inflow forecasts. 486 

The latter have been excluded from the forecast error analysis because they forecast discharge 487 

rather than water level. About half of the analyzed gages are along the Mississippi River (Figure 488 

3). The Illinois River and the Des Moines River are two other prominent rivers in the region. The 489 

drainage areas of the 82 river gages average 61,500 square miles (minimum 200 sq.miles; 490 

maximum 708,600 sq.miles). Figure 4 shows an empirical cumulative density function of 491 

drainage areas sizes. 492 

Figure 3: River gages for which the North Central River Forecast Centers publishes forecasts daily. 493 

Henry (HYNI2) and Hardin (HARI2) are  indicated by the upper and lower red arrow respectively.  494 

For gages indicated by black dots the basin size is missing. 495 

Figure 4: Empirical cumulative density function (ecdf) of sizes of drainage area for the river gages 496 

that are being forecasted daily by the NCRFC. 497 

 498 

Two river gages serve as an illustration for the points made throughout this paper. 499 

Hardin, IL is just upstream of the confluence of the Illinois River and the Mississippi River 500 

(Figure 3). Therefore, it probably experiences high water levels through backwatering, when the 501 

high water levels in the Mississippi River prevent the Illinois River from draining. Henry, IL is 502 

                                                 
11

 URL [last accessed July 2014]: 

http://cdo.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX; Station ID: 

KMSR, Bulletin ID: FGUS5. 
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located ~200 miles (~320 km) upstream of Hardin, having a difference in elevation of ~25 feet.  521 

(~7.6 m). The Illinois River is ~330 miles (~530 km) long (Illinois Department of Natural 522 

Resources, 2011),
12

 draining an area of ~13,500 square miles (~35,000 km
2
) at Henry (USGS, 523 

2015a)
13

 and ~28,700 square miles (~72,000 km
2
) at Hardin (USGS, 2015b).

14
 524 

Figure 5: Portion of the North Central River Forecast Centers river gages with Henry (HYNI2) and 525 

Hardin (HARI2) indicated by the upper and lower red arrow respectively. Source: 526 

http://www.crh.noaa.gov/ncrfc/ 527 

3 Results 528 

3.1 Forecast error at NCRFC’s gages 529 

In general, the NCRFC’s forecasts are well calibrated across the entire dataset. The average 530 

error, defined as observation minus the forecast, is zero for most gages. For lead times longer 531 

than three days, a slight underestimation by the forecast is noticeable. By a lead time of 6 days 532 

this underestimation averages 0.41 feet only (a, aFigure 5a, Figure 6). Extremely low water 533 

levels, defined as below the 10
th

 percentile of observed water levels, are also well calibrated 534 

(Figure 5b, Figure 6). (b, b). However, when considering higher water levels the picture 535 

changes.
15

 The underestimation becomes more pronounced, averaging 0.29 feet for three days of 536 

lead time and 1.14 feet for six days of lead time, when only observations exceeding the 90
th

 537 

percentile of all observations are considered (Figure 5c, Figure 6). (c, c). When only looking at 538 

                                                 
12

 Illinois Environmental Protection Agency: “Illinois River and Lakes Fact Sheets”, URL 

[accessed 04/24/2014]: http://dnr.state.il.us/education/aquatic/aquaticillinoisrivlakefactshts.pdf 
13

 Source: http://waterdata.usgs.gov/nwis/nwisman/?site_no=05558300&agency_cd=USGS 
14

 Source: http://waterdata.usgs.gov/nwis/nwisman/?site_no=05587060&agency_cd=USGS 

 
15

 The gages MORI2 and MMOI2 are upstream of a dam. It is likely that the forecasts performed 

so poorly there, because the dam operators deviated from the schedules that they provide the 

river forecast centers to base their calculations on.  

Field Code Changed
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observations that exceeded the minor flood stages corresponding to each gage,
16

 the 560 

underestimation averages 0.45 feet for three days of lead time and 1.51 feet for 6 days of lead 561 

time (Figure 5d, Figure 6). (Figure 6d, Table 2d). However, some gages, such as Morris 562 

(MORI2), Marseilles Lock/Dam (MMOI2) – both on the Illinois River – and Marshall Town on 563 

the Iowa River (MIWI4) experience average errors of 5 to 12 feet for water levels higher than 564 

minor flood stage. The gages MORI2 and MMOI2 are upstream of a dam. It is likely that the 565 

forecasts performed so poorly there, because the dam operators deviated from the schedules that 566 

they provide the river forecast centers to base their calculations on. 567 

Figure 65: Forecast error for 82 river gages that the NCRFC publishes daily forecasts for. In anti-568 

clockwise direction starting at the top left: (a) Average error; (b) error on days that the water level 569 

did not exceed the 10
th

 percentile of observations; (c) error on days that the water level exceeded the 570 

90
th

 percentile of observations; (d) error on days that the water level exceeded minor flood stage.  571 

Figure 6: Empirical cumulative distribution function (ecdf) of forecast error at 82 river gages for 572 

six lead times. Vertical lines show the median forecast error of the corresponding subset.  573 

Table 2: Error statistics for the forecast error a) of the whole dataset; b) on days that the water 574 

level did not exceed the 10
th

 percentile of observations; c) on days that the water level exceeded the 575 

90
th

 percentile of observations; d) on days that the water level exceeded minor flood stage. 576 

3.2  Including more variables Identifying the best-performing sets of independent variables 577 

 578 

In total, the Brier Skill Score (BSS) for 31 variable combinationjoint predictors (Table 1) across 579 

various lead times and event threshold have been compared. Across 82 river gages, it has been 580 

                                                 
16

 Flood stages are based on the damage done by previous floods. It depends on the context, e.g., 

the shape of the river bed and the development of the river shores, which water levels cause 

damage. Therefore, it depends on the river gage which percentiles of observed water levels the 

flood stages correspond with.  

Field Code Changed
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analyzed (a) which combinations perform best and worst most often, and (b) which sets of 603 

variablesjoint predictor delivers the best BSSs on average.  604 

3.2.1 Frequency Analysis 605 

For each the four lead time (i.e., one to four days) and various the eight event thresholds (i.e., 606 

10
th

, 25
th

, 75
th

, 90
th

 percentiles as well as the four flood stages), we counted how oftenat how 607 

many river gages each variable combinationjoint predictor resulted in the highest and the lowest 608 

BSS across the 82 river gages. Figure 7 shows that for water levels below the 50
th

 percentile 609 

variable combinationjoint predictors with four or more independent variables return the best 610 

BSSs most often, while those with one and two variables predictors perform worst most often. 611 

For thresholds higher than the 50
th

 percentile the distributions gradually become more flatflatter. 612 

For the 90
th

 percentile, a clear trend is no longer detectable. Given that the frequency 613 

distributions for the extreme events in Figure 7 are relatively uniform, it seems as if extreme 614 

events are characterized by different processes at different gages. The same set of histograms for 615 

the four flood stages (i.e., action, minor, moderate, and major) confirms this (Figure 8). Across 616 

lead times, there is a slight trend noticeable that single variables predictors tend to be the worst 617 

combination more often for longer lead times. This suggests thatus, the further out one is 618 

forecasting, the more important it becomes to include more data in the modelconfiguration.  619 

Figure 7: Histograms of variable combinationjoint predictors returning the best and worst Brier 620 

Skill Scores across 82 river gages. Each row of histograms refers to an event threshold defined as a 621 

percentile of the observed water levels, and each column to a lead time. The dotted vertical lines in 622 

the histograms distinguish variable combinationjoint predictors with different numbers of 623 

independent variables.  624 

Field Code Changed

Field Code Changed
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Figure 8: Histograms of variable combinationjoint predictors returning the best and worst Brier 625 

Skill Scores across 82 river gages. Each row of histograms refers to a flood stage, and each column 626 

to a lead time. The dotted vertical lines in the histograms distinguish variable combinationjoint 627 

predictors with different numbers of independent variables. 628 

3.2.2 Best performing combinations on average 629 

For each river gage, the combinations have been ranked by BSSs. It was found that the more 630 

independent variables are included in a setjoint predictor, the higher that set of variables 631 

predictors will rank on average (Figure 9). However, for extremely high water levels, this trend 632 

gradually reverses (Figure 10). For action stage
17

 and minor flood stage,
18

 a slightly increasing 633 

trend is still visible. For moderate 
19

 and major flood stage,
20

 combinations with fewer 634 

independent variables rank higher on average. The most likely explanation is that extreme events 635 

like major and moderate flood stage are infrequent. After all, major flood stage equals 90
th

 to 636 

100
th

 percentiles at the various gages. This data scarcity can lead to overfitting when using more 637 

predictors.  638 

Considering these findings and those of the frequency analysis earlier, the 639 

modelconfigurations for the various river gages can generally be based on the same variable 640 

combinationjoint predictors of four or more independent variables. But for extremely high water 641 

levels, a modelconfiguration specific to each river gage has to be built in order to achieve high 642 

BSSs. 643 

                                                 
17

 Across the 82 stations, action stage corresponds with water levels between the 60th and 100th 

percentile. 
18

 Across the 82 stations, minor flood stage corresponds with water levels between the 70th and 

100th percentile. 
19

 Across the 82 stations, moderate flood stage corresponds with water levels between the 80th 

and 100th percentile. 
20

 Across the 82 stations, major flood stage corresponds with water levels between the 90th and 

100th percentile. 
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The combinations including the forecast (indicated by gray vertical lines in Figure 9 and 644 

Figure 10) perform less well than those that exclude it. Plotting the independent variables against 645 

the forecast error as the dependent variable makes the reason visible (Figure 11, Figure 12). 646 

Without a transformation into the normal domain, the forecast does not provide a lot of 647 

information for the QR model scatterplot of forecast and forecast error does not show a trend. 648 

After NQT, the percentiles show trends laid out like a fan. . In contrast, the other four variables 649 

do not lend themselves for linear quantile regression after performing NQTthe other four 650 

predictors become uniform distributions after NQT transformation.  There is no trend detectable 651 

anymore. Further research is necessary to reconcile these two types of variablespredictors. A 652 

possible solution could be to build define QR modelconfigurations for subsets of the transformed 653 

dependent and independent variable.  654 

Figure 9: Average rank for each variable combinationjoint predictor for one to four days of lead 655 

time and four percentiles of observed water levels. Vertical gray lines indicate variable 656 

combinationjoint predictors including the forecast. 657 

Figure 10: Average rank for each variable combinationjoint predictor for one to four days of lead 658 

time and four flood stages. Vertical gray lines indicate variable combinationjoint predictors 659 

including the forecast. 660 

Figure 11: Independent variables plotted against the forecast error for Hardin IL with 3 days of 661 

lead time. First row: Forecast; second row: past forecast errors; third row: rise ratesrates of rise. 662 

Figure 12: Independent variables after transforming into the Gaussian domain plotted against the 663 

forecast error for Hardin IL with 3 days of lead time. First row: Forecast; second row: past forecast 664 

errors; third row: rise ratesrates of rise. 665 
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3.2.3 Brier Skill Score  666 

Figure 13 illustrates the BSS when using the forecast as the only predictor as studied by Weerts 667 

et al. (2011). Confirming Wood et al.’s findings (2009), additionally iIncluding the rise raterate 668 

of rise and forecasts errors as independent variables into the QR modelconfiguration improves 669 

the Brier Skill Score (BSS) significantly . .  illustrates the BSS when using the model as 670 

originally introduced by Weerts et al. . Using the best performing variable combinationjoint 671 

predictors  instead, gives an upper bound of the BSSs that can be achieved at best. This 672 

configuration increases the mean and decreases the standard deviation (, ).(Figure 14, Figure 16). 673 

The performance improves most where all model configurations perform worst: at the 10
th

 674 

percentile. Possibly, the configurations do not perform well for low percentiles, because the 675 

dependent variable – the forecast error – exhibits very little variance at those water levels, i.e., 676 

the average error is very small (Figure 16).
21

 The decrease of the BSSs with lead time also 677 

becomes considerably less with this configuration. Additionally, an one-size-fits-all approach 678 

was tested to investigate, whether customizing the QR modelconfiguration to each river gage 679 

would be worth it. In this configuration, the rise ratesrates of rise in the past 24 and 48 hours and 680 

the forecast errors 24 and 48 hours ago serve as the independent variables (combination 30). It 681 

was found that this approach returns only slightly worse results than working with the best 682 

                                                 

21
 Possibly, the modelconfigurations do not perform well for low percentiles, because the dependent 

variable – the forecast error – exhibits very little variance at those water levels, i.e., the average 

error is very small (Figure 6: Empirical cumulative distribution function (ecdf) of forecast error at 

82 river gages for six lead times. Vertical lines show the median forecast error of the corresponding 

subset.  

Table 2).  
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performing configuration for each river gage deviation (Figure 15, Figure 16). (; ). Accordingly, 683 

the same variable combinationjoint predictor can be used for all river gages.  684 

As shown in ,already discussed earlier, this last conclusion is not true for extremely high 685 

water levels. Including more independent variables does improve the BSSs considerably 686 

deviation (Figure 17,18, and 19). ( and ; ). However, for each river gage the best combination of 687 

variablesjoint predictor needs to be identified separately. Because data to build modelsdefine 688 

configurations is scarce for extreme levels, the QR modelconfigurations all perform less well for 689 

each increase in flood stage. 690 

 691 

Table 3: Mean and standard deviation three QR configurations: the original using the transformed 692 

forecast only as independent variable; the best performing combination for each river gage (upper 693 

performance limit); rise rates in the past 24 and 48 hours and the forecast errors 24 and 48 hours 694 

ago as independent variable (one-size-fits-all solution).  695 

Figure 13: Brier Skill Scores of the original forecast-only QR modelconfiguration (i.e., using the 696 

transformed forecast as the only independent variable) for four lead times and percentiles of 697 

observed water levels. 698 

Figure 14: Brier Skill Scores for four lead times and percentiles of observed water levels using the 699 

best variable combinationjoint predictor for each river gage as independent variables in the QR 700 

modelconfiguration. 701 

Figure 15: Brier Skill Scores for four lead times and percentiles of observed water levels using a 702 

one-size-fits-all approach (i.e., rr24, rr48, err24, err48) for the independent variables in the QR 703 

modelconfiguration. 704 

Figure 16: Empirical cumulative density functions of three QR configurations predicting 705 

exceedance probabilities of the 10
th

, 25
th

, 75
th

, and 90
th

 percentile: the configuration using the 706 

transformed forecast as the only independent variable [NQT fcst]; the best performing combination 707 

for each river gage (upper performance limit) [Best combis]; rates of rise in the past 24 and 48 708 
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hours and the forecast errors 24 and 48 hours ago as independent variable (one-size-fits-all 709 

solution) [rr+err24/48].  710 

 711 

Figure 17: Brier Skill Scores of the original forecast-only QR modelconfiguration (i.e., using the 712 

transformed forecast as the only independent variable) for four lead times and flood stages. 713 

Figure 18: Brier Skill Scores for four lead times and flood stages of observed water levels using the 714 

best variable combinationjoint predictor for each river gage as independent variables in the QR 715 

modelconfiguration. 716 

Figure 19: Empirical cumulative density functions of three QR configurations predicting 717 

exceedance probabilities of the Action, Minor, Moderate, and Major Flood Stage: the configuration 718 

using the transformed forecast as the only independent variable [NQT fcst]; the best performing 719 

combination for each river gage (upper performance limit) [Best combis]  720 

 721 

 The fact that the Brier Score can be de-composed into reliability, resolution and 722 

uncertainty allows a closer look at which improvements are being achieved by including more 723 

variablespredictors than just the forecast. Figure 18Figure 20 shows that the original forecast-724 

only QR model configuration as studied by Weerts et al. (2011)(2011) has high reliability (i.e., 725 

the reliability is close to zero). The Brier Score and the Brier Skill Score mainly improve when 726 

using rise ratesrates of rise and forecast errors as independent variables, because the resolution 727 

increases. This confirms the finding by Wood et al. (2009) that QR error models should be based 728 

on rate of rise (as well as lead time). The forecast quality improves along other dimensions 729 

metrics as well, i.e., the areas under the ROC curves and the ranked probability skill score 730 

(RPSS) increase. The first weighs missed alarms against false alarms and has a perfect score 731 

equal to one. The latter is a version of the Brier Skill Score. While the Brier Skill Score pertains 732 
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to a binary event, the RPSS can take into account various event categories. Its perfect score 733 

equals one (e.g., WWRP/WGNE, 2009)(e.g., WWRP/WGNE, 2009). 734 

Figure 1820: Comparison of the original forecast-only QR modelconfiguration (i.e., only 735 

transformed forecast as independent variables) and the one-size-fits-all approach (i.e., rise 736 

ratesrates of rise and forecast errors as independent variables) using various measures of forecast 737 

quality: Brier Score (BS), Brier Skill Score (BSS), Reliability (Rel), Resolution (Res), Uncertainty 738 

(Unc), Area under the ROC curve (ROCA), ranked probability score (RPS), ranked probability 739 

skill score (RPSS). Lead time: 3 days; 75
th

 percentile of observation levels as threshold. The left 740 

figure zooms in on the right figure to make changes in reliability and resolution better visible.  741 

3.3 Robustness 742 

The impact of the length of the training dataset on the modelconfiguration’s performance 743 

measured by the Brier Skill Score (BSS) was assessed for the one-size-fits-all QR 744 

modelconfiguration (i.e., rise ratesrates of rise and forecast errors as independent variables for all 745 

gages) for Hardin and Henry on the Illinois River. We were particularly interested in testing how 746 

many years of training data are necessary to achieve satisfactory forecasting results. Each year 747 

between 2003 and 2013 was forecast by QR modelconfigurations trained on on one year up to 748 

however many years of archived forecasts were availableavailable in that year, i.e., the forecasts 749 

for 2005 is produced by a model trained on less data than those for 2013. Then, the BSS for that 750 

year (e.g., 2005 or 2013) was computed.  751 

Figure 21 and Figure 22 show that training datasets shorter than three years result in very 752 

low BSSs for low event thresholds (Q10) at Henry and Hardin.show that for those gages,  For the 753 

other event thresholds, it does notbarely matters  for the BSS how many years are included in the 754 

training dataset. That is good newnewss, if stationarity cannot be assumed (Milly et al., 755 

2008)(Milly et al., 2008), a step-change in river regime has occurred, or forecast data have not 756 
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been archived in the past. In those cases, only short training datasets are available. Only needing 757 

short time series to define a skillful QR configuration implies that the configuration parameters 758 

can be updated regularly. This way, changing relationships between predictors etc. can be taken 759 

into account.  760 

 However, the BSS varies considerably for what year is being forecast. The forecast 761 

performance varies greatly, especially for the 10
th

 and 25
th

 percentile of observed water levels. It 762 

is likely, that a very large dataset, including more infrequent events, would improve these results. 763 

However, most river forecast centers only recently started archiving forecasts in a text-format, so 764 

that even having ten years’ worth of data is an exception. To illustrate that point, the National 765 

Climatic Data Center has archived data from 2001 onwards available in their HDSS Access 766 

System. 
22

 767 

To generalize the result, the same analysis as just described for Hardin and Henry was 768 

repeated for all 82 gages. Following that, a regression analysis was executed with the BSS score 769 

as the dependent variable and the river gages and forecast years as factorial independent 770 

variables and the lead time, event thresholds, and number of training years as numerical 771 

independent variables (Table 2). The forecast performance was found to vary statistically 772 

significantly across all those dimensions except the number of training years. This results in a 773 

very wide range of Brier Skill Scores (Figure 22). Accordingly, for the user, it is particularly 774 

difficult to know how much to trust a forecast, if the performance depends so much on context. 775 

Likewise, this is case for the QR configuration based on the forecast only (not shown).  776 

                                                 
22

 To illustrate that point, the National Climatic Data Center has archived data from 2001 

onwards available in their HDSS Access System.  
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A closer look at the regression coefficients (Table 2) provides interesting insights. For 777 

low event thresholds, the BSSs are much worse than for high thresholds. The QR configurations 778 

might be performing less well for low event thresholds, because the variance in the dependent 779 

variable – the forecast error – is smaller. After all, river forecasts have much smaller errors for 780 

lower water levels. The illustrative cases of Henry and Hardin, described above, indicate that 781 

using longer time series to predict exceedance probabilities of low event thresholds improves 782 

forecast performance.  783 

As expected, the BSSs slightly decrease with lead time. Regarding the forecast quality for 784 

each forecast year, the regression is slightly biased. The earlier years are included less often in 785 

the dataset with on average less years’ worth of data in their training dataset, because, for 786 

example, unlike for the year 2013, ten years of training data were not available for the year 2006. 787 

Nonetheless, the regression indicates that 2008 was particularly difficult to forecast and 2012 788 

relatively easy, i.e., they are associated with relatively low and high coefficients respectively 789 

(Table 2).  790 

The performance of the forecast additionally depends on the river gage. The coefficients 791 

of the river gages, included as factors in the regression, have been excluded from Table 2 for the 792 

sake of brevity. Instead, Figure 23 maps the geographic position of the river gages with the color 793 

code indicating each gage’s regression coefficient. The coefficients are lower, and therefore the 794 

Brier Skill Scores are lower, for gages far upstream a river and those close to confluences. At 795 

least for the gages at confluences, the QR model could probably be improved by including the 796 

rise rates at the river gages on the other joining river into the regression. 797 

  798 
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Figure 2119: Brier Skill Score for various forecast years and various sizes of training dataset across 799 

different lead times (colors) and event thresholds (plots) for Hardin, IL (HARI2).  The filled-in end 800 

point of each line indicates the BSS for the forecast year on the x-axis with one year in the training 801 

dataset. Each point further to the left stands for one additional training  year for that same forecast 802 

year. 803 

Figure  2220: Brier Skill Score for various forecast years and various sizes of training dataset 804 

across different lead times (colors) and event thresholds (plots) for Henry, IL (HNYI2). The filled-805 

in end point of each line indicates the BSS for the forecast year on the x-axis with one year in the 806 

training dataset. Each point further to the left stands for one additional training  year for that same 807 

forecast year. 808 

Figure 2123: Geographical position of rivers. Colors indicate the regression coefficient of each 809 

station with the Brier Skill Score as dependent variable.  810 

Figure 2224: Minimum (black) and maximum (red) Brier Skill Scores for various lead times and 811 

event thresholds across locations, size of training dataset and forecast years.  812 

4 Conclusion 813 

In this study, quantile regression (QR) has been applied to estimate the probability of the river 814 

water level exceeding various event thresholds (i.e., 10
th

, 25
th

, 75
th

, 90
th

 percentiles of observed 815 

water levels as well as the four flood stages of each river gage). This is the first study applying 816 

this method to the U.S. American context. Additionally, itIt further develops the method 817 

application of QR to estimating river forecast uncertainty by (a) including morecomparing 818 

different sets of independent variables, (b) and testing the methodtechnique’s robustness across 819 

locations, lead times, event thresholds, forecast years and sizes of training dataset.  820 

  821 

Most importantlyWhen compared to the configuration using only the forecast, it was found that 822 

including rise ratesrates of rise in the past 24 and 48 hours and the forecast errors of 24 and 48 823 

hours ago as independent variables improves the performance of the QR modelconfiguration, as 824 
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measured by the Brier Skill Score. This confirms Wood et al.’s (2009) finding that QR error 825 

models should be a function of rate of rise and lead time. Since the reliability was already high 826 

with the original QR method as proposed by Weerts et al. , The configuration with the forecast as 827 

the only independent variable, as studied by Weerts et al. (2011), produced estimates with high 828 

reliability. Including the other four predictors mentioned above mainlythe new configuration 829 

mainly increases the resolution. 830 

 For extremely high water levels, the combinations of independent variables that perform best 831 

vary across stations. On those days, combinations of fewer independent variables perform better 832 

than those that include more. The most likely explanation is that QR configurations based on 833 

large joint predictors result in overfitting the data. In contrast to these extremely high event 834 

thresholds, larger sets of variables predictors work better than smaller ones for non-extreme and 835 

low event thresholds. Additionally, customizing the set of predictors to the event thresholds does 836 

not improve the BSS much. a one-size-fits-all approach (i.e. the rise rates and forecasts errors as 837 

independent variables) performs satisfactorily for those cases.  838 

When forming a joint predictor, the independent variables rates of rise and forecast errors do 839 

not combine well with the forecast itself. To account for heteroscedasticity, the forecast was 840 

transformed into the Gaussian domain. However, no trend is detectable anymore between 841 

forecast error and the rates of rise or the previous forecast errors after applying NQT to those 842 

variables. Therefore, it is difficult to combine these two predictors. A possible solution could be 843 

to define QR configurations for subsets of the transformed data. However, such an approach 844 

drastically decreases the amount of data available for each configuration.  845 

 846 



37 

 

The new independent variables – rise rates and forecast errors – do not combine well with 847 

forecast itself. The latter was the only variable included in the original QR configuration as 848 

studied by Weerts et al.  and López López et al. . To account for heteroscedasticity, the forecast 849 

was transformed into the Gaussian domain. However, the rise rates and the forecast errors do not 850 

lend themselves for linear quantile regression after such a transformation. Therefore, it is 851 

difficult to combine these two variables. A possible solution could be to build regression models 852 

for subsets of the transformed data. However, such an approach drastically decreases the amount 853 

of data available for each model.  854 

The proposed studied QR method configurations areis relatively robust to the size of training 855 

dataset, which is convenient if stationarity cannot be assumed (Milly et al., 2008)(Milly et al., 856 

2008), a step-change in the river regime has occurred, or – as is the case for most river forecast 857 

centers – only recent forecast data have been archived. However, the performance of the 858 

methodtechnique does dependdepends heavily on the river gage, the lead time, event threshold 859 

and year that are being forecast. This results in a very wide range of Brier Skill Scores. This 860 

means that the danger remains that forecast users make good experiences with a forecast one 861 

year or at one location and assume it is equally reliable in other locations and every year. As is 862 

the case with most other forecasts, an indication of forecast uncertainty needs to be 863 

communicated alongside the exceedance probabilities generated by our approach.  864 

The proposed studied QR approach configurations performs less well for longer lead times, 865 

for gages far upstream a river or close to confluences, for low event thresholds and extremely 866 

high ones. The QR modelconfigurations might be performing less well for low event thresholds, 867 

because the variance in the dependent variable – the forecast error – is smaller. After all, river 868 
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forecasts have much smaller errors for lower water levels. In turn, for extremely high water 869 

levels, the scarcity of data decreases the modelconfiguration’s performance.  870 

Future Work 871 

Thise methodtechniques can be further developed in several ways to achieve higher Brier Skill 872 

Scores and more robustness. First, more independent variables can be added. Trials with a 873 

different methodtechnique, classification trees, showed that the observed precipitation, the 874 

precipitation forecast (i.e., POP – probability of precipitation) and the upstream water levels 875 

significantly improve modelsforecasting performance. Presumably, this is the case, because the  876 

QPF-forecast used in this study includes the precipitation forecast only for only the next 12 877 

hours. However, currently, the precipitation data and forecasts can only be requested in chunks 878 

of a month, three chunks per day, from the NCDC’s HDSS Access System.
23

 For a period of 12 879 

years, requesting such data for several weather stations
24

 is obviously time-consuming; n. ot 880 

least, because the geographical units of the weather forecasts bulletins do not correspond with 881 

those of the river forecast bulletins. Upstream water levels can easily be included after manually 882 

determining the upstream gage(s) for each of the 82 NCRFC gages. To improve model 883 

performance at gages close to river confluences, the upstream water level of the gages on the 884 

joining river should be included as well.  885 

Different approaches of sub-setting the data to improve models resultsperformance also 886 

warrant consideration. Particularly, clustering the data by variability seems promising. However, 887 

early trials indicated that this methodtechnique is very sensitive to the training dataset. 888 

                                                 
23

 URL [accessed July 2014]: 

http://cdo.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9957ANX 
24

 The geographical units of the weather forecasts bulletins do not correspond with those of the 

river forecast bulletins. 
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As mentioned above, the QR method approach works less well for low than for high event 889 

thresholds. Further study should investigate, why that is the case, and identify possible solutions. 890 

The current study focused on extremely high event thresholds, i.e., flood stages, but not on lower 891 

ones, i.e., below the 50
th

 percentile of observed water levels. 892 

LastAdditionally, the proposed studied methodtechnique would need to be verified for gages 893 

for which the NCRFC does not publish daily forecasts. Ignorance of the uncertainty inherent in 894 

river forecasts have has had some of the most unfortunate impacts on decision-making in Grand 895 

Forks, ND and Fargo, ND (Pielke, 1999; Morss, 2010)(Pielke, 1999; Morss, 2010). Both of those 896 

stages are discontinuously forecast NCRFC gages.  897 

Finally, this paper uses a brute force approach by simply calculating and comparing all 898 

possible combinations of independent variables. Mathematically more challenging stepwise 899 

quantile regression would not only be more elegant, but also provide better safeguards against 900 

overfitting the data.  901 
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Tables 

 

Table 1: Variable CombinationJoint predictors 

Combi fcst err24 err48 rr24 rr48  Combi fcst err24 err48 rr24 rr48 

1       16      

2       17      

3       18      
4       19      

5       20      

6       21      
7       22      

8       23      
9       24      
10       25      

11       26      

12       27      
13       28      
14       29      
15       30      

       31      
fcst = forecast; rr24, rr48 = rise raterate of rise in the past 24 and 48 hours;  

err24, err 48 = forecast error 24 and 48 hours ago 

The forecast error equals the difference between the current (i.e., at issue time of the forecast) 

water level and the forecast that was produced 24/48 hours ago. 
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Table 2: Error statistics for the forecast error a) of the whole dataset; b) on days that the water 

level did not exceed the 10
th

 percentile of observations; c) on days that the water level exceeded the 

90
th

 percentile of observations; d) on days that the water level exceeded minor flood stage. 

Average errors  Lead Time 

of 82 gages Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

a) ALL OBSERVATIONS 

Minimum  -0.21 -0.08 -0.09 -0.07 -0.04 0.02 

Median 0.01 0.02 0.06 0.13 0.22 0.30 

Mean 0.01 0.04 0.10 0.18 0.30 0.41 

Maximum 0.19 0.21 0.76 1.65 2.62 3.47 

b) OBSERVATIONS < 10
th

 PERCENTILE 

Minimum  -1.2 -0.35 -0.38 -0.41 -0.38 -0.39 

Median -0.03 -0.04 -0.05 -0.05 -0.04 -0.04 

Mean -0.06 -0.06 -0.06 -0.06 -0.05 -0.04 

Maximum 0.03 0.04 0.05 0.12 0.17 0.25 

c) OBSERVATIONS > 90
th

 PERCENTILE  

Minimum  -0.11 -0.23 -0.31 -0.38 -0.38 -0.27 

Median -0.01 0.02 0.15 0.32 0.55 0.81 

Mean 0.01 0.09 0.29 0.55 0.82 1.14 

Maximum 0.34 1.01 3.12 5.13 6.81 8.56 

d) OBSERVATIONS > FLOOD STAGE 

Minimum  -0.20 -0.30 -0.44 -0.63 -0.78 -0.80 

Median -0.02 -0.03 0.22 0.45 0.78 1.10 

Mean 0.01 0.17 0.45 0.80 1.14 1.51 

Maximum 0.65 2.44 5.70 8.37 10.40 11.74 
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Table 3: Mean and standard deviation three QR configurations: the original using the transformed 

forecast only as independent variable; the best performing combination for each river gage (upper 

performance limit); rise rates in the past 24 and 48 hours and the forecast errors 24 and 48 hours 

ago as independent variable (one-size-fits-all solution).  

 Q10 Q25 Q75 Q90  Q10 Q25 Q75 Q90 

 Day 1  Day 2 

NQT-fcst 0.34 (0.52) 0.65 (0.36) 0.90 (0.07) 0.88 (0.08)  0.24 (0.57) 0.59 (0.35) 0.85 (0.10) 0.82 (0.12) 

Best combi.s 0.54 (0.34) 0.78 (0.18) 0.93 (0.05) 0.91 (0.06)  0.49 (0.36) 0.74 (0.19) 0.90 (0.05) 0.87 (0.07) 

Rise rate 24/48  

+error 24/48* 

0.49 (0.41) 0.77 (0.18) 0.92 (0.05) 0.93 (0.06)  0.42 (0.44) 0.73 (0.19) 0.90 (0.06) 0.86 (0.09) 

 Day 3  Day 4 

NQT-fcst 0.20 (0.61) 0.56 (0.33) 0.81 (0.10) 0.75 (0.15)  0.19 (0.55) 0.55 (0.31) 0.77 (0.13) 0.69 (0.18) 

Best combi.s 0.47 (0.37) 0.74 (0.17) 0.89 (0.05) 0.85 (0.09)  0.46 (0.37) 0.73 (0.18) 0.89 (0.05) 0.84 (0.09) 

Rise rate 24/48  

+error 24/48* 

0.40 (0.44) 0.72 (0.19) 0.88 (0.06) 0.84 (0.11)  0.39 (0.43) 0.71 (0.20) 0.88 (0.05) 0.82 (0.20) 

 Action Minor Moderate Major  Action Minor Moderate Major 

 Day 1  Day 2 

NQT-fcst 0.81 (0.27) 0.42 (1.12) 0.38 (1.02) -0.80 (2.07)  0.68 (0.59) 0.41 (0.90) 0.25 (1.2) -1.30 (1.96) 

Best combi.s 0.86 (0.26) 0.78 (0.27) 0.73 (0.24) 0.36 (0.66)  0.82 (0.29) 0.73 (0.28) 0.68 (0.24)  0.26 (0.67) 

 Day 3  Day 4 

NQT-fcst 0.67 (0.37) 0.37 (0.87) -0.09 (1.42) -1.69 (2.24)  0.62 (0.35) 0.22 (1.00) -0.07 (1.05) -1.52 (1.96) 

Best combi.s 0.81 (0.26) 0.71 (0.31)  0.64 (0.23)  0.19 (0.76)  0.79 (0.26) 0.69 (0.30)  0.60 (0.23)  0.13 (0.72) 

* Combination 30 

Table 2: Regression results 

 Coef. St.Dev.  

Intercept -0.206 0.031 *** 

Event thresholds 0.265 0.003 *** 

Lead Times -0.021 0.003 *** 

Forecast Years    

2004 -0.266 0.020 *** 

2005 -0.081 0.018 *** 

2006 -0.125 0.017 *** 

2007 -0.129 0.017 *** 

2008 -0.203 0.017 *** 

2009 -0.125 0.016 *** 

2010 -0.140 0.017 *** 

2011 -0.128 0.016 *** 
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2012 0.056 0.017 *** 

2013 -0.054 0.016 *** 

Number of Years in Training Dataset 0.001 0.001  

River Gages 

    For the sake of brevity, the 82 river gages included in the regression as factors are omitted here. 
*** 

R
2
  0.26  

Adjusted R
2
  0.25  

P-Values:      *** – <0.001;      ** – 0.01;      * – 0.05;      . – 0.1 
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Figures 

 

Figure 1: Deterministic short-term weather forecast in six hour intervals as published by the NWS 

for Hardin, IL on 24 April 2014. 

Source:http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=hari2. 
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Figure 2: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 

December 14th, 2012: Exceedance curve for three months period. (Not available for Hardin, IL). 

Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 

 

Figure 3: Probabilistic long-term forecast as published by the NWS for Commerce, OK on 

December 14th, 2012: Bar plot for each week of a three months period. (Not available for Hardin, 

IL). Source: http://water.weather.gov/ahps2/hydrograph.php?wfo=tsa&gage=como2 
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Figure 24: Theory behind Brier Skill Score illustrated for an imaginary forecast (red line): (a) 

reliability and resolution; (b) skill. In figure a, the area representing reliability should be as small, 

and for resolution as large as possible. The forecast has skill (BSS > 0), i.e., performs better than 

random guessingthe reference forecast, if it is inside the shaded area in the figure b. Ideally, the 

forecast would follow the diagonal (BSS=1). (Adapted from Hsu and Murphy, 1986; Wilson, 
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n.d.)(Adapted from Hsu and Murphy, 1986; Wilson, n.d.). 
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 Figure 35: Portion River gages for which the of the North Central River Forecast Centers river 

gages withpublishes forecasts daily. Henry (HYNI2) and Hardin (HARI2) are  indicated by the 

upper and lower red arrow respectively.  For gages indicated by black dots the basin size is 

missing.Source:  
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Figure 4: Empirical cumulative density function (ecdf) of sizes of drainage area for the river gages 

that are being forecasted daily by the NCRFC. 
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Figure 56: Forecast error for 82 river gages that the NCRFC publishes daily forecasts for. In anti-

clockwise direction starting at the top left: (a) Average error; (b) error on days that the water level 

did not exceed the 10
th

 percentile of observations; (c) error on days that the water level exceeded the 

90
th

 percentile of observations; (d) error on days that the water level exceeded minor flood stage.  

 

Figure 6: Empirical cumulative distribution function (ecdf) of forecast error at 82 river gages for 

six lead times. Vertical lines show the median forecast error of the corresponding subset.  
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Figure 7: Histograms of variable combinationjoint predictors returning the best and worst Brier 

Skill Scores across 82 river gages. Each row of histograms refers to an event threshold defined as a 

percentile of the observed water levels, and each column to a lead time. The dotted vertical lines in 

the histograms distinguish variable combinationjoint predictors with different numbers of 

independent variables.  
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Figure 8: Histograms of variable combinationjoint predictors returning the best and worst Brier 

Skill Scores across 82 river gages. Each row of histograms refers to a flood stage, and each column 

to a lead time. The dotted vertical lines in the histograms distinguish variable combinationjoint 

predictors with different numbers of independent variables. 
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Figure 9: Average rank for each variable combinationjoint predictor for one to four days of lead 

time and four percentiles of observed water levels. Vertical gray lines indicate variable 

combinationjoint predictors including the forecast. 
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Figure 10: Average rank for each variable combinationjoint predictor for one to four days of lead 

time and four flood stages. Vertical gray lines indicate variable combinationjoint predictors 

including the forecast. 
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Figure 11: Independent variables plotted against the forecast error for Hardin IL with 3 days of 

lead time. First row: Forecast; second row: past forecast errors; third row: rise ratesrates of rise. 
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Figure 12: Independent variables after transforming into the Gaussian domain plotted against the 

forecast error for Hardin IL with 3 days of lead time. First row: Forecast; second row: past forecast 

errors; third row: rise ratesrates of rise. 
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Figure 16: Empirical cumulative density functions of three QR configurations predicting 

exceedance probabilities of the 10
th

, 25
th

, 75
th

, and 90
th

 percentile: the configuration using the 

transformed forecast as the only independent variable [NQT fcst]; the best performing combination 

for each river gage (upper performance limit) [Best combis]; rates of rise in the past 24 and 48 

hours and the forecast errors 24 and 48 hours ago as independent variable (one-size-fits-all 

solution) [rr+err24/48].  
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Figure 19: Empirical cumulative density functions of three QR configurations predicting 

exceedance probabilities of the Action, Minor, Moderate, and Major Flood Stage: the configuration 

using the transformed forecast as the only independent variable [NQT fcst]; the best performing 

combination for each river gage (upper performance limit) [Best combis]  
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Figure 13: Brier Skill Scores of the original 

forecast-only QR modelconfiguration (i.e., 

using the transformed forecast as the only 

independent variable) for four lead times 

and percentiles of observed water levels. 

 

Figure 14: Brier Skill Scores for four lead 

times and percentiles of observed water 

levels using the best variable 

combinationjoint predictor for each river 

gage as independent variables in the QR 

modelconfiguration. 

 

 

 

Figure 15: Brier Skill Scores for four lead 

times and percentiles of observed water 

levels using a one-size-fits-all approach (i.e., 

rr24, rr48, err24, err48) for the independent 

variables in the QR modelconfiguration. 
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Figure 176: Brier Skill Scores of the forecast-only original QR 

modelconfiguration (i.e., using the transformed forecast as the only 

independent variable) for four lead times and flood stages. 

 

Figure 187: Brier Skill Scores for four lead times and flood stages 

of observed water levels using the best variable combinationjoint 

predictor for each river gage as independent variables in the QR 

modelconfiguration. 
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Figure 2018: Comparison of the forecast-only original QR modelconfiguration (i.e., only transformed forecast as independent variables) 

and the one-size-fits-all approach (i.e., rise ratesrates of rise and forecast errors as independent variables) using various measures of 

forecast quality: Brier Score (BS), Brier Skill Score (BSS), Reliability (Rel), Resolution (Res), Uncertainty (Unc), Area under the ROC 

curve (ROCA), ranked probability score (RPS), ranked probability skill score (RPSS). Lead time: 3 days; 75
th

 percentile of observation 

levels as threshold. The left figure zooms in on the right figure to make changes in reliability and resolution better visible.  
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Figure 2119: Brier Skill Score for various forecast years and 

various sizes of training dataset across different lead times (colors) 

and event thresholds (plots) for Hardin, IL (HARI2).  The filled-in 

end point of each line indicates the BSS for the forecast year on the 

x-axis with one year in the training dataset. Each point further to 

the left stands for one additional training  year for that same 

forecast year. 

 

Figure 220: Brier Skill Score for various forecast years and various 

sizes of training dataset across different lead times (colors) and 

event thresholds (plots) for Henry, IL (HNYI2). The filled-in end 

point of each line indicates the BSS for the forecast year on the x-

axis with one year in the training dataset. Each point further to the 

left stands for one additional training  year for that same forecast 

year. 
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Figure 231: Geographical position of rivers. Colors indicate the regression coefficient of each 

station with the Brier Skill Score as dependent variable.  
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Figure 242: Minimum (black) and maximum (red) Brier Skill Scores for various lead times and 

event thresholds across locations, size of training dataset and forecast years.  


