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 8 
Abstract The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the 9 
uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to 10 
combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the 11 
conceptual modeling of a meso-scale Andean catchment (1515 km²) over a 30-year period (1982‒2011). The modeling 12 
process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow 13 
accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these 14 
decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. 15 
These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow 16 
simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of 17 
performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 18 
equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to 19 
minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model 20 
hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. 21 
Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and 22 
data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations. 23 
 24 

1. INTRODUCTION 25 

Conceptual catchment models based on the combination of several schematic stores are popular 26 
tools in flood forecasting and water resources management (e.g. Jakeman and Letcher, 2003; Xu and 27 
Singh, 2004). The main rationale behind this success lies in the fact that relatively simple structures 28 
with low data and computer requirements generally outweigh the performance of far more complex 29 
physically-based models (e.g. Michaud and Sorooshian, 1994; Refsgaard and Knudsen, 1996; 30 
Kokkonen and Jakeman, 2001). Also, most water management decisions are made at operational 31 
scales having much more to do with catchment-scale administrative considerations than with our 32 
understanding of microscale fine-scale processes. As a result, conceptual models are being 33 
increasingly used to evaluate the potential impacts of climate change on hydrological systems (e.g. 34 
Minville et al., 2008; Ruelland et al., 2012) and freshwater availability (e.g. Milano et al., 2013; Collet 35 
et al., 2013). 36 

This modeling strategy, however, is regularly criticized for oversimplifying the physics of 37 
catchments and leading to unreliable simulations when conditions shift beyond the range of prior 38 
experience. Part of the problem comes from the fact that model structures are usually specified a 39 
priori, based on preconceived opinions about how systems work, which in general leads to an 40 
excessive dependence on the calibration process. More than a lack of physical background, this 41 
practice reveals a misunderstanding about how such models should be based on physics (Kirchner, 42 
2006; Blöschl and Montanari, 2010). Hydrological systems are not structureless things composed of 43 
randomly distributed elements, but rather self-organizing systems characterized by the emergence of 44 
macroscale patterns and structures (Dooge, 1986; Sivapalan, 2006; Ehret et al., 2014). As such, the 45 
reductionist idea that catchments can be understood by merely aggregating (upscaling) fine-scale 46 
mechanistic laws is generally misleading (Anderson, 1972; Dooge, 1997; McDonnell et al., 2007). 47 
Self-organization at the catchment scale means that new hydrologic relationships with fewer degrees 48 
of freedom have to be envisioned (e.g. McMillan, 2012a). Yet, finding simplicity in complexity does 49 
not imply that simple models available in the literature can be used as ready-made engineering tools 50 
with little or no consideration for the specific features of each catchment (Wainwright and Mulligan, 51 
2004; Savenije, 2009). As underlined by Kirchner (2006), it is important to ensure that the “right 52 
answers” are obtained for the “right reasons”. In the case of poorly-defined systems where physically-53 
oriented interpretations can only be sought a posteriori to check for the model realism, this requires 54 
placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model 55 
structure than is currently done in most hydrological impact studies. 56 
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Structural uncertainty can be described in terms of inadequacy and non-uniqueness. Model 57 
inadequacy arises from the many simplifying assumptions and epistemic errors made in the selection 58 
of which processes to represent and how to represent them. It reflects the extent to which a given 59 
model differs from the real system it is intended to represent. In practice, this results in the failure to 60 
capture all relevant aspects of the system behavior within a single model structure or parameter set. A 61 
common way of addressing this source of uncertainty is to adopt a top-down approach to model-62 
building (Jothityangkoon et al., 2001; Sivapalan et al., 2003), in which different models of increasing 63 
complexity are tested to determine the adequate level of process representation. Where fluxes and state 64 
variables are made explicit, alternative data sources (other than streamflow) such as groundwater 65 
levels (Seibert, 2000; Seibert and McDonnell, 2002), tracer samples (Son and Sivapalan, 2007; Birkel 66 
et al., 2010; Capell et al., 2012) or snow measurements (Clark et al., 2006; Parajka and Blöschl, 2008), 67 
can also be used to improve the internal consistency of model structures. Additional criteria can then 68 
be introduced in relation to these auxiliary data or to specific aspects of the hydrograph (driven vs. 69 
nondriven components, rising limb, recession limbs...). In this perspective, multi-criteria evaluation 70 
techniques based on the concept of Pareto-optimality provide an interesting way to both reduce and 71 
quantify structural inadequacy (Gupta et al., 1998; Boyle et al., 2000; Efstratiadis and Koutsoyiannis, 72 
2010). A parameter set is said to be Pareto-optimal if it cannot be improved upon without degrading at 73 
least one of the objective criteria. In general, meaningful information on the origin of model 74 
deficiencies can be derived from the mapping of Pareto-optimal solutions in the space of performance 75 
measures (often called the Pareto front) and used to discriminate between several rival structures (Lee 76 
et al., 2011). Further, the Pareto set of solutions obtained with a given model is commonly used to 77 
generate simulation envelopes (hereafter called 'Pareto-envelopes' for brevity's sake) representing the 78 
uncertainty associated with structural errors (i.e. model inadequacy). 79 

Non-uniqueness refers to the existence of many different model structures (and parameter sets) 80 
giving equally acceptable fits to the observed data. Structural inadequacy and the limited (and often 81 
uncertain) information of the available data make it highly unlikely to identify a single, unambiguous 82 
representation of how a system works. There may be, for instance, many different possible 83 
representations of flow pathways yielding the same integral signal (e.g. streamflow) at the catchment 84 
outlet (SchaefliShaefli et al., 2011). Non-uniqueness in model identification has also been widely 85 
described in terms of equifinality (Beven, 1993 and 2006) and may be viewed as a special case of a 86 
more general epistemological issue known as the “underdetermination” problem. Over the past 87 
decade, these considerations have encouraged a shift in focus toward more flexible modeling tools 88 
based on the concept of multiple working hypotheses (Buytaert and Beven, 2011; Clark et al., 2011). 89 
A number of modular frameworks have been proposed, in which model components (i.e. individual 90 
hypotheses) can be assembled and connected in many ways to build a variety of alternative model 91 
structures (i.e. overall hypotheses). Recent examples of such modular modeling frameworks (MMF) 92 
include the Imperial College Rainfall-Runoff Modeling Toolbox (RRMT) (Wagener et al., 2002), the 93 
Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008) and the SUPERFLEX 94 
modeling environment (Fenicia et al., 2011). Clark et al. (2011) suggested that multiple-hypothesis 95 
frameworks (MHF)this approach to model identification represents a valuable alternative to “most 96 
practical applications of the top-down approach”, which “seldom consider competing process 97 
representations of equivalent complexity”. Compared to current multimodel strategies, these 98 
frameworksMMF also provide the possibility to better scrutinize the effect of each individual 99 
hypothesis (i.e. model component), provided that the model decomposition is sufficiently fine-grained. 100 
Finally, Clark et al. (2011) argued that ensembles of competing model structures obtained from MMF 101 
(both of equal and varying complexity) can also be generated used to quantify the structural 102 
uncertainty arising because of system non-identifiability (i.e. model non-uniqueness). So far, however, 103 
this method has mostly been applied to relatively small (<500 km2) and humid catchments of the 104 
Northern Hemisphere (Krueger et al., 2010; Smith and Marshall, 2010; Staudinger et al., 2011; 105 
Kavetski and Fenicia, 2011; McMillan et al., 2012b; Coxon et al., 2013), with less attention being 106 
given to larger scales of interest (>1000 km2) and semi-arid regions (e.g. Clark et al., 2008). Moreover, 107 
several of these studies have insisted on the need for multiple criteria related to different aspects of the 108 
system’s behavior in order to improve the usefulness of MMF. Yet, most of the time these additional 109 
criteria or signatures were not used to guide model development or constrain calibration but rather as 110 
posterior diagnostics in validation (see Kavetski and Fenicia, 2011). Thus, the potential benefits of 111 
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using the concept of Pareto-efficiency to constrain model development and help differentiate between 112 
numerous competing hypotheses remain largely unexplored in the current literature devoted to MMF. 113 
Also, very few studies have included alternative conceptual representations of snow processes in their 114 
modular frameworks (e.g. Smith and Marshall, 2010), even though snowmelt may have played a 115 
significant role in several cases (Clark et al., 2008; Staudinger et al., 2011).So far, however, this 116 
method has mostly been applied to small (<10 km2) experimental (well-monitored) catchments (e.g. 117 
Clark et al., 2008; Smith and Marshall, 2010; Buytaert and Beven, 2011; McMillan et al., 2012b; 118 
Fenicia et al., 2014), with less attention being given to larger scales of interest (100–400 km2) (e.g. 119 
Kavetski and Fenicia, 2011; Coxon et al., 2013) or long time periods. Therefore, the need remains to 120 
establish whether MHF can also be used to improve conceptual modeling on multi-decadal periods at 121 
operational scales of 1000 km2 or more. The potential benefits of combining MHF with Pareto-based 122 
optimization schemes also remain largely unexplored in the current literature. 123 

Addressing these issues is of particular importance in the case of arid to semi-arid, mountainous 124 
Andean catchments such as those found in north-central Andes (30°S)around 30°S. The Norte Chico 125 
region of Chile, in particular, has been identified as being highly vulnerable to climate change impacts 126 
in a number of recent reports (IPCC, 2013) and studies (e.g. Souvignet et al., 2010; Young et al., 127 
2010). Yet, very few catchments in this region have been studied intensively enough to provide 128 
reliable model simulations, often with no estimation of the surrounding uncertainty (Souvignet, 129 
20072008; Ruelland et al., 2011; Vicuña et al., 20122011; Hublart et al., 2013). This study is the first 130 
step of a larger research project, whose final aim is to assess the capacity to meet current and future 131 
irrigation water requirements in a mesoscale catchment of the Norte Chico region. The objective here 132 
is to provide a set of reasonable model structures that can be used for the hydrological modeling of the 133 
catchment. To achieve this goal, a MHF MMF was developed and combined with a multi-criteria 134 
optimization framework using streamflow and satellite-based snow cover data. 135 
 136 

2. STUDY AREA 137 
 138 
2.1. General site description 139 

The Claro River Catchment (CRC) is a semi-arid, mountainous catchment located in the 140 
northeastern part of the Coquimbo region, in north-central Chile (Fig. 1). It drains an area of 141 
approximately 1515 km², characterized by high elevations ranging from 820 m a.s.l. at the basin outlet 142 
(Rivadavia) to over 5500 m a.s.l. in the Andes Cordillera. The topography is dominated by a series of 143 
generally north-trending, fault-bounded mountain blocks interspersed with a few steep-sided valleys.  144 

The underlying bedrock consists almost entirely of granitic rocks ranging in age from 145 
Pennsylvanian to Oligocene and locally weathered to saprolite. Above 3000 m a.m.s.l., repeated 146 
glaciations and the continuous action of frost and thaw throughout the year have caused an intense 147 
shattering of the exposed rocks (Caviedes and Paskoff, 1975), leaving a landscape of bare rock and 148 
screes almost devoid of soil. 149 

The valley-fill material consists of mostly unconsolidated Quaternary alluvial sediments mantled 150 
by generally thin soils (< 1 m) of sandy to sandy-loam texture (CIREN, 2005). Vineyards and orchards 151 
cover most of the valley floors and lower hill slopes but account for less than 1% of the total 152 
catchment area (INE, 2009; CIREN, 2011). Most of the annual precipitation, however, occurs as snow 153 
during the winter months, leading to an entire dependence on surface-water resources to satisfy crop 154 
water needs during the summer. Irrigation water abstractions occur at multiple locations along the 155 
river’s course depending on both historical water rights and water availability. By contrast, natural 156 
vegetation outside the valleys is extremely sparse and composed mainly of subshrubs (e.g. Adesmia 157 
echinus) and cushion plants (e.g. Laretia acaulis, Azorella compacta) with very low transpiration rates 158 
(Squeo et al., 1993). The Claro River originates from a number of small tributaries flowing either 159 
permanently or seasonally in the mountains. 160 

 161 

2.2. Hydro-climatic data 162 
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In order to represent the hydro-climateclimatic variability over of the catchment, a 30-year period 163 
(1982–2011) was chosen according to data availability and quality. Precipitation and temperature data 164 
were interpolated based on respectively 12 and 8 stations (Fig. 1) using the inverse distance weighted 165 
method on a 5km x 5km grid. Since very few measurements were available outside the river valleys, 166 
elevation effects on precipitation and temperature distribution were considered using the SRTM digital 167 
elevation model (Fig. 1). In a previous study, Ruelland et al. (2014) examined the sensitivity of the 168 
GR4j hydrological model to different ways of interpolating climate forcing on this basin. Their results 169 
showed that a dataset based on a constant lapse rate of 6.5°C/km for temperature and no elevation 170 
effects for precipitation provided slightly better simulations of the discharge over the last 30 years. 171 
However, since the current study also seeks to reproduce the seasonal dynamics of snow accumulation 172 
and melt, it was decided to rely on a mean monthly orographic gradient estimated from the 173 
precipitation observed series (Fig. 1). Potential evapotranspiration (PE) was computed using the 174 
following formula proposed by Oudin et al. (2005): 175 

 176 

 PE ൌ
Rୣ
λߩ

ൈ
T ൅ ଶܭ
ଵܭ

if T ൅ ଶܭ ൐ 0 else PE ൌ 0 (1)

 177 
where PE is the rate of potential evapotranspiration (mm.d-1), Re is the extraterrestrial radiation (MJ.m-178 
2.d-1), λ is the latent heat flux (2.45 MJ.kg-1), ߩ	is the density of water (kg.m-3), and T is the mean daily 179 
air temperature (°C) and K1 and K2 are fitted parameters (for more details on the values of K1 and K2, 180 
see Hublart et al. (2014)). Oudin et al. (2005) determined the values of K1 and K2 by selecting those 181 
that gave the best streamflow simulations when the formula was used to feed hydrological models. In 182 
this study, the FAO Penman-Monteith equation for a reference grass was used as a basis to tune K1 and 183 
K2 at two different locations within the basin (Rivadavia, Pisco Elqui, Fig. 1) (for more details on the 184 
results, see Hublart et al. (2014)). Water abstractions for irrigation were estimated using information 185 
on historical water allocations provided by the Chilean authorities. Because these abstractions are 186 
likely to influence the hydrological behavior of the catchment during recession and low-flow periods, 187 
they were added back to the gauged streamflow in Rivadavia before calibrating the 188 
models.Naturalized streamflow time series were estimated using information provided by the Chilean 189 
Dirección General de Aguas, mainly streamflow measurements at the gauging station of Rivadavia 190 
and historical surface-water diversion data. In addition to streamflow data, remotely-sensed data from 191 
the MODerate resolution Imaging Spectroradiometer (MODIS) sensor were used to estimate the 192 
seasonal dynamics of snow accumulation and melt processes over a 9-year period (2003–2011). Daily 193 
snow cover products retrieved from NASA's Terra (MOD10A1) and Aqua (MYD10A1) satellites were 194 
combined into a single, composite 500-m resolution product to reduce the effect of swath gaps and 195 
cloud obscuration. The remaining data voids were subsequently filled using a linear temporal 196 
interpolation method. 197 

 198 
2.3. Hydrological functioning of the catchment 199 

 200 
2.3.1.  Precipitation variability 201 

 Among the primary factors that control the hydrological functioning of the CRC catchment is the 202 
high seasonality of precipitation patterns. Precipitation occurs mainly between June and Augustduring 203 
the winter months when the South Pacific High reaches its northernmost position. Most of the annual 204 
precipitation falls as snow at high elevations, where it accumulates in seasonal snow packs that are 205 
gradually released from October to April. The El Niño Southern Oscillation (ENSO) represents the 206 
largest source of climate variability at the interannual timescale (e.g. Rutllant and Fuenzalida, 1991; 207 
Montecinos and Aceituno, 2003). Anomalously wet (dry) years in the region are generally associated 208 
with warm (cold) El Niño (La Niña) episodes and a simultaneous weakening (strengthening) of the 209 
South Pacific High. It is worth noting, however, that some very wet years in the catchment can also 210 
coincide with neutral to weak La Niña conditions, as in 1984, while several years of below-normal 211 
precipitation may not exhibit clear La Niña characteristics (Verbist et al., 2010; Jourde et al., 2011). 212 
These anomalies may be due to other modes of climate variability affecting the Pacific basin on longer 213 
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timescales. The Interdecadal Pacific Oscillation (IPO), in particular, has been shown to modulate the 214 
influence of ENSO-related events according to cycles of between 15 and 30 years (Schulz et al., 2011; 215 
Quintana and Aceituno, 2012). Recent shifts in the IPO phase occurred in 1977 and 1998 and may be 216 
responsible for the highest frequency of humid years during the 1980s and the early 1990s when 217 
compared to the late 1990s and the 2000s. 218 

2.3.2.  Catchment-scale water balance and dominant processes 219 

Notwithstanding this significant climate variability, a rough estimate of the catchment water 220 
balance can be given for the period 2003–2011 using the data presented in the previous subsection and 221 
additional information available in the literature. Spatially averaged precipitation ranges from a low of 222 
80 mm in 2010 to an estimated high of 190 mm in 2008. Evapotranspiration from non-cultivated areas 223 
is sufficiently low to be reasonably neglected at the basin scale (Kalthoff et al., 2006). By contrast, 224 
water losses from the cultivated portions of the basin are likely to be around 10 mm.yr-1 (Hublart et al., 225 
20132014). At high elevations, sublimation plays a much greater role than evapotranspiration. Mean 226 
annual sublimation rates over two glaciers located in similar, neighbouring catchments have been 227 
estimated to be about 1 mm.d-1 (see e.g. MacDonell et al., 2013). Thus, a first estimate of the annual 228 
water loss associated with snow sublimation can be made by multiplying, for each day of the period, 229 
the proportion of the catchment covered with snow by an average rate of 1 mm.d-1. This leads to a 230 
mean annual loss of 70 mm between 2003 and 2011. Note that this value is of the same order of 231 
magnitude as those obtained by Favier et al. (2009) using the Weather Research and Forecasting 232 
regional-scale climate model. Mean annual discharge per unit area varies from a minimum of 20 mm 233 
in 2010 to a maximum of 140 mm in 2003. Interestingly, runoff coefficients exceed 100% during 234 
several years of the period (in 2003, 2006, 2007 and 2009), indicating either an underestimation of 235 
precipitation at high elevations, as suggested by Favier et al. (2009), or a greater delayed contribution 236 
of groundwater to surface flow from one year to another (Jourde et al., 2011).  237 

Groundwater movement in the catchment is mainly from the mountain blocks toward the valleys 238 
and then northward along the riverbed. In the mountains, groundwater flow and storage are controlled 239 
primarily by the presence of secondary permeability in the form of joints and fractures (Souvignet 240 
Strauch et al., 2006). The unconfined valley-fill aquifers are replenished by mountain front recharge 241 
along the valley margins and by infiltration through the channel bed along the losing river reaches 242 
(Jourde et al., 2011). Their hydraulic conductivity and saturated thickness range from about 10 m.d-1 243 
and 40 m respectively in the upper part of the catchment to more than 30 m.d-1 and 60 m respectively 244 
at the outlet (CAZALAC, 2006), allowing a rapid transfer of water to the hydraulically connected 245 
surface streams. Pourrier et al. (2014) studied flow processes and dynamics in the headwaters of the 246 
neighbouring Turbio River catchment; yet very little remains currently known about the emergent 247 
processes taking place at the catchment scale. 248 

 249 
3. METHODS 250 

 251 
3.1. Multiple-hypothesis modeling framework 252 

In order to evaluate various numerical representations of the catchment functioning, a multiple-253 
hypothesis modeling framework inspired by previous studies in literature was developed. All the 254 
models built within this framework are lumped hypotheses run at a daily time step. The modeling 255 
process was decomposed into three modules and six model-building decisions. Each module deals 256 
with a different aspect of the precipitation–runoff relationship through one or more decisions (Fig. 2): 257 
snow accumulation (A) and melt (B), runoff generation (C), redistribution (D) and delay (E) of water 258 
fluxes, and natural storage effects (F). Each of these decisions is provided with a set of alternative 259 
modeling options, which are named by concatenating the following elements: first a capital letter from 260 
A to F referring to the decision being addressed, then a number from 1 to 3 to distinguish between 261 
several competing architectures and, finally, a lower case letter from a to c to indicate different 262 
parameterizations of the same architecture. Model hypotheses are named by concatenating the names 263 



6 
 

of the six modeling options used to build them (see Table 4). The models designed within this 264 
framework share the same overall structure (based on the same series of decisions) but differ in their 265 
specific formulations within each decision. 266 

The model-building decisions can be divided into two broad categories. The first pertains to the 267 
production of fluxes from conceptual stores (decisions B, C and F). The second concerns the 268 
allocation and transmission of these fluxes using the typical junction elements and lag functions 269 
(decisions A, D and E) described by in Fenicia et al. (2011). Junction elements can be defined as 270 
“zero-state” model components used to combine several fluxes into a single one (option D2) or split a 271 
single flux into two or more fluxes (options A1 and D3). Lag functions are used to reflect the travel 272 
time (delay) required to convey water from one conceptual store to another or from one or more 273 
conceptual stores to the basin outlet. They usually consist of convolution operators (option E2), 274 
although conceptual stores may also do the trick. Modeling options in which water fluxes are left 275 
unchanged are labelled as “No operation” options in Fig. 2. Water fluxes and state variables are named 276 
using generic names (from Q1 to Q6 and from S1 to S4, respectively) to ensure a perfect modularity of 277 
the framework. Further details on the alternative options provided for each decision are given in the 278 
following subsections. Note that some combinations of modeling options were clearly incompatible 279 
with one another (options C1 and C2, for instance, cannot work with option D2). As a result, these 280 
combinations were removed from the framework. 281 

Another important feature of this modular framework is the systematic smoothing of all model 282 
thresholds using infinitely differentiable approximants, as recommended by Kavetski and Kuczera 283 
(2007) and Fenicia et al. (2011). The purpose here is twofold: first, to facilitate the calibration process 284 
by removing any unnecessary (and potentially detrimental) discontinuities from the gradients of the 285 
objective functions; and second, to provide a more realistic description of hydrological processes 286 
across the catchment (Moore and Clarke, 1981; Moore, 2007). 287 
 288 

3.1.1. Snow accumulation and melt (decisions A and B)  289 

Snow accumulation and melt components deal with the representation of snow processes at the 290 
catchment scale. All modeling options rely on a single conceptual store to accumulate snow during the 291 
winter months and release water during the melt season. Decision A refers to the partitioning of 292 
precipitation into rain, snow or a mixture of rain and snow. Decision B refers to the representation of 293 
snowmelt processes. Option A1 is the only hypothesis implemented to evaluate the relative abundance 294 
of rain and snow. A logistic distribution is used in this option instead of usual temperature thresholds 295 
to implicitly account for spatial variations in rain/snow partitioning over the catchment. In contrast, 296 
three modeling options drawing upon the temperature-index approach (Hock, 2003) are available for 297 
the evaluation of snowmelt rates (options B1a, B1b, B1c). Option B1a relies on a constant melt factor 298 
while options B1b and B1c allow for temporal variability in the melt factor to reflect seasonal changes 299 
in the energy available for melt. A recent example of option B1c can be found in Clark et al. 300 
(20092005). Option B1b has been previously applied by Schreider et al. (1997) but at the grid cell 301 
scale. Finally, it is worth noting that a smoothing kernel proposed by (Kavetski and Kuczera, 2007) 302 
was introduced in the state equation of the snow reservoir to ignore residual snow remaining in the 303 
reservoir outside the snowmelt season (see Eq. (1)). 304 

 305 
3.1.2.  Runoff generation (decision C) 306 

Runoff generation components determine how much of a rainfall or snowmelt event is 307 
available for runoff, lost through evapotranspiration or temporarily stored in soils and surface 308 
depressions. Many models rely on a conceptual store to keep track of the catchment moisture status 309 
and generate runoff as a function of both current and antecedent precipitation. Here, an assortment of 310 
four commonly used methods is available. Option C1 is the only one in which no moisture accounting 311 
store is required to estimate the contributing rainfall or snowmelt (see Fig. 32). Actual 312 
evapotranspiration then represents the only process involved in the production of runoff from 313 
precipitation or snowmelt. The remaining options make use of moisture accounting stores and 314 
distribution functions (see Table 1) to estimate the proportion of the basin generating runoff. An 315 
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important distinction is made between option C2, in which runoff generation occurs only during 316 
rainfall or snowmelt events, and option C3, in which a leakage from the moisture accounting store 317 
remains possible even after rainfall or snowmelt has ceased. Examples of these two moisture 318 
accounting options can be found, respectively, in the HBV (e.g. Seibert and Vis, 2012) and PDM 319 
(Moore, 2007) rainfall-runoff models. Alternative distribution functions are available in the literature, 320 
for instance in the GR4j (Perrin et al., 2003) and FLEX (Fenicia et al., 2008b2006) models, but the 321 
rationale behind their use remains the same. Actual evapotranspiration is computed from the estimated 322 
PE using either a constant coefficient (option C1) or a function of the catchment moisture status 323 
(options C2 and C3). 324 

3.1.3.  Runoff transformation and routing (decisions D to F) 325 

Runoff transformation components account for all the retention and translation processes 326 
occurring as water moves through the catchment. In practice, junction elements (decision D) and lag 327 
functions (decision E) are typically combined with one or more conceptual stores (decision F) to 328 
represent the effects of different flow pathways on the runoff process (both timing and volume). 329 
Additional elements in the form of lag functions or conceptual stores can also be used to reflect water 330 
routing in the channel network. However, in this study channel routing elements were considered 331 
useless at a daily time step. All the modeling options available for decision F consist of two stores. 332 
These can be arranged in parallel (options F1a and F1b), in series (options F2a and F2b), or in a 333 
combination of both (options F3a and F3b). In each case, one of the stores has a nonlinear behavior 334 
while the other reacts linearly. Two types of nonlinear response are provided: one that relies on 335 
smoothed thresholds and different storage coefficients (options F1b, F2b and F3b), and the other that 336 
relies on power laws (options F1a, F2a and F3a). Options F1a and F1b are based on the classical 337 
parallel transfer function used in many conceptual models, such as the PDM (Moore, 2007) and 338 
IHACRES (Jakeman et al., 1993) models, where one store stands for a relatively quick catchment 339 
response and the other for a slower response. The structure of options F3a and F3b is very close to the 340 
response routine of the HBV model (e.g. Seibert and Vis, 2012). Note that some combinations of 341 
modeling options were deemed unacceptable and thus not considered (e.g. D3–E1–F1a or D3–E1–342 
F1b). 343 

 344 
 345 

3.2. Multi-objective optimization 346 
 347 

3.2.1.  Principle 348 

In optimization problems with at least two conflicting objectives, a set of solutions rather than 349 
a unique one exists because of the trade-offs between these objectives. A Pareto-optimal solution is 350 
achieved when it cannot be improved upon without degrading at least one of its objective criteria. The 351 
set of Pareto-optimal solutions for a given model is often called the “Pareto set” and the set of criteria 352 
corresponding to this Pareto set is usually referred to as the “Pareto front”. 353 
 354 

3.2.2.  The NSGA–II algorithm 355 

The Non-dominated Sorted Genetic Algorithm II (NSGA–II) (Deb, 2002) was selected to 356 
calibrate the models implemented within the multiple-hypothesis framework. This algorithm has been 357 
used successfully in a number of recent hydrological studies (see e.g. Khu and Madsen, 2005; Bekele 358 
and Nicklow, 2007; De Vos and Rientjes, 2007; Fenicia et al., 2008a; Shafii and De Smedt, 2009) and 359 
has the advantage of not needing any additional parameter (other than those common to all genetic 360 
algorithms, i.e. the initial population and the number of generations). Its most distinctive features are 361 
the use of a binary tournament selection, a simulated binary crossover and a polynomial mutation 362 
operator. For brevity’s sake, the detailed instructions of the algorithm and the conditions of its 363 
application to rainfall-runoff modeling cannot be discussed further here. Instead, the reader is referred 364 
to the aforementioned literature.   365 
 366 
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3.2.3.  Simulation periods and assessment criteria 367 

The simulation period was divided into a rather dry calibration period (1997–2011) and a 368 
relatively humid validation period (1982–1996). These two periods were chosen based on data 369 
availability to represent contrasted climate conditions: the two periods are separated by a shift in the 370 
IPO index, as explained in Sect 2.3.1.3.2.1.  371 

Four criteria were chosen to evaluate the models built within the multiple-hypothesis 372 
framework. The first three of them are common to both calibration and validation periods while the 373 
fourth criterion differs between the two. 374 

The first criterion (NSE) is the related to the estimation of high flows and draws upon the Nash-375 
Sutcliffe Efficiency metric: 376 

 Crit1 ൌ 1 െ NSE ൌ෍ ൫Q୭ୠୱ
ୢ െ Qୱ୧୫

ୢ ൯
ଶ୒

ୢୀଵ
෍ ൫Q୭ୠୱ

ୢ െ Q୭ୠୱതതതതതത൯
ଶ୒

ୢୀଵ
൘  (2)

Where Q୭ୠୱ
ୢ 	and Qୱ୧୫

ୢ  are the observed and simulated discharges for day d, and N is the number of 377 
days with available observations. 378 

The second criterion (NSE୪୭୥) is related to the estimation of low flows and draws upon a modified, log 379 

version of the first criterion: 380 

 Crit2 ൌ 1 െ NSE୪୭୥ ൌ෍ ቀlog൫Q୭ୠୱ
ୢ ൯ െ log൫Qୱ୧୫

ୢ ൯ቁ
ଶ୒

ୢୀଵ
෍ ቀlog൫Q୭ୠୱ

ୢ ൯ െ logሺQ୭ୠୱതതതതതതሻቁ
ଶ୒

ୢୀଵ
൘  (3)

The third criterion quantifies the mean annual volume error (VE୑) made in the estimation of the water 381 
balance of the catchment: 382 

 Crit3 ൌ VE୑ ൌ෍ ൫หV୭ୠୱ
୷ െ Vୱ୧୫

୷ ห V୭ୠୱ
୷ൗ ൯

୒౯౛౗౨౩

୷ୀଵ
N୷ୣୟ୰ୱൗ  (4)

Where V୭ୠୱ
୷ 	and Vୱ୧୫

୷  are the observed and simulated volumes for year y, and N୷ୣୟ୰ୱ is the number of 383 

years of the simulation period. 384 

The fourth criterion (Crit4) differs between the two simulation periods. In calibration, snow-covered 385 
areas (SCA) estimated from the MODIS data were used to evaluate the consistency of snow-386 
accounting modeling options in terms of snow presence or absence in the basinat the catchment scale. 387 
The objective was to quantify the error made in simulating the seasonal dynamics of snow 388 
accumulation, storage and melt processes. Following Parajka and Blöschl (2008), the snow error (SE) 389 
was defined as the total number of days when the snow-accounting store of options B1a, B1b and B1c 390 
disagreed with the MODIS data as to whether snow was present in the basin (Fig. 43). The number of 391 
days with simulation errors is eventually divided by the total number of days with available MODIS 392 
data to express SE as a percentage. 393 

In validation, a cumulated volume error was used to replace the snow error criterion that could not be 394 
computed due to a lack of remotely-sensed data over this period: 395 
 396 

 Crit4 ൌ VEେ ൌ ቤ෍ V୭ୠୱ
୷

୒౯౛౗౨౩

୷ୀଵ
െ෍ Vୱ୧୫

୷
୒౯౛౗౨౩

୷ୀଵ
ቤ ෍ V୭ୠୱ

୷
୒౯౛౗౨౩

୷ୀଵ
൘  (5)

 397 

3.3. Model selection, model analysis and ensemble modeling 398 

Finally, a total of 72 model structures were implemented and tested within the multi-objective and 399 
multiple-hypothesis frameworks. In addition to their names and for purposes of simplicity, these 72 400 
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model hypotheses are given a number from 1 to 72 corresponding to their order of appearance in the 401 
simulation process (see e.g. Sect 4.1.). 402 

Model hypotheses can be thought of as points x in the space of performance measures. One 403 
possible way to locate these points in space is to consider that each coordinate ሺݔ௜ሻ௜ୀଵ…ସ of x is given 404 
by the best performance obtained along the Pareto front of model x with respect to the ith criterion 405 
described in Sect 3.3.2. A clustering technique based on the fuzzy c-means algorithm (Bezdek et al., 406 
1983) and the initialization procedure developed by Chiu (1994) was chosen to explore this multi-407 
objective space and identify natural groupings among model hypotheses. To facilitate comparison 408 
between calibration and validation, the clustering operations were repeated independently for each 409 
period. The whole experiment, from model building to multi-objective optimization and cluster 410 
identification, was repeated several times to ensure that the final composition of the clusters remains 411 
the same. 412 

Once the composition of each cluster was established, it was possible to identify a set of ‘best-413 
performing’ clusters for each simulation period, i.e. a set of clusters with the smallest Euclidian 414 
distances to the origin of the objective space. The model structures of these ‘best-performing’ clusters 415 
can be regarded as equally acceptable representations of the system. An important indicator of 416 
structural uncertainty is the extent to which the simulation bounds derived from the Pareto sets of 417 
these models reproduce the various features of the observed hydrograph. The overall uncertainty 418 
envelope should be wide enough to include most a large proportion of the observed discharge but not 419 
so wide that its representation of the various aspects of the hydrograph (rising limb, peak discharge, 420 
falling limb, baseflow) becomes meaningless. In general, one will seek to reduce as much as possible 421 
the width of the envelope while maximizing the number of observations enclosed within the bounds. 422 
In this study, priority was given to maintaining at its lowest value the number of outlying observations 423 
before searching for the best combination of models which minimized the envelope area. This was 424 
achieved iteratively through the following steps: 425 
 426 

1. Start with an initial ensemble composed of the ܰ௠௔௫  models identified as members of the 427 
best-performing clusters in both calibration and validation (i.e. models which fail the 428 
validation test are ruled out). 429 

2. From now on, consider only the calibration period. 430 
Add up the ܰ௠௔௫ individual simulation envelopes that can be obtained from the Pareto sets of 431 
the ܰ௠௔௫ models (hereafter referred to as the ‘Pareto-envelopes’). 432 

3. Estimate the maximum number of observations enclosed within the resulting overall envelope, 433 

୭ܰୠୱሺܰ୫ୟ୶ሻ, and calculate the area of this envelope, ܽ݁ݎܣሺܰ୫ୟ୶ሻ. 434 
4. For ݇ ൌ 1 to ܰ௠௔௫ 435 

a. Identify the ൬
ܰ௠௔௫

ܰ௠௔௫ െ ݇൰ possible combinations of ܰ୫ୟ୶ models taken ܰ௠௔௫ െ ݇ at a time. 436 

b. For each of these combinations 437 
- Add up the individual Pareto-envelopes of the ܰ௠௔௫ െ ݇  models and calculate the 438 

number of observations enclosed within the bounds of the resulting overall envelope, 439 

୭ܰୠୱሺܰ୫ୟ୶ െ ݇ሻ. 440 
- If ୭ܰୠୱሺܰ୫ୟ୶ െ ݇ሻ ൌ ୭ܰୠୱሺܰ୫ୟ୶ሻ 441 

If ܽ݁ݎܣሺܰ୫ୟ୶ െ ݇ሻ ൏ ሺܰ୫ୟ୶ܽ݁ݎܣ െ ݇ ൅ 1ሻ 442 
Accept the current combination. 443 

If ୭ܰୠୱሺܰ୫ୟ୶ െ ݇ሻ ൏ ୭ܰୠୱሺܰ୫ୟ୶ሻ 444 
Reject the current combination. 445 

c. If all the possible combinations of ܰ୫ୟ୶ െ ݇ models are rejected, break the loop. The final 446 
ensemble of models to consider is the last accepted combination of ܰ୫ୟ୶ െ ݇ ൅ 1 models. 447 

 448 

4. RESULTS 449 
 450 

4.1. Model hypotheses evaluation 451 
 452 

4.1.1.  Cluster analysis 453 
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The 72 model hypotheses can be grouped into 5 clusters in calibration and 6 in validation. Table 3 454 
displays the coordinates of the cluster centroids and gives, for each cluster, the number of points with 455 
membership values above 50%. Figure 4 5 shows the projections of these clusters onto three possible 456 
two-dimensional (2D) subspaces of the objective space (the three other subspaces being omitted for 457 
brevity's sake). Each cluster is given a rank (from 1 to 5 or 6) reflecting its distance from the origin of 458 
the coordinate system. As is evident from both Fig. 4 5 and Table 3, most of the best-performing 459 
structures can be found in Cluster 1. This is particularly clear in the planes defined by the high-flow 460 
(Crit1) and low-flow (Crit2) criteria (Figure 45), where all clusters tend to line up along a diagonal 461 
axis (dashed line). In contrast, a small trade-off between Cluster 1 and Cluster 2 can be observed in 462 
calibration in the plane defined by the high-flow (Crit1) and volume error (Crit3) criteria: models from 463 
Cluster 2 (respectively Cluster 1) tend to perform slightly better than those from Cluster 1 464 
(respectively Cluster 2) with respect to Crit3 (respectively Crit1). However, this trade-off disappears 465 
in validation. Similar comments can be made about the other 2D subspaces (not shown here). In the 466 
following analysis, Cluster 1 will be considered as the only best-performing cluster. This cluster 467 
encompasses 24 members in calibration as against 15 in validation, indicating that several model 468 
structures do not pass the validation test (namely models no. 30, 32, 49, 52, 53, 55, 66, 67, 69 and 72, 469 
as shown in Table 4). 470 

Several observations can be made regarding the composition of Cluster 1 in both simulation 471 
periods. As can be seen from the values listed in Table 4, it is not possible to pick out a single, 472 
unambiguous model hypothesis that would perform better than the others with respect to all criteria. 473 
On the one hand, there appears to be several equally acceptable structures for each individual criterion. 474 
Models no. 22 (A1–B1a–C3–D2–E1–F2b), 46 (A1–B1b–C3–D2–E1–F2b) and 54 (A1–B1c–C1–D3–475 
E2–F1b), for instance, yield very similar values of the high-flow criterion (Crit1), despite huge some 476 
differences in their modeling options. This illustrates the equifinality of model structures in 477 
reproducing one aspect of the system behavior. On the other hand, some structures seem more 478 
appropriate to the simulation of high flows or snow dynamics while others appear to be better at 479 
reproducing low flows or estimating the annual water balance of the catchment. This indicates trade-480 
offs between model structures in reproducing several aspects of the system behavior. It is however 481 
possible to identify some recurring patterns among the modeling options present in (or absent from) 482 
Cluster 1 in both periods. First, option B1c is the most represented snowmelt-accounting hypothesis, 483 
despite an increase in the number of alternative options (B1a, B1b) in validation. More strikingly, 484 
option C2 is totally absent from Cluster 1 in both periods. Single-flux combinations (C1–D1 and C3–485 
D2) and their splitting counterparts (C1–D3 and C3–D1) tend to be equally well-represented, thus 486 
providing evidence of significant equifinality among these conceptual representations. Finally, runoff 487 
transformation options based on a threshold-like behavior (F1b, F2b and F3b) account for 75% of 488 
model hypotheses in calibration and over 90% in validation. In particular, option F3a turns out to be 489 
completely absent from Cluster 1 in both periods while models based on option F2a (no. 49, 55, 67 490 
and 69) fail the validation test. On the opposite, option F2b is particularly well-represented. 491 

 492 
4.1.2.  Pareto analysis 493 

 In general, valuable insight can be gained from the mapping of Pareto fronts in the space of 494 
performance measures. While a full description of all the Pareto fronts obtained in calibration is not 495 
possible here due to space limitations, two emblematic model hypotheses are used to illustrate this 496 
point. Figure 5 6 shows the Pareto-optimal solutions of models no. 49 (A1–B1c–C1–D1–E1–F2a) and 497 
50 (A1–B1c–C1–D1–E1–F2b) plotted in two dimensions for different combinations of two of the four 498 
objective functions used in calibration. Note that these two models differ only in their runoff 499 
transformation options (F2a vs. F2b) so that the comparison can be made in a controlled way. Trade-500 
offs between the high-flow (Crit1) and low-flow (Crit2) criteria are clearly more important with option 501 
F2a (Fig. 5a6a) than with option F2b (Fig. 5b6b). This means that option F2a is less efficient in 502 
reproducing simultaneously high and low flows and explains why this option disappears from Cluster 503 
1 in validation. By contrast, the other pairs of criteria (Crit1–Crit3, Crit1–Crit4) displayed in Fig. 5 6 504 
appear to be less useful in differentiating between the two models. 505 

Further insight into the structural strengths and weaknesses of model hypotheses can be 506 
obtained by determining how parameter values vary along the Pareto fronts of the models. A large 507 
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'Pareto range' in some parameters indicates structural deficiencies in the corresponding model 508 
components (see e.g. Gupta et al., 1998) or a lower sensitivity of model outputs to those parameters 509 
(Engeland et al., 2006). For purposes of clarity, Fig. 6 7 focuses on eight illustrative structures 510 
identified as members of Custer 1 in calibration. The models are paired in such a way that two models 511 
of the same pair differ in only one modeling option. Thus, the effects of potential interactions between 512 
model constituents are more likely to be detected. Parameter values are normalised normalized using 513 
the lower and upper limits given in Table 2 so that all of them lie between 0 and 1. Different colors are 514 
used to indicate the parameter sets associated with the smallest high-flow (in black), low-flow (in red), 515 
volume (in blue) and snow (in green) errors. To what extent these colored solutions converge toward 516 
the same parameter values or diverge from each other determines the level of parameter identifiability 517 
of each model hypothesis. As regards snow-accounting options, a distinction can be made between 518 
snow accumulation paramaters ( ௌܶ	and ݉ௌ), whose ranges of variation appear to be large in all cases, 519 
and snowmelt parameters ( ெܶ, ெ݂, ݎଵ, ݎଶ, ଵ݂, ଶ݂), whose levels of identifiability depend on interactions 520 
with the other model components. In Fig. 6a7a, the Pareto range of snowmelt parameters decreases in 521 
width when moving from option B1a to B1b and using the combination of options C3–D2–E1. Yet 522 
changing this combination into C3–D1–E2 has the opposite effect (Fig. 6b7b): parameter uncertainty 523 
now decreases when moving from option B1b to B1a. As regards runoff transformation parameters (524 ,ߙ 

௕ܰ, ܭଶ, ܭଷ, ߜ, ܵ஼ and ܭସ), the black and red solutions are closer to each other when options F2b (Fig. 525 
6a7a, 6b 7b and 6c7c) and F1b (Fig. 6d7d) are used. By contrast, options F2a (Fig. 6c7c) and F1a (Fig. 526 
6d7d) require very different parameter sets to adequately simulate both low and high flows. Again, 527 
this suggests that runoff transformation options based on a threshold-like behavior may be more 528 
consistent with the observed data than those based on a power law relationship. It should be noted, 529 
however, that relatively large Pareto ranges in some runoff transformation parameters (e.g. ܭଶ and ܭଷ) 530 
may still be required to obtain small volume and snow errors at the same time as high low-flow and 531 
high-flow performances (e.g. models no. 44 and 54). Interestingly, the black, red and blue solutions of 532 
models no. 49, 50, 53 and 54 also converge towards the same low values of parameter ܭ஼  533 
(evapotranspiration coefficient) independently of runoff transformation options. 534 
Drawing any conclusion at this stage about the links between parameter identifiability and model 535 
performance might be somewhat hazardous. Other examples (not shown here) show that a model 536 
structure may have highly identifiable parameter values in calibration and yet not be suited to the 537 
conditions prevailing in validation. Also, a reduction of parameter uncertainty as is the case with 538 
options F2b and F1b often comes with a greater number of parameters. 539 
 Finally, a better understanding of the reasons why some models, or modeling options, work 540 
better than others is provided by the simulation bounds (or Pareto-envelopes) derived from the Pareto 541 
sets of these models. Figure 7 8 shows the Pareto-envelopes of the SWE internal state variable 542 
obtained with three competing model hypotheses (no. 6, 30 and 54) differing only in their snowmelt-543 
accounting options (respectively B1a, B1b and B1c). Note that only the last two of these models (30, 544 
54) belong to Cluster 1 in calibration (see Table 4). Simulated snow accumulation starts later than 545 
expected with all modeling options (B1a, B1b and B1c). As will be further discussed in Sect 5.2., this 546 
is likely to indicate systematic errors in the input precipitation and/or MODIS-based SCA data. On the 547 
whole, the envelope widths suggest a reduction in the uncertainty associated with the prediction of 548 
snow seasonal dynamics when moving from option B1a to option B1c. This is consistent with the 549 
mean annual snow errors reported in Table 4, which are significantly lower with option B1c 550 
independently of the other model options. It must be acknowledged, however, that even this option 551 
(B1c) fails to capture the seasonal dynamics of snow accumulation and melt during several years of 552 
the period. The release of water from the snow-accounting store of model no. 54 continues well after 553 
the end of the observed snowmelt season in 2008, 2009, 2010 and 2011. On the contrary, the 554 
simulated snowmelt season tends to end sooner than expected with model no. 30 in 2003, 2004, 2005 555 
and 2006. In that case, options B1b and B1c appear to be somewhat complementary. 556 

4.2. Comparison with the physical features of the catchment 557 
 558 

4.2.1.  Snow accumulation and melt 559 
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The relatively large Pareto bounds obtained for parameters ௌܶ and ݉ௌ with nearly all model hypotheses 560 
indicate that mixed conditions of rain and snow are likely to occur across a large range of 561 
temperatures. This may be due to the lumped representation of the snow accumulation process and the 562 
necessity to implicitly account for spatial variations in rain/snow partitioning across the catchment. 563 
Likewise, the relatively high values of parameter ܭ஼ (> 0.2) obtained with the green solutions (smallest 564 
snow errors) of models no. 50, 53 and 54 (Fig. 6) might indicate a need to compensate for the absence 565 
of sublimation scheme in the available snow modeling options. The sine function used in option B1c 566 
appears to be better suited to the estimation of the melt factor than the other options tested in this study 567 
(B1a, B1b). The degree-day method implemented in option B1a has a physical basis (Ohmura, 2011). 568 
Yet some components in the energy balance of snow-covered areas cannot be fully captured by 569 
temperature alone nor easily reduced to a simple formula (Hock, 2003). In semi-arid central Andes 570 
(29–30°S), small zenith angles and a thin, dry and cloud-free atmosphere during most of the year make 571 
incoming shortwave radiation the most important source of seasonal variations in the energy available 572 
for melt (see e.g. Aberman et al., 2013). As a result, the seasonal timing of snowmelt is expected to 573 
show greater year-to-year stability, which may explain the relative success of option B1c when 574 
compared to option B1b. 575 

4.2.2. Runoff generation 576 

The absence of option C2 in Cluster 1 in both simulation periods suggests that moisture accounting 577 
components may not be essential to the conceptual modeling of this semi-arid Andean catchment. 578 
Most of the land cover is, indeed, dominated by barren to sparsely vegetated exposed rocks, boulders 579 
and rubble with poor soil development outside the valleys. This setting may also explain the relatively 580 
low values of parameter ܭ஼ obtained with the black, red and blue solutions shown in Fig. 6. 581 

 582 

4.2.3. Runoff transformation and routing 583 

The high representation of options F2a and F2b in Cluster 1 suggests that the catchment actually 584 
behaves as a serial system and may reveal a better correspondence with its overall physical structure. 585 
The overall organization of fluxes in the catchment, from high elevations toward the valleys and then 586 
northward to the outlet, can be conceptualized as a series of two hydraulically connected reservoirs: 587 
one standing for the mountain blocks (upstream reservoir) and the other for the alluvial valleys 588 
(downstream reservoir). Of course, this interpretation needs to be qualified, since other runoff 589 
transformation options (F1a, F1b and F3b) have proved to yield equally acceptable simulations despite 590 
significant differences in their model structures.  591 

 592 
4.3.4.2. Representation of structural uncertainties 593 

This Section deals with the identification and use of an ensemble of equally acceptable model 594 
structures to quantify and represent the uncertainty arising from the system non-identifiability. Figure 595 
97 shows the overall uncertainty envelope obtained with the 8 model structures whose combination 596 
minimizes the envelope area in calibration while holding constant the number of outlying observations 597 
(see Sect 3.3.). Over 82% of discharge observations are captured by the envelope in both simulation 598 
periods. Interestingly, this number exceeds the best Npar value obtained in calibration with the 599 
individual Pareto-envelopes (see Table 4), which shows how necessary it is to consider an ensemble of 600 
model structures. In validation, however, a better combination could be identified since several models 601 
of Cluster 1 display significantly higher Npar values (Table 4). On the whole, the comparison of the 602 
observed hydrograph with the simulation bounds of the envelope shows a good match of rising limbs 603 
and peak discharges in both simulation periods, but a less accurate fit of falling limbs during at least 604 
one major (in 1987–88) and two minor (in 2005–06 and 2007–08) events. The slower recession of the 605 
observed hydrograph might indicate a delayed contribution of one or more catchment compartments 606 
that cannot be described by any of the modeling options available in the multiple-hypothesis 607 
framework. 608 
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 609 
 610 

5. DISCUSSION & CONCLUSION 611 
 612 

This study aimed at reducing structural uncertainty in the modeling of a semi-arid Andean catchment 613 
where lumped conceptual models remain largely under-used. To overcome the current lack of 614 
information on model adequacy in this catchment, a modular modeling framework (MMF) relying on 615 
six model-building decisions was developed to generate 72 competing model structures. Four 616 
assessment criteria were then chosen to calibrate and evaluate these models over a 30-year period 617 
using the concept of Pareto-optimality. This strategy was designed to characterize both the parameter 618 
uncertainty arising from each model's structural deficiencies (i.e. model inadequacy) and the 619 
ambiguity associated with the choice of model components (i.e. model non-uniqueness). Finally, a 620 
clustering approach was taken to identify natural groupings in the multi-objective space. Overall, the 621 
greatest source of uncertainty was found in the connection between runoff generation and runoff 622 
transformation components (decisions D and E). However, the results also showed a significant drop 623 
in the number of plausible representations of the system. After validation, 14 model structures among 624 
the 24 identified in calibration as the best-performing ones were finally considered as equally 625 
acceptable. 626 

Interestingly, both rejected and accepted hypotheses appeared closely related to particular types of 627 
snowmelt-accounting (decision B), runoff generation (decision C) and runoff transformation (decision 628 
D) modeling options, suggesting possible links to some physical features of the catchment. For 629 
instance, the frequent occurrence of option C1 and the absence of option C2 among the set of best-630 
performing structures indicate that moisture-accounting components may not be essential to the 631 
conceptual modeling of this catchment. Most of the land cover is, indeed, dominated by barren to 632 
sparsely vegetated exposed rocks, boulders and rubble with poor soil development outside the valleys. 633 
This setting may also explain the relatively low values of parameter KC obtained with the black, red 634 
and blue solutions shown in Fig. 6. Likewise, the frequency of options F2a and F2b in the best-635 
performing cluster suggests that the catchment actually behaves as a ‘serial’ system. The overall 636 
organization of fluxes in the catchment, from high elevations toward the valleys and then northward to 637 
the outlet, can be conceptualized as a series of two hydraulically connected reservoirs: one standing 638 
for the granitic mountain blocks (upstream reservoir) and the other for the alluvial valleys 639 
(downstream reservoir). Similar results were also obtained for smaller catchments in Luxembourg 640 
characterized by relatively impervious bedrocks and lateral water flows (Fenicia et al., 2014). The 641 
results also provided some evidence of a strong threshold behavior at the catchment scale (options 642 
F1b, F2b and F3b) compared to the smoother power laws of options F1a, F2a and F3a. However, 643 
further research would be needed to track the origin of this behavior, which might be related at some 644 
point to connectivity levels in the fractured and till-mantled areas of the mountain blocks. As regards 645 
snowmelt, the frequent occurrence of option B1c in the best-performing cluster in calibration may 646 
indicate a need to account for processes which the degree-day method implemented in option B1a does 647 
not fully capture. In semi-arid central Andes (29–30°S), small zenith angles and a thin, dry and cloud-648 
free atmosphere during most of the year make incoming shortwave radiation the most important 649 
source of seasonal variations in the energy available for melt (e.g. Pellicciotti et al., 2008; Abermann 650 
et al., 2013). While this dominant source of energy cannot be accounted for by temperature alone, the 651 
seasonal timing of snowmelt is also expected to show a greater year-to-year stability, which may 652 
explain the relative success of option B1c when compared to option B1b. Of course, these 653 
hypothesized relationships between some physical characteristics of the catchment and specific 654 
modeling options need to be further qualified. Differentiating between physically adequate and purely 655 
numerical solutions will always seem somewhat hazardous in the case of lumped conceptual models. 656 
For instance, a small number of models among those identified as the best-performing ones also rely 657 
on parallel (F1a, F1b) and intermediate (F3b) runoff transformation options. Also, the relative 658 
proportions of snowmelt-accounting options B1a, B1b and B1c, appears much more balanced in 659 
validation, where no snow error criterion could be applied, than in calibration. Although this was not 660 
our objective in this paper, comparative studies including several similar or contrasted catchments 661 
would be required to better understand how different model structures relate to different physical 662 
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settings. Such understanding is of primary importance to the choice of conceptual models in climate 663 
change impact studies. 664 

Another important issue related to model identification is the extent to which the 'principle of 665 
parsimony' can be applied to differentiate between a large number of model hypotheses. Many authors 666 
rightly consider that a maximum of 5 to 6 parameters should be accepted in calibration when using a 667 
single objective function. Efstratiadis and Koutsoyiannis (2010) extended this empirical rule to the 668 
case of multi-objective schemes by allowing « a ratio of about 1:5 to 1:6 between the number of 669 
criteria and the number of parameters to optimize ». For a multi-objective scheme based on four 670 
criteria (as in the present study), this leads to consider 20 to 24-parameter models as still being 671 
parsimonious. This will certainly seem unreasonable to many modelers because, as Efstratiadis and 672 
Koutsoyiannis (2010) also pointed out, the various criteria used are generally not independent of each 673 
other. In our case, for instance, the information added by the low-flow criterion may not be so 674 
different from that already introduced by the high-flow criterion. By contrast, the snow criterion tends 675 
to add new information on the snow-related parameters. From this perspective, it is noteworthy that 676 
most rejected hypotheses among the 24 identified in calibration as members of Cluster 1 had more 677 
than 11 free parameters, with only one having 9 parameters. The principle of parsimony, however, 678 
cannot be used to further discriminate between the remaining 14 best-performing hypotheses. For 679 
instance, model no. 54 (12 parameters) performs better than model no. 2 (9 parameters) with respect to 680 
the high-flow criterion. 681 

Eventually, the number of models used to represent structural uncertainty was reduced by 682 
searching for which minimal set of models maximized the number of observations covered by the 683 
ensemble of Pareto-envelopes. It is important to make clear that model inadequacy and non-684 
uniqueness were evaluated here in non-probabilistic terms. In particular, the Pareto-envelopes derived 685 
for each model structure quantify only the uncertainty arising from the trade-offs between competing 686 
criteria and do not have a predefined statistical meaning (Engeland et al., 2006). Consequently, the 687 
overall simulation bounds shown in Figure 8 cannot be easily interpreted as ‘confidence bands’. 688 
Although discussing the adequacy of non-probabilistic approaches to structural uncertainty was far 689 
beyond the scope of this study, it is interesting to analyze the reasons why between 15% and 20% of 690 
the observations remained outside the overall simulated envelope in both calibration and validation. 691 
To a large extent, this lack of performance can be attributed either to an insufficient coverage of the 692 
hypothesis and objective spaces or to uncertainties in the precipitation and streamflow data that were 693 
overlooked in this study. 694 

First, the choice of Pareto-optimality to characterize structural uncertainty can be criticized for 695 
leading to the rejection of many behavioral parameter sets (i.e. being close to, but not part of, the 696 
Pareto front) that might have been Pareto-optimal with different performance measures, calibration 697 
data or input errors (e.g. Freer et al., 2003; Beven, 2006). Also, this concept should not be confused 698 
with that of equifinality. Both notions agree that it is not possible to identify a single, best solution to 699 
the calibration problem and that multiple parameters sets should be retained to give a proper account 700 
of model uncertainty. However, the Pareto set of solutions represents the minimum parameter 701 
uncertainty that can be achieved when several criteria are considered simultaneously with no a priori 702 
preference for one over the others (Gupta et al., 2003). By contrast, two parameter sets are said to be 703 
equifinal (in a statistical sense) if they can be regarded as equally acceptable with respect to a given 704 
model outcome. For a proper assessment of parameter equifinality, more probabilistic approaches 705 
should be taken (Madsen, 2000; Huisman et al., 2010). In the context of multiple-hypothesis testing, a 706 
meticulous selection of the assessment criteria is also critical to avoid rejecting some modeling options 707 
for the wrong reasons. For instance, the snow error criterion was shown to have a great influence on 708 
the identification of snow-accounting components, as much more ambiguity between the various 709 
available options was observed during the validation period when this criterion could not be used. 710 
Also, like any other multiple-hypothesis framework, the MMF developed in this study suffers from an 711 
insufficient coverage of the hypothesis space (Gupta et al., 2012). The parameterization of 712 
evapotranspiration, for example, was not considered as an independent model-building decision. Only 713 
one formula was applied to calculate potential evapotranspiration and the possibility to retrieve actual 714 
evapotranspiration from downstream water stores was not provided. Likewise, the runoff 715 
transformation process was described using only two water stores, of which only one was assumed to 716 
have a nonlinear behavior. Future work to improve the conceptual modeling of the Claro River 717 
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catchment should include the testing of new or refined hypotheses to allow for the use of additional 718 
auxiliary data (e.g. observed snow heights, irrigation water-use). 719 

More fundamentally, our ability to discriminate among the competing model hypotheses was 720 
constrained by inevitable errors in the input and output data sets. In particular, the comparison of 721 
simulated SWE levels and MODIS-based SCA estimates revealed some uncertainty in the estimation 722 
of precipitation inputs and confirmed previous results obtained by Favier et al. (2009). Some 723 
precipitation events occurring in the early winter may not be captured by the gauging network (< 3200 724 
m a.s.l.) used for the interpolation of precipitation across the catchment. These errors may add to 725 
systematic volume errors caused by wind, wetting and evaporation losses at the gauge level, leading to 726 
an overall underestimation of precipitation, as indicated by the rough estimate of the catchment-scale 727 
water balance given in Sect 2. It was also possible to highlight some errors in the streamflow data. The 728 
observed streamflow was ‘naturalized’ by simply adding back the estimated historical water 729 
abstractions (Sect. 2.2). When applied on a daily basis, this process inevitably adds some uncertainty 730 
to streamflow values because a significant part of surface-water abstractions actually return to the river 731 
system within a few days due to conveyance and field losses. In general, ignoring these return flows 732 
would lead to overestimating daily natural flows. In this paper, however, the actual water withdrawals 733 
were not known with precision but only as percentages of the nominal water rights – these percentages 734 
being fixed on a monthly basis by the authorities to account for variations in water availability. The 735 
combined impact of streamflow and precipitation errors on the assessment of structural uncertainty 736 
thus remained unknown. Further research is currently underway to integrate the effects of water 737 
abstractions and crop water-use in the hydrological modeling process (Hublart et al., 2015; see also 738 
Kiptala et al., 2014 for another approach). From a multiple-hypothesis perspective, the modeling of 739 
irrigation water-use should be regarded as a testable model component in its own right.  740 

This study provided an opportunity to combine a modular modeling approach with a multi-criteria 741 
evaluation scheme to reduce structural uncertainty in the conceptual modeling of a large Andean 742 
catchment over a 30-year period. In particular, it demonstrated the benefits of using the concept of 743 
Pareto-efficiency to discriminate among several competing model structures. Among the 72 744 
hypotheses tested, the results showed that 58 model hypotheses can be rejected as inappropriate. 745 
However, 14 other hypotheses were shown to yield equally acceptable representations of the 746 
catchment hydrological functioning in both calibration and validation. Further, the simulation 747 
envelopes derived from the Pareto sets of 8 model structures among the 14 best-performing ones were 748 
used to represent the minimum structural uncertainty that could be obtained with this modeling 749 
framework. The rejection of some hypotheses was closely related to particular types of model 750 
components or modeling options. For instance, option C2, in which runoff generation requires the 751 
filling a moisture-accounting store, can be ruled out from the set of plausible runoff generation 752 
representations. It is noteworthy that most rejected hypotheses among the 24 identified in calibration 753 
as the best-performing ones have more than 11 free parameters, with only one rejected hypothesis 754 
having 9 parameters. Thus, more parsimonious models seem to better withstand changes in the climate 755 
conditions. The principle of parsimony, however, cannot be used to further discriminate between the 756 
remaining best-performing hypotheses. For instance, model no. 54 (12 parameters) performs better 757 
than model no. 2 (9 parameters) with respect to the high-flow criterion. 758 

There remains several ways to improve this assessment of structural uncertainty and model 759 
suitability. In particular, the concept of Pareto optimality should not be confused with that of 760 
equifinality. Of course, both notions agree that it is not possible to identify a single, best solution to 761 
the calibration problem and that multiple parameter sets should be retained to give a proper account of 762 
model uncertainty. However, the Pareto set of solutions represents the minimum parameter uncertainty 763 
that can be achieved when several criteria are considered simultaneously with no a priori preference 764 
for one over the others (Gupta et al., 2003). By contrast, two parameter sets are said to be equifinal if 765 
they can be regarded as equally acceptable in a statistical sense with respect to one particular criterion 766 
(for more details on these differences, see Engeland et al., 2006). From this perspective, the choice of 767 
Pareto optimality to characterize model uncertainty can be criticized for leading to the rejection of 768 
many behavioural parameter sets (i.e. being close to, but not part of, the Pareto front) that might have 769 
been Pareto-optimal with different performance measures, calibration data or errors in the input data 770 
(e.g. Freer et al., 2003; Beven, 2006). One possible way to address this limitation and improve model 771 
transposability in time has been suggested by Gharari et al. (2013). The idea is to divide the 772 
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calibration period into k sub-periods and identify parameter sets (in the whole parameter space) which 773 
minimize the distance to the k Pareto fronts of these sub-periods. For a proper assessment of parameter 774 
equifinality, however, Bayesian frameworks should be considered (Madsen, 2000; Huisman et al., 775 
2010). 776 

The use of Pareto-envelopes to quantify structural uncertainty is also questionable in that it fails to 777 
account for all discharge observations, as shown in Table 4. While this failure can be partly remedied 778 
within a multiple-hypothesis framework (MHF), Fig. 8 shows that the overall uncertainty envelope 779 
obtained by merging the Pareto-envelopes of 8 competing model hypotheses still leaves out a 780 
significant part of the observations. Indeed, like any other modular framework, the MHF developed in 781 
this study suffers from an insufficient coverage of the hypothesis space (Gupta et al., 2012). The 782 
parameterization of evapotranspiration, for example, was not considered as an independent model-783 
building decision. Only one formula was applied to calculate potential evapotranspiration and the 784 
possibility to retrieve actual evapotranspiration from downstream water stores was not provided. 785 
Likewise, the runoff transformation process was described using only two water stores, of which only 786 
one was assumed to have a nonlinear behavior. Future work to improve the conceptual modeling of 787 
the Claro River Catchment should include the testing of new or refined hypotheses to allow for the use 788 
of additional auxiliary data (e.g. groundwater levels). Competing alternatives to the lumped mode used 789 
in this study should also be included within the MHF. For example, semi-lumped approaches in which 790 
snow accumulation and melt components are applied at the grid-cell level provide an interesting way 791 
to improve the use of snow-cover data without increasing too much computational requirements. In 792 
this way, catchment-wide snow-covered areas (SCA) can be simulated and directly compared to 793 
MODIS-based data. Daily rainfall and snowmelt amounts are then integrated over all grid cells to be 794 
used as catchment-averaged inputs in the subsequent spatially-lumped model components (see e.g. 795 
Schreider et al., 1997). This improved MHF should then be applied to other mesoscale catchments to 796 
better understand how the specific features of each catchment relate to specific model requirements. 797 
Such understanding is of primary importance for the use of conceptual models in climate change 798 
impact studies. 799 

Finally, our ability to discriminate among the competing model hypotheses was constrained by 800 
inevitable errors in the input and output data sets. In particular, the comparison of simulated SWE 801 
levels and MODIS-based SCA estimates revealed considerable uncertainty in the estimation of 802 
precipitation inputs. Some precipitation events occurring in the early winter are not captured by the 803 
gauging network (< 3000 m a.s.l.) used for the interpolation of precipitation across the catchment. 804 
These errors add to the systematic volume errors caused by wind, wetting and evaporation losses at the 805 
gauge level, leading to an overall underestimation of precipitation, as indicated by the rough 806 
estimation of catchment-scale water balance given in Sect 2. It was also possible to highlight some 807 
errors in the streamflow data. Part of these errors might be associated with uncertainties in the 808 
estimation of natural streamflow. Further research is therefore required to better integrate the effect of 809 
water abstractions in the hydrological modeling process. From a multiple-hypothesis perspective, the 810 
modeling of irrigation water withdrawals should be regarded as a testable model component in its own 811 
right. 812 
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TABLES & CAPTIONS 1105 

 1106 

Table 1.   Constitutive equations of fluxes between the various components of the modeling options described in 1107 
Fig. 2. Parameter (in italic) significations and units are detailed in Table 2. P: catchment-averaged daily 1108 
precipitation; Rain: rain fraction of precipitation P; Snow: snow fraction of precipitation P; T: catchment-1109 
averaged daily temperature; PE: catchment-averaged daily potential evapotranspiration; AE: catchment-averaged 1110 
daily actual evapotranspiration; S୨, j ∈ ሾ1,5ሿ: state variables of the conceptual stores; Q୨, j ∈ ሾ1,5ሿ: water fluxes 1111 
between the model components). 1112 

Options Constitutive equations  Options Constitutive equations 

A1 

 
Snow ൌ P ሺ1 ൅ expሾሺT െ Tୗሻ mୗ⁄ ሿሻ⁄ Snow

ൌ Pሺ1
൅ expሾሺT െ ௌܶሻ ݉ௌ⁄ ሿሻ 

Rain ൌ P െ Snow 
 

 C3 Qଵ ൌ ሺMelt ൅ Rainሻሾ1 െ ሺ1 െ Sଵ ܵ௠⁄ ሻ௕ሿ 
Qଶ ൌ  ଵSଵܭ

B1a, 
B1b, B1c 

 
Melt ൌ MFሺTഥ െ logሾ1 ൅ expሺെTഥሻሿሻ 
with Tഥ ൌ ሺT െ ெܶሻ m୑⁄  and m୑ ൌ 0.1°C 
 

 D1 
Qଷ ൌ Qଶ and Qସ ൌ Qଵ 
or Qଷ ൌ Qଵ 

B1a 
 
MF ൌ ெ݂m୑ 
 

 D2 Qଷ ൌ Qଵ ൅ Qଶ 

B1b 

 
MF ൌ ଵݎ ൅  ଶTଷ଴ݎ
with Tଷ଴ the mean temperature of the last 30 
days 
 

  
D3 

 
Qଷ ൌ ሺ1 െ  ሻQଵߙ
Qସ ൌ αQଵ 

B1c 
 
MF ൌ ଵ݂ ൅ ଶ݂sinሺ0.551π ൅ 2πd 366⁄ ሻ 
 

 E1 

 
Q୨,୪ୟ୥ ൌ Qଶ 
with ݆ ∈ ሼ3,4ሽ 
 

C1 AE ൌ minሺMelt ൅ Rain,  ஼PEሻ  E2ܭ	

 

Q୨,୪ୟ୥ሺtሻ ൌ෍ ωሺiሻQ୨ሺt െ i ൅ 1ሻ
ே್

୧ୀଵ
 

with ωሺiሻ ൌ ׬ 2udu ௕ܰ
ଶ⁄୧

୧ିଵ  
 

C2, C3 AE ൌ PE	minሺ1, Sଵ ܵ௠⁄ ሻ  F1a, F2a, 
F3a 

 
Qହ ൌ ଶSଶܭ

ଵାఋ 
Q଺ ൌ  ଷSଷܭ

 

C1 Qଵ ൌ Melt ൅ Rain  
F1b, 

F2b, F3b 
 

 
Qହ ൌ ସSଶܭ ൅ ଶሺSଶതതതܭ െ logሾ1 ൅ expሺെSଶതതതሻሿሻ 
Q଺ ൌ  ଷSଷܭ
with Sଶതതത ൌ ሺSଶ െ ܵ஼ሻ mେ⁄  and mେ ൌ 0.1 mmିଵ 
 

C2 Qଵ ൌ ሺMelt ൅ RainሻሺSଵ ܵ௠⁄ ሻఉ  
 

F3a, F3b 
 

Q଺ ൌ  Sଶܦ
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Table 2.   Parameters used in the various modeling options with their signification and initial sampling. (*) The 1114 
possible values for KC were limited to a maximum of 0.5 to reflect the extreme aridity of the catchment. 1115 
 1116 
Parameter Options Signification Units Initial range 

ௌܶ A1 Rain / snow partitioning temperature 
threshold 

°C -10 – 10 

݉ௌ A1 Rain / snow partitioning smoothing 
parameter 

– 0.01 – 3 

ெܶ B1a, B1b, B1c Snowmelt temperature threshold °C -10 – 10 

ெ݂ B1a Constant melt factor °C.mm-1 0 – 10 

 ଵ B1b Coefficient for computation of theݎ
variable melt factor 

°C.mm-1 1 – 5 

 ଶ B1b Coefficient for computation of theݎ
variable melt factor 

°C.mm-1 1 – 5 

ଵ݂ B1c Coefficient for computation of the 
variable melt factor 

°C.mm-1 1 – 5 

ଶ݂ B1c Coefficient for computation of the 
variable melt factor 

°C.mm-1 1 – 5 

 (*) ஼ C1 Evapotranspiration coefficient – 0.05 – 0.5ܭ	

ܵ௠ C2, C3 Maximum storage capacity of the 
moisture-accounting store 

mm 10 – 100 

 ߚ C2 Shape parameter – 0.1 – 3 

ܾ  C3 Shape parameter of Pareto distribution – 0.1 – 3 

 ଵܭ C3 Infiltration coefficient d-1 0.001 – 0.7 

 D3 Splitting parameter – 0.1 – 0.9 ߙ

௕ܰ E2 Number of time steps in the lag routine – 1 – 6 

 ଶ F1a to F3b Storage coefficient d-1 0.01 – 0.99ܭ

 ଷ F1a to F3b Storage coefficient d-1 0.001 – 0.01 (F1a, F1b, F3a, F3b)ܭ
0.001 – 0.10.01 (F2a, F2b)

 F1a, F2a, F3a Power law parameter of the non-linear ߜ
store in the runoff transformation module 

– 0 – 1 

ܵ௖ F1b, F2b, F3b Threshold parameter of the non-linear 
store in the runoff transformation module 

mm 10 – 300 

 F3a, F3b Recharge coefficient d-1 0.001 – 0.5 ܦ

 ସ F1b, F2b, F3b Storage coefficient d-1 0.001 – 0.01ܭ
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Table 3.   Coordinates of the cluster centroids in the four-dimensional (4D) space of performance measures. The 1118 
number of models with membership values > 50% (N50%) is given for each cluster. 1119 
 1120 

Calibration period (1997–2011) 

Cluster no. Crit1 (1-NSE) Crit2 (1-NSElog) Crit3 (VEM) (%) Crit4 (SE) (%) N50% 

1 0.15 0.25 10 9 24 
2 0.23 0.30 10 10 24 
3 0.49 0.58 23 11 10 
4 0.60 0.62 25 16 13 
5 0.92 0.97 33 20 1 
      

Validation period (1982–1996) 

Cluster no. Crit1 (1-NSE) Crit2 (1-NSElog) Crit3 (VEM) (%) Crit4 (VEC) (%) N50% 

1 0.24 0.21 14 3 15 
2 0.32 0.29 15 4 25 
3 0.38 0.31 15 5 8 
4 0.51 0.42 25 23 8 
5 0.61 0.44 27 27 11 
6 0.61 0.51 30 33 5 

  1121 
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Table 4.   Detailed composition of Clusters 1 in calibration and validation. The tables indicate the numbers and 1122 
the names of the models as well as their number of parameters NP. For each criterion only the best performance 1123 
value obtained along the Pareto front is given. Npar (%) represents the proportion of observations enclosed within 1124 
the simulation bounds of each Pareto set of solutions. Asterisks are used to indicate the models which are not in 1125 
the best-performing group (Cluster 1) either in calibration or in validation. 1126 
 1127 

Calibration period (1997–2011) 

Model no. Model name (options) NP NSE NSElog VEM (%) SE (%) NPar (%) 

2 A1–B1a–C1–D1–E1–F2b 9 0.87 0.76 10.6 11.2 76.0 
4 A1–B1a–C1–D1–E1–F3b 10 0.84 0.77 10.4 11.2 53.2 
8 A1–B1a–C1–D3–E2–F2b 11 0.83 0.75 11.7 11.1 76.5 

20 A1–B1a–C3–D1–E2–F2b 12 0.83 0.76 10.0 11.4 60.0 
22 A1–B1a–C3–D2–E1–F2b 11 0.90 0.77 10.4 11.2 64.1 
26 A1–B1b–C1–D1–E1–F2b 10 0.87 0.77 10.1 11.5 58.4 

30 (*) A1–B1b–C1–D3–E2–F1b 12 0.84 0.70 9.8 11.4 69.6 
32 (*) A1–B1b–C1–D3–E2–F2b 12 0.83 0.71 11.1 11.4 68.4 

44 A1–B1b–C3–D1–E2–F2b 13 0.89 0.77 10.6 11.4 63.4 
46 A1–B1b–C3–D2–E1–F2b 12 0.90 0.76 10.7 11.4 45.4 

49 (*) A1–B1c–C1–D1–E1–F2a 9 0.82 0.73 10.9 7.0 67.0 
50 A1–B1c–C1–D1–E1–F2b 10 0.86 0.77 10.4 7.0 67.4 

52 (*) A1–B1c–C1–D1–E1–F3b 11 0.85 0.72 8.8 8.1 65.7 
53 (*) A1–B1c–C1–D3–E2–F1a 11 0.79 0.76 10.8 7.0 63.8 

54 A1–B1c–C1–D3–E2–F1b 12 0.90 0.78 11.5 7.5 55.7 
55 (*) A1–B1c-C1-D3–E2–F2a 11 0.80 0.73 10.7 7.0 54.5 

56 A1–B1c–C1–D3–E2–F2b 12 0.85 0.75 10.8 7.6 76.3 
65 A1–B1c–C3–D1–E2–F1a 12 0.83 0.78 8.0 7.7 65.0 

66 (*) A1–B1c–C3–D1–E2–F1b 13 0.81 0.77 9.6 6.8 63.5 
67 (*) A1–B1c–C3–D1–E2–F2a 12 0.81 0.75 10.7 7.0 73.7 

68 A1–B1c–C3–D1–E2–F2b 13 0.85 0.74 10.6 6.8 74.5 
69 (*) A1–B1c–C3–D2–E1–F2a 11 0.82 0.73 10.6 7.0 51.8 

70 A1–B1c–C3–D2–E1–F2b 12 0.87 0.76 10.7 7.5 76.4 
72 (*) A1–B1c–C3–D2–E1–F3b 13 0.81 0.71 9.8 7.1 69.0 

 1128 
 1129 

Validation period (1982–1996) 

Model no. Model name NP NSE NSElog VEM (%) VEC (%) NPar (%) 

2 A1–B1a–C1–D1–E1–F2b 9 0.75 0.78 13.3 2.7 87.1 
4 A1–B1a–C1–D1–E1–F3b 10 0.73 0.80 14.1 3.8 50.0 
8 A1–B1a–C1–D3–E2–F2b 11 0.75 0.76 14.5 5.8 84.8 

20 A1–B1a–C3–D1–E2–F2b 12 0.72 0.77 13.7 3.7 58.4 
22 A1–B1a–C3–D2–E1–F2b 11 0.76 0.78 12.3 3.3 75.3 
26 A1–B1b–C1–D1–E1–F2b 10 0.74 0.78 12.9 3.5 70.2 

42 (*) A1–B1b–C3–D1–E2–F1b 13 0.73 0.75 15.6 3.3 62.7 
44 A1–B1b–C3–D1–E2–F2b 13 0.74 0.79 13.0 4.1 69.3 
46 A1–B1b-C3–D2–E1–F2b 12 0.76 0.77 15.2 3.4 48.4 
50 A1–B1c–C1–D1–E1–F2b 10 0.78 0.81 13.9 2.5 73.1 
54 A1–B1c–C1–D3–E2–F1b 12 0.77 0.78 15.3 3.5 60.8 
56 A1–B1c–C1–D3–E2–F2b 12 0.75 0.77 13.2 4.5 81.3 
65 A1–B1c–C3–D1–E2–F1a 12 0.74 0.80 13.8 3.6 73.0 
68 A1–B1c–C3–D1–E2–F2b 13 0.77 0.74 13.5 3.7 78.7 
70 A1–B1c–C3–D2–E1–F2b 12 0.73 0.78 14.2 3.4 79.4 
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