
1 

 

 1 

Calibration approaches for distributed hydrologic models in poorly gaged basins: 2 

Implication for streamflow projections under climate change 3 

 4 

S. Wi1, Y. C. E. Yang1, S. Steinschneider1, A. Khalil2 and C. M. Brown1 5 

 6 

1 Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 7 

USA 8 

2 The World Bank, USA 9 

Correspondence to: S. Wi (email: sungwookwi@gmail.com) 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

Submitted to Hydrology and Earth System Sciences 21 

January 6, 2015  22 



2 

 

Abstract 23 

This study tests the performance and uncertainty of calibration strategies for a spatially distributed 24 

hydrologic model in order to improve model simulation accuracy and understand prediction 25 

uncertainty at interior ungaged sites of a sparsely-gaged watershed. The study is conducted using 26 

a distributed version of the HYMOD hydrologic model (HYMOD_DS) applied to the Kabul River 27 

basin. Several calibration experiments are conducted to understand the benefits and costs 28 

associated with different calibration choices, including 1) whether multisite gaged data should be 29 

used simultaneously or in a step-wise manner during model fitting, 2) the effects of increasing 30 

parameter complexity, and 3) the potential to estimate interior watershed flows using only gaged 31 

data at the basin outlet. The implications of the different calibration strategies are considered in 32 

the context of hydrologic projections under climate change. To address the research questions, 33 

high performance computing is utilized to manage the computational burden that results from high-34 

dimensional optimization problems. Several interesting results emerge from the study. The 35 

simultaneous use of multisite data is shown to improve the calibration over a step-wise approach, 36 

and both multisite approaches far exceed a calibration based on only the basin outlet. The basin 37 

outlet calibration can lead to projections of mid-21st century streamflow that deviate substantially 38 

from projections under multisite calibration strategies, supporting the use of caution when using 39 

distributed models in data-scarce regions for climate change impact assessments. Surprisingly, 40 

increased parameter complexity does not substantially increase the uncertainty in streamflow 41 

projections, even though parameter equifinality does emerge. The results suggest that increased 42 

(excessive) parameter complexity does not always lead to increased predictive uncertainty if 43 

structural uncertainties are present. The largest uncertainty in future streamflow results from 44 
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variations in projected climate between climate models, which substantially outweighs the 45 

calibration uncertainty.   46 



4 

 

1. Introduction 47 

In an effort to advance hydrologic modelling and forecasting capabilities, the development 48 

and implementation of physically-based, spatially distributed hydrologic models has proliferated 49 

in the hydrologic literature, supported by readily available geographic information system (GIS) 50 

data and rapidly increasing computational power. Distributed hydrologic models can account for 51 

spatially variable physiographic properties and meteorological forcing (Beven, 2012), improving 52 

simulations compared to conceptual, lumped models for basins where spatial rainfall variability 53 

effects are significant (Ajami, et al., 2004;  Koren, et al., 2004; Reed, et al., 2004; Khakbaz, et al., 54 

2012; Smith, et al., 2012) and for nested basins (Bandaragoda, et al., 2004; Brath, et al., 2004; 55 

Koren, et al., 2004; Safari, et al., 2012; Smith, et al., 2012). The benefits of distributed modeling 56 

have been recognized by the U. S. National Oceanic and Atmospheric Administration’s National 57 

Weather Service (NOAA/NWS) and demonstrated in the Distributed Model Intercomparison 58 

Project (DMIP) (Reed, et al., 2004; Smith, et al., 2004; Smith, et al., 2012; Smith, et al., 2013). 59 

Importantly, distributed hydrologic models can evaluate hydrological response at interior ungaged 60 

sites, a benefit not afforded by lumped models. The use of distributed hydrologic modelling for 61 

interior point streamflow estimation is particularly relevant for poorly gaged river basins in 62 

developing countries, where reliable predictions at interior sites are often required to inform water 63 

infrastructure investments. As international development agencies begin to integrate climate 64 

change considerations into their decision-making processes (e.g., Yu et al., 2013), these 65 

investments need to be robust under both current climate conditions and possible future climate 66 

regimes. 67 

Despite their roots in physical realism, distributed hydrologic models can suffer from 68 

substantial uncertainty. A major source of uncertainty originates from the proper identification of 69 
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parameter values that vary across the watershed, especially when observed streamflow data is only 70 

available at one or a few points (Exbrayat et al., 2014). Parameters can be discretized across the 71 

watershed in several ways (Flugel, 1995; Efstratiadis et al., 2008; Khakbaz, et al., 2012): uniquely 72 

for each grid cell or hydrologic response unit (fully distributed), based on sub-basins whose 73 

boundaries do not necessarily ensure homogenous characteristics (semi-distributed), or in the 74 

simplest case, a single parameter set for all model grid cells (lumped). With limited data, the 75 

parameter identification problem, particularly for the fully distributed case, can be impractical or 76 

infeasible (Beven, 2001). The parameterization challenge has spurred substantial advances in 77 

understanding appropriate calibration techniques for distributed hydrologic models. Many studies 78 

have attempted to reduce the dimensionality of the calibration problem to alleviate the issue of 79 

equifinality (Beven & Freer, 2001), which is the phenomenon whereby multiple parameter sets 80 

produce indistinguishable model performance. This work has found favorable results when the 81 

parametric complexity of the distributed model is aligned with the data available for calibration 82 

(Leavesley, et al., 2003; Ajami, et al., 2004; Eckhardt, et al., 2005; Frances, et al., 2007; Zhu & 83 

Lettenmaier, 2007; Cole & Moore, 2008; Pokhrel & Gupta, 2010; Khakbaz, et al., 2012). There 84 

has also been extensive research exploring the use of multiple objectives and different operational 85 

procedures to understand parameter estimation tradeoffs and identifiability for distributed model 86 

calibration, with great success (Madsen, 2003; Efstratiadis & Koutsoyiannis, 2010; Li, et al., 2010; 87 

Kumar, et al., 2013). 88 

Despite these advances, important questions still persist. It still remains difficult to 89 

compare the uncertainty that emerges from different operational calibration procedures for 90 

multisite applications (i.e. whether gages in series should be used sequentially or simultaneously 91 

for calibration) and under different levels of parametric complexity. Due to the computational 92 
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burden required to calibrate distributed models, this uncertainty is problematic to explore. Further, 93 

in poorly gaged basins, it is challenging to quantify the lost accuracy and increased uncertainty for 94 

interior flow estimation when a distributed model is calibrated only at an outlet gage (which is 95 

often all that is available in developing country river basins). In the case of significant spatial 96 

variability in the basin properties that influence runoff generation (e.g., permeability, vegetation, 97 

slope, etc.), accurate runoff predictions are unlikely at interior locations based only on the lumped 98 

information obtained at the basin outlet (Anderson et al., 2001; Cao, et al., 2006; Breuer et al., 99 

2009; Lerat et al., 2012; Simith et al., 2012; Wang, et al., 2012). The extent of this error and 100 

uncertainty is not well understood for heterogeneous basins due to the computational expense 101 

required to explore this issue. Finally, rarely have the implications of these calibration issues been 102 

explicitly examined for possible future climate conditions, which is required in climate change 103 

impact studies. This question has been explored for lumped, conceptual models (Wilby, 2005; 104 

Steinschneider, et al., 2012), but has been difficult to evaluate for computationally expensive 105 

distributed models. 106 

This study addresses the above research challenges by focusing on the following four 107 

questions: 1) How does calibration procedure for using multisite data effect the accuracy and 108 

uncertainty of distributed models used for streamflow predictions at ungaged sites, 2) what effects 109 

do increased parameter complexity have on distributed model calibration and prediction, 3) how 110 

much degradation in model accuracy and uncertainty can be expected for interior flow estimation 111 

based on a calibration procedure using only the basin outlet, and 4) how do different calibration 112 

formulations for a distributed model alter projections of streamflow at ungaged sites under climate 113 

change conditions? These questions are considered in an application of a distributed version of the 114 

daily HYMOD hydrologic model to the Kabul River basin in Afghanistan and Pakistan. To address 115 
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these research questions, high performance computing is utilized to manage the computational 116 

burden that often hinders such explorations (Laloy & Vrugt, 2012; Zhang, et al., 2013). 117 

 118 

2. Study area 119 

The Kabul River basin (67,370km2) is a plateau surrounded by mountains located in the 120 

eastern central part of Afghanistan (Figure 1). It is the most important river basin of Afghanistan, 121 

containing 35 percent of the country’s population. While it encompasses just 12 percent of the area 122 

of Afghanistan, the basin’s average annual streamflow (about 24 billion cubic meters) is about 26 123 

percent of the country’s total streamflow volume (World Bank, 2010). 124 

Water resources from the basin are shared by Afghanistan and Pakistan and serve as a water 125 

supply source for more than 20 million people. The shared use of transboundary water between 126 

these two countries is central in establishing regional water resources development for this area 127 

(Ahmad, 2010). It is crucial to develop tools that can support engineering plans for existing and 128 

potential water infrastructure to take full advantage of the water resources in the basin. The 129 

Government of Afghanistan has developed comprehensive plans for new hydropower projects on 130 

the Kabul River owing to its advantageous topography for the development of water storage and 131 

hydropower (IUCN, 2010), and recently reached an agreement with the Pakistan government to 132 

work on a 1,500MW hydropower project on the Kunar River (one of major tributary in the Kabul 133 

River basin) as part of the joint management of common rivers between the two countries (DAWN, 134 

2013). The streamflow regime of the Kabul River can be classified as glacial with maximum 135 

streamflow in June or July and minimum streamflow during the winter season. Approximately 136 

70% of annual precipitation (475mm) falls during the winter season (November to April). While 137 



8 

 

the dominant source of streamflow in winter is baseflow and winter rainfall, glaciers and snow 138 

cover are the most important long-term forms of water storage and, hence, the main source of 139 

runoff during the ablation period for the basin (Shakir et al., 2010). In total 2.9% (1954km2) of the 140 

basin is glacierized based on the Randolph Glacier Inventory version 3.2 (Pfeffer, et al., 2014). 141 

The melt water from glaciers and snow produce the majority (75%) of the total streamflow (Hewitt, 142 

et al., 1989). Table 1 provides the climates and geophysical properties of each sub-watershed 143 

delineated by the stations located inside the Kabul Basin (Figure 1). Two different climate patterns 144 

are distinguishable across the sub-basins. The sub-basins on the Kunar River tributary (Kama, 145 

Asmar, Chitral, Gawardesh, and Chaghasarai) receive moderate annual precipitation and are 146 

highly affected by snow and glacier covers. All of these sub-basins have high ratios of mean annual 147 

flow to mean annual precipitation, with the ratios for the Kama, Asmar, Chitral, and Chaghasarai 148 

sub-basins larger than 1. Conversely, the Daronta sub-basin contains only minimal glacial cover, 149 

and is relatively dry. Daronta is also much less productive, with annual streamflow far below the 150 

other sub-basins with an average of only 165 mm/year. 151 

Issues of shared water resources between Afghanistan and Pakistan in the Kabul River 152 

basin are becoming complex due to the impacts of climatic variability and change (IUCN, 2010). 153 

The vulnerability of glacial streamflow regimes to changes in temperature and precipitation (Stahl, 154 

et al., 2008; Immerzeel, et al., 2012; Radic et al., 2014) highlights the need to assess the impact of 155 

climate change on future water availability in this area.  156 

 157 

3. Data and Models 158 

 159 
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3.1. Data 160 

Gridded daily precipitation and temperature products with a spatial resolution of 0.25o were 161 

gathered between calendar years 1961-2007 from the Asian Precipitation Highly Resolved 162 

Observational Data Integration Towards Evaluation (APHRODITE) dataset (Yatagai, et al., 2012). 163 

There has been some concern regarding underestimation of precipitation in APHRODITE for some 164 

regions of Asia (Palazzi, et al., 2013); our preliminarily data analysis (intercomparison of 165 

precipitation products between 5 different databases) confirmed this for the Kabul River basin 166 

(shown in Figure S1). Thus, the APHRODITE precipitation was bias-corrected by the precipitation 167 

product from the University of Delaware global terrestrial precipitation (UD) dataset (Legates & 168 

Willmott, 1990). Daily series of bias-corrected APHRODITE precipitation were coupled with 169 

APHRODITE temperature for 160 0.25o grid cells to produce a climate forcing dataset for the 170 

distributed domain of the Kabul River basin model. 171 

This study used the set of global climate change simulations from the World Climate 172 

Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model 173 

ensemble (Talyor, et al., 2012). Monthly climate outputs of GCMs were downscaled to a daily 174 

temporal resolution and 0.25o spatial resolution based on the bias-correction spatial disaggregation 175 

(BCSD) statistical downscaling method introduced by Wood et al. (2004). 176 

Monthly streamflow observations for seven locations in the Kabul River basin (Figure 1) 177 

were gathered between calendar years 1960-1981 from two data sources: the Global Runoff Data 178 

Centre (GRDC) database and the United States Geological Survey (USGS) database (Table 1). 179 

Streamflow data were not collected in Afghanistan after September 1980 until recently because 180 

streamgaging was discontinued soon after the Soviet invasion of Afghanistan in 1979 (Olson and 181 

Williams-Sether, 2010). Though measurements were taken at a daily time step, data are only made 182 
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available for public use at monthly aggregated levels, calculated using the mean of the daily values. 183 

The available monthly streamflow observations at each station were used for calibrating and 184 

validating the distributed hydrologic model (Figure 2). Kama and Asmar stations are treated as 185 

ungaged sites because they align with the potential dam project on the Kunar River tributary. The 186 

two gage stations are left out of the processes of multisite calibrations in order to evaluate the 187 

model’s ability to predict streamflow at interior ungaged sites. Furthermore, half of the record at 188 

the Dakah station, located at the basin outlet, is also used for validation purposes.  189 

The Randolph Glacier Inventory version 3.2 (RGI 3.2) dataset (Pfeffer, et al., 2014) was 190 

used to extract glacial coverage in the Kabul River basin, which totaled 5.7% of the basin area 191 

(Figure S2). In the hydrological modeling process, the model needs to be informed by reliable 192 

estimates on volume of water retained in glaciers, especially for future simulations under warming 193 

conditions. We followed the method proposed in Grinsted (2013), which uses multivariate scaling 194 

relationships to estimate glacier and ice cap volume based on elevation range and area. 195 

Specifically, the scaling law including area and elevation range factors was applied to estimate 196 

glacier/ice cap volume when the glacier depth exceeded 10m. Otherwise, glacier/ice cap volume 197 

was estimated with the area-volume scaling law. The elevation range spanned by each individual 198 

glacier is estimated using the global digital elevation model (DEM) from the shuttle radar 199 

topography mission (SRTMv4) in 250m resolution (Jarvis, et al., 2008). Density of ice (0.9167 200 

g/cm3) is applied to calculate glacier/ice cap volume in meters of water equivalent. 201 

The database for land covers and soil types of the Kabul River basin (Figure 1) are provided 202 

by the Food and Agriculture Organization of the United Nations (Latham, 2014) and United States 203 

Department of Agriculture-Natural Resources Conservation Service Soils  (USDA-NRCS, 2005), 204 

respectively. 205 
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 206 

3.2. Distributed Hydrologic Model (HYMOD_DS) 207 

In this study the lumped conceptual hydrological model HYMOD (Boyle, 2001) is coupled 208 

with a river routing model to be suitable for modelling a distributed watershed system. We name 209 

it HYMOD_DS denoting the distributed version of HYMOD. Snow and glacier modules have 210 

been introduced to enhance the modelling process for glacier and snow covered areas within the 211 

Kabul River basin. The HYMOD_DS is composed of hydrological process modules that represent 212 

soil moisture accounting, evapotranspiration, snow processes, glacier processes and flow routing. 213 

The model operates on a daily time step and requires daily precipitation and mean temperature as 214 

input variables. The overall model structure of the HYMOD_DS and its 15 parameters are 215 

described in Figure 3 and Table 2 respectively. Further details are provided below. 216 

The HYMOD conceptual watershed model has been extensively used in studies on 217 

streamflow forecasting and model calibration (Wagener, et al., 2004; Vrugt, et al., 2008; Kollat, 218 

et al., 2012; Gharari, et al., 2013; Remesan, et al., 2013). The HYMOD is a soil moisture 219 

accounting model based on the probability-distributed storage capacity concept proposed by 220 

Moore (1985). This conceptualization represents a cumulative distribution of varying storage 221 

capacities (C) with the following function: 222 

B

C

C
CF )1(1)(

max

  max0 CC         (1) 223 

where the exponent B is a parameter controlling the degree of spatial variability of storage capacity 224 

over the basin and Cmax is the maximum storage capacity. The model assumes that all storages 225 

within the basin are filled up to the same critical level (C*(t)), unless this amount exceeds the 226 
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storage capacity of that particular location. With this assumption, the total water storage S(t) 227 

contained in the basin corresponds to  228 
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Consequently, two parameters are introduced for the runoff generation process with two 230 

components:  231 
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where P(t) is precipitation, Runoff1 is surface runoff, and Runoff2 is subsurface runoff. A parameter 234 

(α) is introduced to represent how much of the subsurface runoff is routed over the fast (Qfast) and 235 

slow (Qslow) pathway: 236 

21fast RunoffRunoffQ           (5) 237 

  2slow 1 RunoffQ            (6) 238 

The potential evapotranspiration (PET) is derived based on the Hamon method (Hamon, 239 

1961), in which daily PET in mm is computed as a function of daily mean temperature and hours 240 

of daylight: 241 

 
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where, Ld is the daylight hours per day, T is the daily mean air temperature (oC), and Coeff is a 243 

bias correction factor. The hours of daylight is calculated as a function of latitude and day of year 244 

based on the daylight length estimation model (CBM model) suggested by Forsythe et al. (1995).   245 

The HYMOD_DS includes snow and glacier modules with separate runoff processes, i.e., 246 

the runoff from the glacierized area is calculated separately and added to runoff generated from 247 

the soil moisture accounting module coupled with the snow module. The implicit assumption here 248 

is that there is no interchange of water between soil layers and glacial area and runoff from glacial 249 

areas is regarded as surface flow. The runoff from each area is weighted by its area fraction within 250 

the basin to obtain total runoff.  251 

The time rate of change in snow and glacier volume governed by ice accumulation and 252 

ablation (melting and sublimation) is expressed by the Degree Day Factor (DDF) mass balance 253 

model (Moore, 1993; Stahl, et al., 2008). The dominant phase of precipitation (snow vs. rain) is 254 

determined by a temperature threshold (Tth). The snow melt Ms and glacier melt Mg is calculated 255 

as: 256 

 sss TTDDFM          (8) 257 

 ggg TTDDFM          (9) 258 

with DDFs (Ts) and DDFg (Tg) applied separately for snow and glacier modules, respectively. To 259 

account for the higher melting rate of glacier than snow owing to the low albedo (Konz & Seibert, 260 

2010; Kinouchi, et al., 2013), we introduced a parameter r > 1 to constrain DDFg to be larger than 261 

DDFs (i.e. DDFg = r×DDFs). For the rain that falls on the glacierized area, the glacier parameter 262 

Kg determines the portion of rain becoming surface runoff as a multiplier for the rainfall. The 263 

remaining rainfall is assumed to be accumulated to the glacier store. 264 
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The within-grid routing process for direct runoff is represented by an instantaneous unit 265 

hydrograph (IUH) (Nash, 1957), in which a catchment is depicted as a series of N reservoirs each 266 

having a linear relationship between storage and outflow with the storage coefficient of Kq. 267 

Mathematically, the IUH is expressed by a gamma probability distribution: 268 

   tKtK
N

K
tu

N

q

1
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q
exp
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)( 





        (10) 269 

where, Γ is the gamma function. The within-grid groundwater routing process is simplified as a 270 

lumped linear reservoir with the storage recession coefficient of Ks.  271 

The transport of water in the channel system is described using the diffusive wave 272 

approximation of the Saint-Venant equation (Lohmann, et al., 1998): 273 
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where C and D are parameters denoting wave velocity (Velo) and diffusivity (Diff) respectively. 275 

Similar to most other hydrological models (Efstratisdis et al., 2008), HYMOD_DS is not 276 

designed to model water abstractions for agricultural lands and dam operations within the basin. 277 

According to World Bank (2010), water demand for agricultural use is about 2,000 MCM (million 278 

cubic meters), or about 8.3% of the total annual flow. The Naglu dam (Figure 1) upstream of the 279 

Daronta streamflow gage forms the largest and most important reservoir in the basin, with an active 280 

storage of 379 MCM. In our hydrologic modelling process, the water consumed by irrigated 281 

croplands is implicitly accounted for by the evapotranspiration module. We note that the degree 282 

of irrigation impact during the time frame used for calibration (1960-1981) is likely much smaller 283 

than the current level. We also expect that using monthly data for calibration somewhat reduces 284 
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the bias from human interference, particularly the daily operations of Naglu dam. Nevertheless, 285 

the calibration results for the gage below this dam (Daronta), and to a lesser extent the basin outlet 286 

(Dakah), should be approached with caution. Given that a majority of the gages examined in this 287 

study are on an underdeveloped branch of the Kabul River, issues of human interference on 288 

calibration are somewhat mitigated. 289 

 290 

4. Methods 291 

The purpose of this study is to explore the implications of different calibration strategies 292 

and choices for a computationally expensive distributed hydrologic model. A variety of calibration 293 

experiments are conducted, with the results from preceding experiments informing choices made 294 

for subsequent ones. All calibration approaches are tested in terms of their ability to predict flows 295 

at interior site gages that were left out of the calibration process. In all cases, the Genetic Algorithm 296 

(GA) introduced by Wang (1991) is used as an optimization method for model parameter 297 

calibration, and the objective function is based simply on the Nash Sutcliffe efficiency (NSE) 298 

(Nash & Sutcliff, 1970), which is by far the most utilized performance metric in hydrological 299 

model applications (Biondi et al., 2012). A multisite average of the NSE is used when evaluating 300 

performance across multiple sites. We fully recognize that the use of one objective, such as the 301 

NSE, is inferior compared to multi-objective approaches that can identify Pareto optimal solutions 302 

that provide good model performance across different components of the flow regime (Madsen, 303 

2003; Efstratiadis & Koutsoyiannis, 2010; Li, et al., 2010; Kumar, et al., 2013). However, in this 304 

particular study daily hydrologic model simulations can only be compared against available 305 

monthly streamflow records, reducing the number of viable objectives against which to calibration. 306 

That is, statistics representing peak flows, extreme low flows, and other daily flow regime 307 
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characteristics often used in multi-objective optimization approaches are unavailable. We believe 308 

that the use of a monthly NSE value as a single objective, while coarse, does not inhibit our ability 309 

to provide insight into the research questions posed. In addition to the NSE, the Kling-Gupta 310 

efficiency (KGE) (Gupta et al., 2009) is adopted as an alternative model performance metric, 311 

which equally weights model mean bias, variance bias, and correlation with observations. 312 

In this study, three levels of parameter complexity are considered: lumped, semi-313 

distributed, and fully distributed formulations (Figure 4). The different levels of parameter 314 

complexity are defined according to the spatial distribution of unique hydrologic model 315 

parameters. In the lumped formulation a single parameter set is applied to the entire basin. In the 316 

semi-distributed formulation, a unique parameter set is assigned to each sub-basin, defined based 317 

on the location of available streamflow gaging sites. The fully distributed parameter structure 318 

follows the spatial discretization of climate input grids, allowing a unique parameter set for each 319 

grid cell. No matter the parameterization scheme, the model structure follows the climate input 320 

grids, i.e. the hydrological water cycle within each grid cell is modelled separately. We note that 321 

a lumped model structure (i.e., no gridded or sub-unit structure) has often been considered as a 322 

baseline model formulation in the assessment of distributed modelling frameworks (e.g., see Smith 323 

et al., 2013). However, the focus of our study is on ungaged interior site streamflow estimation, 324 

making this formation somewhat inappropriate. Further, preliminary tests comparing streamflow 325 

simulations at the basin outlet (Dakah) between a gridded and basin-averaged structure, both with 326 

a lumped parameter formulation, support the use of the distributed grid structure (Figure S3). 327 

The parameter complexity will vary depending on the calibration experiment being 328 

conducted, but for each experiment regardless of the parameterization, the optimization is 329 

implemented 50 times using the GA algorithm to explore calibration uncertainty. The considerably 330 
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high computational cost required to perform a large number of calibrations is managed using the 331 

parallel computing power provided by the Massachusetts Green High Performance Computing 332 

Center (MGHPCC), from which several thousands of processors are available. 333 

In the first modeling experiment, we explore two calibration strategies for using multisite 334 

streamflow data, a stepwise and pooled approach. In the stepwise calibration, parameters are 335 

calibrated for upstream gaged sub-catchments and subsequently fixed during calibration of 336 

downstream points, while for the pooled approach, parameters are calibrated for multiple sub-337 

catchments simultaneously. Both approaches are assessed for the semi-distributed formulation. 338 

The better of the two methods is identified for use in the second experiment, where the effects of 339 

increased parameter complexity are tested in terms of streamflow prediction accuracy and 340 

uncertainty. In the third experiment, we consider the situation where there is only data at the basin 341 

outlet for calibration. Here, the model is calibrated against the outlet gage under all levels of 342 

parameter complexity and is compared against the best combination of calibration strategy (step-343 

wise or pooled) and parameter complexity (lumped, semi-distributed, or fully distributed) 344 

identified in the previous experiments. Finally, a subset of the calibration approaches deemed 345 

worthy of further investigation are compared in terms of their projections of future streamflow 346 

under climate change to highlight how model calibration differences can alter the results of a 347 

climate change assessment for water resources applications. These experiments are described in 348 

further detail below. 349 

 350 

4.1. Multisite Calibration: Stepwise and Pooled Approaches 351 

In the first experiment, the semi-distributed parameterization concept is compared under 352 

alternative multisite calibration strategies, the stepwise and pooled calibration approaches. To 353 
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conduct the stepwise calibration, a nested class of sub-basins is defined corresponding to multiple 354 

gaging stations. In the first step of the stepwise calibration, the optimization process is carried out 355 

with nested sub-basins at the lowest level (i.e., the most upstream sites). Once parameters of nested 356 

sub-basins are determined, the parameters are fixed, and the calibration procedure proceeds with 357 

nested basins at upper levels until parameters for the entire basin are determined. In this particular 358 

application to the Kabul River basin, 5 gaged sub-basins were selected and the stepwise calibration 359 

procedure for those sub-basins followed this direction: Chitral → Gawardesh → Chaghasarai → 360 

Daronta → Dakah (Figure 5). The stepwise calibration approach involves a number of GA 361 

implementations corresponding to the number of gaging sites. The GA optimization was carried 362 

out a total of 250 times in this application, with 50 optimization runs containing GA 363 

implementations for 5 sub-basin regions. 364 

The pooled calibration strategy involves calibrating all parameters of the model domain 365 

simultaneously against multiple streamflow gages within the watershed. This approach aims at 366 

looking for suitable parameters that are able to produce satisfactory model results at all gaging 367 

stations in a single implementation of GA optimization. That is, the GA searches the entire 368 

parameter space at once to maximize the average NSE across all sites. This operational feature 369 

reduces the processing time spent on the GA implementation compared to the stepwise calibration 370 

strategy. To identify the better of the two multisite calibration approaches, the comparison focused 371 

on their ability to predict streamflow and calibration uncertainties at two interior site gages (Kama 372 

and Asmar) that were assumed to be ungaged (Figure 5), as well as for validation data at the basin 373 

outlet.   374 

 It is important to note that the evaluation of these multisite calibration strategies is 375 

somewhat weakened because of the lack of overlapping data periods among most of the stations 376 
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(Figure 2). This drawback prevents the calibration methods from accounting for simultaneous 377 

information from different tributaries, which, if available, would better enable the calibration 378 

methods to account for heterogeneity of hydrological processes across the sub-basins.  379 

 380 

4.2. Increased Parameter Complexity 381 

In the second experiment, the better of the two approaches (step-wise or pooled) identified 382 

in the first experiment is further tested with respect to the three different levels of parameter 383 

complexity. In addition to the semi-distributed parameter formulation considered in the first 384 

experiment, lumped and fully-distributed parameter formulations are calibrated for the selected 385 

approach to investigate the gain or loss arising from different levels of parameter complexity. Since 386 

the hydrologic model HYMOD employed in this study involves 15 parameters, the lumped version 387 

of the HYMOD_DS contains a single, 15-member parameter set applied to all model grid cells. 388 

The semi-distributed conceptualization of HYMOD_DS contains a single parameter set for each 389 

sub-basin, totaling 75 parameters. In the distributed parameterization the number of parameters 390 

increases dramatically.  With 160 0.25o grid cells, the number of parameters requiring calibration 391 

reaches 2,400. As the number of parameters increase across the parameterization schemes, 392 

calibration becomes increasingly computationally expensive. The number of model runs used in 393 

the GA optimization algorithm for the lumped, semi-distributed, and distributed parameterization 394 

schemes are 15,000 (150 populations × 100 generations), 75,000 (750 × 100), and 480,000 (2400 395 

× 200), respectively. These population/generation sizes were supported using convergence tests 396 

for each calibration. Again, 50 separate GA optimizations were used to explore calibration 397 

uncertainties for each parameterization scheme. To give a sense of the computational burden of 398 
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this experiment, we note that 50 trials of the HYMOD_DS calibration under the distributed 399 

conceptualization required 1,000 processors over 7 days on the MGHPCC system. 400 

 401 

4.3. Basin Outlet Calibration 402 

The third experiment considers the situation where there is only gaged data at the basin 403 

outlet (Dakah) for calibration, a common situation when calibrating hydrologic models in data-404 

scarce river basins. Here, we evaluate the potential of the basin outlet calibration to estimate 405 

interior watershed flows in terms of both accuracy and precision at all gaging stations. All levels 406 

of parameter complexity are considered for this calibration. The main purpose of this experiment 407 

is to compare the veracity of a distributed hydrologic model calibrated only using basin outlet data 408 

with results from multisite calibrations to better understand the degradation in model performance 409 

under data scarcity. Other than the use of an NSE objective only at the basin outlet, all other GA 410 

settings for each level of parameter complexity are same as the settings used in the second 411 

experiment. 412 

 413 

4.4. Climate Change Projections of Streamflow 414 

The fourth experiment investigates how the choice of calibration approach can alter the 415 

projections of future streamflow under climate change. To explore this question, streamflow 416 

simulations for the 2050s, defined as the 30-year period spanning from 2036 to 2065, are carried 417 

out using climate projections from the CMIP5 (Talyor, et al., 2012). A total of 36 different climate 418 

models run under two future conditions of radiative forcing (RCP 4.5 and 8.5) are used. 419 

Streamflow projections are developed for the basin outlet (Dakah) and two interior gages left out 420 



21 

 

of the calibration (Kama and Asmar). By using 36 different General Circulation Models (GCMs) 421 

and 50 optimization trials for each calibration scheme, this analysis compares the uncertainty in 422 

future streamflow projections originating from uncertainty in different hydrologic model 423 

parameterization schemes and under alternative future climates. 424 

Streamflow projections are considered under all three parameterization schemes (lumped, 425 

semi-distributed, and fully distributed) for both the basin outlet model and the best multi-site 426 

calibration approach (step-wise or pooled). Multiple streamflow characteristics are evaluated, 427 

including monthly streamflow, wet (April-September) and dry (October-March) season flows, and 428 

daily peak flow response. The differences and uncertainty in these metrics across calibration 429 

approaches will highlight the importance of calibration strategy for evaluating future water 430 

availability and flood risk.  431 

 432 

5. Results  433 

For the remaining part of the paper, we introduce the following shorthand: Lump, Semi, 434 

and Dist indicate the lumped, semi-distributed, and fully distributed parameterization schemes, 435 

and Outlet, Stepwise, and Pooled correspond to basin outlet, stepwise, and pooled calibrations. 436 

The comparison between different calibration strategies is based on the model performance 437 

evaluated with the NSE, as well as an alternative metric, the KGE.  438 

 439 

5.1. Pooled Calibration vs. Stepwise Calibration  440 

This section reports the results from the first experiment comparing the stepwise and 441 

pooled calibration approaches for the semi-distributed model parameterization. Figure 6 shows the 442 
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comparison between the Semi-Stepwise and Semi-Pooled with boxplots representing the 50 trials 443 

of calibration. Under the stepwise calibration the results for 4 sub-basins (Chitral, Gawardesh, 444 

Chaghasarai, and Daronta) are optimal because there is no interaction between those sub-basins. 445 

However, the calibrated parameter sets of each sub-basin act as constraints in the last step of the 446 

Semi-Stepwise resulting in the degradation of model skill at the basin outlet (Dakah) and two left-447 

out gages (Asmar and Kama). This becomes apparent when comparing the Semi-Stepwise to the 448 

Semi-Pooled results. The model skill under the Semi-Pooled is similar to that from the Semi-449 

Stepwise with respect to the 4 upstream sub-basins, but it outperforms at the verification gages. 450 

This is particularly true for the Asmar gage, which exhibits a downward bias and substantial 451 

variability in performance under the Semi-Stepwise.  The Semi-Pooled results suggest that small 452 

sacrifices of model performance at certain sites can improve and stabilize basin-wide performance. 453 

Expected values of KGE from 50 calibrations are also provided (values in parenthesis in the bottom 454 

of Figure 6) and this performance metric also leads to the same conclusion. Therefore, the Semi-455 

Pooled was selected as the better multisite calibration strategy and is considered for further 456 

analyses in the following sections. 457 

 458 

5.2. Pooled Calibration with Alternative Parameterizations  459 

Here we examine results for the three levels of parameter complexity applied to the pooled 460 

calibration approach. Figure 7 shows the comparison of the pooled calibrations. Unsurprisingly, 461 

streamflow predictions from the Lump-Pooled have the lowest accuracy and largest uncertainty at 462 

the calibration sites, particularly for the Chaghasarai and Daronta sites. This demonstrates the well-463 

known difficulty in representing flow characteristics of a spatially variable system with a 464 

homogenous parameter set (Beven, 2012). The pooled calibration substantially improves with 465 
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increasing parameter complexity at the calibration sites. Both the Semi-Pooled and Dist-Pooled 466 

produce NSE values above 0.8 for all calibration sites, with the Dist-Pooled showing somewhat 467 

higher performance, undoubtedly from its greater freedom to over-fit to the calibration data. 468 

However, the advantage of the Dist-Pooled with respect to streamflow predictions at validation 469 

sites becomes less clear. Only the Dist-Pooled at Kama shows marginally better predictions, while 470 

the results are ambiguous at Dakah and Asmar. Overall, this likely suggests that the fully 471 

distributed conceptualization leads to over-fitting of the model as compared to the Semi-Dist 472 

conceptualization. We reached the same conclusion when examining the KGE values, which rise 473 

with greater parameter complexity at calibration sites but no longer follow this pattern strictly at 474 

validation sites.  475 

Interestingly, the Lump-Pooled performs well at the verification sites despite its poor 476 

performance at calibration sites. The Lump-Pooled does not show significant degradation in skill 477 

at Kama compared to the more complex parameterizations, and the flow prediction at Asmar 478 

actually exhibits the best performance of all three model variants. A partial reason for this 479 

unexpected result arises from different overlapping periods in the calibration and validation data 480 

(see Figure 2). The periods used for the calibration for Chitral (1978-1981) and Gawardesh (1975-481 

1978) have no overlapping periods with the one for Asmar (1966-1971), which encompasses those 482 

two sub-basins. Instead, the validation at Asmar is mostly affected by the calibration to Dakah 483 

because of the overlapping 4 years (1968-1971) between those two sites. This explains the reason 484 

why the Lump-Pooled shows high skill at Asmar despite the low skill at its sub-basins. However, 485 

the low model skill at Chaghasarai from the Lump-Pooled propagates to the validation result at 486 

Kama, as these two sites have a relatively long overlapping period (8 years from 1967-1974). 487 

 488 
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5.3. Limitations of the Basin Outlet Calibration  489 

In the third experiment the HYMODS_DS was calibrated only to data at the basin outlet 490 

under all levels of parameter complexity, and streamflow records for all 6 sub-basins, as well as 491 

flows at Dakah not used during calibration, are used for model validation. First, we consider the 492 

flows at Dakah. During the calibration period, all three parameterization schemes produce very 493 

accurate streamflow predictions with NSE (KGE) values above 0.95 (0.96) (Figure 8). High 494 

accuracy holds even under the Lump_Outlet, despite the spatial heterogeneity of the basin. While 495 

NSE and KGE values at Dakah rise marginally with greater parameter complexity during 496 

calibration, this no longer holds during the validation period, suggesting no benefit with an 497 

increase in parameter complexity.  498 

The validation results for the 6 sub-basins demonstrate the danger in relying on outlet data 499 

alone when calibrating a distributed model for flow prediction at interior points. Streamflow 500 

predictions at interior sites exhibit low accuracy and high uncertainty, with the worst performance 501 

at the Daronta site (all NSEs and KGEs are negative). We note that the poor performance at 502 

Daronta is likely due in part to the impacts of water abstraction and the operation of Naglu dam. 503 

Further examination (Figure S4) showed that the HYMOD_DS significantly overestimated 504 

streamflow at Daronta and underestimated flow at three sites in the eastern part of the basin 505 

(Chitral, Gawardesh, and Chaghasarai). Model performance at Kama and Asmar is somewhat 506 

better than the other validation sites, although improvements are not the same across all 507 

parameterizations. The Lump-Outlet predictions at these sites still have low average accuracy 508 

(average NSE < 0.7 and average KGE < 0.6), while the Semi-Outlet exhibits large uncertainty in 509 

performance across the 50 optimization trials. Surprisingly, the over-parameterized Dist-Outlet 510 

shows promising results with high expected accuracy at Kama and Asmar (mean NSE (KGE) of 511 
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0.84 (0.71) and 0.90 (0.88), respectively) and comparable performance at many of the other sites. 512 

One exception is Gawardesh, where the Lump-Outlet outperforms the other model variants, 513 

although the reason for this is not immediately clear. Overall, the results indicate that any 514 

calibration based on basin outlet data should be used with substantial caution when predicting 515 

flows at interior basin sites. 516 

After reviewing all of the calibration experiments, it becomes clear that the Semi-Pooled 517 

and Dist-Pooled calibrations provide more robust performance compared to the basin outlet 518 

calibrations due to their improved representation of internal hydrologic processes across the basin. 519 

To further compare these calibration strategies against one another, we evaluate the variability in 520 

optimal parameters resulting from the 50 trials of the GA algorithm. Figure 9 shows the coefficient 521 

of variation (CV) of Cmax (a parameter for the soil moisture account module) over the basin from 522 

all combinations of calibration approaches (the outlet and pooled) and 3 parameterization schemes. 523 

A clear pattern of increasing variability (higher uncertainty in Cmax) emerges as parameter 524 

complexity increases for both the outlet and pooled calibration strategies. That is, the semi- and 525 

fully-distributed parameterizations lead to significantly variable parameter sets that produce 526 

similar representations of the observed basin response. Figure 9 also suggests that the equifinality 527 

can be alleviated to an extent by pooling data across sites. The pooled calibration approaches 528 

consistently show lower variability in Cmax compared to the outlet calibration at the same level 529 

of parameter complexity. These results are relatively consistent across the remaining 14 530 

HYMOD_DS parameters. The implications of parameter stability on streamflow projections under 531 

climate change is addressed in the next section.  532 

 533 
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5.4. Climate Change Projections of Streamflow with Uncertainty 534 

Here we explore how projections of future water availability and flood risk under climate 535 

change are influenced by the choice of calibration approach. For the Kabul River basin, the CMIP5 536 

GCM projections of monthly total precipitation and mean temperature are shown in Figure S5. 537 

According to the CMIP5 ensemble, precipitation projections show no clear trend; the average 538 

precipitation change in monthly total precipitation fluctuates between -10mm and 10mm. On the 539 

other hand, temperature clearly shows an upward trend for both radiative forcing scenarios. The 540 

average changes in annual temperature are +2.2oC and +2.8oC for RCP4.5 and RCP8.5, which, 541 

using the Hamon method, correspond to an increase in annual PET by approximately 100mm and 542 

150mm, respectively.  543 

We first examine average monthly streamflow estimates across four calibration strategies: 544 

the Semi-Pooled and Dist-Pooled (most promising calibration strategies), as well as the Lump-545 

Outlet (as a baseline) and Dist-Outlet (the best outlet calibration strategy). Figure 10 shows the 546 

monthly streamflow  estimates for the historical period with the whisker bars indicating the 547 

uncertainty range across the 50 calibration trials. The monthly streamflow predictions are also 548 

provided for the 2050s under the RCP 4.5 and 8.5 scenarios. For the future scenarios, the whisker 549 

bars are derived by averaging over the 36 different climate projections for each of the 50 trials. 550 

For the historical time period, all calibration schemes match the observed monthly streamflow at 551 

Dakah well, but monthly streamflow is underestimated in most of months at Kama and Asmar 552 

under the basin outlet calibrations, particularly by the Lump-Outlet. The historical monthly 553 

streamflow estimates from the outlet calibration strategies also tends to be highly uncertain for the 554 

months of June, July, August, and September, especially compared to the SemiPool and DistPool.  555 



27 

 

Under future climate projections for the 2050s, the four calibration strategies show similar 556 

changes in monthly streamflow at Dakah, but the magnitudes of change are somewhat different. 557 

All calibration strategies suggest reduction in streamflow for June, July, and August under both 558 

RCP4.5 and RCP8.5 scenarios. Also, the peak monthly flow, which occurred in June or July in the 559 

historical period, is shifted to May at Dakah. However, the Lump-Outlet predicts less reduction of 560 

flow in June and July and a greater reduction in August and September as compared to the other 561 

three calibrations. Considering that all calibration schemes had similar levels of good performance 562 

at this site for both calibration and validation periods, it is notable that they project future 563 

streamflow somewhat differently.  564 

Future monthly streamflow predictions at Kama and Asmar vary widely between the four 565 

calibration schemes, mostly an artifact of their historic differences (Figure 10). Streamflow 566 

projections under the outlet calibration strategies tend to show large uncertainties at these two sites, 567 

particularly the Lump-Outlet calibration. For three months, July through September, the outlet 568 

calibration and pooled calibration strategies provide substantially different insights about future 569 

water availability at Kama and Asmar. The outlet calibrations suggest less water with large 570 

uncertainties for those months as compared to the pooled calibrations. At Kama, the pooled 571 

calibrations suggest significant changes in the pattern of peak monthly flow timing under both 572 

RCP scenarios; instead of having a clear peak in July, streamflow from May to August show 573 

similar amounts of water. 574 

To further understand the sources of uncertainty in future water availability, we evaluate 575 

the separate and joint influence of uncertainties in parameter estimation and future climate on 576 

seasonal streamflow projections across all calibration schemes. Figure 11 represents the 577 

uncertainty of wet and dry seasonal streamflow at Dakah from three sources: 1) calibration 578 
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uncertainty across the 50 trials, with future climate uncertainty averaged out for each trial, 2) future 579 

climate uncertainty across the 36 projections, with calibration uncertainty averaged out across the 580 

50 trials, and 3) the combined uncertainty across all 1800 (50×36) simulations. The results suggest 581 

somewhat surprisingly that uncertainty reduction can be expected as parameter complexity 582 

increases, and less surprisingly, by applying pooled calibration approaches. Another clear point is 583 

that the uncertainty resulting from different climate change scenarios substantially outweighs that 584 

from calibration uncertainty.     585 

Up to this point, there has been little difference between the Semi-Pooled and Dist-Pooled 586 

model variants. These two versions were further analyzed with respect to extreme streamflow to 587 

see if distinguishing characteristics emerge. It has been demonstrated that clear gains in predicting 588 

peak flows from distributed models are noticeable (Reed et al., 2004) and spatial variability in 589 

model parameters significantly influence the runoff behavior (Brath and Montanari, 2000; Pokhrel 590 

and Gupta, 2011). The spatial variability of optimal parameters derived from the Semi-Pooled and 591 

Dist-Pooled is shown in Figure S6, with larger variability across all parameters for the Dist-Pooled 592 

than for the Semi-Pooled. To understand the effects of spatial variability and calibration 593 

uncertainty of parameters on extreme event estimation, the 100-year daily flood event was 594 

calculated under the Semi-Pooled and Dist-Pooled for each of the 50 historic simulations and 1800 595 

future simulations across both RCP scenarios. Although the inter-model comparison is intended to 596 

be a useful addition that provides a distinction between the parameterization schemes in the pooled 597 

calibration approach, results from this analysis should be viewed in the context of a theoretical 598 

calibration exercise, not for decision-making purposes, because no observed daily streamflow is 599 

available against which to compare the estimated 100-year daily flood events. Projections of the 600 

100-year daily flood, estimated using a Log-Pearson type III distribution fit to annual peaks of 30 601 
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years, differ somewhat between the Semi-Pooled and Dist-Pooled (Figure 12). At 3 validation 602 

sites, extreme floods are consistently larger under the Semi-Pooled than the Dist-Pooled, and the 603 

mean difference in the 100-year daily flood estimate between the two calibration approaches grows 604 

between the historic runs and the RCP 4.5 and 8.5 scenarios. This suggests that the flood-605 

generation process is fundamentally different between the two parameterizations, with the Semi-606 

Pooled formalization magnifying the effect of climate change on extremes. Furthermore, there is 607 

substantially more uncertainty in the 100-year daily flood estimate under the Semi-Pooled. Figure 608 

12 shows the combined uncertainty across both climate projections and calibrations, but this 609 

uncertainty is broken down further in Figure 13. Similar to Figure 11, 3 sources of uncertainty are 610 

evaluated for the 100-year daily flood, including calibration uncertainty alone, climate projection 611 

uncertainty alone, and their combined effect. For both the Semi-Pooled and Dist-Pooled, 612 

calibration uncertainty has a smaller influence than projection uncertainties, and for all sites, the 613 

Dist-Pooled has a smaller uncertainty range than the Semi-Pooled, even for calibration uncertainty 614 

alone. This was a truly surprising result, given the parametric freedom in the Dist-Pooled model 615 

and the fact that no daily data was ever used in the calibration of either model. It appears that a 616 

lack of model parsimony does not necessarily lead to greater uncertainty in model simulations 617 

under different climate conditions, somewhat counter to what would be expected of over-fit 618 

models. One possible reason for this result would be if increased parametric freedom somehow 619 

offset the effects of structural deficiencies in the model. However, further research is needed to 620 

investigate this issue.  621 

 622 
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6. Discussion and Conclusion 623 

In this study we examined a variety of calibration experiments to better understand the 624 

benefits and costs associated with different calibration choices for a complex, distributed 625 

hydrologic model in a data-scarce region. The goal of these experiments was to provide insight 626 

regarding the use of multisite data in calibration, the effects of parameter complexity, and the 627 

challenges of using limited data for distributed model calibration, all in the context of projecting 628 

future streamflow under climate change.  629 

This study tested two multi-site calibration strategies, the stepwise and pooled approaches, 630 

finding that the pooled approach using all data simultaneously provides improved calibration 631 

results. This suggests that small sacrifices of model performance at certain sites can improve and 632 

stabilize basin-wide performance. The pooled calibration substantially improves with increasing 633 

parameter complexity at the calibration sites, but similar streamflow predictions at the validation 634 

sites between the semi-distributed and distributed pooled calibrations were found, suggesting over-635 

fitting of the model from the fully distributed conceptualization. It is worth noting that for the 636 

transformation of rainfall to runoff, up to five or six parameters can be identified on the basis of a 637 

single hydrograph (Wagner et al., 2001). Under this premise, the number of the HYMOD_DS 638 

parameters being calibrated in the semi-distributed approach remains realistic, but the fully 639 

distributed parameterization scheme likely causes poor identifiability of the parameters. Thus, 640 

pursuing a parsimonious configuration (e.g. optimization for a small portion of the parameters) 641 

with an effort to increase the amount of information (e.g. multivariable/multisite) is critical in the 642 

calibration of watershed system models (Gupta et al., 1998; Efstratiadis et al., 2008). We also note 643 

the important role of experienced hydrologists in designing a parsimonious hydrologic calibration 644 

(e.g. Boyle et al., 2000). In this study, the feasible ranges of the HYMOD_DS parameters were 645 
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kept wide (as is often done in automatic hydrologic calibrations) without consideration of the 646 

physical properties of the basin; the judgment of local hydrologic experts could help reduce the 647 

feasible ranges used during the calibration and thus contribute to a reduction of calibration 648 

uncertainty. 649 

Calibration only based on data at the basin outlet is all too common in hydrologic model 650 

applications and is sometimes considered comparable to multisite calibrations even for predictions 651 

at interior gauges (Lerat et al., 2012). In contrast, others have reported improvements in interior 652 

flow predictions by using internal flow measurements (Anderson et al., 2001; Wang et al., 2012; 653 

Boscarello et al., 2013). This is in agreement with the finding from this study, demonstrating the 654 

superiority of the pooled calibration approach to the basin outlet calibration in terms of its ability 655 

to represent interior hydrologic response correctly. This study shows the danger in relying on an 656 

outlet calibration for interior flow prediction. 657 

It was shown that caution is needed when using an outlet calibration approach for 658 

streamflow predictions under future climate conditions. This study showed that the basin outlet 659 

calibration can lead to projections of mid-21st century streamflow that deviate substantially from 660 

projections under multisite calibration strategies. From the test of implications of the pooled 661 

calibration in the context of climate change, it was found that applying the pooled calibration with 662 

semi-distributed and distributed parameter formulations showed clear gains in reducing 663 

uncertainties in predictions of monthly and seasonal water availability as compared to the basin 664 

outlet calibrations. Surprisingly, increased parameter complexity in the calibration strategies did 665 

not increase the uncertainty in streamflow projections, even though parameter equifinality did 666 

emerge. The results suggest that increased (excessive) parameter complexity does not always lead 667 

to increased uncertainty if structural uncertainties in the model are present.  668 
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The semi-distributed pooled and distributed pooled calibrations are very similar for 669 

monthly streamflow projections, yet differ in their projections of extreme flows in part due to their 670 

differences in the spatial variability of optimal parameters, with the distributed pooled calibration 671 

showing less uncertainty for 100-year daily flood events. We evaluated the separate and joint 672 

influence of uncertainties in parameter estimation and future climate on projections of seasonal 673 

streamflow and 100-year daily flood across calibration schemes and found that the uncertainty 674 

resulting from variations in projected climate between the CMIP5 GCMs substantially outweighs 675 

the calibration uncertainty. These results agree with other studies showing the dominance of GCM 676 

uncertainty in future hydrologic projections (Chen et al., 2011; Exbrayat et al., 2014). While the 677 

GCM-based simulations still have widespread use in assessing the impacts of climate change on 678 

water resources availability, the bounds of uncertainty resulting from an ensemble of GCMs cannot 679 

be well-defined because of the low credibility with which GCMs are able to produce timeseries of 680 

future climate (Koutsoyiannis et al., 2008). This issue hinders a straightforward appraisal of future 681 

water availability under climate change and has motivated other efforts; e.g. performance-based 682 

selection of GCMs (Perez et al., 2014). 683 

In addition to the uncertainties surrounding model parameters and future climate explored 684 

in this study, there is also significant uncertainty in streamflow projections stemming from 685 

structural differences between applied hydrologic models, which can be especially pertinent where 686 

robust calibration is hampered by the scarcity of data (Exbrayat et al., 2014). Further, the residual 687 

error variance of hydrologic model simulations would increase the effects of hydrologic model 688 

uncertainty as compared to that of the climate projections (Steinschneider et al., 2014). These 689 

issues need to be addressed in future work for exploring a comprehensive uncertainty assessment 690 

of climate change risk for poorly monitored hydrologic systems. 691 
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Successful automatic calibration algorithms for hydrologic models are based primarily on 692 

global optimization algorithms that are computationally expensive and require a large number of 693 

function evaluations (Kuzmin et al., 2008). Although the speed and capacity of computers have 694 

increased multi-fold in the past several decades, the time consumed by running hydrological 695 

models (especially complex, physically based, distributed hydrological models) is still a concern 696 

for hydrology practitioners. A single trial of parameter optimization of HYMOD_DS associated 697 

with 100,000 runs can take 28 days on a single processor (Figure S7). Accordingly, the use of high 698 

performance computing power was essential in this study to better understand the implications of 699 

different calibration choices and their associated uncertainty for streamflow projections. Enhanced 700 

data with high spatial and temporal resolution are increasingly available from remote sensing and 701 

satellite products. In the future, remote sensing and satellite information can be integrated into 702 

calibration approaches to develop more robust estimates of spatially distributed parameter values, 703 

enabling internal consistency of distributed hydrological modeling. Significant progress has been 704 

made toward this end (Tang et al., 2009; Khan et al., 2011; Thirel et al., 2013). Future work will 705 

consider using high performance computing power (e.g. Laloy and Vrugt, 2012; Zhang et al., 706 

2013) to understand how such information can enhance the hydrologic simulation at ungaged sites 707 

and reduce the calibration uncertainty of distributed hydrologic models in data-scarce regions. 708 

  709 
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Tables 948 

 949 

Table 1 Streamflow gaging stations in the Kabul River basin. 950 

Data 

Source 

Station 

Name 
River 

Data Period Physiographic Property Basin Climate 

Start End 

Drainage 

Area 

(km2) 

Glacier 

Area 

(%) 

Mean 

Elev 

(m) 

Mean 

Annual 

Prcp 

(mm) 

Mean 

Annual 

Mean 

Temp 

(oC) 

Mean 

Annual 

Flow 

(mm) 

USGS/ 

GRDC 
Dakah Kabul 1968/2 1980/7 67,370 2.9 2,883 418 7.7 282 

USGS/ 

GRDC 
Pul-i-Kama Kunar 1967/1 1979/9 26,005 7.3 3,446 446 5.6 573 

USGS Asmar Kunar 1960/3 1971/9 19,960 9.4 3,716 483 4.1 651 

GRDC Chitral Kunar 1978/1 1981/12 11,396 14.4 4,126 518 2.1 698 

USGS Gawardesh Landaisin 1975/5 1978/6 3,130 2.1 3,707 555 4.5 521 

USGS/ 

GRDC 
Chaghasarai Pech 1960/2 1979/2 3,855 0.4 3,141 482 7.4 535 

USGS/ 

GRDC 
Daronta Kabul 1959/10 1964/9 34,375 0.3 2,722 350 8.0 165 

  951 



45 

 

 952 

Table 2 HYMOD_DS parameters. 953 

Parameter 

Name 
Description 

Feasible Range 

Lower 

Bound 

Upper 

Bound 

Coeff Hamon potential evapotranspiration coefficient 0.1 2 

Cmax Maximum soil moisture capacity [mm] 5 1500 

Β Shape for the storage capacity distribution function 0.01 1.99 

α Direct runoff and base flow split factor 0.01 0.99 

Ks Release coefficient of groundwater reservoir 0.00005 0.001 

DDFs Degree day snow melt factor [mm·oC·day-1] 0.001 10 

Tth Snow melt temperature threshold  [°C] 0 5 

Ts Snow/rain temperature threshold [°C] 0 5 

r Glacier melt rate factor 1 2 

Kg Glacier storage release coefficient 0.01 0.99 

Tg Glacier melt temperature threshold [°C] 0 5 

N Unit hydrograph shape parameter 1 99 

Kq Unit hydrograph scale parameter 0.01 0.99 

Velo Wave velocity in the channel routing [m·s-1] 0.5 5 

Diff Diffusivity in the channel routing [m2·s-1] 200 4000 

 954 
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Figures 956 

 957 

 958 

Figure 1. Kabul River basin. 959 
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 961 

Figure 2. Streamflow data usage for the model calibration and validation. 962 
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 964 

Figure 3. Distributed version of HYMOD model (HYMOD_DS). 965 

  966 
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 967 

Figure 4. Model structure based on climate input grids and three different parameterization 968 

concepts. 969 
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 971 

Figure 5. (a) Sub-basins corresponding to five gaging stations are used for the multisite 972 

calibrations. (b) Two sub-basins (Kama and Asmar) are assumed to be ungaged and used for 973 

evaluating the calibration approaches.  974 
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 975 

Figure 6. Comparison of the stepwise and pooled calibrations under the semi-distributed 976 

parameterization. Each calibration is conducted 50 times. Values on the bottom represent expected 977 

values of NSE (in upper row) and KGE (within parenthesis in lower row) from 50 calibrations. 978 
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 980 

Figure 7. Comparison of the pooled calibrations for the 3 parameterizations of lumped, semi-981 

distributed, and distributed. Each calibration is conducted 50 times. Values on the bottom represent 982 

expected values of NSE (in upper row) and KGE (within parenthesis in lower row) from 50 983 

calibrations. 984 
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 986 

Figure 8. Comparison of the basin outlet calibrations for the 3 parameterizations of lumped, semi-987 

distributed, and distributed. Each calibration is conducted 50 times. Values on the bottom represent 988 

expected values of NSE (in upper row) and KGE (within parenthesis in lower row) from 50 989 

calibrations. 990 
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 992 

Figure 9. Coefficient of variation (CV) of 50 optimal values of Cmax (parameter for the soil 993 

moisture accounting module in the HYMOD_DS) from the basin outlet calibrations (left panel) 994 

and the pooled calibrations (right panel). 995 

  996 



55 

 

 997 

Figure 10. Historical and 2050s average monthly streamflow predictions at Dakah, Kama, and 998 

Asmar under 4 calibration strategies: Lump-Outlet, Dist-Outlet, Semi-Pooled, and Dist-Pooled. 999 

The error bars represent the streamflow ranges resulting from 50 trails of the HYMOD_DS 1000 

calibration. For each of the 50 trials, the 2050s streamflow predictions are averaged over 36 GCM 1001 

climate projections.   1002 
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 1004 

 1005 

Figure 11. Uncertainties in wet and dry season  average streamflow predictions for 2050s  are 1006 

derived from the basin outlet and pooled calibrations for Dakah. Uncertainties are evaluated by 1007 

coefficient of variation (CV) of average season streamflow predictions. Three uncertainty sources 1008 

are considered: calibration uncertainty across 50 calibration trials (Par), climate uncertainty across 1009 

GCM projections (Clim), and combined uncertainty (Joint). 1010 
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 1012 

Figure 12. Comparison of GCM average 100-year daily flood events derived from the semi-1013 

distributed and distributed pooled calibrations. The uncertainty range is from 50 trials of the model 1014 

calibration.  1015 
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 1017 

 1018 

Figure 13. Uncertainties in 100-year daily flood estimates for 2050s are assessed using the Semi-1019 

Pooled and Dist-Pooled calibrations. Uncertainties are evaluated by calculating coefficient of 1020 

variation (CV) of 2050s 100-year flood estimates under three uncertainty sources: calibration 1021 

uncertainty across 50 calibration trials (Par), climate uncertainty across GCM projections (Clim), 1022 

and combined uncertainty (Joint). 1023 
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Supplementary materials 1025 

 1026 

 1027 

Figure S1. Comparison of basin-wise average monthly precipitation and temperature for the Kabul 1028 

River basin. Sources of data sets: APHRODITE (Asian Precipitation High-Resolved 1029 

Observational Data Integration Towards Evaluation), CRU (Climatic Research Unit), GPCC 1030 

(Global Precipitation Climatology Centre), UD (University of Delaware). 1031 
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 1033 

Figure S2. Glacial coverage in the Kabul River basin based on the Randolph Glacier Inventory 1034 

version 3.2. Glacier volume scaling relationship proposed by Grinsted (2013) is applied to derive 1035 

glacier volume. Numbers in red represent glacier depths in meter of water for grid cells containing 1036 

glaciers. 1037 
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 1039 

Figure S3. (a) Basin outlet (Dakah) simulations of HYMOD and MYMOD_DS (with the lumped 1040 

parameterization) from 50 trials of calibration. The Box plots provide the performance evaluation 1041 

on 50 simulations of both models for both calibration and validation periods. (b) Performances of 1042 

the models at the interior points of the watershed are assessed. 1043 
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 1045 

 1046 

Figure S4. HYMOD_DS streamflow simulations at sub-basins from 50 trials of the basin outlet 1047 

calibration under the lumped parameterization. 1048 
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 1050 

Figure S5. CMIP5 climate change projections of precipitation and temperature for the Kabul basin. 1051 

The changes in average monthly total precipitation and mean temperature for the future period 1052 

2050s (2036-2065) were calculated from the comparison with the historical period (1976-2005). 1053 

36 GCMs were employed in this analysis. 1054 
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 1056 

Figure S6. Spatial variability of the HYMOD_DS parameters. a) An example with Cmax showing 1057 

parameter ranges resulting from the single trail of Semi-Pooled and Dist-Pooled. b) Average 1058 

spatial variability across 50 trials of calibration for all 15 parameters. Error bar in b) represents the 1059 

range of parameter spatial variability from the 50 trails. 1060 
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 1063 

Figure S7. HYMOD_DS run time on parallel computing system. 1064 

 1065 


