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Abstract 13 

The north-central region of Portugal has undergone significant afforestation of the species 14 

Pinus pinaster and Eucalyptus globulus since the early 1900s; however, the long-term 15 

hydrologic impacts of this land cover change are not fully understood. To contribute to a 16 

better understanding of the potential hydrologic impacts of this land cover change, this study 17 

examines the temporal trends in 75 years of data from the Águeda watershed (part of the 18 

Vouga Basin) over the period of 1936 to 2010. Meteorological and hydrological records were 19 

analysed using a combined Thiel-Sen / Mann-Kendall trend testing approach, to assess the 20 

magnitude and significance of patterns in the observed data. These trend tests indicated that 21 

there had been no significant reduction in streamflow yield over either the entire test period, 22 

or during sub-record periods, despite large-scale afforestation. This lack of change is 23 

attributed to both the characteristics of the watershed and the nature of the land cover change. 24 

By contrast, a number of significant trends were found for baseflow index, which showed 25 

positive trends in the early data record (primarily during Pinus pinaster afforestation), 26 

followed by a reversal to negative trends later in the data record (primarily during Eucalyptus 27 

globulus afforestation). These changes are attributed to vegetation impacts on streamflow 28 

generating processes, both due to the species differences and to alterations in soil properties 29 



 2 

(i.e. promoting water repellency of the topsoil). These results highlight the importance of 1 

considering both vegetation types/dynamics and watershed characteristic when assessing 2 

hydrologic impacts, in particular with respect to soil properties. 3 

 4 

1 Introduction 5 

Water resource management is inherently tied to watershed-scale land use and land cover, and 6 

proper management requires understanding how changes in land cover/use will impact 7 

hydrological processes (Calder, 2005). A key land cover type in this respect are forests, as 8 

changes in forest cover have the potential to significantly affect watershed-scale hydrologic 9 

processes, particularly by altering streamflow and water availability. Changes in water 10 

availability due to afforestation/deforestation are driven by several factors controlling the 11 

water consumption of different vegetation species, in particular canopy interception and 12 

evapotranspiration rates, which are typically higher in tree species than in shrub and 13 

herbaceous species (Calder, 1998). 14 

Meta-analyses of paired catchments studies have found that deforestation typically leads to an 15 

increase in streamflow and that afforestation results in a decrease in water availability (e.g. 16 

Bosch and Hewlett, 1982; Brown et al., 2005). In a global synthesis of afforestation studies, 17 

Farley et al. (2005) found that afforestation of grasslands or shrublands will lead, on average, 18 

to reductions of one-third to two-thirds of streamflow, with these reductions occurring rapidly 19 

after planting (i.e. within the first 5 years) and reaching their maximum  between 15 to 20 20 

years following planting. Overall, however, the hydrologic response to afforestation is less 21 

consistent than the response to deforestation; this has been attributed  to the greater variability 22 

in land cover after afforestation than following deforestation (i.e. the effects of transitional 23 

species and/or changes in forest physiology; Andréassian, 2004). 24 

Changes in forest cover can also modify hydrologic flow pathways by altering physical soil 25 

conditions (i.e. macroporosity) and forested areas tend to have higher infiltration rates, and 26 

hence groundwater recharge rates, than alternate land cover types (e.g. Bruijnzeel, 2004). 27 

Higher infiltration rates can help maintain baseflow during dry periods (e.g. Scott and Lesch, 28 

1997) and may also help mitigate storm-driven peak flows. However, this flood mitigation 29 

impact has been shown to be variable and can be over-ridden by other physical watershed 30 

characteristics during large flood events (Calder, 2005; Wahren et al., 2012).  31 
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While the general hydrologic impacts of forests at the watershed scale are fairly well 1 

understood, predicting the effects of a forest land cover change for a given watershed requires 2 

consideration of both physical site conditions and the specific vegetation types involved. In 3 

this respect, Andréassian (2004) identified several prerequisite conditions that need to be met 4 

in order to observe hydrologic impacts at the watershed scale. These include climatic (i.e. 5 

periods of hydrologic surplus / deficit), pedological (i.e. soil depth) and eco-physiological (i.e. 6 

forest age-dependence) conditions. 7 

Understanding the hydrologic impacts of land cover/use change, and in particular 8 

afforestation, is an important topic in the European Mediterranean region, given the 9 

significant land cover changes that have occurred over its long history of human habitation 10 

which has left only an estimated 4.7 % of primary vegetation unaltered (Geri et al., 2010), and 11 

the widespread concerns over potential future water shortages due to changing climatic 12 

conditions (Giorgi and Lionello, 2008). Some of the most significant land cover/use changes 13 

in recent decades have been rural abandonment, a decrease in traditional agricultural/pastoral 14 

activities, and an increase in the homogeneous cover of forest plantations (Geri et al., 2010; 15 

Serra et al., 2008). These land cover changes have also taken place in the north-central region 16 

of Portugal, where traditional rural agrosilvopastoral activities have been widely replaced by 17 

plantations of the tree species Pinus pinaster and Eucalyptus globulus (Jones et al., 2011; 18 

Moreira et al., 2001). Both of these tree species have the potential to substantially reduce 19 

water availability. Bosch and Hewlett (1982) estimated that pine and eucalypt forests caused 20 

an average decrease of over 40 mm/yr in water yield per 10 % change in land cover, while 21 

Farley et al. (2005) found that afforestation with pines and eucalypts led to reductions in 22 

streamflow of 40 % (± 3 %) and 75 % (± 10 %), respectively. Rodríguez-Suárez et al. (2011) 23 

found that afforestation with Eucalyptus globulus caused a drop in water table depth as well 24 

as a decrease in streamflow during the summer period, which they attributed to the higher 25 

transpiration capacity of the eucalypt plantations compared to the original crop lands. 26 

Besides transpiration, evaporation from canopy interception is an important component of 27 

water use by Mediterranean forests. Interception rates have been found to vary widely, 28 

depending on the tree species, canopy density, and climatic conditions. In central Portugal, 29 

interception rates of pine and eucalypt plantations have been found to be typically less than 20 30 

% of total rainfall. For Pinus pinaster, Ferreira (1996) reported interception rates of 15-18 %, 31 

while Valente et al. (1997) found rates of 17 %. For Eucalyptus globulus, both Ferreira and 32 
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Valente et al. (1997) observed lower rates, amounting to 10-14 % and 11 %, respectively. By 1 

contrast, much higher interception rates have been found for other tree species in the 2 

Mediterranean, with values near and even exceeding 50 %. For example, Scarascia-Mugnozza 3 

et al. (1988) found canopy interception rates of 68 % for a mature Quercus cerris forest, 4 

Iovino et al. (1998) found rates of 58 % for a mature Pinus negra forest, and Tarazona et al. 5 

(1996) observed rates of 48 % for a mature Pinus sylvestris forest. 6 

A further hydrologic change related to afforestation in north-central Portugal is its impact on 7 

soil water repellency (SWR), as both pine and eucalyptus tree species can promote SWR in 8 

the topsoil due to the considerable amount of resins, waxes, and aromatic oils contained in 9 

their organic matter (Benito and Santiago, 2003; Doerr and Thomas, 2000; Doerr et al., 2000; 10 

Ferreira et al., 2000, 2005; Keizer et al., 2005a, 2005b). SWR is a key factor in triggering land 11 

degradation processes due to reductions in infiltration capacity and increased overland flow 12 

(Doerr et al., 2000; Shakesby et al., 2000; Benito and Santiago, 2003; Keizer et al., 2005b). 13 

While SWR is often associated in many regions with post-fire soil conditions, Doerr et al. 14 

(1996) demonstrated that SWR is a widespread characteristic of both burned and unburned 15 

soils in the Águeda watershed during dry periods, in particular for stands of Eucalyptus 16 

globulus. Santos et al. (2013) examined temporal patterns in topsoil hydrophobicity in the 17 

Águeda watershed between July 2011 and June 2012, in unburnt pine as well as eucalypt 18 

plantations. Their findings suggested that the breakdown of SWR following dry summer 19 

conditions occurs through different mechanisms in the pine and eucalypt stands. In the pine 20 

stands, SWR breakdown occurred from the top-down (i.e. vertically downwards), while in the 21 

eucalypt stands, breakdown occurred from the bottom-up (i.e. vertically upwards). 22 

Unpublished results indicated that this contrast reflected varying infiltration patterns, with 23 

infiltration occurring relatively slowly (i.e. matrix flow) in pine stands, as opposed to much 24 

faster (i.e. macropore flow) in eucalypt stands.  25 

Despite the well-documented potential for hydrologic impacts from afforestation in the 26 

Mediterranean region, there has been little investigation into the long-term effects in north-27 

central Portugal. This is in part due to a lack of long-term streamflow records that include the 28 

pre-afforestation period. A notable exception to this lack of data is the Águeda watershed in 29 

the Caramulo Mountains, where streamflow data records are available from 1936 until the 30 

present. 31 
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Afforestation/deforestation studies typically focus on small paired watersheds, of which one 1 

has undergone fairly abrupt and well-recorded changes in land cover (e.g. Bosch and Hewlett, 2 

1982). By contrast, this study is conducted on a meso-scale watershed (404 km
2
), where 3 

afforestation has occurred in a progressive manner over a long period of time. Furthermore, 4 

the present study case lacks a nearby watershed which has a similarly long data record and 5 

also similar physical-environmental characteristics (or a land use history without similar land 6 

cover changes). The Águeda watershed also presents a major challenge for conducting an 7 

impact assessment based on hydrologic modeling, as there is insufficient spatial information 8 

available during the afforestation periods, and detailed maps of land cover for the study are 9 

lacking before 1990. Therefore, this study adopts an assessment approach that is data-driven 10 

and exploratory, examining the available hydro-meteorological data over the 75-year period 11 

from 1936 to 2010. This assessment is conducted not only over the entire period, but also 12 

within multiple (overlapping) sub-periods, and the temporal patterns for both annual and 13 

seasonal values are analyzed. The trends detected through robust time series analysis are then 14 

related to an approximated afforestation record, and related to the findings from previous 15 

field-based studies conducted in this area. Therefore, the objective of this study is to apply a 16 

trend-testing methodology to a long-term data set in a watershed which has undergone 17 

progressive afforestation over a 75-year period, to assess what significant trends/changes can 18 

be detected, and to relate these changes to the general afforestation pattern which has occurred 19 

there. 20 

2 Methods 21 

2.1 Watershed Description 22 

The Águeda watershed is located in the Caramulo Mountains of north-central Portugal, east of 23 

the coastal city of Aveiro (Fig. 1). From the streamflow gauging point Ponte Águeda, the 24 

watershed area is approximately 404 km
2
. The Águeda River is a left bank tributary to the 25 

Vouga River, which terminates at the coastal wetland of the Ria de Aveiro lagoon. This 26 

region of Portugal is categorized as a wet Mediterranean climate zone, with pronounced 27 

seasonal differences in temperature and precipitation between dry summer and wet winter 28 

seasons (Fig. 2). The Serra do Caramulo Mountains, which forms the source area of the 29 

Águeda river network, receives a substantial amount of annual rainfall, which can range from 30 

1 000 to 2 500 mm/yr. The bedrock in the watershed consists primarily of a mix of schist and 31 

granite at higher elevations, with sedimentary rock formations present at lower elevations. 32 
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Topographically, the landscape is dominated by steep hill-slopes with stony and shallow soils, 1 

which have a long history of anthropogenic impacts. 2 

The north-central region of Portugal has undergone substantial land cover/use changes over 3 

the past centuries, which have fundamentally altered the vegetative landscape. From the 4 

1800s until the 1980s, the region had a general trend towards both increased agricultural and 5 

forest land cover, with reductions in natural vegetation types, which was primarily due to the 6 

adoption of fertilizers and mechanization, as well as the abolition of feudal land systems 7 

(Estêvão, 1983; GPPAA, 2004; Jones et al., 2011). The period between 1930 and 1980 saw 8 

particularly rapid afforestation, due to incentives from the establishment of related 9 

government regulations and subsidies.  10 

A key driver was the enactment of legislation in 1938 which encouraged afforestation of areas 11 

classified as “uncultivated/wasteland”, which often consisted of areas of matos (shrublands), 12 

mountain ranges, and sand dunes (Coelho et al., 1995; Estêvão, 1983; Ferreira et al., 2010; 13 

GPPAA, 2004; Jones et al., 2011). The primary species planted during this earlier period was 14 

Pinus pinaster; however beginning in the 1970s, Eucalyptus globulus became the preferred 15 

species due to its faster growth and higher profitability for use in the paper pulp industry. 16 

During this period, eucalypt plantations began to replace pine forests as these were harvested, 17 

as well as being widely introduced into remaining areas of shrublands and in recently burned 18 

areas (Jones et al., 2011). 19 

Portugal has a very high rate of wildfire events, which has significant impacts on post-fire 20 

hydrologic functioning, and is an important factor driving land-cover/use change in this 21 

region. Figure 3 shows the burned area of the Águeda watershed from 1975 to 2010, which 22 

illustrates the high frequency of wildfire and post-fire hydrologic impacts in the study site 23 

(Instituto da Conservaçao da Natureza e das Florestas, 2014). Over this period a total of 30 24 

790 hectares burned, with some single years having wildfire over more than 10 % of the 25 

watershed, such as 1986 and 1995. Wildfires can have significant hydrologic impacts in both 26 

the short term (e.g. by decreasing infiltration and enhancing runoff generation) and in the 27 

long-term (e.g. by altering vegetation cover and therefore evapotranspiration potential), and in 28 

addition they have been a major contributing factor promoting land-owners to convert from 29 

pine to eucalyptus plantations in the study region. 30 

This region-wide trend of the afforestation of shrubland with Pinus pinaster, followed by a 31 

secondary transition from Pinus pinaster to Eucalyptus globulus plantations, is representative 32 
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of the land cover changes in the Águeda watershed, as well as in the Vouga basin as a whole. 1 

From this regional pattern, and from forestry maps of the Serra do Caramulo Mountains 2 

(Rego, 2001), a general afforestation timeline for the Águeda watershed during the period of 3 

investigation can be approximated, which is summarized in Table 1. 4 

The current land cover in Águeda watershed reflects this large-scale transition towards 5 

eucalyptus forests. According to the Corine Land Cover classification of 2006, approximately 6 

44 % of the watershed was covered by broad-leaved forest, which primarily consisted of 7 

eucalyptus (Corine Land Cover, 2010). Other land cover types with significant areal coverage 8 

in 2006 include: 22 % mixed forest (mostly mixed stands of eucalypt and pine), 13 % 9 

transitional woodland-shrub (mostly post-fire recovery, or regrowth after clear-cutting), and 7 10 

% coniferous forest, which mainly consisted of Pinus pinaster (Fig. 1). 11 

2.2 Hydrometeorological Data 12 

Daily precipitation and streamflow records for the Águeda watershed were compiled from 13 

hydrological year 1935/36 (i.e. Oct 1st 1935 to Sep 30th 1936) until hydrological year 14 

2009/10 from the „Sistema Nacional de Informação de Recursos Hídricos‟ (SNIRH, 2013). 15 

Precipitation data were compiled from the rain-gauge “Campia”, which consists of 24 h 16 

rainfall totals collected at 9:00 each day. Data gaps occurred with the greatest frequency 17 

between 1997 and mid-2003, which were filled by linear regression with the nearby rain-18 

gauges “Varzielas” (r
2
 = 0.82) and “Barragem de Castelo Burgães (r

2
 = 0.79). 19 

Streamflow data consisted of daily average discharge measurements from the gauging station 20 

“Ponte Águeda”. This station was operational from June 1935 until the end of September 21 

1990, and was then reactivated in October 1999. Streamflow for the interim period (1990/91 22 

until 1998/99) was estimated by linear regression with the upstream gauges “Ribeiro” (r
2
 = 23 

0.76) and “Ponte Redonda” (r
2
 = 0.75). However, the streamflow estimates from the 24 

hydrologic years of 1999/2000 through 2002/03 were eliminated from the dataset, due to 25 

concerns about the data quality and, in particular, the absence of an adequate stage-discharge 26 

curve during this period. 27 

In addition, a number of smaller streamflow gaps occurred throughout the streamflow dataset. 28 

When they occurred in periods with little or no precipitation, they were filled by fitting a 29 

logarithmic decay curve to the streamflow recession. Where this method was not possible, 30 

and the result was that more than 5 % of daily values were missing, then the entire 31 
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hydrological year was removed from analysis, which was the case for the years 1954/55 and 1 

1975/76. Finally, data for the driest months of the year (i.e. June to September) during the 2 

period before 1963 and after 2004 had very high uncertainty, due to unreported and variably 3 

occurring impoundments of streamflow during these months. Therefore, these four months 4 

were removed from the streamflow analysis for all years, to keep the inter-annual 5 

comparisons consistent.  6 

The final data set utilized in this study included a time-series of baseflow derived from the 7 

daily streamflow data. Baseflow corresponds to the portion of streamflow which does not 8 

come directly from a precipitation event, and can be used as a proxy of the sustained 9 

streamflow contribution from slow-flow. For this study, baseflow was calculated using the 10 

Eckhardt digital filter (Eckhardt, 2008), via the “Web-based Hydrograph Analysis Tool” (Lim 11 

et al., 2005). The relative proportions of baseflow from each day of streamflow were 12 

estimated, which were then aggregated to the time periods used for analysis. To assess the 13 

baseflow time-series calculated using the Eckhardt digital filter, a supplementary data set 14 

from 2001 to 2009 was also utilized, which calculates baseflow contribution using 15 

conductivity data from the SNIRH streamflow data using the „Conductivity Mass-Balance 16 

Method‟ (Stewart et al., 2007) 17 

2.3 Thiel-Sen / Mann-Kendall Trend Testing Approach 18 

To examine the magnitude and significance of potential trends in the time-series, a multi-step 19 

trend-testing approach was applied, following the general approach presented in Yue et al. 20 

(2002). This approach first determined the magnitude (i.e. slope) of any potential trend in the 21 

data using the non-parametric Thiel-Sen slope estimator (Sen, 1968). This value was 22 

determined by selecting the median slope among the set generated between all sample points. 23 

This method also estimates the 95 % confidence intervals of the true slope, based on the set of 24 

slopes from sample points, which provides a measure of uncertainty of the median Thiel-Sen 25 

value. If a potential trend was detected by the Thiel-Sen test (i.e. a non-zero slope), then the 26 

data were processed using the „Trend Free Pre-whitening‟ procedure of Yue et al. (2002). 27 

This step aimed to reduce the over-estimation of significance which can occur in time-series 28 

data that exhibit positive serial correlation, as is typically the case for streamflow time-series 29 

data. 30 
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After the “Trend Free Pre-whitening procedure”, a Mann-Kendall test was applied to assess 1 

the statistical significance of any non-zero slope identified by the Thiel-Sen test. The Mann-2 

Kendall test is a widely used, rank-based significance test, where the null hypothesis is that 3 

there is no trend in the observed series (Helsel, 1993). Statistical significance was determined 4 

using an α value of 0.05.  5 

For every data set, this trend testing procedure was applied over 12 time periods with varying 6 

starting dates and lengths (Fig. 4). The longest period contains the entire 75-year data record 7 

(1936-2010), followed by two periods of 50 years, three periods of 35 years, and six periods 8 

of 25 years. These periods were selected to thoroughly sample the potential range of years, 9 

while still allowing enough years of data to produce a robust significance test. Figure 4 10 

provides an overview of the testing periods, and their temporal correspondence with the 11 

afforestation periods listed in Table 1. 12 

Over the time periods shown in Fig. 4, the trend testing was conducted for aggregated 13 

“annual” and “seasonal” values of precipitation (mm), streamflow quantity (mm), streamflow 14 

yield (streamflow/precipitation), baseflow quantity (mm), and baseflow index 15 

(baseflow/streamflow). The seasonal breakdown selected corresponds with the prevailing 16 

precipitation patterns of the study site, which consists of: the “Wet Season” from October to 17 

January when the largest amount of precipitation occurs, the “Transitional Season” from 18 

February to May when precipitation rates are reduced, and the “Dry Season” from June to 19 

September when precipitation is lowest. As stated previously however, the trend tests were 20 

not conducted during the “Dry Period” for streamflow (and therefore also baseflow), due to 21 

the uncertain data quality during these months. 22 

 23 

3 Results 24 

3.1 Summary of the Seasonal Breakdown 25 

To characterize the hydrometeorological conditions of the three seasons, the median 26 

temperature, precipitation, streamflow quantity, streamflow yield, and baseflow index values 27 

over the study period are presented in Table 2. They clearly reveal the strong seasonality in 28 

precipitation patterns, with distinctly lower amounts during the dry season. During the wet 29 

and transitional periods, streamflow quantities are similar. However, both streamflow yield 30 

and baseflow index are higher during the transitional period, which reflects the sustained 31 
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streamflow carried over from the wet season precipitation and the lower proportion of 1 

streamflow coming directly from precipitation events. 2 

3.2 Analysis of the Elimination of the Dry Season Streamflow 3 

As discussed in the data section, the months of June to September had to be removed from all 4 

streamflow analyses, due to uncertainty related to unrecorded seasonal impoundments during 5 

this part of the year. To quantify the percentage of streamflow that this excluded from the 6 

analysis, an assessment was made over the years when streamflow impoundments did not 7 

occur (45 % of years). During these years, approximately 6.5 % of streamflow occurred 8 

between the months of June to September (Fig. 5, monthly mean values presented). 9 

3.3 Assessment of the Baseflow Calculations 10 

To provide a check on the baseflow values estimated with the Eckhardt digital filter 11 

(Eckhardt, 2008), the obtained results were compared against baseflow values calculated 12 

using conductivity data from 2001 to 2009 with the „Conductivity Mass-Balance Method‟ 13 

(Stewart et al., 2007). At a monthly time-scale, the two baseflow data-sets were strongly 14 

correlated (Pearson‟s correlation coefficient of 0.96), which indicates that the Eckhardt 15 

method agreed well with the more empirical Conductivity Mass-Balance Method. This in 16 

itself does not confirm the accuracy of the baseflow values utilized, but it does indicate their 17 

consistency over the study period, and thus their suitability for time series analysis. 18 

3.4 Thiel-Sen / Mann-Kendall Trend Testing Results 19 

The results for the Thiel-Sen/Mann-Kendall trend tests for precipitation (mm), streamflow 20 

yield (streamflow/precipitation), and baseflow index (baseflow/streamflow) are presented by 21 

Fig. 6, while the full results for all variables are provided in the supplementary material. For 22 

the precipitation data, two significant trends were identified at the annual time-scale. The first 23 

concerned the 50-year period from 1961 to 2010, with a trend of –13.8 mm/yr. The second 24 

concerned the 35-year period from 1976 to 2010 and corresponded to a decrease of –16.6 25 

mm/yr. With respect to the seasonal analysis, no significant trends were found for the wet 26 

season, as opposed to four significant trends during the transitional season. All four 27 

significant trends corresponded to decreases in precipitation, i.e. of 4.8 mm/yr over the entire 28 

75-year data record from 1936 to 2010, 7.9 mm/yr. trend over the 50 years from 1961 to 29 
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2010, 11.3 mm/yr. trend over the 35 years from 1976 to 2010, and 14.3 mm/yr trend over the 1 

25-year period from 1976 to 2000. These trends indicate that there was an overall trend 2 

towards a decline in precipitation from February to May during the study period, and that this 3 

tendency was strongest during the period‟s final part. 4 

For the streamflow quantity data, a single significant trend of –0.9 mm/yr was found during 5 

the 50 year period from 1961 to 2010, which also corresponds with a period of a significant 6 

decrease in precipitation (–4.9 mm/yr). With respect to streamflow yield data, a single 7 

positive trend was found for the annual data as well as for both the wet and transitional 8 

season. All three trends occurred during the 25-year period from 1946 to 1970, and 9 

corresponded to similar rates of increase (annual: +0.78 %/yr; wet season: +0.77 %/yr; 10 

transitional season: +0.74 %/yr). These results indicated that the trend in streamflow yield 11 

during this period was fairly consistent across the year, although no assessment can be made 12 

about the dry season. 13 

For the baseflow quantity data, significant negative trends were found for the annual data and 14 

the transitional season during the 50 year period from 1961 to 2010; with values of –6.1 15 

mm/yr and –3.3 mm/yr respectively (this also corresponds with a negative precipitation trend 16 

period). By contrast, the baseflow index data (BFI) showed the greatest number of significant 17 

trends of the variables considered, with a total of ten over the different periods of analysis.  18 

Over the 35-year period from 1936 to 1970, the annual data revealed an increase of +0.16 19 

%/yr., whereas the wet season data showed an increase of +0.28 %/yr.  During the following 20 

35-year test period from 1956 to 1990, by contrast, there was a significant negative trend in 21 

the annual BFI data of –0.22 %, and in the west season BFI data of –0.19 %/yr. Similar 22 

significant trends were found for the 25 year test periods, with increases of 0.31 %/yr for the 23 

annual data from 1946 to 1970 and 0.25 % for the wet season data from 1936 to 1960. 24 

Significant trends were detected for the period of 1966 to 1990, corresponding to decreases of 25 

0.46 %, 0.33 %, and 0.35 % in the annual, wet and transitional season data, respectively. 26 

4 Discussion 27 

4.1 Precipitation Trends 28 

The precipitation data showed negative trends over much of the data period, which indicates 29 

that this study was conducted during a period with slightly reduced precipitation, although the 30 

climate remains very wet, with an aridity index range from 1.0 to greater than 1.5 (SNIRH, 31 
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2013). This downward trend was primarily due to reductions during the transitional season 1 

(February to May), and not during the wet season. According to projected climate change 2 

impacts for this region, this trend may be representative of future regional trends as well, 3 

which anticipate a decrease in rainfall by as much as 40 % by the end of the 21st century 4 

(Nunes et al., 2008). 5 

A further consideration is that these reductions in precipitation during the transitional season 6 

could have impacted soil moisture levels in the dry season, which recieves little additional 7 

precipitation input.  This could have led to longer recovery times for soil moisture during the 8 

resumption of the wet season, which could have amplified soil water repellency during this 9 

period (both in terms of the duration and severity).  10 

4.2 Streamflow Trends 11 

The streamflow data revealed only one significant negative trend for quantity and none for 12 

yield over the periods tested, despite the large-scale afforestation that occurred in the test 13 

watershed. In addition, the single negative trend with respect to quantity corresponds to a 14 

significant negative trend in precipitation, and can therefore be attributed to a response to the 15 

reduction in precipitation input rather than to land cover change. Overall therefore, the results 16 

of this study do not support the general finding that afforestation tends to reduce streamflow 17 

(e.g. Bosch and Hewlett, 1982; Brown et al., 2005; Farley et al., 2005).  However, this does 18 

not imply that this finding contradicts the complete findings of these studies, which also 19 

include examples where afforestation had either a positive or negligible impact on 20 

streamflow. Rather, this study supports the assertion of Andréassian (2004) that there are 21 

prerequisite soil, climatic, and physiological conditions that must be present in order to 22 

observe hydrologic impacts at the watershed scale. 23 

With respect to soil conditions, it is likely that the characteristics of the soils of the Águeda 24 

watershed are a key factor in the lack of a reduction in streamflow. Under conditions of well-25 

developed soils, the deeper rooting depths of trees will give greater access to soil moisture, 26 

allowing for more transpiration, resulting in higher water consumption. However, the soils of 27 

the Águeda watershed tend to be fairly shallow, being frequently less than a meter in depth, 28 

and are often as shallow as 20-30 cm (Santos et al., 2013). These depths are less than the 29 

maximum rooting depth of shrub species, as well as of pine and eucalypt, and therefore are 30 

likely to be a constraint to deep rooting for both species (Canadell et al., 1996). In addition, 31 
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the schist and granite bedrock in this watershed is relatively impermeable and not easily 1 

penetrated by tree roots, which restricts the access of tree species to groundwater reserves as 2 

well. Therefore, the capability of tree species to access deeper soil moisture than other 3 

vegetation types is likely much less relevant in this watershed than it would be in a site with 4 

deeper soils. In this case, the most important soil related factor in water consumption appears 5 

to be the low moisture storage capacity of the soils, and therefore the potential impact of 6 

higher water consumptive capacity of tree species is severely offset. 7 

A second factor which could explain the lack of reductions in streamflow is the 8 

Mediterranean climatic regime of the study area. In all Mediterranean-type climates, the 9 

period of peak sunlight and temperature, and therefore potential evapotranspiration, is out of 10 

phase with the maximum precipitation period. Given the low amount of summer precipitation, 11 

and the shallowness of soils in this watershed, there will typically be little soil water available 12 

for summer evapotranspiration (David et al., 1997; Doerr and Thomas, 2000). In this regard, 13 

the climatic conditions of the study site might have an amplifying effect on the impacts of the 14 

shallow soils, by further reducing the potential impacts of the higher evapotranspiration 15 

potential of trees in this study site. 16 

With respect to physiological conditions, the specific land cover changes observed in the 17 

Águeda watershed might also be a factor in the lack of an observed reduction in streamflow. 18 

One of the primary drivers of increased consumptive water use by tree species is their 19 

typically high canopy interception capacity (Domingo et al., 1994; Scarascia-Mugnozza et al., 20 

1988; Tarazona et al., 1996). In the study watershed however the rates appear to be 21 

comparatively low for pine and eucalypt species (Coelho, 2008; Ferreira, 1996; Valente et al., 22 

1997). At the same time, the interception capacity of Mediterranean shrublands can be 23 

relatively high. Garcia-Estringana et al. (2010) found that Mediterranean shrub species can 24 

have interception capacities similar to those of forests. In addition, interception rates are 25 

particularly high in shrublands growing in dense stands (Llorens and Domingo, 2007). These 26 

characteristics apply to the „matos‟ shrubland which was the most common natural vegetation 27 

type in Águeda watershed prior to pine afforestation, as it has a relatively high leaf-area index 28 

and the tendency to grow in very dense stands (Asner et al., 2003). By contrast, given the 29 

poor soil conditions of the study site, the densities of the tree plantations are not as high as 30 

they could be on well-developed soils. Therefore, the land cover/use change from shrubland 31 
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to pine/eucalypt forest might not have resulted in large changes in either transpiration rates or 1 

canopy interception rates. 2 

Therefore, the Águeda watershed does not meet any of the three prerequisites identified by 3 

Andréassian (2004) for observing afforestation-driven hydrologic impacts at the watershed 4 

scale. In fact, one of the few significant trends found in streamflow was an increase in yield 5 

during the 25-year period of 1946 to 1970. This period corresponds with the end of the P1 6 

period and the entirety of the P2 period, during which significant replacement of matos 7 

shrublands by Pinus pinaster occurred. This suggests that Pinus pinaster had a lower 8 

consumptive water demand than the previous land cover types, which could be related to the 9 

relative young age of the newly planted pines, relative to well-established shrublands. 10 

Although these findings indicate that there have been few significant reductions in streamflow 11 

during the wet, transitional, or annual time scales, negative trends may have occurred during 12 

the dry summer period, when the impact of tree species on soil moisture could be greatest. 13 

Unfortunately, given the limitation in the streamflow data (i.e. the summer streamflow 14 

impoundments), it was impossible to assess what the impacts of afforestation during the dry 15 

period. Therefore, no comparison could be made with the findings of Rodríguez-Suárez et al. 16 

(2011), who found dry season reductions in water table and streamflow discharge. 17 

4.3 Baseflow Trends 18 

For baseflow quantity (mm/yr), the only negative trends were found during the 50 year period 19 

from 1961 to 2010. However, as with the streamflow data this period corresponds with a 20 

negative precipitation trend period, and can therefore be attributed to the same cause. For 21 

baseflow index (BFI), no significant trend was found over the entire data record (1936-2010), 22 

but interestingly, numerous significant trends existed within the shorter periods. The general 23 

pattern in BFI was a positive trend during the P1 and P2 periods, followed by a negative trend 24 

from the middle of the P2 period through the E1 period. The P1/P2 periods correspond with a 25 

period of pine afforestation, which also showed the only significant positive trend in 26 

streamflow yield. This may indicate modifications in hydrologic flow pathways and/or soil 27 

moisture levels (i.e. higher soil moisture levels allowing for a higher proportion of baseflow) 28 

during this period. With respect to changes in flow pathways, an increase in baseflow index 29 

could indicate that there is less overland flow and fast subsurface flow (i.e. via macropores), 30 

and more water entering the soil matrix via infiltration. Given that previous studies have 31 
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shown that hydrophobic soil conditions can be promoted by pine species (Keizer et al., 2005b; 1 

Santos et al., 2013), pine afforestation would not necessarily be expected to increase BFI. 2 

However, the initial conversion to pine forests could have a positive impact on infiltration 3 

rates, especially due to ground preparation and planting operations breaking up the repellent 4 

topsoil layer and creating sinks for overland flow. With time, and in particular with soil and 5 

vegetation recovery, the repellent top soil layer would then become re-established,  6 

accounting for the reversal of the BFI trend in the later part of the P2 period. Also, the typical 7 

hydrologic impact of pine afforestation of reducing soil moisture due to higher consumptive 8 

water usage (e.g. Bosch and Hewlett, 1982) would not lead to a positive trend in BFI. 9 

However, as discussed previously, due to the shallow soils of the Águeda watershed, and 10 

expectedly similar water consumptive demands of matos shrubland and pine forest, this 11 

response is unlikely to occur in this study site. Again, the positive trend in baseflow in this 12 

period could also indicate that the immature pine forests consume less water than the previous 13 

land cover, leading to higher levels of soil moisture. 14 

The negative trends in BFI occurred during the second half of the P2 period and during the E1 15 

period. Therefore, the strongest negative trend in BFI corresponded with the period when 16 

Pinus pinaster plantations reached greater maturity and (after logging) were being rapidly 17 

replaced with Eucalyptus globulus. Reductions in baseflow during this period could be 18 

attributed to hydrophobic soil conditions from the established pines and/or from the newly 19 

planted eucalypt stands, leading to an increase in quick flow (particularly via fast sub-surface 20 

flow from macropore infiltration) and the rapid conversion of precipitation into runoff. 21 

Significant reductions in BFI were confined to the wet period, with only one exception. This 22 

might indicate that soil moisture levels were taking longer to recover at the onset of the wet 23 

season, leading to a delay in the time needed to break soil water repellency. This process is 24 

also likely to be self-reinforcing, since a delay in breaking SWR will also delay soil wetting. 25 

However, given that some water will enter the soil even under conditions of high SWR 26 

(particularly during prolonged storm events), the breakdown of SWR is likely to be more 27 

dependent on soil moisture conditions than vice-versa. By contrast, during the transitional 28 

season, soil moisture levels were typically high after the wet season (which was also reflected 29 

in the higher baseflow during this period), and soil water repellency would have largely 30 

disappeared by this point in the year. In this regard, a negative trend in BFI during the wet 31 

season could also be related to the negative trends seen for precipitation during the 32 
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transitional period. These rainfall reductions would be expected to reduce soil moisture at the 1 

onset of the dry season, resulting in even drier soil conditions at the start of the wet season. In 2 

this manner, the afforestation with eucalypt and the decrease in precipitation during the 3 

transitional period could have compounding impacts on the BFI trends during the wet season. 4 

4.4 Pine vs. Eucalypt Afforestation 5 

From the standpoint of promoting well-regulated streamflow (i.e. higher baseflow) the 6 

impacts of the afforestation with pine were generally positive, while those of re-/afforestation 7 

with eucalypts were generally negative. This agrees with the popular perception that 8 

eucalyptus species diminish the availability of water for human usage. However, it is 9 

important to stress that the pine and eucalypt planting in the study catchment took place on 10 

dissimilar types of land cover. Pines were primarily replacing naturally occurring shrublands, 11 

which was followed by the replacement of the planted pines by eucalypts. Therefore, a direct 12 

comparison between the impacts of widespread planting with pine or with eucalypt cannot be 13 

drawn from this study. Nonetheless, the general pattern in the detected trends suggested that 14 

the conversion from matos shrubland to pine forests had significant impacts on hydrologic 15 

processes, at least initially, while the conversion from pines to eucalypts did not. 16 

5 Conclusions 17 

This study did not detect statistically significant – negative or positive – trends in streamflow 18 

quantity or yield in the Águeda watershed of north-central Portugal over the 75 year period 19 

examined (i.e. the entire data record), despite of large scale afforestation with Pinus pinaster 20 

and later Eucalyptus globulus which has taken place there. However, this study did uncover 21 

significant trends in the examined variables over the sub-record periods, and that these trends 22 

correspond with impacts attributed to the changing land cover/use patterns over these periods. 23 

The lack of negative trends in streamflow can be explained by the specific climatic, 24 

pedological, and eco-physiological conditions of the watershed. From the two major 25 

conversions in land cover/use, the widespread planting of pine trees in matos shrublands had a 26 

significant – initial – impact on baseflow, while the substitution of pine plantations by 27 

eucalypt plantations had a negative impact on baseflow. These findings agree with the results 28 

of previous studies in this region of Portugal; however, they contrast with the general pattern 29 

of findings from afforestation/deforestation meta-analyses. As such, the present case study 30 

highlights the importance of considering both the specific attributes of a study area and the 31 
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nature of the land cover/use change, when assessing the hydrologic impacts of changes in 1 

forest cover. 2 

A common goal of water resource management is to improve the ability of hydrologic models 3 

to predict the effects of land cover/use changes on hydrological processes. In this respect, our 4 

findings point towards the importance of soil depth as a key factor controlling the soil 5 

moisture holding capacity at the watershed scale, as well as of soil parameters controlling 6 

(macro) porosity related to rooting patterns and infiltration. In the Águeda watershed, as in 7 

many locations, the available data on soil properties are very poor and even a semi-detailed 8 

map of soil types does not exist for large parts of the area. Therefore, an improved 9 

understanding of watershed-scale soil variability is needed to move forward with hydrologic 10 

modeling efforts in this location. A second important consideration regarding improved model 11 

predictions is the need to provide a representation of the soil water repellency dynamics in 12 

this watershed, and the mechanisms controlling the establishment and breakdown of these 13 

conditions (e.g. soil moisture level controls, top-down or bottom-up breaking of repellency). 14 

Without representing these processes, it is unlikely that the hydrologic response of this 15 

watershed could be represented in a physically-based model with an adequate degree of 16 

predictive accuracy and/or uncertainty. Developing this predictive capacity for this region will 17 

remain an important research topic for improving land and water resource management, as 18 

socio-economic and climate projections for this region predict further expansion of forested 19 

land cover and the continued prevalence of wildfire (Jacinto et al., 2013), highlighting the 20 

need to understand their impacts on regional water resources. 21 
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Table 1. Summary of afforestation trends in Águeda watershed from 1935 to 2010. 1 

Period 

Code 
Time Period Dominant Afforestation Trend 

P1 1935 - 1950 Large scale replacement of shrubland with Pinus pinaster. 

P2 1950 - 1970 Continuing afforestation with Pinus pinaster, but at a slower rate. 

E1 1970 - 1990 
Rapid reforestation with Eucalyptus globulus (particularly post '86 wildfire), 

replacement of Pinus pinaster. 

E2 1990 - 2010 
Relatively stable forested area, with continued replacement of Pinus pinaster 

with Eucalyptus globulus. 

 2 

 3 

Table 2. Season and annual median values of T = temperature (ºC); P = precipitation (mm/yr); 4 

Q = streamflow; Qyield = streamflow yield (streamflow/precipitation); BFI = baseflow index 5 

(baseflow/streamflow) in Águeda watershed from 1936 - 2010. 6 

   Median Values: 1936 - 2010 

Season Months T (ºC) P (mm) Q (mm) Qyield (%) BF (mm) BFI (%) 

Wet Oct - Jan 11.7 965 301 30 % 149 55 % 

Transitional Feb - May 12.6 626 281 43 % 184 63 % 

Dry Jun - Sep 19.3 193 NA NA NA NA 

Annual All* 14.7 1 787 565 36 % 320 59 % 

* The months of June to September are not included for Q (mm), Qyield (%), BF (mm), and BFI (%). 7 

 8 
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Figure 1. Map of the Águeda watershed. 2 

 3 

 4 

Figure 2. Average monthly precipitation and temperature in the Águeda watershed from 1971 5 

– 2000. 6 
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 1 

Figure 3. Burned area in the Águeda watershed from 1975 to 2010. Total watershed area is 2 

404 km
2
. 3 

 4 

 5 

Figure 4. Timeline of the trend-testing periods and their correspondence with the different 6 

afforestation periods. 7 
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 1 

Figure 5. Monthly means of streamflow during the years without seasonal impoundment. The 2 

boxed off period (June - September) represents the period removed from the streamflow and 3 

baseflow analysis. 4 
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 1 

Figure 6. Summary of the trend testing results, with the afforestation periods (P1, P2, E1, E2: cf. Table 1) overlain for comparison. Significant 2 

trends are indicated with dashes lines. 3 
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