
Authors’ response to Anonymous Referee #1 on “Improving operational flood ensemble 
prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-
distributed schemes” by C. Alvarez-Garreton et al. 
 
We are truly grateful for the anonymous reviewer’s comments and interesting suggestions. 
We addressed each comment and followed most of the reviewer’s suggestions, which we 
think improved significantly the quality of the manuscript and research outcomes. This 
document provides a comprehensive explanation of the approaches and decisions adopted to 
answer each of the reviewer’s comments.   
 
The document is structured as follows: i) the reviewer’s comments in blue font, ii) the authors’ 
reply in black font, iii) the changes made in the revised manuscript in black italic font. 
 
OVERVIEW 
The study investigates the assimilation of satellite soil moisture data into rainfall-runoff 
modelling with the purpose of improving streamflow prediction. Specifically, the comparison 
between a lumped and a semi-distributed version of the PDM model is carried out in terms of 
model performance with and without the assimilation of satellite soil moisture data. 
 
GENERAL COMMENTS 
The paper investigates a very important topic related to the assimilation of satellite soil 
moisture data for improving flood prediction. Being highly interested to this topic, I quickly and 
carefully read the paper that I found well written and well structured. I fully agree with the 
authors that there is a strong “...need for further studies focusing on SM–DA for the purposes 
of improving streamflow prediction from rainfall-runoff models”. Indeed, besides the satellite 
observation that is considered, the assimilation of soil moisture into rainfall-runoff modelling 
involves several critical aspects (e.g. model and observation error, rainfall-runoff model 
structure, data assimilation technique, ensemble generation...) that significantly affect the final 
result and, hence, needs to be addressed carefully. 
 
This manuscript addresses some important new aspects related to: 1) the generation of the 
ensemble, 2) the characterization of the temporal variability of the observation error, 3) the 
evaluation of the ensemble reliability through the rank histograms, and 4) the spatial 
discretization of the rainfall-runoff model.  
 
We thank the reviewer for her/his appreciation of our work and for highlighting the importance 
of the topic and the novelty of some key techniques introduced in our research.  
 
We now address the reviewer’s comments: 
  
1) The most important aspect is related to the analysis of the results. Overall, the assimilation 
of satellite soil moisture data improves the discharge simulation with respect to the open-loop 
ensemble prediction, but NOT against the model run in validation, without the assimilation. 
For instance, for the semi-distributed scheme, the NS-value is equal to 0.77, 0.28, and -1.89 
for N7, N1, and N3 catchment, respectively, in the evaluation period. The corresponding NS-
values after the assimilation are 0.73, 0.18, and -2.47, always worse. The improvements 
highlighted in the paper are very much related to the significantly lower performance of the 



open-loop ensemble prediction (NS=0.53, -0.02, and -5.36). This point needs to be 
addressed, especially if the methodology is to be applied from operational purpose. Actually, 
in our analyses we didn’t find this large deterioration of the model performance when the 
open-loop ensemble prediction is considered. What are the reasons for that? Is it due to a 
bias of the open-loop ensemble prediction with respect to the model prediction (the bias is not 
reported in the paper)? Could it be due to the procedure adopted for producing unbiased 
ensemble dealing with the upper and lower soil moisture limits? I am well aware on the 
difficulties of obtaining a robust ensemble with the Ensemble Kalman Filter applied to rainfall 
runoff modelling and to real cases (not synthetic). However, this represents a very important 
aspect that needs to be discussed in details. At least, it should be clarified in the paper that 
the assimilation deteriorates the model performance with respect to the model run in 
validation without the assimilation. 
 
In the discussion paper, our results revealed that the assimilation of satellite soil moisture was 
able to improve the open-loop ensemble predictions; however, it did not improve the 
unperturbed model prediction. As the reviewer points out, these results were very much 
related to the lower performance of the open-loop ensemble prediction, compared to the 
unperturbed model run. And the reviewer is correct, this was due to a bias in the open-loop 
ensemble prediction with respect to the model prediction. 
 
We have noted that unbiased input forcing and states ensemble can also cause biases in 
ensemble discharge values due to the nonlinear model structure, which results in degradation 
of both openloop and updated ensemble discharge predictions.  
 
The perturbation biases in streamflow have been corrected in the revised manuscript, by 
applying the bias correction scheme identical to the one used for the state perturbation bias 
correction. This procedure ensures that the streamflow ensemble mean maintains the 
performance skill of the unperturbed (calibrated) model run. More importantly, artificial skill 
assessed to the SM-DA coming from a poor reference open-loop is discarded. This practical 
tool to avoid the degradation of the unperturbed model run, also avoids an overestimation of 
the SM-DA efficacy and, to our knowledge, it has not been applied in SM-DA studies. We 
described the scheme in the revised manuscript: 
 
Revised Section 3.3 (Error model representation): 
“Although the latter resulted in unbiased state ensemble, there are still some important but 
subtle effects that arise from the highly non-linear nature of hydrologic models that need to be 
guarded against in SM-DA. Representing model errors by adding unbiased perturbation to 
forcing, model parameters and/or model states can lead to a biased streamflow ensemble 
prediction (e.g., Ryu et al., 2009; Plaza et al., 2012), compared to the unperturbed model run. 
This biased streamflow ensemble prediction (open-loop hereafter) is degraded compared with 
the streamflow predicted by the unperturbed calibrated model. As a consequence, 
improvement of the open-loop after SM-DA will in part be due to the correction of bias 
introduced during the assimilation process itself.  
 
To avoid the overestimation of the SM-DA efficacy given the above, we applied the bias 
correction scheme proposed by Ryu et al., (2009) directly to the streamflow prediction. We 
used the unperturbed model run to estimate a mean bias in streamflow (following Eq. 12, but 



using streamflow instead of soil moisture) and then corrected each ensemble member by 
subtracting this mean bias. This practical tool ensures that the streamflow ensemble mean 
maintains the performance skill of the unperturbed (calibrated) model run, thus avoiding the 
degradation of the unperturbed model run and, to our knowledge, it has not been applied in 
SM-DA studies.” 
 
The new results obtained after this streamflow bias correction scheme was added to the 
revised manuscript and the discussion was modified accordingly (see below). The new SM-
DA results were also evaluated in terms of a new metric that quantifies the skill of an 
ensemble, the continuous rank probability score (CRPS). The CRPS description was added in 
the revised manuscript: 
 
Revised Section 3.7 (Evaluation metrics): 
“To evaluate the skill of the streamflow ensemble prediction before and after SM-DA, we 
calculated the continuous ranked probability score (CRPS; Robertson et al., 2013). CRPS is 
used as a measure of the ensemble errors. In the case of the model unperturbed run, CRPS 
reduces to the mean absolute error.” 
 
Revised Fig. 7: Rank histograms of the open-loop and updated streamflow ensemble 
predictions. (a) presents the results from the lumped scheme at node N7. (b)-(d) present the 
results from the semi-distributed (semidist) scheme at nodes N7, N1 and N3. 
 

 
 
Revised Section 4.2 (Error model parameters and ensemble prediction): 
“The rank histograms of the generated ensemble prediction (open-loop) are presented in 
Fig.7. The n-shaped and not centred histograms at the catchment outlet (N7), for both lumped 
and semi-distributed model schemes (Fig.7a and Fig.7b, respectively), suggest that the open-
loop ensembles are slightly biased (with respect to the observed streamflow) and feature 
wider spread than an ideal ensemble. The width of the spread will be critical for the evaluation 
of SM-DA (Sect. 4.4) since any decrease of the spread would be considered as an 
improvement of the ensemble prediction.” 
 
“The ensemble predictions at the inner nodes N1 and N3 (Fig.7c and Fig.7d, respectively) 
feature high bias with respect to the observed streamflow (note that observations at N1 and 
N3 were not used to calibrate the error parameters). The large bias at these inner nodes 
owes to the large errors in the calibrated model in SC1 and SC3 (see Sect. 4.1).” 
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Revised Section 4.4 (Satellite soil moisture data assimilation): 
Revised Fig. 10. Streamflow (Q in mm/day) and soil moisture (θ in mm) ensemble prediction 
at the catchment outlet, before and after SM-DA for evaluation sub-period 2 (30 April 2007 - 
02 March 2014), which had three major flooding events. (a.1) and (a.2) present the results for 
the lumped model. (b.1) and (b.2) present the results for the semi-distributed model. 
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Revised Section 4.4 (Satellite soil moisture data assimilation): 
“The rank histograms at N7, N1 and N3 are presented in Fig. 7. For all the evaluated nodes, 
the ensemble predictions are more reliable after SM-DA (flatter histograms compared to the 
open-loop). The consistent overestimation of the observed streamflow in the open-loop 
ensembles (diagonal histograms located towards the higher ensemble percentiles) is partially 
addressed by the SM-DA.” 
 
Revised Table 4: SM-DA evaluation statistics calculated at the catchment outlet (N7) and at 
the inner catchments (N1 and N3). 
 

Statistic Lumped scheme Semi-distributed scheme 
N7 N7 N1 N3 

NRMSE 0.78 0.76 0.81 0.83 
NSol 0.67 0.77 0.28 -1.75 
NSup 0.64 0.78 0.26 -1.39 
PODol 0.96 0.92 0.56 0.69 
PODup 0.94 0.93 0.55 0.69 
FARol 0.11 0.11 0.07 0.12 
FARup 0.10 0.10 0.06 0.11 
PVEol 5.63 35.30 -96.87 56.42 
PVEup -2.37 34.93 -109.66 40.71 
CRPSol 0.32 0.26 0.74 0.20 
CRPSup 0.28 0.23 0.73 0.24 

 
Revised Section 4.4 (Satellite soil moisture data assimilation): 
“The performance of the ensemble mean was assessed by computing the NSol and NSup 
(Table 4). At the catchment outlet, the NS of the ensemble mean after SM-DA improved only 
for the semi-distributed scheme. At the ungauged catchments, SM-DA was effective at 
improving the performance of the ensemble mean only at N3, compared to the open-loop. 
However, the performance of the model in that catchment was still poor. This can be 
explained by the systematic errors of the model on those catchments before assimilation, 
which were not addressed by the SM-DA.” 
 
 “The open-loop PVE was improved (lower PVE values) after SM-DA at N7 (for both the 
lumped and the semi-distributed scheme) and at N3. This was not the case however, for the 
inner node N1, in which the PEV was higher after SM-DA, compared to the open-loop. When 
compared to the unperturbed model run (Table 2), the assimilation of satellite soil moisture 
improved the performance of the model in terms of PVE, at all the nodes and for both the 
lumped and semi-distributed schemes.” 
 
“The skill of the ensembles after SM-DA (expressed by a reduction in CRPS) was improved at 
the catchment outlet by a 12% and 13% (for the lumped and semi-distributed scheme, 
respectively), and by a 17% at N1. The skill of the updated ensemble was also consistently 
higher than the unperturbed model run (Table 2).” 
 
“To summarise the efficacy of the SM-DA, we take into account the characteristics of the 
ensemble predictions (open-loop and updated) in terms of the their mean, skill and reliability. 



Based on this, we state that in overall, SM-DA was effective at improving streamflow 
ensemble predictions in the gauged and the ungauged catchments. By accounting for rainfall 
spatial distribution and routing process within the large study catchment, we improved the 
model performance at the outlet compared to a lumped homogeneous scheme, which in turn 
improved the performance of the SM-DA. The latter was achieved even though the relation 
between θ and the streamflow prediction was weaker in the semi-distributed scheme (Fig.6). 
The proposed SM-DA scheme therefore, has the merits of improving streamflow ensemble 
predictions by correcting the SM state of the model, even when rainfall appears to be the 
main driver of the runoff mechanism (see Sect. 4.1). 
 
2) I believe that the PDM model is not the most suitable one for discharge prediction in the 
semiarid catchment considered in this study. Indeed, PDM was developed for simulation of 
discharge in humid climates, and its application in arid areas can be problematic. I was 
wondering if this could be the reason for the large deterioration open-loop ensemble 
prediction. Could the authors add some comments on this point? 
 
It is a fact that the characteristics of the study catchment, such as its semi-arid climate and 
ephemeral flow regime, pose a major challenge for the simulation of its runoff mechanisms. In 
general, when the main drivers of runoff generation are rainfall intensity and antecedent 
wetness condition, a fair group of conceptual hydrologic models do a good job in representing 
both (including PDM). However, when rainfall intensity becomes the major factor in runoff 
generation, which is the case of the study catchment, these hydrologic models tend to have a 
sub-optimal performance. Indeed, simple event-based models could results in better 
streamflow prediction, provided with accurate information about losses. This is the context of 
this work, and is expressed in our first research question: 
 
Discussion Paper (P10638, L27-29): 
“1) While rainfall is presumably the main driver of flood generation in semi-arid catchments, 
can we effectively improve streamflow prediction by correcting the soil water state of the 
model?” 
 
Regarding the limitations of PDM pointed out by the reviewer, we did test other more complex 
hydrologic models such as Sacramento Soil Moisture Accounting Model (SAC-SMA), in this 
study catchment plus other 7 catchments in the region, and found no improvement in the 
(unperturbed) streamflow prediction. Actually, PDM performed better (in terms of Nash-
Sutcliffe efficiency) than SAC-SMA in most of the selected catchments.  
 
3) The seasonal rescaling approach used in the paper allows the observations to be very 
close to the modelled data. It is evident looking at the correlation values reported in Table 2. 
Even though this is feasible, I believe that by doing this the impact of data assimilation will be 
very limited and I would like to know what the impact of this rescaling step is. For instance, 
what are the differences in the results if the rescaling is done for the whole period (instead of 
doing it separately for each season)? 
 
4) Another important point is related to the observation error. This is the first paper that 
considers, in the context of rainfall-runoff modelling, the temporal variability of the observation 
error, usually assumed as constant in time. However, it should be shown the values of the 



observation error used in the assimilation. How it varies in time? Could the authors show 
some plots of the observation error in time? What soil moisture product has the higher/lower 
error? Finally, what are the differences in the results if the observation error is considered as 
constant? I am well aware that a single paper can’t analyse all the aspects of data 
assimilation, but some comments and suggestions should be provided (as it is done for the 
application of the SWI). 
 
We answer comments 3 and 4 together since they are relevant to the same seasonal analysis 
in the discussion paper. The reviewer is correct in that this is the first paper considering 
seasonal rescaling and error estimation of the satellite soil moisture in the context of rainfall-
runoff modelling. This brings many interesting questions like the ones expressed by the 
reviewer. However, a comprehensive evaluation of the effects of accounting for this 
seasonality in both, rescaling factors and error variance estimation, was not undertaken here 
since it fell beyond the scope of this work. Such evaluation would involve more 
comprehensive analyses of errors that are currently in progress, as a separate work. We 
added specific comments about these open questions in the conclusions of the revised 
manuscript: 
 
Revised Conclusions: 
“In the rescaling and error estimation procedure, we applied seasonal TC and LV to avoid 
error-in-variable biases. Applying these to correct biases in the SWI, showed improved 
agreement between observed and modelled SM. This seasonal approach is novel in the 
context of SM-DA and tends to lead to closer agreement between model and observations. 
Further investigation is required to assess the impacts and importance of accounting for 
seasonality in rescaling and error estimation.” 
 
We followed the reviewer’s suggestion of adding a plot of the observations error variance time 
series in the revised manuscript (Fig. 8), with a description of the results and a comparison 
with the typical constant value used in previous studies (standard deviation of 3% vol/vol): 
 
Revised Section 4.3 (SWI, rescaling and error estimation): 
“Figure 8c shows the seasonal observation error variance, and reveals a clear variation in the 
error with time. The variation of the seasonal error values is due to the alternative use of TC 
or LV, and to the increasing sample size of each seasonal pool (see Section 3.6), which 
should reduce the uncertainties coming from finite sample size. One limitation of this 
procedure is its assumption that the errors vary seasonally without inter-annual variability. 
Since there are inter-annual cycles (wet and dry years), one may also expect the errors to 
vary with year. Ideally, moving-window estimation with windows smaller than 3 months should 
be considered, but that would cause greater sampling uncertainties of TC or LV estimates. 
The inverse relationships between AMS and ASC errors at some times could be due, among 
other factors, to the passive retrieval by AMS compared with the active ASC. 
 
A common error standard deviation value used in previous SM-DA studies is 3% vol/vol (e.g., 
Chen et al., 2011). This constant error, when transformed accordingly to the soil moisture 
storage capacity of the model and the soil porosity (see Section 3.5), gives an error variance 
of 667 (750) mm2 for the lumped (semi-distributed) scheme. As a simple comparison, these 
values are within the range of the error variance estimated through seasonal LV/TC, however 



a comprehensive analysis of the impacts of accounting for seasonality in SM-DA is not 
performed here since it falls beyond the scope of this work.”  
 

 
Revised Fig. 8. (a) shows the model soil water content on the left axis and the satellite soil moisture (SSM) 
observations on the right axis. (b) shows the soil moisture in the model space, after the three SSM datasets 
were transformed into a soil wetness index (SWI) and then rescaled by using TC or LV (SWIrAMS, SWIrASC and 
SWIrSMO). (c) shows the rescaled SSM observations error variance using TC (thick line) and LV (thin line). 
 
5) The description of the approach employed for the data assimilation in the semi-distributed 
scheme is not well described. Is the assimilation carried out separately for each sub-
catchment? Is it considered the spatial cross-correlation of measurements? Could the authors 
specify better these aspects? 
 
These aspects were explained more clearly in the revised manuscript: 
 
Revised Section 3.2 (EnKF formulation): 
“In the case of the semi-distributed scheme, during the updating steps described above, each 
sub-catchment was treated independently and no spatial cross-correlation in the satellite 
measurements was considered.” 
 
6) The results in the calibration period are not reported. What is the model performance at the 
outlet, and for the inner catchments? Is the model able to capture flood peaks satisfactorily 
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(from Figure 4a it seems that PDM always underestimate the highest peaks)? What are the 
differences in the performance between the calibration and the validation period? I also 
suggest including all the performance scores (e.g. POD and FAR) used for the assessment of 
the results before and after the assimilation as reported in Table 3. The addition of the errors 
on peak discharge and volume would be useful for the evaluation of the results in a context of 
flood prediction. 
 
Following the reviewer’s suggestion, in the revised manuscript we have added a new table 
(Table 2 in the revised manuscript) with a summary of the model evaluation statistics for the 
calibration and evaluation periods. We also added a measure of the peak volume error, 
calculated as the aggregated difference between simulated and observed streamflow 
(expressed as mm), for all days where the daily observed streamflow was above a moderate 
flood. 
 
We added brief comments on the Table in the revised manuscript and we incorporated the 
description and equation to calculate PEV in Section 3.7 (Evaluation metrics) of the revised 
manuscript: 
 
Revised Section 3.7 (Evaluation metrics): 
“Finally, we calculated the aggregated peak volume error (PVE, in mm) of the ensemble 
mean, for days when the observed streamflow was above a minor flood classification (t* days 
in Eq. 25. PVE, as an example for the open-loop, was calculated as” 
 

𝑃𝑉𝐸!" = 𝑄!"#!" (𝑡∗)− 𝑄!"#(𝑡∗)
!∗

 

 
Revised Table 2: “Model evaluation at the catchment outlet (N7) and at the inner catchments 
(N1 and N3), for calibration and evaluation periods. RMSE and PVE statistics are in units of 
mm.” 
 

Statistic Lumped scheme Semi-distributed scheme 
N7 N7 N1 N3 

RMSEcalib 0.19 0.18 - 0.30 
RMSEeval 0.21 0.18 0.53 0.46 
NScalib 0.52 0.59 - 0.39 
NSeval 0.67 0.77 0.28 -1.89 
PODcalib 0.79 0.76 - 0.76 
PODeval 0.93 0.91 0.54 0.73 
FARcalib 0.09 0.10 - 0.15 
FAReval 0.11 0.11 0.07 0.14 
PVEcalib -70.86 -39.99 -28.97 168.23 
PVEeval 1.30 34.75 -100.53 115.52 
CRPScalib 0.29 0.28 1.45 0.58 
CRPSeval 0.56 0.33 0.92 0.49 

 
 

 



“Table 2 presents the evaluation statistics of the streamflow prediction in the calibration and 
evaluation periods, for the catchment outlet and the inner catchments (notice that N1 does not 
have data in the calibration period). The different statistics in this table consistently show that, 
at the catchment outlet, the semi-distributed has a consistently better performance than the 
lumped scheme in terms of RMSE, NS, PEV and CRPS. Both schemes improve their 
statistics in the evaluation period due to the higher flows.” 
 
A brief discussion regarding the results for the inner nodes N1 and N3 was also added in this 
Section (please see reply to Specific comment #4 below). 
 
SPECIFIC COMMENTS 
1) P10636, L5: "... we assimilate active and passive satellite soil moisture...". The name 
of the products should be given in the abstract. 
Following the reviewer’s suggestion, we added the name of the products in the revised 
abstract. 
 
Revised Abstract: 
“Within this context, we assimilate satellite soil moisture (SSM) retrievals from the Advanced 
Microwave Scanning Radiometer (AMSR-E), the Advanced Scatterometer (ASCAT) and the 
Soil Moisture and Ocean Salinity (SMOS) instrument, using an Ensemble Kalman filter to 
improve operational flood prediction within a large semi-arid catchment in Australia 
(>40,000km2).” 
 
2) P10644, L6: The satellite soil moisture observations are assimilated sequentially in this 
study. Is there an impact in the order of the products that are assimilated? I.e., first AMSR-E, 
then ASCAT and finally SMOS. If you change the order, do the results remain the same? 
In order to answer the reviewer’s question, we repeated the SM-DA experiments with different 
order of the products and found that results did not vary significantly. We added a comment 
about this in the revised Section 3.2 (EnKF formulation): 
“The selection of the order of the products assimilated in steps 1 to 3 was arbitrary; however, 
we checked that different orders did not significantly affect the SM-DA results.” 
 
Below are the evaluation statistics for each case: 
 

Order 1: AMSR-E/ASCAT/SMOS (as presented in the manuscript). 
Statistic Lumped scheme Semi-distributed scheme 

N7 N7 N1 N3 
NRMSE 0.78 0.76 0.81 0.83 
NSol 0.67 0.77 0.28 -1.75 
NSup 0.64 0.78 0.26 -1.39 
PODol 0.96 0.92 0.56 0.69 
PODup 0.94 0.93 0.55 0.69 
FARol 0.11 0.11 0.07 0.12 
FARup 0.10 0.10 0.06 0.11 
PVEol 5.63 35.30 -96.87 56.42 
PVEup -2.37 34.93 -109.66 40.71 
CRPSol 0.32 0.26 0.74 0.20 
CRPSup 0.28 0.23 0.73 0.24 



 
Order 2: AMSR-E/ASCAT/SMOS 

Statistic Lumped scheme Semi-distributed scheme 
N7 N7 N1 N3 

NRMSE 0.77 0.76 0.81 0.84 
NSol 0.67 0.77 0.28 -1.75 
NSup 0.64 0.78 0.26 -1.38 
PODol 0.96 0.92 0.56 0.69 
PODup 0.94 0.93 0.55 0.69 
FARol 0.11 0.11 0.07 0.12 
FARup 0.10 0.10 0.06 0.11 
PVEol 5.63 35.30 -96.87 56.42 
PVEup -2.21 34.71 -109.88 40.56 
CRPSol 0.32 0.26 0.74 0.20 
CRPSup 0.28 0.23 0.73 0.24 

 
Order 3: AMSR-E/ASCAT/SMOS 

Statistic Lumped scheme Semi-distributed scheme 
N7 N7 N1 N3 

NRMSE 0.77 0.76 0.81 0.84 
NSol 0.67 0.77 0.28 -1.75 
NSup 0.64 0.78 0.26 -1.39 
PODol 0.96 0.92 0.56 0.69 
PODup 0.94 0.93 0.55 0.68 
FARol 0.11 0.11 0.07 0.12 
FARup 0.10 0.10 0.06 0.11 
PVEol 5.63 35.30 -96.87 56.42 
PVEup -2.29 34.80 -109.73 40.64 
CRPSol 0.32 0.26 0.74 0.20 
CRPSup 0.28 0.23 0.73 0.24 

 
 
3) P10650, L9: The use of only one year for the calibration of T parameter is likely not 
sufficient. 
We agree with the reviewer, and added a comment highlighting this issue in the revised 
manuscript: 
 
Revised Section 3.5 (Profile soil moisture estimation): 
“This calibration period was selected to maximise the independent evaluation period (see 
Section 3.7), however more representative values are likely to be obtained if a longer period 
was used for calibration.” 
 
4) P10655, L11: It is very good to show that negative NS-values are obtained, usually this is 
not done. However, I believe that some investigations on the reasons for these bad 
performance should be given. Is it due to the PDM model (see General Comments), or to the 
input data, or to the model parameterization? 
Our decision to evaluate the SM-DA in “ungauged catchments” (i.e., N1 and N3 observations 
were not used for calibration) was based on the scope of our paper, defined by our research 
questions 2 and 3: 



“2) What is the impact of accounting for channel routing and the spatial distribution of forcing 
data on SM-DA performance? 3) What are the prospects for improving streamflow within 
ungauged inner catchments using SSM?” 
 
This ungauged scenario had many implications, like those poor NS values. We do agree with 
the reviewer that such poor NS values are worthy of further investigation. Accordingly, we did 
set up a calibration scheme in which the observations of N1 and N3 were used to get specific 
set of optimal parameters for those two sub-catchments. Our results revealed that the model 
was able to adequately simulate streamflow in those sub-catchments (NS above 0.69). 
Further details of this scheme setup are provided in our reply to the second reviewer Dr. Uwe 
Ehret. Based on these results, we argue that the problem for such bad performance is mainly 
attributed to errors in model parameters and less likely to errors in the input data and model 
structure. These parameter errors are mainly due to the issue that the integrated catchment 
streamflow response is poor at informing about catchment heterogeneity. We did not show 
the details of these results in the discussion paper to maintain the manuscript concise and to 
be consistent with the “ungauged” nature of the inner catchments. However, we added a 
comment regarding this: 
 
Revised Section 4.1 (Model calibration): 
“To explore the reasons of such bad performance, we separately calibrated the model 
parameters in those sub-catchments by using all the available N7, N1 and N3 observations. 
The results (not shown here) revealed that in this case, the model was able to adequately 
simulate streamflow in those sub-catchments (NS in evaluation period of 0.78, 0.69 and 0.84 
at N1, N3 and N7 nodes, respectively). Based on this, we argue that the problem for the poor 
model performance in the ``ungauged" inner catchments is mainly attributed to sub-optimal 
parameter estimation (due to the limited information about catchment heterogeneity provided 
by the integrated catchment streamflow response) and less likely to errors in the input data 
and model structure.” 
 
5) P10656, L20: The rank histogram of the soil moisture ensemble might be also analysed 
here. 
As the reviewer suggests, we also considered adding analyses of rank histograms for soil 
moisture on the manuscript; however, based on the considerations listed below, we decided 
not to present them in the revised manuscript: 
 

- We processed the satellite data to make it comparable to the model soil moisture (SM), 
however there is still significant higher noise in the rescaled SWI compared to the 
model soil moisture (Fig. 8). 

- In our opinion, the higher noise in the observed SM time series, in our opinion, makes 
them unsuitable for checking the reliability of the SM ensemble predictions. It is unclear 
for us that a reliable SM ensemble should contain SM observations with such a degree 
of noise. In contrast, for the streamflow ensemble prediction, we have an observed 
time series with similar degree of “noise”, which we do aim to envelop with a reliable 
ensemble. 

- In the case of the SM open-loop, we are summarising all the sources of error by 
perturbing only three components of the model, therefore we expect that the ensemble 



spread of the SM is indicative errors in SM prediction, as well as other errors. This 
means that the ensemble SM is not directly comparable to the observed SM.  

- Moreover, there are 3 different observed SM datasets and therefore three different 
cases to present and analyse. We believe this would enlarge the manuscript with 
aspects that fall beyond of our main scope. 

 
6) P10657, L21-26: A T-value equal to 40 days is obtained for SMOS. This is not expected, 
as the SMOS soil moisture product should be the one with the higher penetration depth and, 
hence, the lower T value. It is the opposite. Could the authors add some explanations for 
that? Could this value be attributed to the noise of satellite data (e.g. due to RFI)? 
 
To answer this question, we focus on the differences between SMOS and AMSR-E, since 
they are both passive retrievals. Indeed, it is true that the penetration depth of the C-band of 
AMSR-E is shallower than that of the L-band of SMOS. However, the underlying assumptions 
of their retrievals pertaining to spatial heterogeneity are quite different. For instance, the 
LPRM algorithm that produced the AMSR-E data set assumes a homogeneous surface and 
globally constant roughness and vegetation scattering albedo, whereas the parameterization 
of SMOS L-MEB is based on the dominant land cover and its surrounds. 
 
While RFI in C-, X-, and L-bands are small over Australia, the presence of noise can influence 
the operation of the SWI filter. In our synthetic analysis (unpublished), increased noise 
increases the optimal T and also its uncertainty. To our best knowledge, the existing studies 
examining the dependence of T on soil depth are usually based on a single satellite product 
against in situ measurements at variable depths. Hence it is difficult for these studies to 
appreciate the complexity increased by noise and different sensing and retrieval methods. 
 
We added a brief comment about this in the revised Section 4.3 (SWI, rescaling and error 
estimation): 
“Previous studies have shown that the optimal T value increases with layer depth (e.g., 
Brocca et al., 2010). Results presented here show an increased T value for SMO, which 
would be inconsistent with L-band having a deeper penetration than AMS C-band (to limit the 
comparison within passive retrievals). We speculate that these differences might be due 
various factors, including the different retrieval methods (which have quite different 
assumptions pertaining to spatial heterogeneity) and the influence that radio-frequency 
interference (RFI) noise. Moreover, to the best of our knowledge, the existing studies 
examining the dependence of T on the soil depth are usually based on a single satellite 
product against in situ measurements at variable depths. Hence it is difficult for these studies 
to elucidate the complexity increased by noise and different sensing and retrieval methods.” 
 
7) P106568, L27: “...seems to be less sensitive to these violated assumptions...”. What is the 
proof of this sentence? The reference to another study performing data assimilation is, at 
least for me, not enough.  
We agree with the reviewer in that two studies are not enough to support our statement. What 
we aimed to express in this paragraph is the urgent need to advance the study of SM-DA in 
rainfall-runoff models. We think that what has been found in previous studies using SM-DA in 
land-surface models and analysing soil moisture prediction may not be directly applicable in 



the case of rainfall-runoff models. We modified the paragraph in the revised manuscript to 
better explain this: 
 
Revised Section 4.3 (SWI, rescaling and error estimation): 
 In this context, the performance of the SM-DA with respect to the improvement in streamflow 
has been under-investigated. Alvarez-Garreton et al. (2013, 2014) show that in terms of 
streamflow prediction, SM-DA seems to be less sensitive to these violated assumptions. This 
lower sensitivity and apparent contradiction with previous studies analysing soil moisture 
prediction performance, highlights the need for further studies focusing on SM-DA for the 
purposes of improving streamflow prediction from rainfall-runoff models. 
 
8) Figure 2: SMOS should start in 2010. From the figure it seems starting in 2009. Please 
check.  
The Figure was corrected in the revised manuscript. 
 

 
 
 
9) Figure 9: The reference Brocca et al. (2010) should be the paper on Remote Sensing of 
Environment (Brocca, L., Melone, F., Moramarco, T., Wagner, W., Hasenauer, S. (2010). 
ASCAT Soil Wetness Index validation through in-situ and modeled soil moisture data in 
central Italy. Remote Sensing of Environment, 114 (11), 2745-2755.), not the one on HESS. 
The Figure was corrected in the revised manuscript. 
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Authors’ response to Uwe Ehret (Referee #2) on “Improving operational flood ensemble 
prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-
distributed schemes” by C. Alvarez-Garreton et al. 
 
We are truly grateful for the constructive and interesting comments and suggestions provided 
by Dr Uwe Ehret. We strived to address each comment and to provide a comprehensive 
explanation of the approaches and decisions adopted to answer them.   
 
The document is structured as follows: i) the reviewer’s comments in blue font, ii) the authors’ 
reply in black font, iii) the changes made in the revised manuscript in black italic font. 
 
SCOPE 
The article is within the scope of HESS 
 
SUMMARY 
This study investigates the benefits of assimilating satellite-derived soil moisture data into 
ensemble streamflow predictions in sparsely monitored catchments at the example of the 
semi-arid 40.000 km² Warrego catchment in Australia. To this end, a conceptual hydrological 
model (PDM) is calibrated by streamflow observations at a single outlet gauge in a lumped 
and semi-distributed (7 sub-catchments) configuration. For 3 components of the model 
(rainfall input for forcing, a conceptual store retention constant for parameters and the soil 
water storage for states), error models were formulated and their parameters found by 
calibration. The satellite observations were transformed to estimates of profile soil moisture, 
bias-corrected and then assimilated into the model predictions with an Ensemble Kalman filter 
approach. Model performance was then evaluated a) lumped vs. semi-distributed and b) 
unperturbed model vs. open loop ensemble vs. updated ensemble predictions (updated by 
data assimilation of satellite-derived soil-moisture estimates) by normalized RMSE (NRMSE), 
Nash-Sutcliffe efficiencies (NS), probability of detection (POD) and false alarm ratio (FAR). 
The authors' main conclusions are: 
- The main limitation of the proposed ensemble model scheme was the too large ensemble 
spread of the open-loop model predictions 
- Estimation of profile-average (here ~ 1 m depth) soil moisture from satellite data is difficult 
and involves large uncertainties 
- Nevertheless, the data assimilation predictions outperformed the open-loop ensemble 
predictions, the data assimilation predictions with the semi-distributed model outperformed 
those based on the lumped model, and data assimilation predictions at uncalibrated gauges 
within the catchment outperformed the open-loop predictions. 
The authors conclude with the recommendation to focus efforts on ensuring adequate 
hydrological models given the available data. 
 
OVERALL RANKING 
The work is ranked 'major revision'.  
 
GENERAL EVALUATION 
This is a thoroughly conducted study, where all of the (many) crucial assumptions that 
needed to be made on the way (e.g. the choice of error models or the profile soil moisture 
estimation) are discussed.  



We thank the reviewer for its appreciation of our work and for highlighting the special attention 
we gave to comprehensibly discussing the assumptions needed in a real satellite soil 
moisture data assimilation experiment. 
 
1) As the goal is to evaluate the additional value of assimilating remotely-sensed soil moisture 
data, it should be done with an 'as-good-as-possible' hydrological model, i.e. a model that has 
been set up making as good as possible use of the standard available data. I assume the 
author's last statement in the conclusions points exactly in this direction. So instead of 
evaluating the benefit of satellite-derived soil-moisture data assimilation (SM-DA) against a 
lumped model and a semidistributed model that was calibrated with the outlet gauge only, it 
should be evaluated against a model calibrated on all 3 gauges.  
 
The reviewer is right about the main goal of this paper. Within this main goal however, the 
scope of this work was defined by 3 research questions: 1) While rainfall is presumably the 
main driver of flood generation in semi-arid catchments, can we effectively improve 
streamflow prediction by correcting the soil water state of the model? 2) What is the impact of 
accounting for channel routing and the spatial distribution of forcing data on SM-DA 
performance? 3) What are the prospects for improving streamflow within ungauged inner 
catchments using SSM? 
 
The evaluation of an “as-good-as-possible” model (benchmark model hereafter), which uses 
all available streamflow information to calibrate the model parameters, does not consistently 
fit within questions 2 and 3 (Q2 and Q3, respectively). Regarding Q2 cited above, the 
benchmark model accounts for the two aspects the question refers to (spatial distribution of 
forcing and channel routing), but more importantly, it adds additional observations to estimate 
model parameters, which means that is not directly comparable to the lumped case. We 
therefore consider that the benchmark model cannot be used to consistently address this 
question. Regarding Q3, the benchmark model does not allow us to test ungauged scenario 
since it uses the inner gauges.  
 
The use of a benchmark model with an “as-good-as-possible” set of model parameters could 
provide important information about, for example, the effects that the parameter quality has in 
SM-DA efficacy (by comparing the benchmark model with the semi-distributed “ungauged” 
model). Although these results would be very interesting to explore, and they could potentially 
support our last statement in the conclusions regarding focusing effort on ensuring adequate 
models (as the reviewer correctly mentions), they address a different research question than 
the ones we defined. Therefore, we consider that adding a third case (first case is the lumped 
model, second case is the “ungauged” semi-distributed model) for evaluation of SM-DA falls 
beyond the scope of this work.  
  
Notwithstanding the above, and to attend the reviewer’s (as well as our) interest in evaluating 
such a model, mostly with the purpose of investigating the poor performance of the semi-
distributed scheme in the “ungauged” the inner catchments (in the Discussion paper), we 
calibrated an “as-good-as-possible” model. Results are presented in this response document 
(see Table 1 below), but they are not included in the revised manuscript.  
 



The “as-good-as-possible” model was calibrated by using all the available streamflow 
information of N1, N3 and N7. Note that this in practice is not consistent with the calibration 
period defined in the discussion paper since the gauge N1 only has data in the evaluation 
period (see Fig. 2 of the discussion paper). Results are summarised below: 
 

Table 1: Benchmark model results in evaluation period 
 Unperturbed model 
 N7 N1 N3 
RMSE (mm) 0.15 0.30 0.15 
NS 0.84 0.78 0.69 
POD 0.89 0.79 0.83 
FAR 0.08 0.02 0.05 
PVE (mm) -22.90 -21.06 -15.69 

 
*In the case of the open-loop and updated ensemble predictions, NS, POD and FAR statistics 
are calculated using the ensemble mean. RMSE statistic is calculated as the mean of each 
ensemble member’s RMSE (see Sect. 3.7 of the discussion paper).  
 
A brief mention of these results is provided in the revised manuscript. 
 
Revised Section 4.1 (Model calibration): 
“To explore the reasons of such bad performance, we separately calibrated the model 
parameters in those sub-catchments by using all the available N7, N1 and N3 observations. 
The results (not shown here) revealed that in this case, the model was able to adequately 
simulate streamflow in those sub-catchments (NS in evaluation period of 0.78, 0.69 and 0.84 
at N1, N3 and N7 nodes, respectively). Based on this, we argue that the problem for the poor 
model performance in the ``ungauged" inner catchments is mainly attributed to sub-optimal 
parameter estimation (due to the limited information about catchment heterogeneity provided 
by the integrated catchment streamflow response) and less likely to errors in the input data 
and model structure.” 
 
Also, the performance of the hydrological model could potentially be considerably improved 
by either improvement or calibration of the evapotranspiration (ET) module, especially so as 
this study focuses on soil moisture states, which are strongly influenced by the ET scheme. 
So please include a description of the ET module, explain whether it has been used in 
calibration or not (and if not consider using it for calibration), explain its influence on the 
quality of the model predictions, and also consider including it in your model error model. 
Then conduct the evaluation of SM-DA again with the 'as-good-as-possible' hydrological 
model. 
 
In the PDM formulation, the actual evapotranspiration (ET) is calculated for each time step 
based on potential evapotranspiration (PET, which is an input data), the soil moisture content 
(S), and a parameter be as follows: 
 

𝐸𝑇
𝑃𝐸𝑇 = 1−

𝑆!"# − 𝑆(𝑡)
𝑆!"#

!!
 Eq.1 

 



Where Smax is the total available soil moisture storage, calculated as: 
 

𝑆!"# =
𝑏  𝑐!"# +   𝑐!"#

𝑏 + 1  Eq.2 

 
Where Cmin and Cmax are the minimum and maximum soil moisture store capacities, 
respectively. Parameter b is the exponent of the Pareto distribution controlling the spatial 
variability of store capacity. 
 
In our experiments, parameters be, Cmin, Cmax and b are calibrated by maximising the Nash-
Sutcliffe Efficiency of the streamflow prediction at the catchment outlet. Therefore, and 
answering the reviewer’s comment, the ET module has been calibrated.  
 
As the reviewer indicates, this ET scheme has a great influence in the quality of model 
predictions by accounting for the only loss term in the water balance. This is critical in our 
study catchment, where the runoff coefficient is very low.  
 
Regarding the inclusion of the ET scheme in the model error representation suggested by the 
reviewer, by perturbing the model soil moisture (S in Eq. 1), we are implicitly accounting for 
errors in ET. We could potentially include error in parameters be, Cmin, Cmax and/or b, which 
would also account for errors in the ET estimation, however, in the current state of this work, 
we decided to represent model error parameters by perturbing parameter k1 (time constant of 
surface storages S21 and S22 of the model, see Figure 1 of this document). This decision was 
made based on the direct effect that surface runoff has in the streamflow prediction. Adding 
further parameters into the error model representation would aggravate the highly 
underdetermined condition of this problem.  
 
We do agree however, that different error model configurations should be explored and we 
have highlighted it as part of our limitations (and recommendations) in different sections of the 
original and revised manuscript: 
 
Revised Conclusions: 
“The open-loop ensembles at the catchment outlet provide key information about prediction 
uncertainty, which is required for assessing risks associated with water management 
decisions (Robertson et al., 2013). These ensembles showed a slight bias with respect to the 
observed streamflow and featured a wide spread. Further exploration of model error 
representation (sources of error and the structure of those errors) and error parameter 
estimation is required to improve the characteristics of the open-loop ensemble prediction.” 
 
2) So far, the semi-distributed, non-ensemble model outperformed all others (NS = 0.77). So 
as a flood forecaster, given the choice of all presented model configurations 
(lumped/semidistributed, open-loop/assimilation), I would choose the former (even though I 
recognize the additional benefit of a probabilistic prediction). It may well be that with the 'as-
good-as-possible' hydrological model mentioned above, this may be even more the case. So 
for me the main message of the study is to focus on the set-up of the hydrological model and 
the associated error models rather than SM-DA, if better (and probabilistic) stream flow 
predictions are the goal. The authors have mentioned this in their study, but it should be 



stated more clearly. Also, for the study this means that before applying SM-DA to the model, 
the focus should be on improving the error models of the hydrological model (which, as the 
authors correctly state, is a highly underdetermined problem), until the performance of the 
open-loop model ensemble mean is comparable to that of the non-ensemble model. So far, it 
is considerably worse (NS 0.61 and 0.53 for lumped and semi-distributed model). 
 
The worse performance of the open-loop with respect to the unperturbed model was due to a 
bias in the open-loop streamflow introduced in the ensemble generation process. We 
corrected this bias in the revised manuscript by applying a perturbation bias correction 
identical to the one used for soil moisture ensemble. Please see please the details of this 
procedure and the revised results in our reply to reviewer 1 (general comment 1).  
 
We agree with the reviewer in that focusing on a robust ensemble generation is a key 
message this work delivers. This involves further exploration of error model representation 
schemes and error model parameter calibration techniques. We have added clearer states 
regarding this in the revised manuscript (please see the Revised Conclusions paragraph cited 
in our previous response). 
 
While acknowledging the limitations of our open-loop ensemble predictions, we recognise the 
added value and the need of having probabilistic predictions (as the reviewer also states). 
This probabilistic scenario is where we focus the key messages of this study: 
 
Conclusions – Discussion paper: 
“The evaluation of the SM-DA results led to several insights. 1) The SM-DA was successful at 
improving the open-loop ensemble prediction at the catchment outlet, for both the lumped and 
the semi-distributed case. 2) Accounting for spatial distribution in the model forcing data and 
for the routing processes within the large study catchment improved the skill of the SM-DA at 
the catchment outlet. 3) The SM-DA was effective at improving streamflow prediction at the 
ungauged locations, compared to the open-loop. However, the updated prediction in those 
catchments was still poor, because the systematic errors before assimilation are not 
addressed by a SM-DA scheme.”   
 
“This work provides new evidence of the efficacy of SM-DA to improve streamflow ensemble 
prediction in sparsely instrumented catchments. We demonstrate that SM-DA skill can be 
enhanced if the spatial distribution of forcing data and routing processes within the catchment 
are accounted for in large catchments. We show that SM-DA performance is directly related 
to the model quality before assimilation, therefore we recommend that efforts should be 
focused on ensuring adequate models, while evaluating the trade-offs between more complex 
models and data availability.”   
 
SPECIFIC COMMENTS 
• 10641/1-5: what is the spatial resolution of the satellite data? Also, it is not clear yet what the 
satellites actually observe (penetration depth etc.). Please include a reference to section 3.5 
Specifications about the satellite products were added to the revised Section 2 (Study area 
and data) and a reference to this information was added in the revised Section 3.5 (Profile soil 
moisture estimation).  
 



Revised Section 2 (Study area and data): 
“Three SSM products are used here. The first is the Advanced Microwave Scanning 
Radiometer - Earth Observing System (AMSR-E, AMS hereafter) version 5 VUA-NASA LPRM 
(Land Parameter Retrieval Model) Level 3 gridded product (Owe et al., 2008). AMS uses C- 
(6.9 GHz) and X-band (10.65 and 18.7 GHz) radiance observations to derive near-surface soil 
moisture (2 to 3 cm depth) using a land-surface radiative transfer model. The product used is 
in units of volumetric water content (m3 m-3) and has a regular grid of 0.25o  
 
The second product is the TU-WIEN (Vienna University of Technology) ASCAT (ASC 
hereafter) data produced using the change-detection algorithm (Water Retrieval Package, 
version 5.4) (Naeimi et al., 2009). ASC transmits and measures electromagnetic waves in C-
band (5.3Gz) and has a nominal spatial resolution varying from 25 to 50 km. The change-
detection algorithm assumes that land surface characteristics are relatively static over long 
time periods under a given incident angle. Based on this, the differences between 
instantaneous backscatter coefficients and the historical highest and lowest values, are 
related to changes in soil moisture (Wagner et al., 1999). The product is provided in relative 
terms as the degree of saturation. 
 
The third SSM product is the Soil Moisture and Ocean Salinity (SMOS) satellite (SMO 
hereafter), version RE01 (Re-processed 1-day global soil moisture product) provided by 
Centre Aval de Traitement des Donnees. SMO uses L-band (1.4 GHz) detectors, which have 
a penetration depth of approximately 5 cm and a spatial resolution of approximately 43 km. 
Near-surface soil moisture is obtained in units of volumetric water content (m3 m-3), by using a 
forward physical model inversion, described by Kerr et al. (2012).”  
 
• 10642/14: Are the k-parameters really time-dependent, i.e. time-variable? 
Parameters k1 and k2 are the time constant parameters of the two surface storages S21 and 
S22 (see Figure 1). These parameters are fixed in time and estimated through calibration. We 
corrected the sentence the reviewer mentions, which led to this misunderstanding: 
 
Revised Section 3.1 (Lumped and semi-distributed model schemes): 
“The time constant parameters of the storages S21, S22 and S3 (k1, k2 and kb, respectively) 
were scaled by the area of each sub-catchment.” 
 

 
Figure1: PDM scheme 

Total
 runoff

Surface
 runoff

Drainage

Slow flow storage

Fast flow storagesE

P

S1

S22S21

S3

Q

Direct 
runoff

Sub-surface 
runoff

Baseflow



 
• 10645 pp.: Please justify in more detail the choice of your error functions, especially for k 
As detailed in Section 3.4 of the Discussion paper, the three main sources of error in model 
predictions (forcing error, parameter error and structural error) were represented by 
perturbing rainfall data, parameter k1 and soil moisture state (water content in S1). 
 
We consider that the selection of the error structures of rainfall and structural error was 
adequately justified in the discussion paper. We do agree with the reviewer however, that 
further justification can be provided regarding the parameter error model. Here we summarise 
the justification provided for the choice of forcing and structural error schemes. We also 
added further justification of parameter error choice in the revised manuscript: 
 
Section 3.3 (Error model representation) – Discussion paper: 
- Error in rainfall data: we based our choice on the findings of previous studies (e.g., McMillan 
et al., 2011; Tian et al., 2013) that show that multiplicative error model is suitable for rainfall 
observations. This error structure (log-normally distributed multiplicative error with mean one) 
indicates that higher rainfall will have higher observation error and it has been widely used in 
several SM-DA studies (e.g., Chen et al., 2011; Brocca et al., 2012; Alvarez-Garreton et al., 
2014). 
 
- Error in model structure: we represented the structural error by perturbing the soil moisture 
prediction with an additive random error (Gaussian distribution with mean zero). We followed 
the scheme used in most SM-DA experiments (e.g., Reichle et al., 2008; Crow and Van den 
Berg, 2010; Chen et al., 2011; Hain et al., 2012). 
 
Revised Section 3.3 (Error model representation): 
The parameter uncertainty was represented by perturbing the time constant parameter k1 for 
store S21, a highly sensitive parameter of the model that directly affects the streamflow 
generation by influencing the water stored in both surface storages S21 and S22 (note that in 
the PDM formulation used, the time constant k2 is calculated as a function of k1). Given the 
lack of a priori information about the structure of the parameter error, we followed previous 
SM-DA studies working with rainfall-runoff models (Brocca et al., 2010b, 2012) and adopted a 
normally distributed multiplicative error with unit mean and standard deviation of sk.”  
 
 
 


